ARTIFACT
EVALUATED
susenix

»

AVAILABLE

TEEcorrelate:
An Information-Preserving Defense against Performance-Counter Attacks on TEEs

Hannes Weissteiner! , Fabian Rauscher! , Robin Leander Schr()der3’4, Jonas Jufﬁnger1
Stefan Gast' , Jan Wichelmannz, Thomas Eisenbarthz, Daniel Gruss'
'Graz University of Technology, Austria, 2University Luebeck
3Fraunh0fer SIT, Darmstadt, Germany, 4Fraunh0fer Austria, Vienna

Abstract

Trusted-execution environments (TEEs) offer confidentiality
in shared environments. While Intel restricts performance
counter access, limiting load-balancing and anomaly detection
on TEEs, AMD exposes performance counters to the host,
leaving the TEE vulnerable to side-channel leakage.

In this paper, we propose TEEcorrelate, a lightweight
information-preserving defense against performance-counter
attacks on TEEs. TEEcorrelate reconciles monitoring capabil-
ities of the host and confidentiality requirements of the TEE,
by statistically decorrelating performance counters. TEEcor-
relate combines two components, temporal decorrelation us-
ing counter aggregation windows, and value decorrelation
using fuzzy performance counter increases. With default pa-
rameters, TEEcorrelate guarantees that the host can read per-
formance counters hundreds of times per second, while the
read value never deviates by more than 1024 from the actual
value. Hence, the host can still use them for load-balancing,
accounting, and detection of unusual or malicious activity. In
state-of-the-art attacks on MbedTLS RSA 4096, a TOTP im-
plementation, and the post-quantum HQC key-encapsulation
mechanism, attack runtimes increase from 0.58-429 seconds
to 1-775.6 days, even for a powerful, fully-informed attacker.
We estimate that TEEcorrelate on AMD SEV-SNP has a negli-
gible performance impact of 0.03 % for most context switches,
and overall less than 0.09 %. Hence, TEEcorrelate is an effec-
tive low cost mitigation for all TEEs.

1 Introduction

Trusted-execution environments (TEEs) provide confidential-
ity and integrity for code execution and data even against
privileged or physical access [4,9, 32, 33]. The first gener-
ation of TEEs protected application parts from a malicious
user or compromised system, e.g., Intel Software Guard Ex-
tensions (SGX) [32] and ARM TrustZone [10]. The current
second generation focuses on the cloud, protecting virtual
machines (VMs) from a malicious or compromised host, e.g.,

AMD Secure Encrypted Virtualization (SEV) [6], Intel Trust
Domain Extensions (TDX) [29], and ARM Confidential Com-
pute Architecture (CCA) [9], i.e., running entire VMSs (without
modification) in a secure environment as Confidential VMs.

Numerous attacks target different TEEs [3,12,41-43,59,61,
62,66,70,73,75,76], often using side channels like processor
caches [13,25,49,54,72], branch predictors [28,38], or power
consumption [44]. Other attacks use page faults [78], timer
interrupts [63], or speculative execution [S9]. On AMD’s SEV,
many attacks focus on flawed implementations and design of
SEV itself, e.g., vulnerable memory encryption [21,41,75],
missing or insufficient register protection [27,42, 73], and
missing integrity protection [21,50, 80]. Both for Intel SGX
and for AMD SEV, single-stepping frameworks significantly
advanced the security research on these TEEs [63,76].

Like most TEEs, SGX restricts the host’s ability to analyze
SGX enclaves: Code and data are inaccessible and encrypted
and hardware-performance counters do not count TEE ac-
tivity. Consequently, attacks can hide cache attacks, Row-
hammer attacks, or zero-day exploits inside malicious SGX
enclaves [26,54,56]. Cloudflare uses 7 hardware-performance
counters to detect and prevent Spectre attacks in their Workers
service [58,68]. While Cloudflare Workers are not confiden-
tial, it still shows that hardware-performance counters are
used in practice to detect malicious behavior. Thus, while con-
fidentiality is required for TEEs, the host also has a legitimate
need to monitor activity for load-balancing, accounting, and
detection of anomalies. This is even more true for TDX and
SEV, with entire VMs running in TEEs, where malicious code
or competitive cache sharing leading can result in degraded
performance or security for all VMs on this host.

Performance counter side channels can recover secrets from
an SEV-enabled VMs [24]. Lou et al. [46] proposed to in-
ject noise for decorrelation, by executing gadgets affecting
specific performance counters in parallel to the vulnerable
code. This approach causes actual workload, reducing per-
formance, biasing performance counters, and still rendering
performance counters less useful for the cloud provider. Ad-
ditionally, their approach is bypassed by single-stepping [24].



Preventing single-stepping also does not prevent leakage be-
cause interrupts cannot be delayed for a long period of time
and the guest state can be rolled back. Even when stepping
multiple instructions per interrupt, performance counters still
leak information [74]. This leakage can be amplified if the
guest state can be rolled back to replay vulnerable code paths.
Intel TDX swaps performance counters so that the host cannot
see any VM activity and AMD plans to adopt this approach
as well [7], effectively removing the host’s monitoring capa-
bilities. Consequently, no TEE offers unbiased performance-
counter data to the host for load-balancing, accounting, and
detection of unusual or malicious activity, while also main-
taining security guarantees for the TEE.

In this paper, we propose TEEcorrelate, an information-
preserving principled defense against performance-counter
attacks on confidential VMs. Existing TEEs are either vulnera-
ble [24] or just disable performance counters entirely [32,33],
removing useful functionality. Instead, TEEcorrelate decorre-
lates performance counter data using two components:

First, TEEcorrelate uses temporal decorrelation. TEEcor-
relate aggregates performance counter changes within non-
overlapping aggregation windows, e.g., every 1 million re-
tired instructions. TEEcorrelate introduces a second set of
performance counter registers within the TEE’s protected
area, like Intel TDX already has. At the end of each window,
the performance counter values are copied from the internal
TEE-protected registers into the host’s performance counter
registers. Consequently, a malicious host has to let the vic-
tim VM (or enclave) make significant progress to observe
any performance counter changes, effectively slowing down
performance-counter-based attacks by a linear factor.

Second, TEEcorrelate uses value decorrelation. TEEcorre-
late allows the reported performance counter values to deviate
from the actual value based on a statistical distribution. Hence,
performance counter values can lag behind and run ahead. To
avoid too large deviations, the values are kept within a mar-
gin called deviation window. The deviation window size is
negotiated between the host and the TEE during initialization.
Consequently, TEEcorrelate preserves coarse-grained trend
information for the host for load-balancing, accounting, and
detection of unusual or malicious activity.

Both temporal and value decorrelation eliminate the main
advantage of performance-counter attacks, i.e., noise-free
single-trace attacks. We provide a mathematical foundation
for the security of TEEcorrelate and show computationally
that the number of samples required to leak a single perfor-
mance counter increment increases by 5 orders of magnitude
(about 160 thousand) for our recommended deviation win-
dow size of 2048, and by 7 orders of magnitude (about 40
million) for an even larger deviation window size of 32768.

'The deviation window size refers to the maximum absolute deviation
in the number returned by a specific performance counter, regardless of the
meaning of that number. Hence, we consider the deviation window size as
a numerical value without a specific unit. The unit would depend on the

We evaluate the security of TEEcorrelate using a deviation
window size of 2048 with a fully-informed attacker, aware
of the working principle of TEEcorrelate, on the 4 case stud-
ies examined by Gast et al. [24]: The attack runtime of the
MbedTLS RSA 4096 attack, increases to 824.6 days, which is
about 160 thousand times slower than without TEEcorrelate.
The TOTP verification attack is equally affected, as TEEcorre-
late increases the attack runtime to 32.6 days to brute-force a
TOTP token on average. The attack runtime for the TOTP key
recovery increases to 285.4 days, 40 million times slower. For
the HQC-KEM attack, TEEcorrelate increases the attack run-
time to at least 108.59 days, compared to 800 ms previously.
We conclude that all 4 attacks become impractical.

The architectural changes of TEEcorrelate are small, re-
quiring only a few new configuration registers and some ad-
justments to the TEE/host context switch. We estimate the
performance of a hypothetical implementation of TEEcorre-
late on AMD SEV-SNP, and expect that TEEcorrelate only
has a minimal overhead on context switches (0.09 %), which
is too low to be visible in the full system performance. This
confirms that TEEcorrelate is a lightweight defense.

Finally, we argue that TEEcorrelate also enables a victim
TEE to detect ongoing attacks. The victim can then mitigate
the attack before a sufficient amount of leakage accumulates.
TEEcorrelate also reduces the reliability of SEV-Step [76]
by eliminating the ability to count executed instructions. We
conclude that given the negligible performance costs and the
functional benefits of TEEcorrelate, it should be deployed for
TEEs instead of simply disabling performance counters.
Contributions. Our main contributions are as follows:

* We present TEEcorrelate, a principled defense against
performance-counter attacks on TEEs. TEEcorrelate uses
windowed aggregation for temporal decorrelation and fuzzy
increments for value decorrelation.

* We perform a statistical security analysis of TEEcorrelate
with a fully-informed attacker, showing that it increases
the required number of attack samples by 5 to 7 orders of
magnitude (i.e., from seconds to days).

* Counter values can be read by the host hundreds of times
per second and never deviate more than 1024. This bal-
ances the host’s requirements for monitoring and resource
management with the security needs of TEEs.

* Our performance analysis on AMD SEV-SNP estimates
an overhead of only 0.09 % as we only have to perform
actions on a small number of VM exits.

Outline. In Section 2, we provide background. In Section 3,

we provide an overview of TEEcorrelate. In Section 4, we

detail how TEEcorrelate can be implemented. In Section 5,

we compute how TEEcorrelate increases the security. In Sec-

tion 6, we evaluate case studies, showing that TEEcorrelate
mitigates all of them. In Section 7, we discuss security impli-
cations and monitoring aspects. Section 8 concludes.

specific performance counter used, e.g., 2048 branch mispredictions, cache
misses, or retired instructions.



2 Background and Related Work

In this section, we discuss trusted-execution environments
(TEE), including related work on the security of TEEs, and
performance counters with their benign and malicious uses.

2.1 Intel SGX

Intel SGX is a TEE implementation that runs so-called en-
claves [32], signed x86 applications. While SGX enclaves run
on the same CPU core as regular applications, SGX restricts
access to the enclave’s encrypted memory and register state.
Enclaves cannot use all x86 instructions, e.g., CPUID or INT.
Hence, applications have to be adapted to run inside of an
enclave. There is a wide range of scientific publications at-
tacking Intel SGX. Cache attacks leak information through
the detection of memory accesses of enclaves or the host sys-
tem [18,25,57]. Controlled-channel attacks take advantage
of the increased control the host has to mount side-channel
attacks [63, 65, 70, 78]. Furthermore, a wide range of mi-
croarchitectural vulnerabilities have been used to leak enclave
data [52,55,61,66,67]. Ahmad et al. [2] proposed a framework
that also protects against some side-channel attacks.

2.2 AMD SEV

AMD Secure Encrypted Virtualization (SEV) builds on the
concept of virtualization, where a host runs multiple VMs on
the same physical host and assigns resources to them. VMs
are isolated from the host and from each other. The host (the
hypervisor) runs at a higher privilege level with access to all
system resources, including VM states and memory. Confi-
dential VMs are protected against access from the host. In
contrast to traditional TEEs, confidential VMs allow running
entire VMs of unmodified software and do not require rewrit-
ing parts of the application.

AMD SEV itself protects the memory contents of confiden-
tial VMs by transparently encrypting data in DRAM [35], us-
ing a unique, non-extractable key per VM. There are multiple
attacks on SEV without extensions, targeting the unprotected
guest state [27, 73] and protected memory [21,27, 50, 75].
The Encrypted State (ES) and Secure Nested Paging (SNP)
SEV extensions protect the guest state and introduce memory
integrity protection. Despite these multiple protection mecha-
nisms, attacks exploiting architectural bugs or physical prop-
erties can still lead to full compromises of the guest [71, 80].

2.3 Intel TDX

Like AMD SEV-SNP, Intel Trust Domain Extensions (TDX)
allow VMs to run in a TEE [33]. With TDX, the guest mem-
ory and stored guest state are encrypted and managed by the
TDX Module in the trust domain virtual processor state area
(TDVPS). The TDX Module is a signed open-source software

module, acting as a secure host, running in a new SEAM root
execution mode, protected from the host. The host interacts
with the TDX Module to, e.g., create VMs or map pages.

To protect the guest’s memory while maintaining fast guest-
host communication, there is a private encrypted part only
accessible by guest and TDX module, and a shared, host-
accessible part, distinguished by a guest physical address bit.
Private memory uses an additional TD owner bit to prevent the
host from reading even the ciphertext and optionally a MAC
per cache line to protect against memory corruption [33].

2.4 Single-Stepping

The ability to single-step a TEE is the basis of many side-
channel attacks targeting them [15,24,44,51,55,61,62,74,76,
80]. Single-stepping can be used to either increase the tempo-
ral resolution, or precisely target a specific instruction. TEEs
do not provide single-stepping to the host as it is not necessary
for regular operation. Van Bulck et al. [63] used the APIC
timer to interrupt SGX enclaves after a single instruction,
allowing attackers to single-step enclaves. Wilke et al. [76]
implemented the same mechanism for SEV-based confidential
VMs. Intel’s TDX module includes a mitigation against single-
stepping [33] that uses the timestamp counter and instruction
pointer differences or, in a newer iteration, performance coun-
ters to determine if single-stepping occurred. In this case, it
masks all external interrupts and runs a random number of
instructions before returning back to the host. Wilke et al. [74]
bypassed an early version of the Intel TDX single-stepping
mitigation by reducing the CPU frequency and counting VM
entries through a side channel. While Intel partially mitigated
this attack using performance counters, it is still possible to
determine the exact number of steps taken by the mitigation.

Intel TDX, SGX and AMD SEV directly run trusted code
on the CPU cores, i.e., the host still manages external hard-
ware. Interrupts, in particular, are expected to being han-
dled as soon as possible. Delaying them for too long can
lead to usability issues in case of network or keyboard in-
terrupts, crashes or even hardware damage in case of ther-
mal event interrupts, i.e., TEEs cannot delay them. Therefore,
even with mitigations against single-stepping, a host can ef-
fectively interrupt a guest after executing a small number of
instructions. Consequently, the goal of TEEcorrelate is to
limit performance-counter leakage, even when the host has
fine-grained control over the guest execution.

2.5 Performance Counters

Performance counters (also hardware performance counters
or HPCs) are CPU registers that count hardware events, e.g.,
cache misses, branch mispredictions, and instructions exe-
cuted. The specific events that can be tracked depend on
the processor model [5,31]. Kernel code can select multiple
events to be counted via Model Specific Registers (MSRs).



Host select parameters matching
TEE both configurations Hypervisor /
. . TEEcorrelate TEE TEE Driver
> confidential —3  Configuration TEEcorrelate Host
workload Registers —3  Configuration
ol A Registers
-5 - £ aggregation Co-Located
& window Attacker
aggregated decorrelated
peggzr::;\gce _)®—) performance —) performance —) ‘
b counters counters @
A |
3 1 interrupts I

Figure 1: Host and TEE negotiate the TEEcorrelate configuration via newly introduced registers. Events in the TEE influence
TEE performance counters, which are aggregated within long windows, that are additionally extended when external influences
(e.g., interrupts) interfere with the execution. Attacks can only obtain aggregated counter data, substantially reducing leakage.

Performance counters are used to find application bottle-
necks [34], identify resource-hogging applications or func-
tions, and even detect some types of attacks, as shown by nu-
merous works [11,14,16,19,39,40,82]. Prior attacks from ma-
licious SGX enclaves [54,56] have shown that the host should
try to detect attacks from TEEs, in addition to performing
load-balancing and anomaly detection [34,47,60,69,77,81].

While performance counters enable hosts to optimize, load-
balancing or protect their systems, fine-grained, real-time
performance data, combined with single-stepping and page-
tracking, has been exploited to break cryptographic code such
as RSA and HQC, as well as TOTP implementations [24]. To
prevent this, Intel CPUs do not allow the host to track perfor-
mance events at all while an SGX or TDX TEE is actively
running [30]. However, this approach also disallows hosts
from using performance data for genuine applications.

Performance counters are not disabled when executing
SEV VMs. Lou et al. [46] try to mitigate coarse-grained
performance-counter attacks, e.g., website fingerprinting or
keystroke timing, by injecting noisy code gadgets into the
instruction stream. However, this does not mitigate active at-
tacks from the host, e.g., by single-stepping or page-tracking,
as the host can filter the performance counter increments
caused by the gadgets. In addition, by artificially increment-
ing performance counters, the mitigation renders them useless
for genuine applications. Adhering to constant-time standards
would mitigate attacks from prior work [24]. However, do-
ing this on full general-purpose systems, including kernel,
libraries, and applications, is infeasible.

3 High-Level Overview of TEEcorrelate

Unprotected performance counters leak information in two di-
mensions: First, malicious hosts can measure the exact timing
of a performance counter increment by comparing counter
values before and after each single-step of a TEE. Second, the
amplitude, i.e., the amount that the counter is incremented,
can leak information as well, e.g., by leaking the size of a

division operand, or by leaking the number of loop iterations
in a memcmp-like function [24]. TEEcorrelate aims to miti-
gate leakage in both dimensions while keeping coarse-grained
information intact and unbiased over longer timeframes.

As illustrated in Figure |, TEEcorrelate mainly uses two
components: a windowing mechanism aggregating perfor-
mance counter data, and fuzzy performance counter incre-
ments. On a functional level, we introduce several changes
to how TEEs and the host interact, e.g., new registers and
negotiation mechanisms. This allows the host to still use
performance-counter information for optimization, billing,
and security purposes, e.g., anomaly detection. The security
level of TEEcorrelate is configurable by changing the aggre-
gation window size and performance counter deviation range
to fit the needs of both the host and TEE.

3.1 Temporal Decorrelation: Windowing

TEEcorrelate decorrelates the timings of performance counter
increments using aggregation windows as shown in Figure 2.
The window length is defined in retired instructions within
the TEE in a configurable range of hundreds of thousands
to millions of instructions. Hence, windows only pass with
actual progress in the TEE. All performance counter changes
within a window are aggregated and only updated at the end of
the aggregation window. Similarly, activating, deactivating, or
switching performance counters only takes effect at the end of
an aggregation window. Consequently, the attacker does not
know at what exact time within the window the performance
counter was incremented. Furthermore, if multiple increments
occur in the same window, the attacker cannot separate them.

To mitigate filling windows with unrelated activity by
injecting interrupts or enclave calls, TEEcorrelate dynami-
cally extends the aggregation window by a TEE-configurable
amount for host-induced events. Hence, a malicious TEE can-
not exploit the dynamic extension of aggregation windows, as
TEE-controlled events do not extend the aggregation window.



branch | [ — |
taken | | | |
divBusy [ | | i

Instructions
(a) Points in time where performance counter values change without TEEcor-
relate. Wider lines show multiple increments.

Aggregation Windows

I N oo sssssssssssssssssa | sossiiiiis, i

taken prec s riiiiiiiiis | ///////////////////// |.

divBusy-’ eepcnponpontognpions l ,,,,, l.
Instructions

(b) Points in time where performance counter values change with TEEcorre-
late, with a window size of 15.

Figure 2: TEEcorrelate reduces the temporal information of
performance counters. The close temporal correlation be-
tween performance event and corresponding instruction is
significantly reduced with TEEcorrelate as it accumulates
data of the performance events over many instructions.

3.2 Decorrelation: Fuzzy Increments

We assume a powerful, fully-informed attacker, aware of our
mitigation and the entire system state, except for the secret.
If the attacker is only interested in the number of events that
occurred during a specific time frame, they can pre-compute
a prediction for how many events there are without the secret.
The difference between the prediction and measurement is
the number of events that depended on the secret. Thus, the at-
tacker can still measure, e.g., the number of secret-dependent
loop iterations within an aggregation window, even if the
precise timestamps of the events are hidden by the temporal
decorrelation. This can be combined with a sliding window
attack (see Section 5.1), where the attacker performs mea-
surements with differently aligned aggregation windows, to
recover individual events. To prevent such attacks, we intro-
duce a second primitive: Fuzzy Increments.

The idea behind fuzzy increments is that the host does not
need extremely precise values for monitoring, load-balancing,
or anomaly detection. In fact, performance counters typically
do not even guarantee high precision, limiting their applica-
bility for some security purposes [19]. Still, they generally
have a high enough proximity to the actual number of corre-
sponding events, and are generally monotonically increasing,
if not manually reset [30]. This practical accuracy makes per-
formance counters suitable for load-balancing and anomaly
detection [34,60,69,77]. We use this design space to let the
performance counter value deviate further than they usually
do, within a specified range, while preserving the monotonic
increase. This allows the processor to let the reported values
deviate from the real value to decorrelate effects of specific
secret bits. To prevent fuzzy increments from saturating the
size of the deviation window, we use a Gaussian curve or

similar distribution to steer deviation away from the limits of
the deviation window.

3.3 Configuration Options

TEEcorrelate provides two configuration options for the host
and TEE to negotiate, affecting security and performance.
Aggregation Window Size. The aggregation window size
determines how many instructions have to complete before
performance counter values are updated. A larger window size
linearly increases attack runtimes, as the attacker needs to wait
longer to obtain a single performance counter measurement. A
larger window size also aggregates more performance counter
changes, making it harder to extract fine-grained information.
Additionally, larger window sizes slightly decrease the per-
formance impact of TEEcorrelate, as the value decorrelation
is performed less frequently. However, larger window sizes
decrease the temporal resolution of performance counters,
making them less useful for legitimate applications.

In our experiments, we found that a window size of 1 mil-
lion retired instructions is a good security-performance trade-
off. With medium load, normal operation, our SEV-SNP CVM
fills the aggregation window fast enough that performance
counter data is available on most VM exits, thus not signifi-
cantly affecting the temporal resolution for a benign host.

At the same time, a window size of 1 million instructions

is large enough to make targeting specific events difficult. To
break this decorrelation, the attacker needs to predict every
single event within that window, except the secret-dependent
event, which is unlikely for a window this large.
Deviation Window Size. The deviation window size deter-
mines how much the reported performance counter value can
deviate from the actual value. The deviation window size is
defined as a power of 2, where the minimum size is 64. The
number of measurements to recover a single performance
counter increment increases quadratically with the deviation
window size, i.e., by adding a single bit to the deviation win-
dow size, the number of measurements required increases
by a factor of 4. Therefore, a larger deviation window size
increases the security of TEEcorrelate.

However, a larger deviation window also decreases the
coarse-grained accuracy of performance counters, rendering
them less useful for benign use. In our experiments, a de-
viation window size of 2048 was a good trade-off between
security and coarse-grained accuracy. The deviation window
size does not impact the runtime performance of TEEcorre-
late, as it does not introduce additional instructions, and the
latency of the used operations is not affected by the operands.

4 Implementation of TEEcorrelate

Since TEEcorrelate touches hardware features like the per-
formance monitoring unit and context switches between TEE
and host, it has to be implemented in hardware, or at least in



Table 1: Summary of new fields with TEEcorrelate.!

Field Bits Location
PERF_MIN/MAX_WINDOW_SIZE 2-64 TEE Conﬁguration
PERF_WINDOW_EXTENSION_SIZE 64 TEE Configuration
PERF_DEVIATION_RANGE 64 TEE Configuration
PERF_CTR[0-N] N-64 VM Save Area
PERF_CTR[0-N] N-64 VM Save Area
PERF_LAST_REPORTED [0-N] N-64 VM Save Area
PERF_AGGREGATION_COUNT 64 VM Save AI‘632

! Specific registers and their location depend on the TEE.
2 This also requires an instruction-counting register.

microcode. Regardless of the implementation approach, we
overview the interface between TEEcorrelate and the TEE and
host, and discuss how temporal and value decorrelation can
be realized. We primarily focus on confidential VMs [6,9,33],
provide concrete examples based on AMD SEV-SNP [6],
and discuss how TEEcorrelate can be introduced into Intel
SGX [32] and Intel TDX [33]. TEEcorrelate can also be used
in full-system TEEs like ARM TrustZone [8, 10].

4.1 Extending the TEE Interface

TEEcorrelate requires the cloud provider and customer to
agree on suitable parameters, with a resolution and accuracy
high enough for the cloud provider while still fulfilling the
security requirements of the customer. Both the confidential
VM and the host get new fields to configure ranges for parame-
ters, specifically for the minimum and maximum window size,
window extension size, and deviation range. These fields are
stored in a secure area, e.g., the VM Control Block (VMCB)
or an SGX configuration register. On Intel TDX, memory in
the TDVPS can be used instead of MSRs.

Start and Attestation. Before starting the TEE, the host sets
the parameters to overlap with the ranges of the customer
such that the TEE can pass remote attestation. These fields
are part of the attestation report and cannot be changed later.
TEE Execution. During TEE execution, the host cannot
read the performance counters, and no overflow interrupts are
sent to the host. TEEcorrelate uses the existing performance
counter hardware registers and clears them before returning
to the host. The performance counters may be exposed to the
TEE, e.g., for confidential VMs, or not, e.g., for Intel SGX. In-
tel TDX already has a mechanism for switching performance
counters upon confidential VM entry and exit [33].

VM Exits. On VM exits within an aggregation window, the
performance counter values must be stored inaccessible to
the host. For confidential VMs, we add fields to the VM Save
Area (VMSA) on AMD SEV-SNP and in the TDVPS for In-
tel TDX. We require three 64 bit fields for each performance
counter, to store the current configuration, the current value,
and the previously reported value. The number of available
performance counters N is dependent on the specific hard-

Target Target
O
Process ! ‘{ /
____________________________________________ )
Kernel Interrupt Handler
' Aggregation Window '

Figure 3: An attack on TEEcorrelate without aggregation win-
dow extension. After injecting interrupts to force the VM to
execute interrupt handlers with predictable effects on perfor-
mance counters, the host gets the target values by subtracting
predicted from measured.

ware platform: We measured 6 per logical core on a recent
AMD EPYC Zen 4 machine, and 8 on a recent Intel Xeon
Emerald Rapids machine. Furthermore, we require one addi-
tional 64 bit field PERF_AGGREGATION_COUNT for the tempo-
ral decorrelation implementation. We show an overview of the
newly introduced fields and their memory usage in Table 1.

While saving and restoring the performance counter state
for the VM is performed on VM entry and exit, the host is
responsible for saving and restoring their own.

4.2 Temporal Decorrelation

TEEcorrelate only exposes performance counter values at
VM exits if the aggregation window, a number of retired
instructions, has passed. Within a TEE, the counters increment
normally. Upon a VM exit within an aggregation window, all
current values are saved and cleared before passing control to
the host. Thus, performance counters always report values of
0 when exiting the TEE while the aggregation window is not
yet filled. If the aggregation window is full, the host can read
the aggregated and value-decorrelated counts.

Malicious Configurations. An attacker could gain a fine-
grained read primitive by changing performance counter set-
tings close to the start or end of an aggregation window. Thus,
the processor only allows control register updates at the start
of a new aggregation window. The processor also ignores
the OsUserMode bits, to prevent the host from leaking fine-
grained values by forcing the VM to kernel space.
Mitigating Active Sliding Window Attacks. For this attack,
shown in Figure 3, the host forces the TEE to only execute a
very small region of victim code by “filling” the rest of the
aggregation window with interrupt handler code by repeatedly
injecting interrupts. If the host knows how the interrupt han-
dler code influences the performance counters, it can deduce
the performance counter changes by the victim code.

To prevent this, we extend the aggregation window by a
configurable amount, the window extension size, whenever
an interrupt is injected into the VM. The value is chosen
such that a significant amount of non-host-controllable code
is executed in the extended window. Choosing a value too
large resets the aggregation window more often, which is
only a functional limitation for the host when interrupting



*2 5,000 t --- Reél — Decorrelatéd
3000 e
= 1,000 ‘ ‘ |
10 20 30
Aggregation Windows

Figure 4: Performance counters are decorrelated from actual
events but follow the trend within the deviation window.

the victim too frequently. Choosing a value too low does
not properly mitigate the attack. In practice, we measured an
average of one million instructions between normal interrupt
injections for regular usage like web-browsing, three million
when compiling the Linux kernel, and 80000 when idle, on a
VM running Xubuntu 24.04.1 Minimal.

Performance Counter Hiding by a Malicious VM. A mali-
cious VM might try to hide performance counter increments
by increasing the timer interrupt frequency to an interval
shorter than the window extension size, always resetting the
aggregation count to 0. However, since windows are only
extended on host-injected events, the host can detect this and
act accordingly, e.g., by delaying interrupt injections.

4.3 Value Decorrelation

To prevent differential attacks, where the difference to a pre-
dicted performance counter change is measured, we introduce
fuzzy increments. The TEE and host negotiate a maximum
deviation from the actual value, the deviation range (see Fig-
ure 4). To ensure monotonically increasing counters, TEEcor-
relate only shows new values to the host when they are larger
than previously reported values and old values otherwise.
Randomness. We need to introduce a sufficient amount of
randomness into performance counter values to prevent the
recovery of the original trace, even across numerous measure-
ments. The randomness must fulfill the following two require-
ments: First, the randomness should almost never reach the
maximum deviation. Otherwise, the attacker could see the
change from probability zero to non-zero and infer a perfor-
mance counter value change. To prevent this, the deviation
of the exposed value from the real value follows an approxi-
mated normal distribution. Second, the overhead for context
switching, i.e., VM entry and VM exit, should be minimal,
ruling out computationally heavy instructions like divisions
or cryptographic functions.

Fast Normal Distribution. The random offset between real
and reported performance counter value is an integer. A bino-
mial distribution with a success probability of 0.5 is a discrete
approximation of a normal distribution. To generate a random
number with such a distribution, we can count the number
of ‘1’s in a random number. However, to cover a deviation
range of n values, we need to generate n random bits, which is
slow. Thus, we split our distribution into binomial-distributed
sub-ranges i.e., buckets. The final performance counter off-

Algorithm 1: The value decorrelation algorithm. We get a
binomial random value by counting the number of ones in a
64-bit number, and use it as the 6 most significant bits of our
offset. We fill up the remaining bits with linear randomness.

Input: The old reported HPC value P,
Input: The current real HPC value P,
Result: The new reported HPC value P,
1 begin
B < POPCNT (RNG (64) ) ;
Sp < TZCNT (BUCKET_SIZE) ;
O < RNG (Sp) ;
X + ((B< Sp)VO) — (SPEC_RANGE > 1);
P+ X+P;
if P, < P, then
‘ Py < Py,
end
10 return P,
11 end

e N9 R W

Table 2: Estimated overhead of TEEcorrelate per performance
counter on AMD SEV-SNP. This overhead only occurs once
at the end of each aggregation window.

Instructions Cycles Usages Each  Total
RDRAND 75 2 150
TZCNT 2 1 2
POPCNT, OR, CMP+JCC, 1 1 7
SHL, SHR, ADD, SUB

Total Cycles 159

set A is constructed programmatically by concatenating the
binomially generated bucket index B with the linear random
bucket offset O. We only obtain the 6 bit bucket index B from
the binomial distribution, by counting the number of ‘1’s in
a 64 bit random number. We then generate the sub-offset O
within the bucket as a linear random value. This distribution
has similar properties to a binomial distribution, i.e., it is sym-
metric around a center, and the probability of reaching the
edges of the deviation range is very low (e.g., a bucket index
greater than 60 is chosen only once every 27 x 10'? times
on average.). However, it requires significantly fewer random
bits to generate. Finally, we shift A by half the deviation range,
to center the distribution around zero (cf. Algorithm 1.).

Running our value decorrelation on a real performance
counter trace shows that the difference between the real and
decorrelated value follows a normal distribution, with the
mean offset being close to 0, i.e., the decorrelated value is
close to the real value on average (see Figure 5). For very-
slowly incrementing (e.g., once in a few windows) perfor-
mance counters, the offset drifts upwards in the deviation
range. However, with 64-bit numbers used for bucket selec-
tion, it is infeasible to completely saturate the deviation range.



- - - Mean

—
T

05 .

[
oL L5055 |
—1,500—1,000 =500 O 500 1,000 1,500
HPC offset

Figure 5: Histogram of deviations of the TEEcorrelate-
reported HPC value from the real value with window size
4096 on a real trace of the cpu_core/12_request.miss
event. The mean of the distribution is 0.001 16, and the off-
sets form a binomial distribution around the mean.

Frequency

4.4 Performance Overhead

For estimating the performance impact of TEEcorrelate upon
entering and exiting the VM, we do not consider swapping
the performance counter data as overhead, as other mitiga-
tions against performance-counter attacks, like PMC virtual-
ization [7,33] do the same. The only overhead is caused by
Algorithm 1. Therefore, we sum up the worst-case latencies
of the used instructions for a Zen 3 machine [22], see Table 2.

With 159 cycles per performance counter, we arrive at 954
cycles of overhead in total, for full aggregation windows.
It is likely that processors supporting SEV-SNP have more
efficient ways to generate randomness than the RDRAND in-
struction, due to the high amount of randomness required for
VMSA Register protection. However, as we do not know the
performance of any potential internal optimizations, we still
compute our estimate using RDRAND.

Wilke et al. [76] show that entering a SEV-SNP VM, execut-
ing a single NOP instruction, and returning to the host, requires
a median of 6061 cycles. We use this number as a baseline
to estimate the number of cycles required to context-switch
between a SEV-SNP VM and the host. Adding 954 cycles to
this baseline cycle count results in an overhead of 16 % per
context switch. However, this overhead only occurs when the
aggregation window is filled. In all other cases, the overhead
is only 2 cycles (0.03 %) per context switch, for adding the
number of instructions executed in the current TEE timeslice
to the PERF_AGGREGATION_COUNT register, and comparing
the result against PERF_WINDOW_SIZE. Thus, for an aggrega-
tion window of 1000000 instructions in the VM (assuming
single-cycle instructions), and 6061 cycles to context switch,
the maximum overhead is 0.09 %.

4.5 Reduced Number of Buckets

As shown in Table 2, the performance overhead is dominated
by the 2 RDRAND instructions. We can reduce the performance
overhead by using a bucket size of 32 bits, allowing us to use
half of the random bits for the bucket index, and the other
half for the linear random value. This reduces the number of
RDRAND instructions to one, saving 75 cycles. Due to extra

1073

3 =N 1
-2+ . . B
3 Binomial
3 ‘ N
—1,024 —-512 0 512 1,024

Performance Counter Offset
Figure 6: The probability differential AP = P(X) —P(X — 1)
depending on the offset between current real performance
counter value and last reported counter value, for a deviation
window size of 2048. This graph shows that the maximum
probability differential is equal between an ideal binomial
distribution and our fast normal (FN) distribution.

required instructions to split the 64-bit random value into two
32-bit values, the total overhead is 89 cycles per performance
counter, for a total of 534 cycles per aggregation window.

This does not reduce the security of TEEcorrelate in the
attacks from Section 5. Instead, it flattens the distribution,
increasing the number of samples required to recover a bit at
the ideal location, while decreasing the required samples on
other locations. However, with only 32 bits of randomness,
the probability of selecting the highest bucket index (i.e.,
generating a random value consisting of 32 ones), is 1 in 232,
This probability is likely enought that it will occur multiple
times over a long runtime of weeks or months.

While we did not find any attacks exploiting deviation win-
dow saturation, the increased probability is a potential attack
vector for future work. Thus, the number of bits used in the
bucket index is a trade-off between performance and security.
As the performance improvement of a reduced number of
buckets is rather small compared to the overall performance
overhead, we recommend using 64 bits for the bucket index
generation, and will use this value for the rest of this paper.

5 Security

In the following, we analyze the security of TEEcorrelate. As
the security layers of TEEcorrelate are independent of each
other, we analyze their security properties separately and after-
ward compute the overall lower bound security improvement.
Threat Model. We design TEEcorrelate against a fully-
informed attacker knowing everything about the VM except
the secret and having fine-grained control over the execution
of the TEE. While no prior work achieved this, we assume
they are capable of 100 % reliable single-stepping, without
any unexpected zero- or multi-steps. There is no noise or other
disturbance. While for some attacks the specific number of in-
creases or the exact timestamps of increases may be required
in practice, for our analysis, we assume that the attacker al-
ready wins if they can detect whether a performance counter
has increased, i.e., they do not need to recover the value of
the performance counter increment.



Events
o —
:;
EEEEEEE)

|

T T T T T T
(a) Real performance counter increments.

T T T T
10 15 20 25 30 35 40

Instructions
(b) Events measured with sliding aggregation window of size 10.

Measurement

0 5

Figure 7: The attacker can still recover secret performance
counter increments by sliding the aggregation window over
the secret. Every peak in Figure 7a corresponds to an incre-
ment in the aggregated measurements in Figure 7b.

5.1 Temporal Decorrelation

TEEcorrelate aggregates performance counter measurements
over a configurable instruction window. In our threat model,
the attacker knows everything about the system state except
the secret. This means that they can subtract the number of
expected performance counter increments from the measured
value, to get only the secret-dependent increments. With a
large window size, multiple key bits likely get aggregated
together, preventing the identification of individual bits.
Active Sliding Window Attacks. We assume the attacker
has fine-grained control over the execution of the TEE. Conse-
quently, they can control where an aggregation window starts
and ends. The attacker fills the aggregation window with un-
related operations with a known effect on the performance
counters, e.g., an interrupt handler. Using page-tracking to
prevent the execution of any code besides the chosen interrupt
handler, they can ensure that all performance counter updates
after the target instructions are predictable. By placing the
aggregation window so that only the first secret bit is included
in the aggregation window, the attacker can successfully leak
that bit. Then, sliding the aggregation window over the entire
secret leaks it, see Figure 7.

Security of TEEcorrelate against Active Sliding Window
Attacks. However, instead of a single trace like in previous
attacks, the attacker requires one trace per secret bit. Conse-
quently, temporal decorrelation increases the attack time in
proportion to the number of secret bits. Such an attack incurs
an additional significant slow-down, depending on the ag-
gregation window size, as it defines the minimum number of
executed instructions for each measured secret bit. In addition,
TEEcorrelate mitigates sliding window attacks by dynami-
cally extending the aggregation window whenever the host
injects an interrupt into a TEE. With this dynamic extension
of the aggregation window, the aggregation window cannot
be filled with well-known interrupt handlers anymore.

5.2 Value Decorrelation

To compute the security gain from our value decorrelation, we
again assume a strong attacker with the same capabilities as in
Section 5.1. The attacker can target the aggregation window
such that only a single unknown secret bit is measured at a
time. For simplicity, we assume that the secret-dependent per-
formance event is the only event in the aggregation window,
e.g., when only using temporal decorrelation, the attacker
would measure either O or 1 events, depending on the secret
bit. With value decorrelation, this correlation disappears.

In the following, we introduce foundational properties of
the binomial distribution, which we use to model the proper-
ties of our fast normal distribution. We then construct formu-
las modelling those properties for our fast normal distribution.
We use these formulas to accurately compute the probabil-
ity of performance counter increments with our distribution,
based on the previous performance counter offset. We then ex-
plain statistical sampling and how to compute the number of
samples required to recover a single bit of the secret. Finally,
we use these probabilities to compute how many samples the
attacker requires to recover a single bit of the secret.
Binomial Distribution. An important property of probability
distributions is the probability density function (PDF) for
continuous distributions, and the probability mass function
(PMF) for discrete distributions. This function describes the
probability of a random variable taking on a specific value k.
For a binomial distribution, the PMF is given by

fln k) = (',:) P (1=p)H, )

where 7 is the number of independent experiments, k is the
number of successful experiments , and p, the success proba-
bility of each event (i.e., 0.5 for a uniformly random number).
The cumulative distribution function (CDF) is the proba-
bility of a random variable being less than or equal to k. In
discrete distributions, this is the sum of the PMF for all values
less than or equal to k:
k
rob =1 (7)o 0= @
i=
If our distribution were a binomial distribution, we could
use the CDF to compute the probability of a performance
counter increment, depending on the distance between the
last reported performance counter value and the current real
performance counter value. However, because our fast normal
distribution is based on a binomial distribution, we can use
these formulas as a basis to model the cumulative distribution
function for our fast normal distribution.
Modelling the Fast Normal Distribution. As described in
Section 4, the most significant bits of our random number
are binomially distributed. This is achieved by counting the
number of ‘1’s in a 64 bit random number. The remaining bits
are filled with a linear random value. We express this con-
struction as X = B||O, where X is the final random number, B
is the binomially distributed bucket index, and O is the linear



-
s £ | ]
= g 0.5 |-|— Fast Normal .
g% ---- Binomial
— Qs: (= | f
—1,024 —512 0 512 1,024

Figure 8: The probability of measuring a performance counter
increment, depending on the offset (x-axis) between current
real performance counter value and last reported performance
counter value, for a deviation window size of 2048.

random offset within the bucket. To model the cumulative
distribution function of our fast normal distribution, we need
to combine the CDF of the binomial distribution with the
CDF of a linear distribution. We start with the probability
of a randomly generated bucket index B’ being less than our
current bucket index B. As the CDF expresses the probabil-
ity of a random variable being less than or equal to k, the
probability to be less than is F(64,B — 1). The probability
of a randomly generated bucket index B’ being equal to B
can be expressed via the PMF, i.e., as f(64,B). To account
for the linear random offset O within the same bucket, we
add the probability of a linear random value O’ being less
than or equal to O, which is O/BUCKET_SIZE. Adding these
probabilities, we arrive at the final formula for the CDF of
our fast normal distribution:

, 0
P'(X)=F(64,B—1)+ f(64,B)- (M) .

For our security analysis, we need to compute the proba-
bility of a performance counter increment, which is the prob-
ability of a random variable X being greater than X'. Thus,
we can compute the probability of a performance counter
increment as P(X) = 1 — P'(X).

Modelling a Value Distinguishing Attack. To evaluate
the security level of our defense, we consider a basic case,
namely that the attacker distinguishes one value from a neigh-
boring value. In this attack, the attacker needs to determine
whether the real performance counter increased within an ag-
gregation window. They can do this by observing whether
the reported performance counter value increases or not. In
our attack model, we assume that, across the entire measure-
ment, there is only a single, secret-dependent performance
event that increments by either 0 or 1, and no other changes
to the real counter. Depending on whether the real perfor-
mance counter value increased, the offset between the real
and reported performance counter value changes. This causes
the probability of a performance counter increment P(X) to
change. We define the difference between the two probabili-
ties as AP(X) = P(X) — P(X — 1). To account for a worst-case
scenario, we assume that the attacker has control over X, i.e.,
the attacker can control the deviation to maximize AP at the
start of the measurement. We argue that, in such a strong
threat model, the difference between a real binomial distri-
bution and our optimized version is irrelevant, because the

adversary has precise enough control over X that it can choose
an optimal window for AP in any case.

Figure 6 shows the probability differentials of AP(X) =
P(X)—P(X —1) for any X in the parameter space for a bi-
nomial distribution and our fast normal distribution. For a
deviation window size of 2048, the highest possible probabil-
ity differential AP = |P(X) — P(X — 1)| across the parameter
space is 0.0031. Even though our fast normal distribution has
more possible values for X where AP is maximized, the max-
imum value of AP is equal between binomial and fast normal
distributions.

Computing Sample Sizes. To recover data when TEEcorre-
late is enabled, the adversary needs to collect enough samples
such that they can distinguish the two distributions P(X) from
P(X —1). The standard deviation of a random binary value
with a specific probability can be estimated as

p-(p—1)

c= 5
n

where p is the specific probability of the event (e.g., P(X)),
and n is the number of measured samples.

To distinguish the two events with probabilities P(X) and
P(X — 1), the attacker needs to keep collecting samples until
the standard deviation shrinks enough to separate the two
events up to a sufficient probability. Due to the large parameter
space of TEEcorrelate, we compute the required sample size
for a distinguisher using a z-test. We want to distinguish two
cases: First, that our measured probability P(M) is larger
than P(X). Second, that our measured probability P(M) is
smaller than P(X — 1). The z-score is a standardized way to
express the distance of a measured value from the real value,
based on the standard deviation. For example, the z-score
for a confidence of 0.9 is 1.28, which means that 90 % of
measurements are below y+ 6 - 1.28, where u is the mean of
a distribution, and o is the standard deviation.

Number of Samples Required by the Attacker. To distin-
guish P(X) and P(X — 1), the attacker wants to reduce the
likelihood of mistaking P(X) for P(X — 1) and vice-versa be-
low a confidence level o. Therefore, the distance Zy - ¢ must
be smaller than |P(X) — P(X — 1)|, where Z, is the z-score for
our chosen confidence. As we consider both failure cases (i.e.,
mistaking P(X) for P(X — 1) and vice-versa), the probability
o accumulates multiplicatively, i.e., for o = 0.9, we achieve
a total confidence level of 0.81.” The attacker can compute
the difference in values as

P1 :P(X)/ pZZP(X_l)a

(-1 (a1
|p1_p2‘zzu.\/p1 (p1 )+Za,\/P2 (p2—1)

n n

Finally, we compute the number of samples needed as

%For cases where the performance counter increments by more than 1
depending on the secret, we can replace P(X — 1) with P(X — k), where k
is the expected performance counter increment. This reduces the number of
samples required to distinguish the two cases.



Required
Samples

ol amn ML
102 b= |_| |_| |_|
& P 0 5@ @9 @ q:\b%
Deviation W1nd0w Slze
Figure 9: The required samples to reach oo = 0.9 for each
sliding window size. While a Binomial distribution performs
slightly better than the bucket-based approximation, the ap-

proximation reduces the required number of samples by less
than 4 % on average.

T
g % 10?(6) —— Fast Normal
= % 1012 ---- Binomial
g5 100
22 0t |
104 L ‘ ‘ 0
—-1,024  -512 0 512 1,024

Performance Counter Offset
Figure 10: The required samples to distinguish P(X) and
P(X —1) with o = 0.9, with a deviation window size of 2048.
The discretization of the probability distribution introduces
non-linearities. Sample size is smallest towards the center
where AP is the largest.

za- (vVp1-(pr—1)++/p2-(p2— 1))

V=
|p1 — p2|
e (Ve D+ (D)
|1l71*,172\2

We can see that the number of samples is inversely propor-
tional to the probability differential in a given point, i.e., the
larger |p1 — p2|, the lower the number of samples required to
distinguish the distributions. Thus, with an ideal binomial dis-
tribution, the optimal offset for measuring these probabilities
is at X =0, i.e., when the reported performance counter value
is equal to the real performance counter value. Due to the
nonlinear properties of our cumulative distribution function
P(X), the minimum sample size is smaller, and is located
at the bucket transition nearest to offset O due to the lower
standard deviation 6 = p- (1 — p) away from the center of
the probability distribution, while the probability differential
stays the same for the entire bucket. However, this only re-
duces the number of required samples by less than 4 %, while
allowing us to implement TEEcorrelate using only bitwise
operations, optimizing performance and side-channel resis-
tance. We show a graphical representation of the number of
required samples in Figure 9.

Results. In practice, the sample size scales as the square of
the deviation window size, i.e., for each additional bit in the
maximum offset (doubling the deviation window size), the
sample size increases by a factor of 4. To reach a confidence

Table 3: Estimated number of samples required to distinguish
probabilities at different deviation window sizes.

Win. Size Min. Samples Win. Size Min. Samples
64 165 2048 166077

128 663 4096 663679

256 2627 8192 2653452

512 10437 16384 10611269

1024 41597 32768 42439986

Table 4: Summary of case study runtime results.

Case study No mitigation TEEcorrelate Overhead
String Comparison 18.14s 34.7 days  x 160 thousand
Lookup Table 0.58s 285.4 days  x 40 million
RSA 7.15 min 824.6 days  x 160 thousand
HQC! 6.13 min 27.0days  x 6 thousand

Numbers based on our recommended deviation window size
of 2048.

! Estimated runtime based on number of required single-steps
and number of oracle calls required with an ideal oracle.

level of 0.81 (a0 = 0.9), which still incurs a 19 % chance of
detecting the wrong value, we need 166077 samples. Instead
of leaking the entire secret in a single trace, we require over
150 thousand traces to recover a single bit.

6 Case Studies

Prior work presented four attack case studies using perfor-
mance counters on AMD SEV-SNP confidential VMs [24].
In this section, we analyze the same case studies to show
how much slower attacks become with TEEcorrelate. Like in
Section 5, we assume a fully-informed attacker that knows
everything about the system except the secret and has strong
primitives to control the aggregation window and performance
counter offset, as well as perfect single-stepping. We compute
the number of traces required to mount the four attacks with
and without TEEcorrelate. We evaluate different deviation
window sizes from 64 to 32768, with 2048 as our recom-
mended default. Table 4 shows the overall results for 2048,
showing that all attacks are mitigated.

6.1 Mitigating String Comparison Leakage

Simple string comparison functions iterate over the two input
strings, comparing them character by character, returning as
early as a mismatch occurs. The early return can be mea-
sured with the Retired Taken Branches performance counter.
Gast et al. [24] attacked a TOTP library with this primitive, re-
covering a 6-digit TOTP token by guessing character by char-
acter. With an average of 31.1 guesses and 0.58 s per guess,
the brute-force duration then is 18.14 s on average, staying
within the 30 s window required before a token change.



With TEEcorrelate, an attacker needs a large number of
traces to reliably measure a single performance counter incre-
ment. However, the attacker does not need to measure every
single increment of every unknown branch instruction. In-
stead, the attacker can measure the entire string comparison,
and distinguish between increments from O to 6. While distin-
guishing increments that are not at the sweet spot increases
the theoretically required number of samples for a confident
measurement, we still use the minimum number of required
samples to simplify our computation. In reality, our results
are the lower bound of required samples for our given setup.

Even for the smallest possible deviation window size of 64
(cf. Table 3), the attacker needs approximately 165 traces to
measure the outcome of a single brute-force iteration with a
confidence level of 81 %. Consequently, with an average of
0.58 s per trace, and 31.1 guesses for a successful attack, the
average TOTP token attack time is 49.6 min. Hence, even with
the smallest possible window size, TEEcorrelate raises the
runtime of brute-force attacks beyond any reasonable validity
window of a TOTP token.

With larger deviation window sizes, the runtime increases
further: Using our recommended size of 2048, the attacker
needs approximately 160 thousand (166077) samples to dis-
tinguish the two cases. This increases the required time for
a single iteration of the brute-force attack to 26.76 h. Thus,
to recover the full TOTP token, the attacker would need 34.7
days on average. For a large deviation window of 32768, a
single iteration takes 284.9 days, while a full brute-force with
31.1 attempts takes 24.3 years. Hence, we consider this attack
fully mitigated with all window sizes.

6.2 Mitigating Lookup Table Leakage

The second case study presented by Gast et al. [24] recovered
the entire TOTP secret key using the Retired Taken Branches
performance counter. Gast et al. [24] found the root cause to
be an insecure Base32 decoding process, iterating through a
32 character lookup table to find the index for the value to de-
code. Similar to the string comparison, the reverse lookup has
an early exit, visible through performance counters. Without
a defense, Gast et al. [24] recover the secret in a single trace.
With our temporal decorrelation, the attacker needs to mea-
sure all bits of the secret individually. The secret is the num-
ber of iterations during the reverse lookup, for each character.
Thus, we need 1 to 32 measurements per base32-encoded char-
acter, i.e., 16 iterations on average. In contrast to Section 6.1,
the attacker cannot measure the entire code at once, as this
would overlap measurements of multiple independent charac-
ters in a non-reversible way. Additionally, the attacker does
not know when the code switches to the next character. Thus,
every secret branch outcome must be leaked individually.
With a commonly used 16-character key [24], and 16
lookups to find the correct character on average, we need
256 measurements to recover the entire secret. With the small-

est possible window size of 64, we again need 165 traces for
an 81 % confidence in our measurement, resulting in a total of
42240 measurements for a full key recovery on average. The
secret key can be extracted from the same traces generated in
Section 6.1. With the same runtime of 0.58 s for a single trace,
we obtain 6.8 h on average, or 13.6 h in the worst case. While
this slows down the attack by over 40000, TEEcorrelate does
not provide sufficient security with such small parameters.
However, with a deviation window size of 2048, the at-
tacker requires approximately 40 million measurements (com-
puted as 42515712) on average to recover the secret key. With
an average runtime of 0.58 s per trace, this results in a runtime
of approximately 285.4 days. A large deviation window of
32768 increases the average number of required traces to over
10 billion, increasing the runtime to approximately 200 years.

6.3 Mitigating RSA Secret Key Leakage

RSA square-and-multiply exponentiation executes different
functions depending on the secret exponent bit processed.
It is vulnerable to, e.g., timing [36], cache [45, 79], branch
prediction [1], hardware- and software-based power [37,44,
48], and performance counter [24] side channels.

To estimate the impact of TEEcorrelate on such an attack,
we assume the worst case: The attacker manages to align
aggregation windows to have only one secret event per aggre-
gation window. This means that the temporal decorrelation
is effectively bypassed. Gast et al. [24] state that their attack
on RSA had an average runtime of 7.15 min. Again, we com-
pute the expected runtime with TEEcorrelate for a small (64),
medium (2048), and large (32768) deviation window size.

When configuring TEEcorrelate with a deviation window
size of 64, the attacker needs 165 measurements to reach 81 %
confidence in the result, this takes 19.7 h on average. While
this is clearly not secure enough, it degrades performance-
counter attacks from single-trace to multi-trace already, open-
ing up time for detection of the attack. With a medium-sized
deviation window size, the attacker needs about 160 thousand
traces to distinguish whether a branch was taken. This attack
requires 824.6 days on average of single-stepping to get the
required number of traces. While this could be feasible in
an offline attack, it is unlikely that single-stepping a TEE for
such a long time would not trigger any suspicion or monitor-
ing alerts. For large deviation windows of 32768, the attacker
needs about 40 million traces to recover the key, resulting in
a total runtime of over 500 years.

6.4 Mitigating HQC-KEM Key Recovery

Schroder et al. [53] presented an attack on the HQC KEM,
that works by distinguishing a chosen message from modified
messages. They use a timing side channel in the DIV instruc-
tions on Zen 2, used by the seed-dependent random number
generator to build an oracle. Gast et al. [24] implemented a



similar attack using the Div Cycles Busy performance counter.
Dong et al. [20] show an improved attack method, claiming
as few as 460 required plaintext-checking (PC) oracle calls.

The HQC attack exploits the input-dependent cycle count
of the DIV instruction. Larger quotients yield higher cycle
counts, measurable using performance counters. Measuring
only the total division latency is sufficient to building the
PC-oracle [24]. Thus, we can measure all divisions in one
aggregation window, and target the total difference in division
latencies to build a distinguisher. This eliminates the need to
measure individual bits, and even reduces the number of re-
quired samples, as the difference in probabilities AP increases
with a bigger difference of performance counter increments.

The attack by Schroder et al. [53] is split into an offline
brute-force and an online trace generation phase. For Zen 3
we approximate the probability of a fast division as a constant
po = 512- (17669 —37) /232 = 9027584 /2% ~ 0.002 [24].
There are 75 - 3 divisions in total, and the attacker must brute-
force a fast seed to build the PC-oracle. Using the binomial
distribution CDF we can estimate the number of attempts
required to generate a seed with at least k fast divisions using
a brute-force rate of 65000 MH/s, which is the hash rate of an
Nvidia RTX 3090 on MD5 [17]. Gast et al. [24] report that the
tracing process requires approximately 800 single-steps. We
assume an optimistic 1 ms per single-step [76], which means
that the attacker requires 800 ms per trace.

We do not consider the extra runtime required to fill the
aggregation window, since this part of the code does not
need to be single-stepped. The number of required samples
to distinguish cases depends on the probability differential
AP = P(X) — P(X — k), where k is the difference in perfor-
mance counter increments for both cases. Therefore, & is equal
to the number of fast divisions resulting from the brute-forced
seed. Thus, the total runtime of the attack is

1 N(k,(l)-Q(x

T = F(225,k) R T

where R is the hash rate (65000 MH/s), T;, the attack run-
time per trace (800ms), F(n,k), the CDF of the binomial
distribution, N(k, @), the minimum number of required sam-
ples for a confidence of o for a given performance counter
increment, and Qg, the number of oracle calls required by
the attack at confidence o. For all window sizes, we found
the minimum runtime to be reached at an oracle reliability of
0.95, where the attack [20] requires 664 calls.

The number of fast divisions for the fastest possible attack
runtime is different between window sizes. For the different
window sizes, these are k = 10,12, and 13, respectively. The
total attack runtime is estimated to be 43.4 min, 27.0 days,
and 15.1 years, respectively. Thus, even with a very powerful
attacker and worst-case assumptions, TEEcorrelate can pro-
tect secret data from leaking through performance counters
when using the appropriate deviation window size.

10°
4+ ——  Real
20| Decorrelated

0 0.2 0.4 0.6 0.8 1
Instructions 1010
Figure 11: Real and decorrelated HPC to detect resource
exhaustion or anomalies. When the system starts cache-
thrashing due to the running workloads, both the real and
decorrelated performance counters jump up extremely.

Cache Misses

7 Discussion

The goal of TEEcorrelate is to mitigate fine-grained
performance-counter attacks, while preserving the course-
grained trend data for genuine use. In contrast to the mitiga-
tion presented by Lou et al. [46], performance counter data
collected with TEEcorrelate closely follows the real perfor-
mance counter values, with a configurable maximum devia-
tion.

Limits. Naturally, the defensive capabilities of TEEcorrelate
are significantly reduced when a secret-dependent event incre-
ments the target performance counter by a large amount. In
extreme cases (e.g., a secret-dependent branch that executes
thousands of performance-counter incrementing instructions),
TEEcorrelate is unable to provide any protection at all. How-
ever, code written in such a way is likely vulnerable to a
multitude of other side channels as well [23,41,42,44,64,70].
TEEcorrelate does not fully eliminate performance counter
leakage, but is a lightweight defense for large amounts of real-
world code, for which it raises the runtime of any performance-
counter-based attacks far beyond any realistic time frame. In
addition, it completely eliminates single-trace attacks.

Temporal Decorrelation. Temporal Decorrelation reduces
the resolution of the performance counter data by aggregating
it until the aggregation window is filled. In our tests, the TEE
executed roughly 1 million instructions between injected in-
terrupts during regular usage (e.g., web browsing). During
heavy load (e.g., compiling), we measured an average of 3
million instructions between interrupts. Thus, under regular
conditions, with our recommended aggregation window size
of 1 million, the aggregation window is filled on most con-
trol transfers to the host. Therefore, temporal aggregation is
unlikely to affect genuine performance counter applications.
Value Decorrelation. Value Decorrelation allows the re-
ported performance counter value to deviate from the real
value within a configurable window size. With our recom-
mended size of 2048, the reported value can deviate by up
to 1024. The deviation is chosen such that the reported value
is more likely to be close and slightly above the real value.
Value decorrelation can cause the reported value to increment
by more than the real value. Over a single aggregation win-



dow, this behavior may lead to erratic jumps that can affect
unmodified performance-counter-based detection algorithms.
Performance Counters for Cloud Scheduling. Load-
balancing and anomaly detection [34,47,60,69,77,81] are cru-
cial in cloud scheduling to prevent multiple VMs from com-
binedly bottlenecking a hardware resource, e.g., the last-level
cache. Zhang et al. [81] investigated a scenario with a perpe-
trator and a victim and Mars et al. [47] on competitive sharing.
Both use performance counters similar to Wang et al. [69]. All
of these works detect high contention levels or bottlenecks,
and allow the cloud provider to reschedule VMS or appli-
cations accordingly. Mars et al. [47] use either dynamic or
fixed thresholds (e.g., >1500 cache misses per 1 ms). Such
thresholds are far from the subtle differences we protect with
TEEcorrelate, as they focus on avoiding exhaustion of a hard-
ware resource. Figure 11 shows how the decorrelated per-
formance counters on a large scale of changes (i.e., >40000
cache misses) stay close to the actual values and respond
quickly to these extreme increases, €.g., an application thrash-
ing the cache. We observe that with TEEcorrelate, in the worst
case, the threshold is exceed exactly one aggregation window
later, i.e., less than 1 ms after this rapid increase.

Anomaly Detection. Prior work showed that attacks from
within a TEE can compromise the host or co-located VMs [54,
56]. Performance counters can be used to detect attacks from
within a malicious TEE. Li et al. [40] detect Rowhammer at-
tacks by sampling performance counters every 100 ms. Cloud-
flare uses performance counters to detect Spectre attacks in
their Workers service [58, 68]. They sample the performance
counters every 50 ms, achieving no false negatives and only
0.61 % false positives. With such a low sampling rate, tempo-
ral decorrelation does not affect measurements at all. Addi-
tionally, over such a long time-frame, the noise introduced by
value decorrelation is negligible compared to the extremely
large number of cache misses caused by Rowhammer, branch
mispredictions caused by Spectre attacks or similar resource-
exhausting attacks. The presented examples show that coarse-
grained algorithms are not affected by TEEcorrelate. Thus,
TEEcorrelate indeed allows cloud providers to optimize their
server usage and protect against malicious guests, while miti-
gating fine-grained leakage of guest data.

Preventing Single-Stepping. The attacks presented by
Gast et al. [24] rely on single-stepping the TEE to measure per-
formance counter data. Thus, by mitigating single-stepping, as
in Intel TDX, the reliability of their attacks is greatly reduced.
However, Wilke et al. [74] bypassed to TDX’s single-stepping
mitigation, re-enabling the attack. Additionally, the mitiga-
tion forces the TEE to progress for only up to 32 instructions
before returning to the host. Wilke et al. [74] show that this
induced multi-stepping is fine-grained enough to still leak
secrets. Therefore, with enabled performance counters, this
single-stepping mitigation alone does not prevent fine-grained
performance-counter attacks. In general, single-stepping mit-
igations are a trade-off between security of the guest and

reliability of the host, as the hardware cannot defer events
like timer interrupts indefinitely without impacting function-
ality. TEEcorrelate forces the host to fill a large aggregation
window before exposing any performance counter data. Thus,
an attacker does not gain any advantage from single-stepping
the TEE. However, other attack vectors on TEEs may rely
on single-stepping as a primitive. Therefore, we believe that
TEEcorrelate and single-stepping mitigations solve different
problems, and should be used in conjunction.

Disabling Performance Counters. Disabling performance
counter increments while executing a TEE or providing
two sets of performance counter registers, one for the host
and one for the TEE, are undeniably easy solutions against
performance-counter attacks. However, we argue that sim-
ply turning off every feature that opens up an attack surface
is not how we should handle this and similar issues (e.g.,
SMT). Instead, we show that mitigating performance-counter
attacks against TEEs is practical as it requires only minor
hardware changes, and causes no performance degradation.
There are no disadvantages in comparison to disabling per-
formance counters, while having the big advantage that they
can still be used for anomaly detection [40, 58, 68] or load
balancing [47, 69, 81].

Cross-Core Performance Counters. In addition to per-core
performance counters, some architectures also provide cross-
core performance counter registers, e.g., to count events on
the L3 cache [7,30]. Neither SEV nor TDX disable cross-core
performance counters during CVM execution. TEEcorrelate
also does not defend against cross-core performance counter
leakage, as we cannot defend against multiple cores (host and
TEE) accessing shared counters simultaneously. Defending
against potential leakage through these counters is subject to
future work.

8 Conclusion

TEEcorrelate is a new information-preserving principled de-
fense against performance-counter attacks on confidential
VMs. TEEcorrelate decorrelates host-visible performance
counter data from secrets using temporal and value-base
decorrelation. Our evaluation shows that even with a power-
ful, fully-informed attacker, aware of the working principle
of TEEcorrelate as well as the entire machine state except
for the secret, state-of-the-art attacks are slowed down by 5
to 7 orders of magnitude. We practically evaluate the slow-
downs in 4 attack case studies and show that attack runtimes
increase from the range of 0.58 to 429 seconds to 1 to 824.6
days. We estimate the performance impact of TEEcorrelate on
AMD SEV-SNP to be 0.09 % when using an aggregation win-
dow size of 1000000 retired instructions. We conclude that
TEEcorrelate is a lightweight defense that should be deployed
in all TEE contexts.



Acknowledgments

We thank the anonymous reviewers and our shepherd for
their valuable feedback. We furthermore thank Marcell Hari-
topoulos and Maria Eichlseder. This research is supported in
part by the European Research Council (ERC project FSSec
101076409), the Austrian Science Fund (FWF SFB project
SPyCoDe 10.55776/F85), Deutsche Forschungsgemeinschaft
(project ReTEE) and the National Research Center for Ap-
plied Cybersecurity ATHENE as part of the PORTUNUS
project in the research area Crypto. Additional funding was
provided by generous gifts from Red Hat, Google, and Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

Ethics Considerations

TEEcorrelate mitigates an attack presented in prior work. As
our work does not describe a new vulnerability, no responsible
disclosure process is required. All traces were collected on
lab machines with no other users connected.

Open Science

We published all code used to simulate the mitigation on
Zenodo: https://doi.org/10.5281/zenodo.15592842

References

[1] Onur Aciigmez, Cetin Kaya Kog, and Jean-pierre Seifert.
On the Power of Simple Branch Prediction Analysis. In
AsiaCCS, 2007.

[2] Adil Ahmad, Alex Schultz, Byoungyoung Lee, and Pe-
dro Fonseca. An Extensible Orchestration and Protec-
tion Framework for Confidential Cloud Computing. In
OSDI, 2023.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida Garcia, and Nicola Tuveri. Port
Contention for Fun and Profit. In S&P, 2019.

[4] AMD. AMD SEV-SNP: Strengthening VM Isolation
with Integrity Protection and More, 2020. URL: https:
//www.amd.com/content/dam/amd/en/documents
/epyc-business-docs/white-papers/SEV-SNP-s
trengthening-vm-isolation-with-integrity-p
rotection-and-more.pdf.

[5S] AMD. Processor Programming Reference (PPR) for
AMD Family 19h Model 21h, Revision BO Processors,
2021.

[6] AMD. AMD Secure Encrypted Virtualization (SEV),
2024. URL: https://developer.amd.com/sev/.

[71 AMD. AMDG64 Architecture Programmer’s Manual,
2024.

[8] ARM. Security technology building a secure system
using trustzone technology, 2009. URL: https://de
veloper.arm.com/documentation/PRD29-GENC-0
09492/c/TrustZone-Hardware-Architecture.

[9] ARM. Arm Confidential Compute Architecture, 2024.
URL: https://www.arm.com/architecture/secur
ity-features/arm-confidential-compute-arc
hitecture.

[10] ARM. TrustZone for Arm Cortex-M Processors, 2024.
URL: https://www.arm.com/technologies/trust
zone-for-cortex-a.

[11] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. ANVIL: Software-based protection
against next-generation Rowhammer attacks. ACM SIG-
PLAN Notices, 2016.

[12] Pietro Borrello, Andreas Kogler, Martin Schwarzl,
Moritz Lipp, Daniel Gruss, and Michael Schwarz. ZPIC
Leak: Architecturally Leaking Uninitialized Data from
the Microarchitecture. In USENIX Security, 2022.

[13] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In WOOT, 2017.

[14] Stefano Carna, Serena Ferracci, Francesco Quaglia, and
Alessandro Pellegrini. Fight Hardware with Hardware:
Systemwide Detection and Mitigation of Side-channel
Attacks Using Performance Counters. Digital Threats:
Research and Practice (DTRAP), 4(1):1-24, 2023.

[15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian
Zhang, Zhigiang Lin, and Ten H Lai. SgxPectre At-
tacks: Stealing Intel Secrets from SGX Enclaves via
Speculative Execution. In EuroS&P, 2019.

[16] Jonghyeon Cho, Taechun Kim, Soojin Kim, Miok Im,
Taehyun Kim, and Youngjoo Shin. Real-time detection
for cache side channel attack using performance counter
monitor. Applied Sciences, 10(3):984, 2020.

[17] Sam Croley. Hashcat v6.1.1 benchmark on the Nvidia
RTX 3090, 2020. URL: https://gist.github.com/
Chick3nman/edfcee00cb6d82874dace72106d73fe
£/.


https://doi.org/10.5281/zenodo.15592842
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.amd.com/sev/
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef/
https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef/
https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef/

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and
Yuval Yarom. Cachequote: Efficiently recovering long-
term secrets of SGX EPID via cache attacks. In CHES,
2018.

Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis
Polychronakis, and Fabian Monrose. SoK: The chal-
lenges, pitfalls, and perils of using hardware perfor-
mance counters for security. In S&P, 2019.

Haiyue Dong and Qian Guo. OT-PCA: New
Key-Recovery Plaintext-Checking Oracle Based Side-
Channel Attacks on HQC with Offline Templates. Cryp-
tology ePrint Archive, 2024.

Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai,
Phoebe Wang, Jesse Liu, and Jesse Fang. Secure en-
crypted virtualization is unsecure. arXiv:1712.05090,
2017.

Agner Fog. Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD, and
VIA CPUs, 2022. URL: https://www.agner.org/op
timize/instruction_tables.pdf.

Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj
Saileshwar, Andreas Kogler, Simone Franza, Markus
Kostl, and Daniel Gruss. SQUIP: Exploiting the Sched-
uler Queue Contention Side Channel. In S&P, 2023.

Stefan Gast, Hannes Weissteiner, Robin Leander
Schroder, and Daniel Gruss. CounterSE Veillance:
Performance-Counter Attacks on AMD SEV-SNP. In
NDSS, 2025.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Miiller. Cache Attacks on Intel SGX. In Eu-
roSec, 2017.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P, 2018.

Felicitas Hetzelt and Robert Buhren. Security analysis
of encrypted virtual machines. ACM SIGPLAN Notices,
52(7):129-142, 2017.

Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang
Hao, Pei Zhao, Jian Zhai, and Mingshu Li. Bluethun-
der: A 2-level Directional Predictor Based Side-Channel
Attack against SGX. In CHES, 2020.

Intel. Intel Trust Domain Extensions, 2021. URL: http
s://software.intel.com/content/dam/develop
/external/us/en/documents/tdx-whitepaper-v
4. pdf.

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

Intel. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide, 2024.

Intel. Intel Performance Monitoring Events, 2024. URL.:
https://perfmon-events.intel.com/.

Intel. Intel Software Guard Extensions (Intel SGX),
2024. URL: https://www.intel.com/content/ww
w/us/en/products/docs/accelerator-engines
/software-quard-extensions.html.

Intel. Intel Trust Domain Extensions Module Base Ar-
chitecture Specification, 2024. URL: https://www.in
tel.com/content/www/us/en/developer/tools/
trust-domain-extensions/documentation.html.

Alexandre Kandalintsev, Renato Lo Cigno, Dzmitry Kli-
azovich, and Pascal Bouvry. Profiling Cloud Applica-
tions with Hardware Performance Counters. In Interna-
tional Conference on Information Networking (ICOIN),
2014.

David Kaplan, Jeremy Powell, and Tom Woller. AMD
Memory Encryption, 2016.

Paul Kocher. Timing Attacks on Implementations of
Diffe-Hellman, RSA, DSS, and Other Systems. In
CRYPTO, 1996.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differen-
tial power analysis. In CRYPTO, 1999.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch
Shadowing. In USENIX Security, 2017.

Congmiao Li and Jean-Luc Gaudiot. Online detection
of spectre attacks using microarchitectural traces from
performance counters. In Symposium on Computer
Architecture and High Performance Computing (SBAC-
PAD), 2018.

Congmiao Li and Jean-Luc Gaudiot. Detecting Mali-
cious Attacks Exploiting Hardware Vulnerabilities Us-
ing Performance Counters. In COMPSAC, 2019.

Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yingian Zhang. A
systematic look at ciphertext side channels on AMD
SEV-SNP. In S&P, 2022.

Mengyuan Li, Yingian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. CIPHERLEAKS: Breaking
Constant-time Cryptography on AMD SEV via the Ci-
phertext Side Channel. In USENIX Security, 2021.


https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://perfmon-events.intel.com/
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Mengyuan Li, Yingian Zhang, Huibo Wang, Kang Li,
and Yuegiang Cheng. TLB Poisoning Attacks on AMD
Secure Encrypted Virtualization. In ACSAC, 2021.

Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and
Daniel Gruss. PLATYPUS: Software-based Power Side-
Channel Attacks on x86. In S&P, 2021.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
are Practical. In S&P, 2015.

Xiaoxuan Lou, Kangjie Chen, Guowen Xu, Han Qiu,
Guo Shangwei, and Tianwei Zhang. Protecting Confi-
dential Virtual Machines from Hardware Performance
Counter Side Channels. In DSN, 2024.

Jason Mars, Neil Vachharajani, Robert Hundt, and
Mary Lou Soffa. Contention Aware Execution: online
contention detection and response. In CGO, 2010.

Thomas S Messerges, Ezzy A Dabbish, and Robert H
Sloan. Power Analysis Attacks of Modular Exponentia-
tion in Smartcards. In CHES, 1999.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In CHES, 2017.

Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. Severed: Subverting AMD’s virtual
machine encryption. In EuroSec, 2018.

Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based Fault Injection Attacks against
Intel SGX. In S&P, 2020.

Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CROSSTALK: Specula-
tive Data Leaks Across Cores Are Real. In S&P, 2021.

Robin Leander Schroder, Stefan Gast, and Qian Guo.
Divide and Surrender: Exploiting Variable Division In-
struction Timing in HQC Key Recovery Attacks. In
USENIX Security, 2024.

Michael Schwarz, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Michael Schwarz, Samuel Weiser, and Daniel Gruss.
Practical Enclave Malware with Intel SGX. In DIMVA,
2019.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: abusing Intel SGX to conceal cache attacks.
Cybersecurity, 3(1):2, 2020.

Martin Schwarzl, Pietro Borrello, Andreas Kogler, Ken-
ton Varda, Thomas Schuster, Daniel Gruss, and Michael
Schwarz. Dynamic Process Isolation. In ESORICS,
2021.

Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy,
Read Sprabery, Josep Torrellas, and Christopher W.
Fletcher. MicroScope: Enabling Microarchitectural Re-
play Attacks. In ISCA, 2019.

Gildo Torres and Chen Liu. Adaptive Virtual Machine
Management in the Cloud: A Performance-Counter-
Driven Approach. International Journal of Systems
and Service-Oriented Engineering (IJSSOE), 4(2):28—
43, 2014.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In USENIX
Security, 2018.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In S&P, 2020.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A Practical Attack Framework for Precise Enclave
Execution Control. In Workshop on System Software for
Trusted Execution, 2017.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying Microarchitectural Timing Leaks in Rudi-
mentary CPU Interrupt Logic. In CCS, 2018.

Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling Your Secrets With-
out Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution. In USENIX Security, 2017.

Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
In-flight Data Load. In S&P, 2019.



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. CacheOut: Leaking
Data on Intel CPUs via Cache Evictions. In S&P, 2021.

Kenton Varda. Dynamic Process Isolation: Research by
Cloudflare and TU Graz, 2021. URL: https://blog
.cloudflare.com/spectre-research-with-tu-g
raz/.

Sa Wang, Wenbo Zhang, Tao Wang, Chunyang Ye, and
Tao Huang. VMon: Monitoring and Quantifying Vir-
tual Machine Interference via Hardware Performance
Counter. In ACSAC, 2015.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky Cauldron on the Dark
Land: Understanding Memory Side-Channel Hazards in
SGX. In CCS, 2017.

Wubing Wang, Mengyuan Li, Yingian Zhang, and
Zhigiang Lin. PwrLeak: Exploiting Power Reporting
Interface for Side-Channel Attacks on AMD SEV. In
DIMVA, 2023.

Samuel Weiser, Raphael Spreitzer, and Lukas Bodner.
Single Trace Attack Against RSA Key Generation in
Intel SGX SSL. In AsiaCCS, 2018.

Jan Werner, Joshua Mason, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. The sever-
est of them all: Inference attacks against secure virtual
enclaves. In AsiaCCS, 2019.

Luca Wilke, Florian Sieck, and Thomas Eisenbarth.
TDXdown: Single-Stepping and Instruction Counting
Attacks against Intel TDX. In CCS, 2024.

Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No Security Without
Integrity—Breaking Integrity-Free Memory Encryption
with Minimal Assumptions. In S&P, 2020.

Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas
Eisenbarth. SEV-Step: A Single-Stepping Framework
for AMD-SEV. In CHES, 2024.

Lai Leng Woo, Mark Zwolinski, and Basel Halak. Early
Detection of System-Level Anomalous Behaviour using
Hardware Performance Counters. In DATE, 2018.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In S&P, 2015.

Yuval Yarom and Katrina Falkner. Flush+Reload: a
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security, 2014.

[80]

[81]

[82]

Ruiyi Zhang, CISPA Helmholtz Center, Lukas Gerlach,
Daniel Weber, Lorenz Hetterich, Youheng Lii, Andreas
Kogler, and Michael Schwarz. CacheWarp: Software-
based Fault Injection using Selective State Reset. In
USENIX Security, 2024.

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. CPI2: CPU Per-
formance Isolation for Shared Compute Clusters. In
EuroSys, 2013.

Hongwei Zhou, Xin Wu, Wenchang Shi, Jinhui Yuan,
and Bin Liang. HDROP: Detecting ROP Attacks Using
Performance Monitoring Counters. In ISPEC, 2014.


https://blog.cloudflare.com/spectre-research-with-tu-graz/
https://blog.cloudflare.com/spectre-research-with-tu-graz/
https://blog.cloudflare.com/spectre-research-with-tu-graz/

	Introduction
	Background and Related Work
	Intel SGX
	AMD SEV
	Intel TDX
	Single-Stepping
	Performance Counters

	High-Level Overview of TEEcorrelate
	Temporal Decorrelation: Windowing
	Decorrelation: Fuzzy Increments
	Configuration Options

	Implementation of TEEcorrelate
	Extending the TEE Interface
	Temporal Decorrelation
	Value Decorrelation
	Performance Overhead
	Reduced Number of Buckets

	Security
	Temporal Decorrelation
	Value Decorrelation

	Case Studies
	Mitigating String Comparison Leakage
	Mitigating Lookup Table Leakage
	Mitigating RSA Secret Key Leakage
	Mitigating HQC-KEM Key Recovery

	Discussion
	Conclusion

