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Abstract—Modern processors use branch prediction and spec-
ulative execution to maximize performance. For example, if the
destination of a branch depends on a memory value that is in the
process of being read, CPUs will try to guess the destination and
attempt to execute ahead. When the memory value finally arrives,
the CPU either discards or commits the speculative computation.
Speculative logic is unfaithful in how it executes, can access the
victim’s memory and registers, and can perform operations with
measurable side effects.

Spectre attacks involve inducing a victim to speculatively
perform operations that would not occur during correct program
execution and which leak the victim’s confidential information via
a side channel to the adversary. This paper describes practical
attacks that combine methodology from side channel attacks,
fault attacks, and return-oriented programming that can read
arbitrary memory from the victim’s process. More broadly, the
paper shows that speculative execution implementations violate
the security assumptions underpinning numerous software secu-
rity mechanisms, including operating system process separation,
containerization, just-in-time (JIT) compilation, and countermea-
sures to cache timing and side-channel attacks. These attacks
represent a serious threat to actual systems since vulnerable
speculative execution capabilities are found in microprocessors
from Intel, AMD, and ARM that are used in billions of devices.

While makeshift processor-specific countermeasures are possi-
ble in some cases, sound solutions will require fixes to processor
designs as well as updates to instruction set architectures (ISAs)
to give hardware architects and software developers a common
understanding as to what computation state CPU implementa-
tions are (and are not) permitted to leak.

I. INTRODUCTION

Computations performed by physical devices often leave
observable side effects beyond the computation’s nominal
outputs. Side-channel attacks focus on exploiting these side
effects to extract otherwise-unavailable secret information.
Since their introduction in the late 90’s [14], various physical
effects such as power consumption have been leveraged to
extract cryptographic keys as well as other secrets. [13]

External side-channel measurements can be used to extract
secret information from complex devices such as PCs and
mobile phones. However, because these devices often execute
code from a potentially unknown origin, they face additional
threats in the form of software-based attacks, which do not
require external measurement equipment. While some attacks

exploit software logic errors, other software attacks leverage
hardware properties to infer sensitive information. Attacks of
the latter type include microarchitectural attacks exploiting
cache timing [3, 6, 17] and branch prediction history [1].
Software-based techniques have also been used to induce
computation errors, including fault attacks that alter physical
memory [11] or internal CPU values [25].

Several microarchitectural design techniques have facilitated
the increase in processor speed over the past decades. One such
advancement is speculative execution, which is widely used
to increase performance and involves having the CPU guess
likely future execution directions and prematurely execute
instructions on these paths. More specifically, consider an
example where the program’s control flow depends on an
uncached value located in external physical memory. As this
memory is much slower than the CPU, it often takes several
hundred clock cycles before the value becomes known. Rather
than wasting these cycles by idling, the CPU attempts to guess
the direction of control flow, saves a checkpoint of its register
state, and proceeds to speculatively execute the program on the
guessed path. When the value eventually arrives from memory,
the CPU checks the correctness of its initial guess. If the
guess was wrong, the CPU discards the incorrect speculative
execution by reverting the register state back to the stored
checkpoint, resulting in performance comparable to idling.
However, if the guess was correct, the speculative execution
results are committed, yielding a significant performance gain
as useful work was accomplished during the delay.

From a security perspective, speculative execution involves
executing a program in possibly incorrect ways. However,
because CPUs are designed to maintain functional correctness
by reverting the results of incorrect speculative executions to
their prior states, these errors were previously assumed to be
safe.

In this paper, we analyze the security implications of such
incorrect speculative execution. We present a class of microar-
chitectural attacks which we call Spectre attacks. At a high
level, Spectre attacks trick the processor into speculatively
executing instruction sequences that should not have been
executed under correct program execution. As the effects of
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these instructions on the nominal CPU state are eventually
reverted, we call them transient instructions. Transient in-
structions can, however, have observable effects that convey
information. By influencing which transient instructions are
speculatively executed, we are able to leak information from
within the victim’s memory address space.

Spectre attacks can be applied to leak information across a
broad range of security domains. In this paper, we describe
several implementations and variations, including attacks that
extract information from other processes, from kernel memory,
and that violate sandboxes enforced by programming lan-
guages.

At a high level, Spectre attacks violate memory isola-
tion boundaries by combining speculative execution with
data exfiltration via microarchitectural covert channels. More
specifically, to mount a Spectre attack, an attacker starts by
locating or introducing a sequence of instructions within the
process address space which, when executed, acts as a covert
channel transmitter that leaks the victim’s memory or register
contents. The attacker then tricks the CPU into speculatively
and erroneously executing this instruction sequence, thereby
leaking the victim’s information over the covert channel.
Finally, the attacker retrieves the victim’s information over
the covert channel. While the changes to the nominal CPU
state resulting from this erroneous speculative execution are
eventually reverted, previously leaked information or changes
to other microarchitectural states of the CPU, e.g., cache
contents, can survive nominal state reversion.

The above description of Spectre attacks is general, and
needs to be concretely instantiated with a way to induce
erroneous speculative execution as well as with a microar-
chitectural covert channel. While many choices are possible
for the covert channel component, the implementations de-
scribed in this work use cache-based covert channels [24],
i.e., Flush+Reload [29] and Evict+Reload [5, 15].

The underlying vulnerability arises from the composition
of widely-used microarchitectural features, rather than an
implementation error in a single component. We have verified
the vulnerability in all processors tested that implement specu-
lative execution, including multiple designs from Intel, AMD,
and ARM. This contrasts with a related issue, Meltdown [16],
which exploits a vulnerability specific to many Intel and a few
ARM processors which allows user-mode instructions to infer
the contents of kernel memory.

Following the practice of responsible disclosure, partici-
pated in an embargo of the results. This process was unusually
complex due to the large number of stakeholders and affected
products.

II. BACKGROUND

In this section, we introduce some of the microarchitectural
components of modern high-speed processors as well as
several attack techniques.

A. Speculative Execution
Often, the processor does not know the future instruction

stream of a program. For example, this occurs when out-of-

order execution reaches a conditional branch instruction whose
direction depends on preceding instructions whose execution
is not completed yet. In such cases, the processor can preserve
its current register state, make a prediction as to the path that
the program will follow, and speculatively execute instructions
along the path. If the prediction turns out to be correct, the
results of the speculative execution are committed (i.e., saved),
yielding a performance advantage over idling during the wait.
Otherwise, when the processor determines that it followed the
wrong path, it abandons the work it performed speculatively
by reverting its register state and resuming along the correct
path.

We refer to instructions which are performed erroneously
(i.e., as the result of a misprediction), but may leave mi-
croarchitectural traces, as transient instructions. Although the
speculative execution maintains the architectural state of the
program as if execution followed the correct path, microarchi-
tectural elements may be in a different (but valid) state than
before the transient execution.

Speculative execution on modern CPUs can run several
hundred instructions ahead.

B. Branch Prediction
During speculative execution, the processor makes guesses

as to the likely outcome of branch instructions. Better pre-
dictions improve performance by increasing the number of
speculatively executed operations that can be successfully
committed.

Branch predictors of modern processors can have multi-
ple prediction mechanisms for direct and indirect branches.
Indirect branch instructions can jump to arbitrary target ad-
dresses computed at runtime, such as instructions that jump
to an address in a register, memory location, or on the stack
(e.g., “jmp eax” on x86). Return instructions are a type of
indirect branch, and modern CPUs often include additional
mechanisms for predicting return addresses.

For conditional branches, recording the target address is not
necessary for predicting the outcome of the branch since the
destination is typically encoded in the instruction while the
condition is determined at runtime. To improve predictions,
the processor maintains a record of branch outcomes, both for
recent direct and indirect branches.

C. The Memory Hierarchy
To bridge the speed gap between the faster processor and

the slower memory, processors use a hierarchy of successively
smaller but faster caches. The caches divide the memory into
fixed-size chunks called lines, with typical line sizes being 64
or 128 bytes. When the processor needs data from memory,
it first checks if the L1 cache contains a copy. In the case
of a cache hit, i.e., the data is found in the cache, the data
is retrieved from the L1 cache and used. Otherwise, in the
case of a cache miss, the procedure is repeated to attempt to
retrieve the data from the next cache levels, and finally external
memory. Once a read is completed, the data is typically stored
in the cache (and a previously cached value is evicted to make
room) in case it is needed again in the near future.



D. Microarchitectural Side-Channel Attacks

The microarchitectural components discussed above im-
prove the processor performance by predicting future program
behavior. To that aim, they maintain state that depends on past
program behavior and assume that future behavior is similar
to or related to past behavior.

When multiple programs execute on the same hardware,
either concurrently or via time sharing, changes in the microar-
chitectural state caused by the behavior of one program may
affect other programs. This, in turn, may result in unintended
information leaks from one program to another.

Initial microarchitectural side channel attacks exploited tim-
ing variability [14] and leakage through the L1 data cache [27]
to extract keys from cryptographic primitives. Over the years,
channels have been demonstrated over multiple microarchitec-
tural components, including lower level caches [10, 17] and
branch history [1].

In this work, we use the Flush+Reload technique [6, 29],
and its variant Evict+Reload [5]. Using these techniques, the
attacker begins by evicting a cache line from the cache that is
shared with the victim. After the victim executes for a while,
the attacker measures the time it takes to perform a memory
read at the address corresponding to the evicted cache line.
If the victim accessed the monitored cache line, the data will
be in the cache, and the access will be fast. Otherwise, if the
victim has not accessed the line, the read will be slow. Hence,
by measuring the access time, the attacker learns whether the
victim accessed the monitored cache line between the eviction
and probing steps.

The main difference between the two techniques is the
mechanism used for evicting the monitored cache line from
the cache. In the Flush+Reload technique, the attacker uses
a dedicated machine instruction, e.g., x86’s clflush, to
evict the line. Using Evict+Reload, eviction is achieved by
forcing contention on the cache set that stores the line, e.g.,
by accessing other memory locations which are loaded into
the cache and (due to the limited size of the cache) cause
the processor to discard (evict) the line that is subsequently
probed.

III. ATTACK OVERVIEW

Spectre attacks induce a victim to speculatively perform
operations that would not occur during strictly serialized in-
order processing of the program’s instructions, and which leak
victim’s confidential information via a covert channel to the
adversary.

In most cases, the attack begins with a setup phase, where
the adversary performs operations that mistrain the processor
so that it will later make an exploitably erroneous speculative
prediction. In addition, the setup phase may include steps that
help induce speculative execution, such as manipulating the
cache state to remove data that the processor will need to
determine the actual control flow. During the setup phase, the
adversary can also prepare the covert channel that will be used
for extracting the victim’s information, e.g., by performing the
flush or evict part of a Flush+Reload or Evict+Reload attack.

During the second phase, the processor speculatively exe-
cutes instruction(s) that transfer confidential information from
the victim context into a microarchitectural covert channel.
This may be triggered by having the attacker request that the
victim perform an action, e.g., via an API call. In other cases,
the attacker may leverage the speculative (mis-)execution of
its own code to obtain sensitive information from the same
process. For example, attack code which is sandboxed by an
interpreter, just-in-time compiler, or ‘safe’ language may wish
to read memory it is not supposed to access. While speculative
execution can potentially expose sensitive data via a broad
range of covert channels, the examples given cause speculative
execution to first read a memory value at an attacker-chosen
address then perform a memory operation that modifies the
cache state in a way that exposes the value.

For the final phase, the sensitive data is recovered. For Spec-
tre attacks using Flush+Reload or Evict+Reload, the recovery
process consists of timing the access to memory addresses in
the cache lines being monitored.

Spectre attacks only assume that speculatively executed
instructions can read from memory that the victim process
could access normally, e.g., without triggering a page fault
or exception. Hence, Spectre is orthogonal to Meltdown [16]
which exploits scenarios where some CPUs allow out-of-order
execution of user instructions to read kernel memory. Conse-
quently, even if a processor prevents speculative execution of
instructions in user processes from accessing kernel memory,
Spectre attacks still work.

IV. VARIANT 1: EXPLOITING CONDITIONAL BRANCH
MISPREDICTION

In this section, we demonstrate how conditional branch
misprediction can be exploited by an attacker to read arbitrary
memory from another context, e.g., another process.

Consider the case where the code below is part of a function
(e.g., a system call or a library) receiving an unsigned integer
x from an untrusted source. The process running the code
has access to an array of unsigned bytes array1 of size
array1_size, and a second byte array array2 of size
1 MB.

if (x < array1_size)
y = array2[array1[x] * 4096];

The code fragment begins with a bounds check on x.
This check is essential for security because it prevents the
processor from reading sensitive memory outside of array1.
Otherwise, an out-of-bounds input x could trigger an exception
or could cause the processor to access sensitive memory by
supplying x = (address of a secret byte to read) − (base
address of array1).

Figure 1 illustrates the four cases of the bounds check in
combination with speculative execution. Before the result of
the bounds check is known, the CPU speculatively executes
code following the condition by predicting the most likely
outcome of the comparison. There are many reasons why the
result of a bounds check may not be immediately known,
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Fig. 1: Before the correct outcome of the bounds check is
known, the branch predictor continues with the most likely
branch target, leading to an overall execution speed-up if
the outcome was correctly predicted. However, if the bounds
check is incorrectly predicted as true, an attacker can leak
secret information in certain scenarios.

e.g., a cache miss preceding or during the bounds check,
congestion of a required execution unit, complex arithmetic
dependencies, or nested speculative execution. However, as
illustrated, a correct prediction of the condition in these cases
leads to faster overall execution.

Unfortunately, during speculative execution, the conditional
branch for the bounds check can follow the incorrect path.
In this example, suppose an adversary causes the code to run
such that:

• the value of x is maliciously chosen (out-of-bounds), such
that array1[x] resolves to a secret byte k somewhere
in the victim’s memory;

• array1_size and array2 are uncached, but k is
cached; and

• previous operations received values of x that were valid,
leading the branch predictor to assume the if will likely
be true.

This cache configuration can occur naturally or can be created
by an adversary, e.g., by causing eviction of array1_size
and array2 then having the kernel use the secret key in a
legitimate operation.

When the compiled code above runs, the processor
begins by comparing the malicious value of x against
array1_size. Reading array1_size results in a cache
miss, and the processor faces a substantial delay until its value
is available from DRAM. In the meantime, the branch predic-
tor assumes the if will be true, then speculative execution
adds x to the base address of array1 and requests the data
at the resulting address from the memory subsystem. This
read is a cache hit, and quickly returns the value of the secret
byte k. Speculative execution continues, using k to compute
the address of array2[k*4096], and sending a request to
read this address from memory (resulting in a cache miss).
At some point after the read from array2 is initiated, the
processor realizes that its speculative execution was erroneous
and rewinds its register state. However, the speculative read
from array2 affects the cache state in an address-specific
manner, where the address depends on k.

To complete the attack, the adversary measures which
location in array2 was brought into the cache, e.g.,
via Flush+Reload or Prime+Probe. This reveals the value
of k, since the victim’s speculative execution cached
array2[k*4096], causing array2[i*4096] to read
quickly for i = k, but slowly for all other k ∈ 0..255. Alterna-
tively, the adversary can also use Evict+Time, i.e., immediately
call the target function again with an in-bounds value x’ and
measure how long this second call takes. If array1[x’]
equals k, then the location accessed in array2 is in the cache,
and the operation will tend to be faster. (The multiplication by
4096 simplifies the attack by ensuring that each potential value
of k maps to a different memory page, avoiding effects due
to intra-page prefetching.)

Many different scenarios can lead to exploitable leaks
using this variant. For example, instead of performing a
bounds check, the mispredicted conditional branch(es) could
be checking a previously-computed safety result or an object
type. Similarly, the code that is speculatively executed can
take other forms, such as leaking a comparison result into a
fixed memory location or may be spread over a much larger
number of instructions. The cache status described above is
also more restrictive than may be required. For example, in
some scenarios, the attack works even if array1_size is
cached, e.g., if branch prediction results are applied during
speculative execution even if the values involved in the com-
parison are known. As a result, mitigation efforts are likely to
be ineffective if targeted narrowly to a specific code pattern
or scenario. (See Sections VI and VII.)

A. Experimental Results
We performed experiments on multiple Intel x86 processor

architectures (Ivy Bridge, Haswell, Broadwell, Skylake, and
Kaby Lake) and AMD Ryzen. The Spectre vulnerability was
observed on all these CPUs, and we observed that speculative
execution can run hundreds of instructions ahead. Similar
results were observed on both 32- and 64-bit modes, and under
both Linux and Windows. Some processors based on the ARM
architecture also support speculative execution, and our initial
testing confirmed that ARM Cortex-A57 and Cortex-A53 and
Qualcomm Kyro 280 CPUs

B. Example Implementation in C
Proof-of-concept code in C for x86 processors is found

in the full paper or is available from https://gist.github.com/
anonymous/99a72c9c1003f8ae0707b4927ec1bd8a. This unop-
timized implementation can read around 10 KB/s on an i7-
4650U with a low (< 0.01%) error rate.

C. Example Implementation in JavaScript
We developed a proof-of-concept in JavaScript and tested it

in Google Chrome version 62.0.3202 which allows a website
to read private memory from the process in which it runs. The
code is illustrated in Listing 1.

On branch-predictor mistraining passes, index is set
(via bit operations) to an in-range value. On the final it-
eration, index is set to an out-of-bounds address into

https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a


1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * 4096)|0) & (32*1024*1024-1))|0;
4 localJunk ˆ= probeTable[index|0]|0;
5 }

Listing 1: Exploiting Speculative Execution via JavaScript.

1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length
2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movq below
3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi = r12 + rdx = addr of first byte in simpleByteArray
4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address + index)
5 shll rsi,12 ; Multiply rsi by 4096 by shifting left 12 bits
6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds
7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable
8 xorl rsi,rdi ; XOR the read result onto localJunk
9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Listing 2: Disassembly of JavaScript Example from Listing 1.

simpleByteArray. We used a variable localJunk to
ensure that operations are not optimized out. The “|0”
operation converts the value to a 32-bit integer, acting as
an optimization hint to the JavaScript interpreter. Like other
optimized JavaScript engines, V8 performs just-in-time com-
pilation to convert JavaScript into machine language. Dummy
operations were placed in the code surrounding Listing 1
to make simpleByteArray.length be stored in local
memory so that it can be removed from the cache during the
attack. See Listing 2 for the resulting disassembly output from
D8.

Since the clflush instruction is not accessible from
JavaScript, we use cache eviction instead [19], i.e., we access
other memory locations in a way such that the target memory
locations are evicted afterwards. The leaked results are con-
veyed via the cache status of probeTable[n*4096] for
n ∈ 0..255, so the attacker has to evict these 256 cache lines.
The length parameter (simpleByteArray.length in the
JavaScript code and [ebp-0xe0] in the disassembly) needs
to be evicted as well.

JavaScript does not provide access to the rdtscp in-
struction, and Chrome intentionally degrades the accuracy
of its high-resolution timer to dissuade timing attacks using
performance.now(). However, the Web Workers feature
of HTML5 makes it simple to create a separate thread that re-
peatedly decrements a value in a shared memory location [22].
This approach yields a high-resolution timer that provides
sufficient resolution.

D. Example Implementation Exploiting eBPF

As a third example of exploiting conditional branches,
we developed a reliable proof-of-concept which leaks kernel
memory from an unmodified Linux kernel without patches
against Spectre by abusing the eBPF (extended BPF) interface.
eBPF is a Linux kernel interface based on the Berkeley
Packet Filter (BPF) [18] that can be used for a variety of

Context A Context B

call [function]
...

function A

function B

?? ?

Branch
Predictor

call [function]
...

spectre gadget

legit function

speculate

Fig. 2: The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes
its prediction on the basis of training data from context A,
leading to speculative execution at an attacker-chosen address
which corresponds to the location of the Spectre gadget in the
victim’s address space.

purposes, including filtering packets based on their contents.
eBPF permits unprivileged users to trigger the interpretation
or JIT-compilation and subsequent execution of user-supplied,
kernel-verified eBPF bytecode in the context of the kernel.
The basic concept of the attack is similar to the concept of
the attack against JavaScript.

In this attack, we use the eBPF code only for the specu-
latively executed code. We use native code in user space to
acquire the covert channel information. This is a difference
to the JavaScript example above, where both functions are
implemented in the scripted language. To speculatively access
secret-dependent locations in user-space memory, we perform
speculative out-of-bounds memory accesses to an array in
kernel memory, with an index large enough that user-space
memory is accessed instead.

See the full paper for additional details.

V. VARIANT 2: POISONING INDIRECT BRANCHES

In this section, we demonstrate how indirect branches can
be poisoned by an attacker and the resulting misprediction of



indirect branches can be exploited. If the determination of the
destination address of an indirect branch is delayed, e.g., due
to a cache miss, speculative execution will often continue at
a location predicted from previous code execution.

In Spectre variant 2, the adversary mistrains the branch
predictor with malicious destinations, such that speculative
execution continues at a location chosen by the adversary. This
is illustrated in Figure 2, where the branch predictor is (mis-
)trained in one context and applies the prediction in a different
context. More specifically, the adversary can misdirect spec-
ulative execution to locations that would never occur during
legitimate program execution. This is an extremely powerful
means for attackers, for example enabling exposure of victim
memory even in the absence of an exploitable conditional
branch misprediction leveraged in Section IV.

For a simple example attack, we consider an attacker
seeking to read a victim’s memory, who has control over
two registers when an indirect branch occurs. This commonly
occurs in real-world binaries since functions manipulating
externally-received data routinely make function calls while
registers contain values that an attacker controls. Often these
values are ignored by the called function and instead they are
simply pushed onto the stack in the function prologue and
restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget”, i.e.,
a code fragment whose speculative execution will transfer the
victim’s sensitive information into a covert channel. For this
example, a simple and effective gadget would be formed by
two instructions (which do not necessarily need to be adjacent)
where the first adds (or XORs, subtracts, etc.) the memory
location addressed by an attacker-controlled register R1 onto
an attacker-controlled register R2, followed by any instruction
that accesses memory at the address in R2. In this case,
the gadget provides the attacker control (via R1) over which
address to leak and control (via R2) over how the leaked
memory maps to an address which is read by the second
instruction. On the CPUs we tested, the gadget must reside
in memory executable by the victim for the CPU to perform
speculative execution. However, with several megabytes of
shared libraries mapped into most processes [5], an attacker
has ample space to search for gadgets without even having to
search in the victim’s own code.

Numerous other attacks are possible, depending on what
state is known or controlled by the adversary, where the
information sought by the adversary resides (e.g., registers,
stack, memory, etc.), the adversary’s ability to control spec-
ulative execution, what instruction sequences are available to
form gadgets, and what channels can leak information from
speculative operations. For example, a cryptographic function
that returns a secret value in a register may become exploitable
if the attacker can simply induce speculative execution at an
instruction that brings memory from the address specified in
the register into the cache. Likewise, although the example
above assumes that the attacker controls two registers, attacker
control over a single register, value on the stack, or memory
value is sufficient for some gadgets.

In many ways, exploitation is similar to return-oriented pro-
gramming (ROP) [23], except that correctly-written software
is vulnerable, gadgets are limited in their duration but need
not terminate cleanly (since the CPU will eventually recognize
the speculative error), and gadgets must exfiltrate data via side
channels rather than explicitly. Still, speculative execution can
perform complex sequences of instructions, including reading
from the stack, performing arithmetic, branching (including
multiple times), and reading memory.

The full paper includes details about branch predictor be-
havior and mistraining techniques for a range of processors, as
well as attack implementations targeting a Microsoft Windows
application and the KVM hypervisor.

VI. VARIATIONS

So far, we have demonstrated attacks that leverage changes
in the state of the cache that occur during speculative execu-
tion. Future processors (or existing processors with different
microcode) may behave differently, e.g., if measures are taken
to prevent speculatively executed code from modifying the
cache state. In this section, we examine potential variants, and
conclude that virtually any observable effect of speculatively
executed code can potentially lead to leaks of sensitive infor-
mation. Although the following techniques are not needed for
the processors we tested, it is essential to understand potential
variations when designing or evaluating mitigations.

Spectre variant 4. Spectre variant 4 uses speculation in the
store-to-load forwarding logic [7]. The processor speculates
that a load does not depend on the previous store. The
exploitation mechanics are similar to variant 1 and 2 that we
discussed in detail in this paper.

Evict+Time. The Evict+Time attack [20] works by measuring
the timing of operations that depend on the state of the cache.
This technique can be adapted to use Spectre as follows.
Consider the code:

if (false but mispredicts as true)
read array1[R1]

read [R2]

Suppose register R1 contains a secret value. If the specula-
tively executed memory read of array1[R1] is a cache hit,
then nothing will go on the memory bus, and the read from
[R2] will initiate quickly. If the read of array1[R1] is a
cache miss, then the second read may take longer, resulting
in different timing for the victim thread. In addition, other
components in the system that can access memory (such as
other processors) may be able to sense the presence of activity
on the memory bus or other effects of the memory read. We
note that this attack can work even if speculative execution
does not modify the contents of the cache. All that is required
is that the state of the cache affects the timing of speculatively
executed code or some other property that ultimately becomes
visible to the attacker.

Instruction Timing. Spectre vulnerabilities do not nec-
essarily need to involve caches. Instructions whose timing



depends on the values of the operands may leak information
on the operands. In the following example, the multiplier is
occupied by the speculative execution of multiply R1,
R2. The timing of when the multiplier becomes available
for multiply R3, R4 (either for out-of-order execution or
after the misprediction is recognized) could be affected by the
timing of the first multiplication, revealing information about
R1 and R2.

if (false but mispredicts as true)
multiply R1, R2

multiply R3, R4

Contention on the Register File. Suppose the CPU has
a register file with a finite number of registers available for
storing checkpoints for speculative execution. In the following
example, if condition on R1 in the second ‘if’ is true,
then an extra speculative execution checkpoint will be created
than if condition on R1 is false. If an adversary can
detect this checkpoint, e.g., if speculative execution of code
in hyperthreads is reduced due to a shortage of storage, this
reveals information about R1.

if (false but mispredicts as true)
if (condition on R1)

if (condition)

Variations on Speculative Execution. Even code that
contains no conditional branches can potentially be at risk.
For example, consider the case where an attacker wishes to
determine whether R1 contains an attacker-chosen value X or
some other value. The ability to make such determinations is
sufficient to break some cryptographic implementations. The
attacker mistrains the branch predictor such that, after an inter-
rupt occurs, the interrupt return mispredicts to an instruction
that reads memory [R1]. The attacker then chooses X to
correspond to a memory address suitable for Flush+Reload,
revealing whether R1 = X . While the iret instruction is
serializing on Intel CPUs, other processors may apply branch
predictions.

Leveraging Arbitrary Observable Effects. Virtually any ob-
servable effect of speculatively executed code can be leveraged
to create the covert channel that leaks sensitive information.
For example, consider a processor that has been designed so
that speculative reads cannot modify the cache. When the code
below runs, the speculative lookup in array2 still occurs,
and its timing will be affected by the cache state entering
speculative execution. This timing in turn can affect the
depth and timing of subsequent speculative operations. Thus,
by manipulating the state of the cache prior to speculative
execution, an adversary can potentially leverage virtually any
observable effect from speculative execution.

if (x < array1_size) {
y = array2[array1[x] * 4096];
// do something detectable when
// speculatively executed

}

The final observable operation could involve virtually any
side channel or covert channel, including contention for re-
sources (buses, arithmetic units, etc.) and conventional side
channel emanations (such as electromagnetic radiation or
power consumption).

A more general form of this would be:

if (x < array1_size) {
y = array1[x];
// something using y that is observable
// when speculatively executed

}

VII. MITIGATION OPTIONS

Several countermeasures for Spectre attacks have been
proposed. Each addresses one or more of the features that
the attack relies upon. We now discuss these countermeasures
and their applicability, effectiveness, and cost.

A. Preventing Speculative Execution

Speculative execution is required for Spectre attacks. En-
suring that instructions are executed only when the control
flow leading to them is ascertained would prevent speculative
execution and, with it, Spectre attacks. While effective as a
countermeasure, this would cause a significant degradation in
the performance of the processor.

Although current processors do not appear to have methods
that allow software to disable speculative execution, such
modes could be added in future processors, or potentially
be introduced via microcode changes. Still, this solution is
unlikely to provide an immediate fix to the problem.

Alternatively, the software could be modified to use seri-
alizing or speculation blocking instructions that ensure that
instructions following them are not executed speculatively. For
x86, CPU vendors recommend the use of the lfence instruc-
tion [9]. The safest approach to protect conditional branches
would be to add such an instruction on the two outcomes of
every conditional branch, but this amounts to disabling branch
prediction and would dramatically reduce performance. An
improved approach is to use static analysis [9] to reduce the
number of speculation blocking instructions required, since
many code paths do not have the potential to read and leak
out-of-bounds memory. In contrast, Microsoft’s C compiler
MSVC takes an approach of defaulting to unprotected code
unless the static analyzer detects a known-bad code pattern,
but as a result misses many vulnerable code patterns [12].

The approach requires that all potentially vulnerable soft-
ware is instrumented. Hence, for protection, updated software
binaries and libraries are required. This could be an issue for
legacy software. In addition, this approach is primarily focused
on variant 1, and does not address all variants.

B. Preventing Access to Secret Data

Other countermeasures can prevent speculatively executed
code from accessing secret data. One such measure, used by
the Google Chrome web browser, is to execute each web
site in a separate process [26]. Because Spectre attacks only



leverage the victim’s permissions, an attack such as the one
we performed using JavaScript (cf. Section IV-C) would not
be able to access data from the processes assigned to other
websites.

WebKit employs two strategies for limiting access to secret
data by speculatively executed code [21]. The first strategy
replaces array bounds checking with index masking. Instead
of checking that an array index is within the bounds of the
array, WebKit applies a bit mask to the index, ensuring that
it is not much bigger than the array size. While masking
may result in access outside the bounds of the array, this
limits the distance of the bounds violation, preventing the
attacker from accessing arbitrary memory. The second strategy
protects access to pointers by xoring them with a pseudo-
random poison value. An adversary who does not know the
poison value cannot use a poisoned pointer (although various
cache attacks could leak the poison value), and the poison
value ensures that mispredictions on the branch instructions
used for type checks will result in pointers associated with
type being used for another type.

C. Preventing Data from Entering Covert Channels
Future processors could potentially track whether data was

fetched as the result of a speculative operation and, if so,
prevent that data from being used in subsequent operations
that might leak it. Current processors do not generally have
this capability, however.

D. Limiting Data Extraction from Covert Channels
To exfiltrate information from transient instructions, Spectre

attacks use a covert communication channel. Multiple ap-
proaches have been suggested for mitigating such channels
(cf. [4]). A common approach is to degrade timers, which

may decrease attack performance, but does not guarantee
that attacks are not possible.

E. Preventing Branch Poisoning
To prevent indirect branch poisoning, Intel and AMD ex-

tended the ISA with mechanisms for limiting adversaries’
ability to influence indirect branch speculation [2, 8]. The
performance impact varies from a few percent to a factor of 4
or more, depending on which countermeasures are employed,
how comprehensively they are applied (e.g. limited use in the
kernel vs. full protection for all processes), and the efficiency
of the hardware and microcode implementations.

Google suggests an alternative mechanism for preventing
indirect branch poisoning called retpolines [28]. A retpoline
is a code sequence that replaces indirect branches with return
instructions. The construct further contains code that makes
sure that the return instruction is predicted to a benign endless
loop through the return stack buffer, while the actual target
destination is reached by pushing it on the stack and returning
to it i.e., using the ret instruction. When return instructions
can be predicted by other means the method may be impracti-
cal. Intel issued microcode updates for some processors, which
fall back to the BTB for the prediction, to disable this fallback
mechanism [9].

VIII. CONCLUSIONS

A fundamental assumption underpinning software security
techniques is that the processor will faithfully execute program
instructions, including its safety checks. This paper presents
Spectre attacks, which leverage the fact that speculative execu-
tion violates this assumption. The techniques we demonstrate
are practical, do not require any software vulnerabilities, and
allow adversaries to read private memory and register contents
from other processes and security contexts.

Software security fundamentally depends on having a clear
common understanding between hardware and software devel-
opers as to what information CPU implementations are (and
are not) permitted to expose from computations. As a result,
while the countermeasures described in the previous section
may help limit practical exploits in the short term, they are
only stop-gap measures since there is typically formal archi-
tectural assurance as to whether any specific code construction
is safe across today’s processors – much less future designs.
As a result, we believe that long-term solutions will require
fundamentally changing instruction set architectures.

More broadly, there are trade-offs between security and
performance. The vulnerabilities in this paper, as well as many
others, arise from a long-standing focus in the technology
industry on maximizing performance. As a result, processors,
compilers, device drivers, operating systems, and numerous
other critical components have evolved compounding layers
of complex optimizations that introduce security risks. As the
costs of insecurity rise, these design choices need to be revis-
ited. In many cases, alternative implementations optimized for
security will be required.
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