
Transient Execution Attacks

Daniel Gruss

September 12, 2018

Graz University of Technology

1 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (1) www.tugraz.at

• 19.02.2016: Daniel has an implementation for KASLR-break with prefetch

• 20.02.2016: Anders blogs about it + we decide to write a paper together (first

paragraph on KAISER in that paper)

• 05.04.2016: Richard starts working on KAISER patch

• 28.04.2016: Anders + Daniel meet for the first time at RuhrSec 2016

• 03.08.2016: Anders + Daniel share a room at BH USA

• discuss whether there might be something like Meltdown

• conclude that a bug of that dimension would have been found long ago

2 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 24.10.2016: Anders meets Graz team at CCS 2016

• 03.11.2016: Anders + Michael discuss “speculative execution” and reading kernel

memory when sharing a room at BH EU

• Early 2017: Paul Kocher + Mike Hamburg start thinking about Speculative

Execution

• 15.02.2017: Anders tells Halvar Flake about this idea and Halvar encourages him

to continue investigating it

• 20.03.2017: Anders has a first speculative execution PoC working (no full exploit

yet)

• 18.04.2017: KAISER paper was accepted at ESSoS

3 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 24.10.2016: Anders meets Graz team at CCS 2016

• 03.11.2016: Anders + Michael discuss “speculative execution” and reading kernel

memory when sharing a room at BH EU

• Early 2017: Paul Kocher + Mike Hamburg start thinking about Speculative

Execution

• 15.02.2017: Anders tells Halvar Flake about this idea and Halvar encourages him

to continue investigating it

• 20.03.2017: Anders has a first speculative execution PoC working (no full exploit

yet)

• 18.04.2017: KAISER paper was accepted at ESSoS

3 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 24.10.2016: Anders meets Graz team at CCS 2016

• 03.11.2016: Anders + Michael discuss “speculative execution” and reading kernel

memory when sharing a room at BH EU

• Early 2017: Paul Kocher + Mike Hamburg start thinking about Speculative

Execution

• 15.02.2017: Anders tells Halvar Flake about this idea and Halvar encourages him

to continue investigating it

• 20.03.2017: Anders has a first speculative execution PoC working (no full exploit

yet)

• 18.04.2017: KAISER paper was accepted at ESSoS

3 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 24.10.2016: Anders meets Graz team at CCS 2016

• 03.11.2016: Anders + Michael discuss “speculative execution” and reading kernel

memory when sharing a room at BH EU

• Early 2017: Paul Kocher + Mike Hamburg start thinking about Speculative

Execution

• 15.02.2017: Anders tells Halvar Flake about this idea and Halvar encourages him

to continue investigating it

• 20.03.2017: Anders has a first speculative execution PoC working (no full exploit

yet)

• 18.04.2017: KAISER paper was accepted at ESSoS

3 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 24.10.2016: Anders meets Graz team at CCS 2016

• 03.11.2016: Anders + Michael discuss “speculative execution” and reading kernel

memory when sharing a room at BH EU

• Early 2017: Paul Kocher + Mike Hamburg start thinking about Speculative

Execution

• 15.02.2017: Anders tells Halvar Flake about this idea and Halvar encourages him

to continue investigating it

• 20.03.2017: Anders has a first speculative execution PoC working (no full exploit

yet)

• 18.04.2017: KAISER paper was accepted at ESSoS

3 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 24.10.2016: Anders meets Graz team at CCS 2016

• 03.11.2016: Anders + Michael discuss “speculative execution” and reading kernel

memory when sharing a room at BH EU

• Early 2017: Paul Kocher + Mike Hamburg start thinking about Speculative

Execution

• 15.02.2017: Anders tells Halvar Flake about this idea and Halvar encourages him

to continue investigating it

• 20.03.2017: Anders has a first speculative execution PoC working (no full exploit

yet)

• 18.04.2017: KAISER paper was accepted at ESSoS

3 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 20.04.2017: Anders visits Graz. He later (05.01.2018) blogged about this
meeting:

• “tried to pitch my idea, because with the workload I had I knew it would be difficult

for me to realize alone. Unfortunately, I wasn’t the only one fully booked out and

Daniel, Michael and myself were super skeptical at that time, despite the slight

encouragement I’d had at Troopers. So we decided to finish the stuff we were

already doing first”

• 04.05.2017: Posted KAISER patch to the Linux Kernel Mailing List (LKML)

4 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 20.04.2017: Anders visits Graz. He later (05.01.2018) blogged about this
meeting:

• “tried to pitch my idea, because with the workload I had I knew it would be difficult

for me to realize alone. Unfortunately, I wasn’t the only one fully booked out and

Daniel, Michael and myself were super skeptical at that time, despite the slight

encouragement I’d had at Troopers. So we decided to finish the stuff we were

already doing first”

• 04.05.2017: Posted KAISER patch to the Linux Kernel Mailing List (LKML)

4 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (2) www.tugraz.at

• 20.04.2017: Anders visits Graz. He later (05.01.2018) blogged about this
meeting:

• “tried to pitch my idea, because with the workload I had I knew it would be difficult

for me to realize alone. Unfortunately, I wasn’t the only one fully booked out and

Daniel, Michael and myself were super skeptical at that time, despite the slight

encouragement I’d had at Troopers. So we decided to finish the stuff we were

already doing first”

• 04.05.2017: Posted KAISER patch to the Linux Kernel Mailing List (LKML)

4 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (3) www.tugraz.at

• May 2017: Jann Horn discovers Spectre

• 01.06.2017: Jann Horn reports Spectre to Intel

• 22.06.2017: Jann Horn finds Meltdown + reports it to Intel

• 04.07.2017: Graz team meets Anders at DIMVA / ESSoS 2017

5 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (3) www.tugraz.at

• May 2017: Jann Horn discovers Spectre

• 01.06.2017: Jann Horn reports Spectre to Intel

• 22.06.2017: Jann Horn finds Meltdown + reports it to Intel

• 04.07.2017: Graz team meets Anders at DIMVA / ESSoS 2017

5 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (3) www.tugraz.at

• May 2017: Jann Horn discovers Spectre

• 01.06.2017: Jann Horn reports Spectre to Intel

• 22.06.2017: Jann Horn finds Meltdown + reports it to Intel

• 04.07.2017: Graz team meets Anders at DIMVA / ESSoS 2017

5 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (3) www.tugraz.at

• May 2017: Jann Horn discovers Spectre

• 01.06.2017: Jann Horn reports Spectre to Intel

• 22.06.2017: Jann Horn finds Meltdown + reports it to Intel

• 04.07.2017: Graz team meets Anders at DIMVA / ESSoS 2017

5 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (4) www.tugraz.at

• 28.07.2017: Anders blogs about negative result

• Fall 2017: Anders works with Microsoft(?)

• 25.09.2017: Paul (+ Mike?) + Yuval + Genkin + Stefan sit at the same table

and discuss speculative execution

• 27.10.2017: Contacted by Intel asking to sign-off the patch

6 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (4) www.tugraz.at

• 28.07.2017: Anders blogs about negative result

• Fall 2017: Anders works with Microsoft(?)

• 25.09.2017: Paul (+ Mike?) + Yuval + Genkin + Stefan sit at the same table

and discuss speculative execution

• 27.10.2017: Contacted by Intel asking to sign-off the patch

6 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (4) www.tugraz.at

• 28.07.2017: Anders blogs about negative result

• Fall 2017: Anders works with Microsoft(?)

• 25.09.2017: Paul (+ Mike?) + Yuval + Genkin + Stefan sit at the same table

and discuss speculative execution

• 27.10.2017: Contacted by Intel asking to sign-off the patch

6 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (4) www.tugraz.at

• 28.07.2017: Anders blogs about negative result

• Fall 2017: Anders works with Microsoft(?)

• 25.09.2017: Paul (+ Mike?) + Yuval + Genkin + Stefan sit at the same table

and discuss speculative execution

• 27.10.2017: Contacted by Intel asking to sign-off the patch

6 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (5) www.tugraz.at

• 28.11.2017: Yearly student project announcements on our homepage... one of the

projects “Out-of-order-execution-based Channels”

• 03.12.2017: We discovered Meltdown (leaking data from L3)

• 04.12.2017: Bug report with Meltdown code sent to Intel

• 14.12.2017: First call with Intel

7 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (5) www.tugraz.at

• 28.11.2017: Yearly student project announcements on our homepage... one of the

projects “Out-of-order-execution-based Channels”

• 03.12.2017: We discovered Meltdown (leaking data from L3)

• 04.12.2017: Bug report with Meltdown code sent to Intel

• 14.12.2017: First call with Intel

7 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (5) www.tugraz.at

• 28.11.2017: Yearly student project announcements on our homepage... one of the

projects “Out-of-order-execution-based Channels”

• 03.12.2017: We discovered Meltdown (leaking data from L3)

• 04.12.2017: Bug report with Meltdown code sent to Intel

• 14.12.2017: First call with Intel

7 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (5) www.tugraz.at

• 28.11.2017: Yearly student project announcements on our homepage... one of the

projects “Out-of-order-execution-based Channels”

• 03.12.2017: We discovered Meltdown (leaking data from L3)

• 04.12.2017: Bug report with Meltdown code sent to Intel

• 14.12.2017: First call with Intel

7 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (6) www.tugraz.at

• 14.12.2017: First call with Paul + team

• We’re surprised and confused that they found something different than we did

(Spectre)

• They were surprised and confused about Meltdown

• 20.12.2017: First call with Thomas + Werner

• We’re surprised they found something different and confused what it is they found

8 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (6) www.tugraz.at

• 14.12.2017: First call with Paul + team

• We’re surprised and confused that they found something different than we did

(Spectre)

• They were surprised and confused about Meltdown

• 20.12.2017: First call with Thomas + Werner

• We’re surprised they found something different and confused what it is they found

8 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (6) www.tugraz.at

• 14.12.2017: First call with Paul + team

• We’re surprised and confused that they found something different than we did

(Spectre)

• They were surprised and confused about Meltdown

• 20.12.2017: First call with Thomas + Werner

• We’re surprised they found something different and confused what it is they found

8 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (6) www.tugraz.at

• 14.12.2017: First call with Paul + team

• We’re surprised and confused that they found something different than we did

(Spectre)

• They were surprised and confused about Meltdown

• 20.12.2017: First call with Thomas + Werner

• We’re surprised they found something different and confused what it is they found

8 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (6) www.tugraz.at

• 14.12.2017: First call with Paul + team

• We’re surprised and confused that they found something different than we did

(Spectre)

• They were surprised and confused about Meltdown

• 20.12.2017: First call with Thomas + Werner

• We’re surprised they found something different and confused what it is they found

8 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (7) www.tugraz.at

• 26.12.2017: First call with Jann Horn

• 27.12.2017: Tom Lendacky (AMD) publicly states “AMD microarchitecture does

not allow memory references, including speculative references, that access higher

privileged data when running in a lesser privileged mode”

9 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (7) www.tugraz.at

• 26.12.2017: First call with Jann Horn

• 27.12.2017: Tom Lendacky (AMD) publicly states “AMD microarchitecture does

not allow memory references, including speculative references, that access higher

privileged data when running in a lesser privileged mode”

9 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (8) www.tugraz.at

• 02.01.2018: The Register writes about “Kernel-memory-leaking Intel processor

design flaw”

• 03.01.2018 08:32: @dougallj posts on Twitter that he can leak a secret bit from

speculative execution

• 03.01.2018 09:58: @dougallj posts code on Github

• 03.01.2018 10:18: We tell Intel that given code is public, the embargo probably

won’t hold and ask them to consider an earlier publication

• 03.01.2018 11:01: @dougallj posts on Twitter that he can read kernel memory

10 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (8) www.tugraz.at

• 02.01.2018: The Register writes about “Kernel-memory-leaking Intel processor

design flaw”

• 03.01.2018 08:32: @dougallj posts on Twitter that he can leak a secret bit from

speculative execution

• 03.01.2018 09:58: @dougallj posts code on Github

• 03.01.2018 10:18: We tell Intel that given code is public, the embargo probably

won’t hold and ask them to consider an earlier publication

• 03.01.2018 11:01: @dougallj posts on Twitter that he can read kernel memory

10 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (8) www.tugraz.at

• 02.01.2018: The Register writes about “Kernel-memory-leaking Intel processor

design flaw”

• 03.01.2018 08:32: @dougallj posts on Twitter that he can leak a secret bit from

speculative execution

• 03.01.2018 09:58: @dougallj posts code on Github

• 03.01.2018 10:18: We tell Intel that given code is public, the embargo probably

won’t hold and ask them to consider an earlier publication

• 03.01.2018 11:01: @dougallj posts on Twitter that he can read kernel memory

10 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (8) www.tugraz.at

• 02.01.2018: The Register writes about “Kernel-memory-leaking Intel processor

design flaw”

• 03.01.2018 08:32: @dougallj posts on Twitter that he can leak a secret bit from

speculative execution

• 03.01.2018 09:58: @dougallj posts code on Github

• 03.01.2018 10:18: We tell Intel that given code is public, the embargo probably

won’t hold and ask them to consider an earlier publication

• 03.01.2018 11:01: @dougallj posts on Twitter that he can read kernel memory

10 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (8) www.tugraz.at

• 02.01.2018: The Register writes about “Kernel-memory-leaking Intel processor

design flaw”

• 03.01.2018 08:32: @dougallj posts on Twitter that he can leak a secret bit from

speculative execution

• 03.01.2018 09:58: @dougallj posts code on Github

• 03.01.2018 10:18: We tell Intel that given code is public, the embargo probably

won’t hold and ask them to consider an earlier publication

• 03.01.2018 11:01: @dougallj posts on Twitter that he can read kernel memory

10 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (9) www.tugraz.at

• 03.01.2018 15:28: Erik Bosman posts PoC video on Twitter

• 03.01.2018 18:48: We were allowed to publish

• 03.01.2018 23:27: We publish Meltdown and Spectre

• 04.01.2018: We ask Anders Fogh to join our collaboration

11 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (9) www.tugraz.at

• 03.01.2018 15:28: Erik Bosman posts PoC video on Twitter

• 03.01.2018 18:48: We were allowed to publish

• 03.01.2018 23:27: We publish Meltdown and Spectre

• 04.01.2018: We ask Anders Fogh to join our collaboration

11 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (9) www.tugraz.at

• 03.01.2018 15:28: Erik Bosman posts PoC video on Twitter

• 03.01.2018 18:48: We were allowed to publish

• 03.01.2018 23:27: We publish Meltdown and Spectre

• 04.01.2018: We ask Anders Fogh to join our collaboration

11 Daniel Gruss — Graz University of Technology

Timeline Meltdown/Spectre (9) www.tugraz.at

• 03.01.2018 15:28: Erik Bosman posts PoC video on Twitter

• 03.01.2018 18:48: We were allowed to publish

• 03.01.2018 23:27: We publish Meltdown and Spectre

• 04.01.2018: We ask Anders Fogh to join our collaboration

11 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss

printf("%d", i);

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

printf("%d", i);

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
se

printf("%d", i);

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

DRAM access,
slow

12 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

No DRAM acces
s,

much faster

DRAM access,
slow

12 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

13 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

13 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u

m
b

er
of

ac
ce

ss
es

Cache Hits

14 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u

m
b

er
of

ac
ce

ss
es

Cache Hits Cache Misses

14 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

15 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

Parallelize
D

ep
en

de
nc

y

15 Daniel Gruss — Graz University of Technology

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

16 Daniel Gruss — Graz University of Technology

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

16 Daniel Gruss — Graz University of Technology

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

16 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

17 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

17 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

Adapted code

(volatile char)0;

array [84 * 4096] = 0; // unreachable

18 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

This also works on AMD and ARM!

19 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

This also works on AMD and ARM!

19 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

Flush+Reload again...

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

... Meltdown actually works.

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

23 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

23 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

26 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

26 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

26 Daniel Gruss — Graz University of Technology

Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

27 Daniel Gruss — Graz University of Technology

Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

((size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

28 Daniel Gruss — Graz University of Technology

Make it faster www.tugraz.at

• Improve the performance with a NULL pointer dereference

if(xbegin () == XBEGIN_STARTED) {

(volatile char) 0;

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

29 Daniel Gruss — Graz University of Technology

Make it faster www.tugraz.at

• Improve the performance with a NULL pointer dereference

if(xbegin () == XBEGIN_STARTED) {

(volatile char) 0;

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

29 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly and a
thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

30 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly and a
thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

30 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly and a
thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

30 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly and a
thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

30 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly and a
thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

30 Daniel Gruss — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

31 Daniel Gruss — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

31 Daniel Gruss — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

31 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

32 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

32 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

32 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

32 Daniel Gruss — Graz University of Technology

Take the kernel addresses... www.tugraz.at

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel addresses...

34 Daniel Gruss — Graz University of Technology

Take the kernel addresses... www.tugraz.at

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel addresses...

34 Daniel Gruss — Graz University of Technology

...and remove them www.tugraz.at

• ...and remove them if not needed?

• User accessible check in hardware is not

reliable

35 Daniel Gruss — Graz University of Technology

...and remove them www.tugraz.at

• ...and remove them if not needed?

• User accessible check in hardware is not

reliable

35 Daniel Gruss — Graz University of Technology

Kernel Address Isolation to have Side channels Efficiently Removed

Kernel Address Isolation to have Side channels Efficiently Removed

KAISER /ˈkʌɪzə/
1. [german] Emperor,
ruler of an empire
2. largest penguin,
emperor penguin

KAISER Illustration www.tugraz.at

Without KAISER:

Shared address space

User memory Kernel memory

0 −1

context switch

With KAISER:

User address space

User memory Not mapped

0 −1

Kernel address space

SMAP + SMEP Kernel memory

0 −1

context switch

sw
itch

a
d
d
r.

sp
a
ce

Interrupt

dispatcher

36 Daniel Gruss — Graz University of Technology

KAISER Illustration www.tugraz.at

Without KAISER:

Shared address space

User memory Kernel memory

0 −1

context switch

With KAISER:

User address space

User memory Not mapped

0 −1

Kernel address space

SMAP + SMEP Kernel memory

0 −1

context switch

sw
itch

a
d
d
r.

sp
a
ce

Interrupt

dispatcher

36 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

37 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

37 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

37 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

37 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

37 Daniel Gruss — Graz University of Technology

Foreshadow / Foreshadow-NG1 [Van+18; Wei+18] www.tugraz.at

1Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In: USENIX Security Symposium. 2018.

38 Daniel Gruss — Graz University of Technology

L1TF/Foreshadow Demo

Mitigating L1TF/Foreshadow www.tugraz.at

Either:

• hyperthreading: only schedule mutually trusting threads on

same physical core

• context switch: flush L1 when switching to guest

Or:

• disable EPTs

40 Daniel Gruss — Graz University of Technology

Mitigating L1TF/Foreshadow www.tugraz.at

Either:

• hyperthreading: only schedule mutually trusting threads on

same physical core

• context switch: flush L1 when switching to guest

Or:

• disable EPTs

40 Daniel Gruss — Graz University of Technology

Mitigating L1TF/Foreshadow www.tugraz.at

Either:

• hyperthreading: only schedule mutually trusting threads on

same physical core

• context switch: flush L1 when switching to guest

Or:

• disable EPTs

40 Daniel Gruss — Graz University of Technology

Mitigating L1TF/Foreshadow www.tugraz.at

Either:

• hyperthreading: only schedule mutually trusting threads on

same physical core

• context switch: flush L1 when switching to guest

Or:

• disable EPTs

40 Daniel Gruss — Graz University of Technology

Mitigating L1TF/Foreshadow www.tugraz.at

Either:

• hyperthreading: only schedule mutually trusting threads on

same physical core

• context switch: flush L1 when switching to guest

Or:

• disable EPTs

40 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

42 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 0;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 0;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 0;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 0;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 1;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 1;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 1;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 1;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 2;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 2;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 2;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 2;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 3;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 3;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 3;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 3;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 4;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 4;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 4;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Execute

index = 4;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

in
dex

=
0 ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 5;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 5;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 5;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Execute

index = 5;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

in
dex

=
1 ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 6;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

index = 6;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Speculate

index = 6;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

co
nsid

er ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 4) www.tugraz.at

Execute

index = 6;

index = index & 0x3; // sanitization

char* data = "textKEY";

LUT[data[index] * 4096] LUT[data[index] * 4096]

in
dex

=
2 ignore

Prediction

43 Daniel Gruss — Graz University of Technology

Spectre (variant 1.1) www.tugraz.at

“Speculative Buffer Overflows”

• Speculatively write to memory locations

→ Many more gadgets than previously anticipated

• Very interesting for sandboxes

• Causes some protection mechanisms to fail

44 Daniel Gruss — Graz University of Technology

Spectre (variant 1.2) www.tugraz.at

“Speculative Buffer Overflows”

• Speculatively write to memory locations which are not writable

• Actually a variant of Meltdown

• A permission bit is ignored during out-of-order execution

• But no scenario where it makes sense without speculative execution?

45 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()

swim
()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

46 Daniel Gruss — Graz University of Technology

Spectre (variant 5) www.tugraz.at

• “SpectreRSB”

• Similar to Spectre variant 2:

• Redirect an indirect branch (a return in this case)

• Fill buffer with “wrong” values

47 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

48 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

48 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

48 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

48 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

48 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

49 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

49 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

49 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

49 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

49 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer: builtin load no speculate

50 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer: builtin load no speculate

50 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer: builtin load no speculate

50 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer: builtin load no speculate

50 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer: builtin load no speculate

50 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

51 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

push <call_target >

call 1f

2: lfence ; speculation barrier

jmp 2b ; endless loop

1: lea 8(% rsp), %rsp ; restore stack pointer

ret ; the actual call to <

call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function →
performance?

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

52 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)
push <call_target >

call 1f

2: lfence ; speculation barrier

jmp 2b ; endless loop

1: lea 8(% rsp), %rsp ; restore stack pointer

ret ; the actual call to <

call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function →
performance?

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

52 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)
push <call_target >

call 1f

2: lfence ; speculation barrier

jmp 2b ; endless loop

1: lea 8(% rsp), %rsp ; restore stack pointer

ret ; the actual call to <

call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

→
performance?

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

52 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)
push <call_target >

call 1f

2: lfence ; speculation barrier

jmp 2b ; endless loop

1: lea 8(% rsp), %rsp ; restore stack pointer

ret ; the actual call to <

call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function →
performance?

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

52 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)
push <call_target >

call 1f

2: lfence ; speculation barrier

jmp 2b ; endless loop

1: lea 8(% rsp), %rsp ; restore stack pointer

ret ; the actual call to <

call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function →
performance?

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

52 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)
push <call_target >

call 1f

2: lfence ; speculation barrier

jmp 2b ; endless loop

1: lea 8(% rsp), %rsp ; restore stack pointer

ret ; the actual call to <

call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function →
performance?

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

52 Daniel Gruss — Graz University of Technology

Spectre Variant 4 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Disable store-to-load-forward speculation

• Performance impact of 2–8%

53 Daniel Gruss — Graz University of Technology

Spectre Variant 4 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Disable store-to-load-forward speculation

• Performance impact of 2–8%

53 Daniel Gruss — Graz University of Technology

Spectre Variant 5 Mitigations (Software) www.tugraz.at

• Already implicitly patched on some architectures

• RSB stuffing (part of retpoline)

54 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

55 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

55 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

55 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

55 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

55 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

55 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

56 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

56 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

56 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

56 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

56 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

56 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• new class of attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems

57 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• new class of attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems

57 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• new class of attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems

57 Daniel Gruss — Graz University of Technology

Transient Execution Attacks

Daniel Gruss

September 12, 2018

Graz University of Technology

58 Daniel Gruss — Graz University of Technology

