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Motivation

Last year, you took introductory C/C++ courses (ESP, OOP1)

Time to apply your knowledge...

• Interaction with the operating system (Posix API)

• Processes, Threads

• Memory management



Learning Goals

Learn how C and C++ does things

• Learn how the operating system manages your programs

• Learn to read and understand code

• Practice writing, fixing and adapting code snippets

• Practice or learn debugging!

Side effect: Preparation for OS



Skillset Goals

• SLP is your booster for OS

• Everything, Everything, we teach, will matter for OS.

• Seemingly useless staring at addresses? You will need this.

• Seemingly useless knowledge about program behavior? You will need this.

• Seemingly useless hours of debugging? You will need it this much.

• Statistics show:

• without SLP (or barely passed) → average grade 5 in OS

• with a good grade in SLP → average grade 1-2 in OS
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Take this course seriously









Registration and Related Issues

• Registration is closed

• You obtain a grade if you are enrolled

• as soon you submit a single assignment.

• A0 does not count → self-assessment

You will receive an email containing information

• on your GIT repository, and

• on your account in the test-system

• You will work individually on all assignments.

• Mandatory exam



Course Outline - Assignments

A0

Compiler, C, C++

A1, A2

Multithreading, Synchronization, Thread interaction

A3, A4

Virtual Memory, Process interaction, Shared resources, IPC

A5

Memory Management

A6

System Programming



Course Outline - Lectures

Three types of lectures

• Regular lectures

• Theory

• Examples

• Assignment presentations

• Kick offs

• Organisatorial details

• Some basic theory

• Weekly question hours (0.5hr)

• Discord!

• for current + next assignment

• Multiple tutors present





















Copycats

Plagiarism is strictly forbidden, so keep in mind that

• Every assignment will be checked

• ...once all assignments are completed.

• Different names for variables → will have no effect!

• Shuffling code snippets → will have no effect!

• NO EXCEPTIONS!

• All people involved have to take the consequences
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Working on Assignments

What are your tasks

• Read the assignment rules!

• Join the IAIK Discord: https://discord.gg/DCpzjqWBD3

• Pull from upstream before you begin.

• Understand the assignment specification,

• Have an in-depth understanding of your solution, and

• implement your solution yourself.

• Do not remove tags, after the deadline!!!

• pro advice: use gdb for debugging and valgrind for memory checks

https://www.iaik.tugraz.at/teaching/materials/slp/rules/
https://discord.gg/DCpzjqWBD3
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Debugging using a debugger



Assignment grading contd’

Each assignment graded individually with the help of the test system

• 105 points reachable

• stable solutions that are in line with the rules

• If you are not sure about something: ask

Your submissions are tested automatically

• Subset of tests is revealed (=sanity checks)

• Passing all sanity checks does not mean 100% on all tests
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Assignment Grading contd’

Interviews

• during the semester, after:

• A1, A2

• A3, A4

• A5, A6

• you select a time slot, but get a random tutor

• points can be lost, but additional points can be awarded

You may have to code something or be asked about many your own code with small

variation



Assignment Grading contd’

Magic coins

• A0 rewards you with up to 100 coins when completed

• Assignment handed in an hour early: +1 Coin

• For each 10 min late: -1 Coin

• Max 48 hrs for a late submission

• Coins can be converted into bonus points

• Exchange rate: 1pt/50coins



Exam and Overview of grading

• mandatory

• 30 pts reachable

• ≥50% of points needed

Positive grade:

• Exam: ≥ 15 pts

• Assignments: ≥55 pts

• but overall score has to be over ≥50%
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Success

In numbers:

• Grading (max. 135 points):

• ≥ 118 points → 1

• ≥ 101 points → 2

• ≥ 84 points → 3

• ≥ 75 points → 4



Working Environment

We recommend to use Linux

• e.g., Ubuntu

• use gcc/g++, gdb and valgrind

http://www.ubuntu.com/


Support Channels & Feedback

Support

• Course website

• Discord: IAIK Discord

• studo

Give us feedback

• Anytime you think something could be improved

• Evaluation at the end of the course

https://iaik.tugraz.at/slp
https://discord.gg/DCpzjqWBD3


Changes this year

• exercise interviews during the semester

→ no second chance for exercises or exercise interviews

• second chance exam still exists



Code-Fixing Challenge (A0)



The Challenge

• Not mandatory and for self-assessment only!

• Self-assessment – max. 1 hour.

• No grading, but coins as reward

• You can quit after A0, without getting graded

• The challenge is open on Thursday (today) from 7pm to 8pm.

• Pull from upstream



Multithreading (A1)









Assignment 1 Overview

• well.... actually just in ASCII

• because of a lazy tutor, you get a version without threads → not really playable

• TASK: fix it and make it fun to play



Synchronization (A2)



A2-First step

• Pull from upstream

• Try mkdir build && cd build; cmake ..; make and execute

• It will not work ;-)

• Fix it



A2-Note

• Changing core functionality/output of the program → 0 points

• Parts you may and should modify are marked with TODO BEGIN and TODO

END

• Do not make unnecessary changes



A2-What do we need?

• Locks:

• Mutex

• Semaphore

• Condition variable

• Use Posix locks!

• Hint: there will be lectures on this topic



A2-Typical errors

• So, how to lock correctly?

• You need to hold the lock as long as you need the shared resource

• Carefully keep track of the sequence you’ve locked

• Always should be the same sequence



A2-Typical errors contd

Will work, but has a very bad performance. Maybe nothing can happen simultaneously

because of the way it is locked.



A2-Typical errors contd

THREAD 1

// . . .

l o c k ( h a r d d i s k ) ;

l o c k ( f l o p p y ) ;

copySomething ( f l oppy , h a r d d i s k ) ;

un lock ( f l o p p y ) ;

un lock ( h a r d d i s k ) ;

// . . .
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// . . .

l o c k ( f l o p p y ) ;

l o c k ( h a r d d i s k ) ;

copySomething ( f l oppy , h a r d d i s k ) ;

un lock ( h a r dd i s k ) ;

un lock ( f l o p p y ) ;

// . . .



A2-Typical errors contd

Results in a deadlock.









Program, Process, Thread

• A program: a binary file containing code and data

• actions: write, compile, install, load

• resources: file

• A thread: an execution context

• actions: run, interrupt, stop

• resources: CPU time, stack, registers

• A process: a container for threads and memory contents of a program

• actions: create, start, terminate

• resources: threads, memory, program
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Abstractions

• Process: abstraction of a computer

• File: abstraction of a disk or a device

• Socket: abstraction of a network connection

• Window: abstraction of a display

→ Abstractions hide many details but provide the required capabilities
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Program, Process, Thread

• Once a program is loaded in memory, OS can start it(s first thread) by

• setting up a stack and setting the stack pointer and

• setting the instruction pointer (of the first thread) to the programs first instruction

• Process is an instance of a program
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Process can have multiple threads

• same program code and data

• own stack

• own registers (including instruction pointer)
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Program, Process, Thread

• Program: a binary file containing code and data

• a mold for a process

• Thread: an execution context

• a sequence of instructions

• if part of a process: restricted to the boundaries of a process

• Process: a container for threads and memory contents of a program

• an instance of a program

• restricted to its own boundaries and rights
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• Program file

• File descriptors
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• Accounting

• Threads

• Child processes?
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Thread Resources

A thread is a unit for execution.

• Thread ID

• Thread state (Running, Sleeping, . . . )

• A set of register values

• A stack
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Load program, create process, . . .

• 1 initial thread

• executes the main()-function

• it’s not a “main”-thread

• process may start further threads if required (how?)
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• at boot time (kernel threads, init processes)

• at request of a user (how?)

• also: start of a scheduled batch job (cronjob, how?)
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Process Creation via fork (on Unix / Linux)

pid_t fork(void);

The fork() function shall create a new process. The new process (child process) shall

be an exact copy of the calling process (parent process) except as detailed below:

• unique PID

• copy of file descriptors

• semaphore state is copied

• shall be created with a single thread. If a multi-threaded process calls fork(), the

new process shall contain a replica of the calling thread and its entire address

space, possibly including the states of mutexes and other resources.

• parent and the child processes shall be capable of executing independently before

either one terminates.

• . . .
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fork Return Value

pid_t fork(void);

Upon successful completion, fork() shall return 0 to the child process and shall return

the process ID of the child process to the parent process. Both processes shall continue

to execute from the fork() function. Otherwise, -1 shall be returned to the parent

process, no child process shall be created, and errno shall be set to indicate the error.



Fork

pid_t child_pid;

child_pid = fork();

if (child_pid == -1) {

printf("fork failed\n");

} else if (child_pid == 0) {

printf("i’m the child\n");

} else {

printf("i’m the parent\n");

waitpid(child_pid,0,0); //

wait for child to die

}

• child does not know the parent

• parent knows the child

• parent waits for child to die

(waitpid)
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exec

int execl(const char *pathname, const char *arg, ... /* (char *) NULL */

);

int execlp(const char *file, const char *arg, ... /* (char *) NULL */);

int execle(const char *pathname, const char *arg, ... /*, (char *) NULL,

char * const envp[] */);

int execv(const char *pathname, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execvpe(const char *file, char *const argv[], char *const envp[]);
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• implicit hierarchy from forking

• process groups in UNIX/Linux

• doesn’t exist in Windows

Implicit parent-child hierarchy on Unix/Linux:

• when parent dies,

all children, grand-children, grand-grand-children, . . . , die aswell

• UNIX/Linux also cheats a bit: parent process typically inherits a processes’

children, etc.
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Process/Thread State

git grep TODO | sort

• sort has to wait for input

• what does the sort do in the meantime?

• loop and check (busy wait)

• sleep and get woken up

• blocking the process makes sense

• do we actually block the process?
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• No need to reconfigure memory
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Example

while (TRUE)

{

get_next_request(&buf);

handoff_work(&buf);

}

while (TRUE)

{

wait_for_work(&buf);

look_for_page_in_cache(&buf,&page);

if (page_not_in_cache(&page))

read_page_from_disk(&buf,&page);

return_page(&page);

}
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• complicated program structure

• read content from disk may block process

• non-blocking read (polling!) decreases performance
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Non-Blocking Read

while (TRUE) { // VERY simplified

get_next_event(&buf);

if (is_request_event(&buf)) {

if (page_not_in_cache(&page)) {

request_page_from_disk(&buf,&page);

save_request_in_table(&buf);

} else {

return_page(&page);

}

} else if (is_disk_event(&buf)) {

find_request_in_table(&buf);

mark_requeust_as_done(&buf);

return_page(&page);

} else if (is_...
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• Finite-state-machine!

• Actually simulates threads

• Better: use multithreading
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How to use multithreading?

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);
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Let’s make a function pointer for main

int main(int argc, char *argv[])

• Function pointer: (*)

• +argument parenthesis:

(*)()

• +return type: int (*)()

• +first argument: int (*)(int)

• +second argument: int (*)(int, char*[])
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void *(*start_routine) (void *), void *arg);

The pthread create() function starts a new thread in the calling process. The

new thread starts execution by invoking start routine(); arg is passed as the

sole argument of start routine().

The attr argument points to a pthread attr t structure whose contents are used

at thread creation time to determine attributes for the new thread; this structure is

initialized using pthread attr init and related functions. If attr is NULL, then

the thread is created with default attributes.

Before returning, a successful call to pthread create() stores the ID of the new

thread in the buffer pointed to by thread; this identifier is used to refer to the thread

in subsequent calls to other pthreads functions.
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The new thread terminates in one of the following ways:

• It calls pthread exit, specifying an exit status value that is available to

another thread in the same process that calls pthread join.

• It returns from start routine(). This is equivalent to calling

pthread exit with the value supplied in the return statement.

• It is canceled (see pthread cancel).

• Any of the threads in the process calls exit, or the main thread performs a

return from main(). This causes the termination of all threads in the process.
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