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Abstract. In this paper, we provide a systematic analysis of the root
cause of the prefetching effect observed in previous works and show that
its attribution to a prefetching mechanism is incorrect in all previous
works, leading to incorrect conclusions and incomplete defenses. We show
that the root cause is speculative dereferencing of user-space registers in
the kernel. This new insight enables the first end-to-end Foreshadow
(L1TF) exploit targeting non-L1 data, despite Foreshadow mitigations
enabled, a novel technique to directly leak register values, and several
side-channel attacks. While the L1TF effect is mitigated on the most re-
cent Intel CPUs, all other attacks we present still work on all Intel CPUs
and on CPUs by other vendors previously believed to be unaffected.

1 Introduction

For security reasons, operating systems hide physical addresses from user pro-
grams [34]. Hence, an attacker requiring this information has to leak it first, e.g.,
with the address-translation attack by Gruss et al. [17, §3.3 and §5]. It allows
user programs to fetch arbitrary kernel addresses into the cache and thereby to
resolve virtual to physical addresses. As a mitigation against e.g., the address-
translation attack, Gruss et al. [17, 16] proposed the KAISER technique.

Other attacks observed and exploited similar prefetching effects. Melt-
down [41] practically leaks memory that is not in the L1 cache. Xiao et al.
[72] show that this relies on a prefetching effect that fetches data from the L3
cache into the L1 cache. However, Van Bulck et al. [66] observe no such effect
for Foreshadow.

We systematically analyze the root cause of the prefetching effect exploited
in these works. We show that, despite the sound approach of these papers, the
attribution of the root cause, i.e., why the kernel addresses are cached, is incor-
rect in all cases. The root cause is unrelated to software prefetch instructions or
hardware prefetching effects due to memory accesses and instead is caused by
speculative dereferencing of user-space registers in the kernel. While there are
many speculative code paths in the kernel, we focus on code paths with Spec-
tre [35, 6] gadgets that can be reliably triggered on both Linux and Windows.

These new insights correct several wrong assumptions from previous works,
also leading to new attacks. Most significantly, the difference that Meltdown can
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leak from L3 or main memory [41] but Foreshadow (L1TF) can only leak from
L1 [66, Appendix A], was never a limitation in practice. The same effect that
allowed Meltdown to leak data from L3, enables our slightly modified Foreshadow
attack to leak data from L3 as well, i.e., L1TF was in practice never restricted
to the L1 cache. Worse still, we show that for the same reason Foreshadow
mitigations [66, 69] are still incomplete. We reveal that Foreshadow attacks are
unmitigated on many kernel versions even with all mitigations and even on the
most recent kernel versions. However, retpoline affects the success rate, but it is
only enabled on some kernel versions and some microarchitectures.

We present a new technique that uses dereferencing gadgets to directly leak
data without an encoding attack step. We show that we can leak data from regis-
ters, e.g., cryptographic key material, from SGX and that the assumptions in pre-
vious works were incorrect, making certain attacks only reproducible on kernels
susceptible to speculative dereferencing, including, e.g., results from Gruss et al.
[17, §3.3 and §5], Lipp et al. [41, §6.2], and Xiao et al. [72, §4-E]. This also
allowed us to improve the performance of address-translation attacks and to
mount them in JavaScript [17]. We demonstrate that the address-translation
attack also works on recent Intel CPUs with the latest hardware mitigations
with all mitigations enabled. Finally, we also demonstrate the attack on CPUs
previously believed to be unaffected by the prefetch address-translation attack,
i.e., ARM, IBM Power9, and AMD CPUs.

Contributions. The main contributions of this work are:
1. We discover an incorrect attribution of the root cause in previous works to

prefetching effects [72, 17, 41].
2. We show that the root cause is speculative execution, leaving CPUs from

other vendors equally affected and the effect exploitable from JavaScript.
3. We discover a novel way to exploit speculative dereferences, enabling direct

leakage data in registers.
4. We show that this effect, responsible for Meltdown from non-L1 data, can be

adapted to Foreshadow and show that Foreshadow attacks on data from the
L3 cache are possible, even with Foreshadow mitigations enabled.
Outline. Section 2 provides background. Section 3 analyzes the root cause.

Section 4 improves and extends the attacks. Section 5 presents cross-VM data
leakage. Section 6 presents a new leakage method. Section 7 presents a JavaScript-
based attack. Section 8 discusses implications. Section 9 concludes.

2 Background and Related Work

In this section, we provide relevant details regarding virtual memory, CPU
caches, Intel SGX, and transient execution attacks and defenses.

Virtual Memory. In modern systems, each process has its own virtual
address space, divided into user and kernel space. Many operating systems map
physical memory directly into the kernel [30, 39], e.g., to access paging structures.
Thus, every user page is mapped at least twice: in user space and in the kernel
direct-physical map. Access to virtual-to-physical address information requires
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root privileges [34]. The prefetch address-translation attack [17, §3.3 and §5]
obtains the physical address for any user-space address via a side-channel attack.

Caches and Prefetching. Modern CPUs have multiple cache levels, hiding
latency of slower memory levels. Software prefetch instructions hint the CPU
that a memory address should already be fetched into the cache early to improve
performance. Intel and AMD x86 CPUs have 5 software prefetch* instructions.

Prefetching attacks. Gruss et al. [17] observed that software prefetches
appear to succeed on inaccessible memory. Using this effect on the kernel direct-
physical map enables the user to fetch arbitrary physical memory into the cache.
The attacker guesses the physical address for a user-space address, tries to
prefetch the corresponding address in the kernel’s direct-physical map, and then
uses Flush+Reload [73] on the user-space address. On a cache hit, the guess was
correct. Hence, the attacker can determine the exact physical address for any
virtual address, re-enabling various mircorarchitectural attacks [43, 50, 60, 32].

Intel SGX. Intel SGX is a trusted execution mechanism enabling the execu-
tion of trusted code in a separate protected area called an enclave [26]. Although
enclave memory is mapped in the virtual address space of the host application,
the hardware prevents access to the code or data of the enclave from any source
other than the enclave code itself [27]. However, as has been shown in the past,
it is possible to exploit SGX via memory corruption [37, 54], ransomware [59],
side-channel attacks [5, 55], and transient-execution attacks [66, 56, 52, 67].

Transient Execution. Modern CPUs execute instructions out of order
to improve performance and then retire in order from reorder buffers. Another
performance optimization, speculative execution, predicts control flow and data
flow for not-yet resolved conditional control- or data-flow changes. Intel CPUs
have several branch predictors [25], e.g., the Branch History Buffer (BHB) [3, 35],
Branch Target Buffer (BTB) [38, 12, 35], Pattern History Table (PHT) [13, 35],
and Return Stack Buffer (RSB) [13, 42, 36]. Instructions executed out-of-order
or speculatively but not architecturally are called transient instructions [41].

These transient instructions can have measurable side effects, e.g., modi-
fication of TLB and cache state, that can be exploited to extract secrets in
so-called transient-execution attacks [6, 28]. Spectre-type attacks [35, 33, 7, 19,
36, 42, 58] exploit misspeculation in a victim context. By executing along the
misspeculated path, the victim inadvertently leaks information to the attacker.
To mitigate Spectre-type attacks several mitigations were developed [24], such as
retpoline [23], which replaces indirect jump instructions with ret instructions.

In Meltdown-type attacks [41], such as Foreshadow [66], an attacker deliber-
ately accesses memory across isolation boundaries, which is possible due to de-
ferred permission checks in out-of-order execution. Foreshadow exploits a cleared
present bit in the page table-entry to leak data from the L1 cache or the line fill
buffer [52, 56]. A widely accepted mitigation is to flush the L1 caches and line
fill buffers upon context switches and to disable hyperthreading [22].
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1 41 0f 18 06 prefetchnta (%r14) ; replace with nop for testing, r14 = direct phys. addr.
2 41 0f 18 1e prefetcht2 (%r14) ; replace with nop for testing, r14 = direct phys. addr.

Listing 1: Disassembly of the prefetching in the address-translation attack.

3 From Address-Translation Attack to Foreshadow-L3

In this section, we systematically analyze the properties of the address-translation
attack erroneously attributed to the software prefetch instructions [17, §3.3 and
§5]. We identify the root cause to be unmitigated misspeculation in the kernel,
leading to a new Foreshadow-L3 attack that works despite mitigations [66].

In the address-translation attack [17] the attacker tries to find a direct physi-
cal map address p̄ for a virtual address p. The attacker flushes the user-space ad-
dress p, and prefetches the inaccessible direct physical map address p̄. If Flush+
Reload [73] determines that p was reloaded via p̄, the physical address of p is p̄
minus the known direct-physical-map offset. We measure the attack performance
in fetches per second, i.e., how often per second p was cached via p̄.

The prefetching component of the original attack’s proof-of-concept [20] runs
a loop, for (size_t i = 0; i < 3; ++i) { sched_yield(); prefetch(direct_phys_map_addr); }. The
compiled and disassembled code can be found in Listing 1. We extracted the fol-
lowing hypotheses(H1-H5) from the original attack (cf. Appendix A for quotes):
H1 the prefetch instruction (to instruct the prefetcher to prefetch);
H2 the value stored in the register used by the prefetch instruction (to indicate

which address the prefetcher should prefetch);
H3 the sched yield syscall (to give time to the prefetcher);
H4 the use of the userspace accessible bit (as kernel addresses could other-

wise not be translated in a user context);
H5 an Intel CPU – other CPU vendors are claimed to be unaffected.
We test each of the above hypotheses in this section.

3.1 H1: Prefetch instruction required

The first hypothesis is that the prefetch instruction is necessary for the address-
translation attack. We replace the prefetch instructions in the original code [20]
with same-size nops (cf. Listing 1). Surprisingly, we observe no change in the
number of cache fetches, i.e., we measure 60 cache fetches per second (i7-8700K,
Ubuntu 18.10, kernel 4.15.0-55), without any prefetch instruction. We also
exclude the hardware prefetcher by disabling them via the model-specific register
0x1a4 [68] during the experiment. We still observe ≈ 60 cache fetches per second.

Documented prefetchers are not required for the address-translation attack.

3.2 H2: Values in registers required

The second hypothesis is that providing the direct-physical map address via the
register is necessary. The registers that must be used vary across kernel versions.
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We identified the registers r12,r13,r14 (Ubuntu 18.10, kernel 4.18.0-17),
r9,r10 (Debian 8, kernel 4.19.28-2 and Kali Linux, kernel 5.3.9-1kali1) and
rdi,rdx (Linux Mint 19, kernel 4.15.0-52). Gruss et al. [17] used recompiled
binaries that used different registers for the kernel address (cf. Appendix A).

A referenced location is only fetched into the cache if the absolute virtual
address is stored in one of these registers.

We additionally verified that only the absolute virtual address causes this
effect. Any other addressing mode for the prefetch instruction does not leak.
By loading the address into most general-purpose registers, we observe leakage
across all Linux versions, even with KPTI enabled, meaning that the KAISER
technique [16] never protected against this attack. Instead, the implementation
merely changed the required registers, hiding the effect for a specific binary-
kernel combination. On an Intel Xeon Silver 4208 CPU with in-silicon patches
against Meltdown [41], Foreshadow [66], and ZombieLoad [56], we still observe
about 30 cache fetches per second on Ubuntu 19.04 (kernel 5.0.0-25). On Win-
dows 10 (build 1803.17134), which has no direct physical map, we fill all regis-
ters with a kernel address and perform the syscall SwitchToThread. We observe
≈ 15 cache fetches per second for our kernel address.

3.3 H3: sched yield required

The third hypothesis is that the sched yield syscall is required. We observe
that other syscalls e.g., gettid, expose a similar number of cache fetches.
This shows that sched yield is not required and can be replaced with other
syscalls. To test whether syscalls in the main attack loop are required, we run
a address-translation attack without context switches or interrupts and without
sched yield on an isolated core. Here, we do not observe any cache fetches (i7-
8700K, kernel 4.15.0-55) when running this attack for 10 hours. However, when
inducing a large number of context switches using interrupts, we observe about
15 cache fetches per second if the process filling the registers gets interrupted con-
tinuously. These hits occur during speculative execution in the interrupt handler,
as we validated manually via code changes and fencing in interrupt handlers.

We conclude that the essential part is performing syscalls or interrupts while
specific registers are filled with an attacker-chosen address.

3.4 H4: userspace accessible bit required

The fourth hypothesis is that user-mapped kernel pages are required, i.e., ac-
cess is prevented via the userspace accessible bit. We constructed an ex-
periment where we allocate several pages of memory. We choose cache lines A
and B on different pages. In a loop, we dereference a register pointing to A
and use Flush+Reload to detect whether A was cached. In the last loop iter-
ation, we speculatively exchange the register value to point to either B or the
direct-physical map address of B. Hence, both the architectural and speculative
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1 ;<do_syscall_64+106> ; with retpoline
2 => 0xffffffff81802000: jmpq *%rax callq 0xffffffff8180200c
3 => 0xffffffff8180200c: mov %rax,(%rsp)
4 => 0xffffffff81802010: retq

Listing 2: The kernel performs indirect jumps, e.g., to syscall handlers. With
retpoline [63], the kernel uses a retq instead of the indirect jump.

dereferences happen at the same instruction pointer value and in the same reg-
ister. With a register-value-based hardware prefetcher, we would expect B to
be cached. When dereferencing the direct-physical-map address of B architec-
turally, B is usually cached after the loop. However, when we dereference the
register with its value speculatively changed from A to either B or the direct-
physical map address of B, B is never cached after the final run. In a second
experiment, we show that the effect originates from the kernel. While prefetching
direct-physical-map addresses works, user-space addresses are only fetched when
SMAP (supervisor-mode access prevention) is disabled. Thus, the root cause of
the address-translation attack adheres to SMAP.

Hence, we can conclude that the root cause is code execution in the kernel.

3.5 H5: Effect only on Intel CPUs

The fifth hypothesis is that the “prefetching” effect only occurs on Intel CPUs.
We run our experiments (cf. Section 3.4) on an AMD Ryzen Threadripper 1920X
(Ubuntu 17.10, kernel 4.13.0-46generic), an ARM Cortex-A57 (Ubuntu 16.04.6
LTS, kernel 4.4.38-tegra), and an IBM Power9 (Ubuntu 18.04, kernel 4.15.0-29).
On the AMD Ryzen Threadripper 1920X, we achieve up to 20, on the Cortex-
A57 up to 5, and on the IBM Power9 up to 15 speculative fetches per second.

Any Spectre-susceptible CPU is also susceptible to speculative dereferencing.

3.6 Speculative Execution in the Kernel

From the previous analysis, we conclude that the leakage is due to speculative
execution in the kernel. While this might not be suprising with the knowledge
of Spectre, Spectre was only discovered one year after the original prefetch pa-
per [17] was published. We show that the primary leakage is caused by Spectre-
BTB-SA-IP (training in same address space, and in-place) [6].

During a syscall, the kernel performs multiple indirect jumps (cf. Listing 2),
which are generally susceptible to Spectre-BTB-SA-IP. The address-translation
attack succeeds because misspeculated branch targets dereference registers with-
out sanitization. With retpoline, the kernel uses a retq instead of the indi-
rect jump to trap the speculative execution to a fixed branch. Thus, during
speculative execution, the CPU might use an incorrect prediction from the
branch-target buffer (BTB) and speculate into the wrong syscall while reg-
isters contain attacker-chosen addresses (cf. Figure 1). In the misspeculated
syscall, registers containing attacker-chosen addresses are used. On recent kernels
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Fig. 1: The kernel speculatively dereferences the direct-physical map address.
Flush+Reload detects cache hits on the corresponding user-space address.

1 movzbl (%rax,%rdi,1),%eax
2 <op> (%rcx,%rax,1),%dl
3 ; gadget in Linux kernel
4 98d4be: 0f b6 34 06 movzbl (%rsi,%rax,1),%esi
5 98d4c2: 45 01 3c b3 add %r15d,(%r11,%rsi,4)

Listing 3: If the attacker controls three register values, it is possible to leak
arbitrary kernel memory.

(4.19 or newer), retpoline eliminates the leakage. We provide a full analysis of
the sched yield gadget causing speculative dereferences in Appendix B. Even
worse, cloud providers still use older kernel versions (e.g., the first option on
AWS at the time of writing is Amazon Linux 2 AMI with kernel 4.14) where
retpoline does not fully eliminate the leakage. On the other hand, recent sys-
tems such as Ice Lake do not use retpoline anymore due to improved hardware
mitigations, which unfortunately have no effect on our speculative dereferenc-
ing attack. Hence, our attack remains unmitigated on many systems, and is
most importantly not mitigated by KAISER (KPTI) [16], or LAZARUS [14]
as claimed in previous works. The Spectre-BTB-SA-IP leak from Listing 2 is
only one of many, e.g., we still observe ≈ 15 speculative fetches per second on
an i5-8250U (kernel 5.0.0-20) if we eliminate this specific leak. However, any
prefetch gadget [6], based on PHT, BTB, or RSB mispredictions, can be used
for an address-translation attack [17] and thus would also re-enable Foreshadow-
VMM attacks [66, 69]. Concurrent work showed that there are kernel gadgets to
fetch data into the L1D cache in Xen [71] and an artificial gadget was exploited
by Stecklina for that purpose [62].

We also analyzed the interrupt handling in the Linux kernel version 4.19.0
and observed that the register values from r8-r15 are cleared but stored on the
stack and restored after the interrupt. In between, stack dereferences in mis-
speculated branches can still access these values. On recent Ice Lake processors,
retpoline is replaced by enhanced IBRS. Unfortunately, this is a security regres-
sion, re-enabling Spectre-BTB in-place attacks and, thus, moves our focus on a
set of previously overlooked gadgets, where the user only controls certain regis-
ter values in the transient domain. We measure the performance of our attack
by exploiting such a Spectre-BTB gadget in a kernel module and evaluate it
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on our Ice Lake CPU. Listing 3 illustrates an eIBRS-bypassing Spectre-BTB
gadget containing only two instructions, where the attacker controls, e.g., three
registers. The smallest eIBRS-bypassing Spectre-BTB gadget we found contains
only 7 bytes.

We demonstrate that on Ice Lake, this regression re-enables transient leak-
age of kernel memory like the original Spectre attack paper described [35], i.e.,
measured by leaking a 1024 B secret key. We observe a completely noise-free
leakage rate of 30 B/s (n = 1000, σx̄ = 0.1429). By shifting the byte i.e., binary
searching via two consecutive cache lines, we then can recover the exact byte
value [35]. We analyzed the Linux kernel 5.4.0-48 (vmlinux binary) and looked
for similar opcodes and found a gadget at offset 0x984dbe(see Listing 3 line 3

and 4).

3.7 Meltdown-L3 and Foreshadow-L3

The speculative dereferencing was noticed but also misattributed to the prefetcher
in subsequent work. The Meltdown paper [41] reports that data is fetched from
L3 into L1 while mounting a Meltdown attack. Van Bulck et al. [66] confirmed the
effect for Meltdown but did not observe this prefetching effect for Foreshadow.
Based on this observation, further works also mentioned this effect without an-
alyzing it thoroughly [6, 47, 52, 31]. Xiao et al. [72] state that a Meltdown-US
attack causes data to be repeatedly prefetched from L1 to L3 [72].

We used similar Meltdown-L3 setups as SpeechMiner [72] (kernel 4.4.0-
134 with boot flags nopti,nokaslr and Meltdown [41] (Ubuntu 16.10, kernel
4.8.0, no mitigations existed back then). In our Meltdown-L3 experiment, one
physical core constantly accesses a secret to ensure that the value stays in the
L3, as the L3 is shared across all physical cores. On a different physical core,
we run Meltdown on the direct-physical map. On recent Linux kernels with full
Spectre v2 mitigations implemented, we could not reproduce the result. With
the nospectre v2 flag, our Meltdown-L3 attack works again by triggering the
prefetch gadget in the kernel on the direct-physical map address. In the Speech-
Miner [72] and Meltdown [41] experiment, no mitigation (including retpoline)
eliminates the leakage fully. Without our new insights that the prefetching effect
is caused by speculative execution, it is almost inevitable to not misdesign these
experiments, inevitably leading to incomplete or incorrect observations and con-
clusions on Meltdown and Foreshadow and their mitigations. We confirmed with
the authors that their experiment design was not robust to our new insight and
therefore lead to wrong conclusions. Foreshadow-L3¸ The same prefetching ef-
fect can be used to perform Foreshadow [66]. If a secret is present in the L3 cache
and the direct-physical map address is derefenced in the hypervisor kernel, data
can be fetched into the L1. This reenables Foreshadow even with Foreshadow
mitigations enabled. We demonstrate this attack in KVM in Section 5.
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4 Improving the Leakage Rate

We can leverage our insights to increase the leakage by using syscalls other than
sched yield, and executing additional syscalls to mistrain the branch predictor.

Setup. We tested our attacks on an Intel i5-8250U (Linux kernel 4.15.0-
52), an i7-8700K (Linux kernel 4.15.0-55), an ARM Cortex-A57 (Linux kernel
4.4.38-tegra), and an AMD Threadripper 1920X (Linux kernel 4.13.0-46). As
retpoline is not available on all machines, we run the tests without retpoline.
By performing syscalls before filling the registers with the direct-physical map
address, we can mistrain the BTB, triggering the CPU to speculatively execute
this syscall. We evaluate this mistraining for sched yield in Appendix C.

Evaluation. We evaluated different syscalls for branch prediction mistrain-
ing by executing a single syscall before and after filling the registers with the
target address. We observe that effects occur for different syscalls and both on
AMD and ARM CPUs, with similar success rates (cf. Appendix G). Alternating
syscalls additionally mistrains the branch prediction and increases the success
rate, e.g., with syscalls like stat, sendto, or geteuid. However, not every ad-
ditional syscall increases the number of cache fetches. On recent Linux kernels
(version 5), we observe that the number of speculative cache fetches decreases,
due to a change in syscall handling. Our results show that the pipe syscall
much more reliably triggers speculative dereferencing (≥99.9 %), but the execu-
tion time of sched yield is much lower and thus despite the lower success rate
(around 66.4 % in the most basic case) it yields a higher attack performance.

Capacity Measurement in a Cross-Core Covert Channel. We mea-
sure the capacity of our attack in a covert channel by using the speculative
dereferencing effect (‘1’-bit) or not (‘0’-bit). The receiver uses Flush+Reload to
measure whether the cache state of cache line dereferenced in the kernel. We
evaluated the covert channel on random data and across physical CPU cores.
Our test system was equipped with an Intel i7-6500U CPU Linux 4.15.0-52 with
the nospectre v2 boot flag. We achieved the highest capacity at a transmission
rate of 10 bit/s. At this rate, the standard error is, on average, 0.1 %. This result
is comparable to related work in similar scenarios [50, 70]. To achieve an error-
free transmission, error-correction techniques [43] can be used. I/O interrupts,
i.e., syncing the NVMe device, create additional speculative dereferences and
can thus further improve the capacity.

5 Speculative Dereferences and Virtual Machines

In this section, we examine speculative dereferencing in virtual machines. We
demonstrate a successful end-to-end attack using interrupts from a virtual-
machine guest running under KVM on a Linux host [10]. We leak data (e.g.,
cryptographic keys) from other virtual machines and the hypervisor, like the
original Foreshadow attack. We do not observe any speculative dereferencing of
guest-controlled registers in Microsoft’s Hyper-V HyperClear Foreshadow miti-
gation which additionally uses retpoline, or on more recent kernel versions with
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Virtual machine Hypervisor

Int./Hypercall with VA

Foreshadow on PA Fetch into cache
Page

cache line

Fig. 2: If a guest-chosen address is speculatively fetched into the cache during
a hypercall or interrupt and not flushed before the virtual machine is resumed,
the attacker can perform a Foreshadow attack to leak the fetched data.

retpoline. We provide a thorough analysis of this negative result. However, the
attack succeeds even with the recommended Foreshadow mitigations enabled
and with kernel versions before 4.18 (e.g., as used by default on AWS Amazon
Linux 2 AMI) with all default mitigations enabled, i.e., including retpoline. We
investigate whether speculative dereferencing also exists in hypercalls. The at-
tacker targets a specific host-memory location where the host virtual address
and physical address are known but inaccessible.

Foreshadow Attack on Virtualization Software. If an address from the
host is speculatively fetched into the L1 cache on a hypercall from the guest, it
has a similar speculative-dereferencing effect. With the speculative memory ac-
cess in the kernel, we can fetch arbitrary memory from L2, L3, or DRAM into the
L1 cache. Consequently, Foreshadow can be used on arbitrary memory addresses
provided the L1TF mitigations in use do not flush the entire L1 data cache [64,
71, 62]. Figure 2 illustrates the attack using hypercalls or interrupts and Fore-
shadow. The attacking guest loads a host virtual address into the registers used
as hypercall parameters and then performs hypercalls. If there is a prefetching
gadget in the hypercall handler and the CPU misspeculates into this gadget,
the host virtual address is fetched into the cache. The attacker then performs a
Foreshadow attack and leaks the value from the loaded virtual address.

5.1 Foreshadow on Patched Linux KVM

Concurrent work showed that prefetching gadgets in the kernel, in combination
with L1TF, can be exploited on Xen and KVM [71, 62]. The default setting on
Ubuntu 19.04 (kernel 5.0.0-20) is to only conditionally flush the L1 data cache
upon VM entry via KVM [64], which is also the case for Kali Linux (kernel
5.3.9-1kali1). The L1 data cache is only flushed in nested VM entry scenarios
or in situations where data from the host might be leaked. Since Linux kernel
4.9.81, Linux’s KVM implementation clears all guest clobbered registers to
prevent speculative dereferencing [11]. In our attack, the guest fills all general-
purpose registers with direct-physical-map addresses from the host.

End-To-End Foreshadow Attack via Interrupts. In Section 3.3, we
observed that context switches triggered by interrupts can also cause specula-
tive cache fetches. We use the example from Section 3.3 to verify whether the
“prefetching” effect can also be exploited from a virtualized environment. In
this setup, we virtualize Linux buildroot (kernel 4.16.18) on a Kali Linux host
(kernel 5.3.9-1kali1) using qemu (4.2.0) with the KVM backend. In our ex-
periment, the guest constantly fills a register with a direct-physical-map address
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and performs the sched yield syscall. We verify with Flush+Reload in a loop on
the corresponding host virtual address that the address is indeed cached. Hence,
we can successfully fetch arbitrary hypervisor addresses into the L1 cache on
kernel versions before the patch, i.e., with Foreshadow mitigations but incom-
plete Spectre-BTB mitigations. We observe about 25 speculative cache fetches
per minute using NVMe interrupts on our Debian machine. The attacker, run-
ning as a guest, can use this gadget to prefetch data into the L1. Since data is
now located in the L1, this reenables a Foreshadow attack [66], allowing guest-
to-host memory reads. 25 fetches per minute means that we can theoretically
leak up to 64 · 25 = 1600 bytes per minute (or 26.7 bytes per second) with a
Foreshadow attack despite mitigations in place. However, this requires a sophisti-
cated attacker who avoids context switches once the target cache line is cached.
We develop an end-to-end Foreshadow-L3 exploit that works despite enabled
Foreshadow mitigations. In this attack the host constantly performs encryptions
using a secret key on a physical core, which ensures it remains in the shared
L3 cache. We assign one isolated physical core, consisting of two hyperthreads,
to our virtual machine. In the virtual machine, the attacker fills all registers
on one logical core (hyperthread) and performs the Foreshadow attack on the
other logical core. Note that this is different from the original Foreshadow attack
where one hyperthread is controlled by the attacker and the sibling hyperthread
is used by the victim. Our scenario is more realistic, as the attacker controls both
hyperthreads, i.e., both hyperthreads are in the same trust domain. With this
proof-of-concept attack implementation, we are able to leak 7 bytes per minute
successfully 1. Note that this can be optimized further, as the current proof-of-
concept produces context switches regardless of whether the cache line is cached
or not. Our attack clearly shows that the recommended Foreshadow mitigations
alone are not sufficient to mitigate Foreshadow attacks, and retpoline must be
enabled to fully mitigate our Foreshadow-L3 attack.

No Prefetching gadget in Hypercalls in KVM. We track the regis-
ter values in hypercalls and validate whether the register values from the guest
system are speculatively fetched into the cache. We neither observe that the
direct-physical-map address is still located in the registers nor that it is specu-
latively fetched into the cache. However, as was shown in concurrent work [62,
71], prefetch gadgets exist in the kernel that can be exploited to fetch data into
the cache, and these gadgets can be exploited using Foreshadow.

5.2 Negative Result: Foreshadow on Hyper-V HyperClear

We examined whether the same attack also works on Windows 10 (build
1803.17134), which includes the latest patch for Foreshadow. As on Linux, we
disabled retpoline and tried to fetch hypervisor addresses from guest systems
into the cache. Microsoft’s Hyper-V HyperClear Mitigation [45] for Foreshadow
claims to only flush the L1 data cache when switching between virtual cores.

1 Demonstration video can be found here: https://streamable.com/8ke5ub
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Flush+Reload

Physical Page p1 Physical Page p2

v0 ... vn
2−1 vn

2
... vn−1

Register Value (between v0 and vn−1)
Dereference

Test

Fig. 3: Leaking the value of an x86 general-purpose register using Dereference
Trap and Flush+Reload on two different physical addresses. v0 to vn−1 represent
the memory mappings on one of the shared memory regions.

Hence, it should be susceptible to the same basic attack we described at the be-
ginning of this section. For our experiment, the attacker passes a known virtual
address of a secret variable from the host operating system for all parameters of
a hypercall. However, we could not find any exploitable timing difference after
switching from the guest to the hypervisor. Our experiments concerning this
negative result are discussed in Appendix F.

6 Leaking Values from SGX Registers

In this section, we present a novel method, Dereference Trap, to leak register
contents via speculative register dereference. Leaking the values of registers is
useful, e.g., to extract parts of keys from cryptographic operations.

6.1 Dereference Trap

The setup for Dereference Trap is similar as in Section 3.6. We exploit transient
code paths inside an SGX enclave that speculatively dereference a register con-
taining a secret value. Such a gadget is easily introduced in an enclave, e.g., when
using polymorphism in C++. Listing 5 (Appendix D) shows a minimal example
of introducing such a gadget. However, there are also many different causes for
such gadgets [23], e.g., function pointers or (compiler-generated) jump tables.
The basic idea of Dereference Trap is to ensure that the entire virtual address
space of the application is mapped. Thus, if a register containing a secret is spec-
ulatively dereferenced, the corresponding virtual address is cached. The attacker
can detect which virtual address is cached and infer the secret. However, it is
infeasible to back every virtual address with unique physical pages and mount
Flush+Reload on every cache line, as that takes 2 days on a 4 GHz CPU [54].

Instead of mapping every page in the virtual address space to its own physical
pages, we only map 2 physical pages p1 and p2, as illustrated in Figure 3. By
leveraging shared memory, we can map one physical page multiple times into the
virtual address space. The maximum number of mappings per page is 231 − 1,
which makes it possible to map 1/16th of the user-accessible virtual address
space. If we only consider 32-bit secrets, i.e., secrets which are stored in the lower
half of 64-bit registers, 220 mappings are sufficient. Out of these, the first 210
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virtual addresses map to physical page p1 and the second 210 addresses map to
page p2. Consequently the majority of 32-bit values are now valid addresses that
either map to p1 or p2. Thus, after a 32-bit secret is speculatively dereferenced
inside the enclave, the attacker only needs to probe the 64 cache lines of each
of the two physical pages. A cache hit reveals the most-significant bit (bit 31)
of the secret as well as bits 6 to 11, which define the cache-line offset on the
page. To learn the remaining bits 12 to 30, we continue in a fashion akin to
binary-search. We unmap all mappings to p1 and p2 and create half as many
mappings as before. Again, half of the new mappings map to p1 and half of the
new mappings map to p2. From a cache hit in this setup, we can again learn
one bit of the secret. We can repeat these steps until all bits from bit 6 to 31
of the secret are known. As the granularity of Flush+Reload is one cache line,
we cannot leak the least-significant 6 bits of the secret. On our test system, we
recovered a 32-bit value (without the least-significant 6 bits) stored in a 64-bit
register within 15 minutes with Dereference Trap.

6.2 Generalization of Dereference Trap

Dereference Trap is a generic technique that applies to any scenario where the
attacker can set up the hardware and address space accordingly. Dereference
Trap applies to all Spectre variants. Many in-place Spectre-v1 gadgets that are
not the typical encoding array gadget are still entirely unprotected with no plans
to change this. For instance, Intel systems before Haswell and AMD systems
before Zen do not support SMAP, and more recent systems may have SMAP
disabled. On these systems, we can also mmap memory regions and the kernel will
dereference 32-bit values misinterpreted as pointers (into user space). Using this
technique the attacker can reliably leak a 32-bit secret which is speculatively
dereferenced by the kernel. Cryptographic implementations often store keys in
the lower 32 bits of 64bit registers (i.e., OpenSSL AES round key u32 *rk) [48].
Hence, these implementations might be susceptible to Dereference Trap. We
evaluated the same experiment on an Intel i5-8250U, ARM Cortex-A57, and
AMD ThreadRipper 1920X with the same result of 15 minutes to recover a 32-
bit secret (without the least-significant 6 bits). Thus, retpoline and SMAP must
remain enabled to mitigate attacks like Dereference Trap.

7 Leaking Physical Addresses from JavaScript using
WebAssembly

In this section, we present an attack that leaks the physical address (cache-
line granularity) of a JavaScript variable. This shows that the “prefetching”
effect is much simpler than described in the original paper [17], i.e., it does not
require native code execution. The only requirement for the environment is that
it can keep a 64-bit register filled with an attacker-controlled 64-bit value. In
contrast to the original paper’s attempt to use native code in browser, we create
a JavaScript-based attack to leak physical addresses from Javascript variables
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and evaluate its performance in Firefox. We demonstrate that it is possible to
fill 64-bit registers with an attacker-controlled value via WebAssembly.

Attack Setup. JavaScript encodes numbers as 53-bit double-precision floating-
point values [46]. It is not possible to store a full 64-bit value into a register with
vanilla JavaScript. Hence, we leverage WebAssembly, a binary instruction format
which is precompiled for the JavaScript engine and not further optimized [65].
On our test system (i7-8550U, Debian 8, kernel5.3.9-1kali1) registers r9 and
r10 are speculatively dereferenced in the kernel. Hence, we fill these registers
with a guessed direct-physical-map address of a variable. The WebAssembly
method load pointer (Listing 6 Appendix E) takes two 32-bit values that are
combined into a 64-bit value and populated into as many registers as possible.
To trigger interrupts, we use web requests, as shown by Lipp et al. [40]. Our at-
tack leaks the direct-physical-map address of a JavaScript variable. The attack
works analogously to the native-code address-translation attack [17].

1. Guess a physical address p for the variable and compute the corresponding
direct-physical map address d(p).

2. Load d(p) into the required registers (load pointer) in an endless loop, e.g.,
using endless-loop slicing [40].

3. The kernel fetches d(p) into the cache when interrupted.
4. Use Evict+Reload on the target variable. On a cache hit, the physical address

guess p from Step 1 was correct. Otherwise, continue with the next guess.

Attack from within Browsers. We mount an attack in an unmodified
Firefox 76.0 by injecting interrupts via web requests. We observe up to 2 spec-
ulative fetches per hour. If the logical core running the code is constantly inter-
rupted, e.g., due to disk I/O, we achieve up to 1 speculative fetch per minute. As
this attack leaks parts of the physical and virtual address, it can be used to im-
plement various microarchitectural attacks [49, 50, 57, 18, 15, 35, 53]. Hence, the
address-translation attack is possible with JavaScript and WebAssembly, with-
out requiring the NaCl sandbox as in the original paper [17]. Upcoming Java-
Script extensions expose syscalls to JavaScript [8]. Hence, as the second part of
our evaluation, we investigate whether a syscall-based attack would also yield
the same performance as in native code. To simulate the extension, we expose
the sched yield syscall to JavaScript. We observe the same performance of 20
speculative fetches per second with the syscall function.

Limitations of the Attack. We conclude that the bottleneck of this at-
tack is triggering syscalls. In particular, there is currently no way to directly
perform a single syscall via Javascript in browsers without high overhead. We
traced the syscalls of Firefox using strace. We observed that syscalls such as
sched yield, getpid, stat, sendto are commonly performed upon window

events, e.g., opening and closing pop-ups or reading and writing events on the
JavaScript console. However, the registers r9 and r10 get overwritten before the
syscall is performed. Thus, whether the registers are speculatively dereferenced
while still containing the attacker-chosen values strongly depends on the engine’s
register allocation and on other syscalls performed. As Jangda et al. [29] stated,
not all registers are used in JIT-generated native code [29].
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8 Discussion

The “prefetching” effect was first observed by Gruss et al. [17] in 2016. In May
2017, Jann Horn discovered that speculative execution can be exploited to leak
arbitrary data, later on published in the Spectre [35] paper. Our results indi-
cate that the address-translation attack was the first inadvertent exploitation
of speculative execution, albeit in a much weaker form where only metadata,
i.e., information about KASLR, is leaked rather than real data as in a full
Spectre attack. Even before the address-translation attack, speculative execu-
tion was well known [51] and documented [26] to cause cache hits on addresses
that are not architecturally accessed. Currently, the address-translation attack
and our variants are mitigated on both Linux and Windows using the retpoline
technique to avoid indirect branches. Another possibility upon a syscall is to
save user-space register values to memory, clear the registers to prevent specula-
tive dereferencing, and later restore the user-space values after execution of the
syscall. However, as has been observed in the interrupt handler, there might still
be some speculative cache accesses on values from the stack. The retpoline mit-
igation for Spectre-BTB introduces a large overhead for indirect branches. The
performance overhead can in some cases be up to 50 % [61]. This is particularly
problematic in large scale systems, e.g., cloud data centers, that have to compen-
sate for the performance loss and increased energy consumption. Furthermore,
retpoline breaks CET and CFI technologies and might thus also be disabled [4].
As an alternative, randpoline [4] could be used to replace the mitigation with a
probabilistic one, again with an effect on Foreshadow mitigations. And indeed,
mitigating memory corruption vulnerabilities may be more important than mit-
igating Foreshadow in certain use cases. Cloud computing concepts that do not
rely on traditional isolation boundaries are already being explored [1, 9, 44, 21].
On current CPUs, retpoline must remain enabled, which is not the default in
many cases. Other Spectre-BTB mitigations, including enhanced IBRS, do not
mitigate our attack. On newer kernels for ARM Cortex-A CPUs, the branch pre-
diction results can be discarded, and on certain devices branch prediction can
be entirely disabled [2]. Our results suggest that these mechanisms are required
for context switches or interrupt handling. Additionally, the L1TF mitigations
must be applied on affected CPUs to prevent Foreshadow. Otherwise, we can
still fetch arbitrary hypervisor addresses into the cache. Finally, our attacks also
show that SGX enclaves must be compiled with the retpoline flag. Even with LVI
mitigations, this is currently not the default setting, and thus all SGX enclaves
are potentially susceptible to Dereference Trap.

9 Conclusion

We showed that the underlying root cause of prefetching effects was misat-
tributed in previous works [16, 41, 66, 6, 47, 52, 31] and speculative dereferencing
of a user-space register in the kernel actually causes the leakage. As a result, we
were able to mount a Foreshadow (L1TF) attack on data from the L3 cache,
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even with the latest mitigations enabled. Furthermore, we were able to improve
the performance of the original attack, apply it to AMD, ARM, and IBM and
exploit the effect via JavaScript in browsers. Our novel technique, Dereference
Trap, leaks the values of registers used in SGX (or privileged contexts) via spec-
ulative dereferencing.
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52. van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi, K.,
Bos, H., Giuffrida, C.: RIDL: Rogue In-flight Data Load. In: S&P (2019)

53. Schwarz, M., Canella, C., Giner, L., Gruss, D.: Store-to-Leak Forwarding: Leaking
Data on Meltdown-resistant CPUs. arXiv:1905.05725 (2019)

54. Schwarz, M., Gruss, D., Lipp, M., Clémentine, M., Schuster, T., Fogh, A., Mangard,
S.: Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. AsiaCCS (2018)

55. Schwarz, M., Gruss, D., Weiser, S., Maurice, C., Mangard, S.: Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In: DIMVA (2017)

56. Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T.,
Gruss, D.: ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: CCS (2019)

57. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic Timers and Where
to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In: FC
(2017)



Speculative Dereferencing: Reviving Foreshadow (Extended Version) 19

58. Schwarz, M., Schwarzl, M., Lipp, M., Gruss, D.: NetSpectre: Read Arbitrary Mem-
ory over Network. In: ESORICS (2019)

59. Schwarz, M., Weiser, S., Gruss, D.: Practical Enclave Malware with Intel SGX. In:
DIMVA (2019)

60. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: Black Hat Briefings (2015)

61. Slashdot EditorDavid: Two Linux Kernels Revert Performance-Killing Spectre
Patches (2019), https://linux.slashdot.org/story/18/11/24/2320228/two-

linux-kernels-revert-performance-killing-spectre-patches

62. Stecklina, J.: An demonstrator for the L1TF/Foreshadow vulnerability (2019),
{https://github.com/blitz/l1tf-demo}

63. Turner, P.: Retpoline: a software construct for preventing branch-target-injection
(2018), https://support.google.com/faqs/answer/7625886

64. Ubuntu Security Team: L1 Terminal Fault (L1TF) (2019), https://wiki.ubuntu.
com/SecurityTeam/KnowledgeBase/L1TF

65. V8 team: v8 - Adding BigInts to V8 (2018), https://v8.dev/blog/bigint
66. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-

stein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution. In: USENIX
Security Symposium (2018)

67. Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M., Genkin, D., Yuval,
Y., Sunar, B., Gruss, D., Piessens, F.: LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In: S&P (2020)

68. Viswanathan, V.: Disclosure of hardware prefetcher control on some intel
processors, https://software.intel.com/en-us/articles/disclosure-of-hw-

prefetcher-control-on-some-intel-processors

69. Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Strackx, R., Wenisch, T.F., Yarom, Y.: Foreshadow-NG: Breaking
the Virtual Memory Abstraction with Transient Out-of-Order Execution (2018),
https://foreshadowattack.eu/foreshadow-NG.pdf

70. Wu, Z., Xu, Z., Wang, H.: Whispers in the Hyper-space: High-bandwidth and Re-
liable Covert Channel Attacks inside the Cloud. ACM Transactions on Networking
(2014)

71. xenbits: Cache-load gadgets exploitable with L1TF (2019), https://xenbits.xen.
org/xsa/advisory-289.html

72. Xiao, Y., Zhang, Y., Teodorescu, R.: SPEECHMINER: A Framework for Investi-
gating and Measuring Speculative Execution Vulnerabilities. In: NDSS (2020)

73. Yarom, Y., Falkner, K.: Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In: USENIX Security Symposium (2014)

A Extracting Hypotheses from Previous Works

The hypotheses are extracted from previous works as detailed in this section.
The footnotes for each hypothesis provide the exact part of the previous work
that we reference.
H1 the prefetch instruction (to instruct the prefetcher to prefetch);2

2 “Our attacks are based on weaknesses in the hardware design of prefetch instruc-
tions” [17].
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H2 the value stored in the register used by the prefetch instruction (to indicate
which address the prefetcher should prefetch);3

H3 the sched yield syscall (to give time to the prefetcher);4

H4 the use of the userspace accessible bit (as kernel addresses could other-
wise not be translated in a user context);5

H5 an Intel CPU – the “prefetching” effect only occurs on Intel CPUs, and
other CPU vendors are not affected.6

The original paper also describes that “delays were introduced to lower the
pressure on the prefetcher” [17]. In fact, this was done via recompilation. Note
that recompilation with additional code inserted may have side effects such as
a different register allocation, which we find to be an important influence factor
to the attack.

B Actual Spectre V2 gadget in Linux kernel

We analyzed the Linux kernel 4.16.18 and used the GNU debugger(GDB) to de-
bug our kernel. As our target syscall we analyzed the path of the sched yield

syscall. We used the same experiment, which fills all general-purpose registers
with the corresponding DPM address, perform sched yield and verify the spec-
ulative dereference with Flush+Reload. We repeat this experiment 10 000 000
times. We analyzed each indirect branch in this code path and replaced the indi-
rect call/jump with a retpolined version. Furthermore, we analyzed all general-
purpose registers and traced their content if the DPM-address is still valid in
some registers. By systematically retpolining the indirect branches, we observed
that the indirect call current->sched class->yield task(rq); in the function
sys sched yield causes the main leakage. We set a breakpoint to this function
and observed that four general-purpose registers (%rcx,%rsi,%r8,%r9) still con-
tain the kernel address we set in our experiment.

Listing 4 lists the register values before the indirect call is performed. By
only filling one of those registers, we observed that the value %rsi causes the
main leakage and is speculatively dereferenced in the kernel. If we retpoline
this branch, there are nearly no more speculative dereferences for our exper-
iment. Therefore, we conclude that this branch gets mispredicted and causes
speculative dereferences of our address chosen in our experiment. We further
analyzed where the speculative dereference happended and single-stepped the

3 “2. Prefetch (inaccessible) address p̄. 3. Reload p. [...] the prefetch of p̄ in step 2 leads
to a cache hit in step 3 with a high probability.” [17] with emphasis added.

4 “[...] delays were introduced to lower the pressure on the prefetcher.” [17]. These
delays were implemented using a different number of sched yield system calls, as
can also be seen in the original attack code [20].

5 “Prefetch can fetch inaccessible privileged memory into various caches on Intel
x86.” [17] and corresponding NaCl results.

6 “[...] we were not able to build an address-translation oracle on [ARM] Android. As
the prefetch instructions do not prefetch kernel addresses [...]” [17] describing why
it does not work on ARM-based Android devices.
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Table 1: Table of syscalls which achieve the highest numbers of cache fetches,
when calling sched yield after the register filling.

Syscall Parameters Avg. # cache fetches

readv readv(0,NULL,0); 13766.3
getcwd syscall(79,NULL,0); 7344.7
getcwd getcwd(NULL,0); 6646.9
readv syscall(19,0,NULL,0); 5541.4
mount syscall(165,s cbuf,s cbuf,s cbuf,s ulong,(void*)s cbuf); 4831.6
getpeername syscall(52,0,NULL,NULL); 4600.0
getcwd syscall(79,s cbuf,s ulong); 4365.8
bind syscall(49,0,NULL,0); 3680.6
getcwd getcwd(s cbuf,s ulong); 3619.3
getpeername syscall(52,s fd,&s ssockaddr,&s int); 3589.3
connect syscall(42,s fd,&s ssockaddr,s int); 2951.2
getpeername getpeername(0,NULL,NULL); 2822.4
connect syscall(42,0,NULL,0); 2776.4
getsockname syscall(51,0,NULL,NULL); 2623.4
connect connect(0,NULL,0); 2541.5

sched yield syscall. In the function put prev task fair, the %rsi register is
dereferenced. To check whether this dereference cause the leakage, we add an
lfence instruction at the beginning of the function. We run the same experi-
ment again and observe almost no cache fetches on our address. Listing 4 shows
the execution trace of the function. The %rsi register is dereferenced in line 48

C Mistraining BTB for sched yield

We evaluate the mistraining of the BTB by calling different syscalls, fill all
general-purpose registers with direct-physical map address and call sched yield.
Our test system was equipped with Ubuntu 18.04 (kernel 4.4.143-generic) and
an Intel i7-6700K. We repeated the experiment by iterating over various syscalls
with different parameters (valid parameters,NULL as parameters) 10 times with
200 000 repetitions. Table 1 lists the best 15 syscalls to mistrain the BTB when
sched yield is performed afterwards. On this kernel version it appears that the
read and getcwd syscalls mistraing the BTB best if sched yield is called after
the register filling.

D Speculative Dereference Gadget in SGX

Listing 5 shows a minimal example of introducing a speculative-dereference gad-
get that can be used for Dereference Trap (cf. Section 6). The virtual functions
are implemented using vtables for which the compiler emits an indirect call in
Line 14. The branch predictor for this indirect call learns the last call target.
Thus, if the call target changes because the type of the object is different, spec-
ulative execution still executes the function of the last object with the data of
the current object.
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1 ; sys_sched_yield
2 0xffffffff8106b610 <+0>: push %rbp
3 0xffffffff8106b611 <+1>: mov %rsp,%rbp
4 0xffffffff8106b614 <+4>: push %rbx
5 0xffffffff8106b615 <+5>: cli
6 0xffffffff8106b616 <+6>: nopw 0x0(%rax,%rax,1)
7 0xffffffff8106b61c <+12>: mov $0x1dd40,%rbx
8 0xffffffff8106b623 <+19>: add %gs:0x7efa3b0d(%rip),%rbx # 0xf138 <this_cpu_off>
9 0xffffffff8106b62b <+27>: mov %rbx,%rdi

10 0xffffffff8106b62e <+30>: callq 0xffffffff81538a30 <_raw_spin_lock>
11 0xffffffff8106b633 <+35>: mov %gs:0x14d00,%rax
12 0xffffffff8106b63c <+44>: mov 0x78(%rax),%rax
13 0xffffffff8106b640 <+48>: mov %rbx,%rdi
14 0xffffffff8106b643 <+51>: mov 0x18(%rax),%rax
15 0xffffffff8106b647 <+55>: callq 0xffffffff81802000 <__x86_indirect_thunk_rax>
16 ;indirect call to current->sched_class->yield_task(rq);
17 0xffffffff81802000 <+0>: jmpq *%rax
18 ; info registers
19 $rax : 0xffffffff8106e590 -> 0x56415741e5894855 -> 0x56415741e5894855
20 $rbx : 0xffff880007c1dd40 -> 0x0000000100000001 -> 0x0000000100000001
21 $rcx : 0xffff880001cc0000 -> 0x000000000000009f -> 0x000000000000009f
22 $rdx : 0x0000000000000001 -> 0x0000000000000001
23 $rsp : 0xffffc90000183ed0 -> 0xffffc90000183f58 -> 0xffff880001cc0000 -> 0

x000000000000009f -> 0x000000000000009f
24 $rbp : 0xffffc90000183ed8 -> 0xffffc90000183f48 -> 0x0000000000000000 -> 0

x0000000000000000
25 $rsi : 0xffff880001cc0000 -> 0x000000000000009f -> 0x000000000000009f
26 $rdi : 0xffff880007c1dd40 -> 0x0000000100000001 -> 0x0000000100000001
27 $rip : 0xffffffff8106b660 -> 0x0003c6ffffffeae8 -> 0x0003c6ffffffeae8
28 $r8 : 0xffff880001cc0000 -> 0x000000000000009f -> 0x000000000000009f
29 $r9 : 0xffff880001cc0000 -> 0x000000000000009f -> 0x000000000000009f
30 $r10 : 0x0000000000000000 -> 0x0000000000000000
31 $r11 : 0x0000000000000000 -> 0x0000000000000000
32 $r12 : 0x0000000000000000 -> 0x0000000000000000
33 $r13 : 0x0000000000000000 -> 0x0000000000000000
34 $r14 : 0x0000000000000000 -> 0x0000000000000000
35 $r15 : 0x0000000000000000 -> 0x0000000000000000
36 ; SPECULATION STARTS HERE
37 ffffffff8106df10 <put_prev_task_fair>:
38 ffffffff8106df10: 55 push %rbp
39 ffffffff8106df11: 48 89 e5 mov %rsp,%rbp
40 ffffffff8106df14: 41 57 push %r15
41 ffffffff8106df16: 41 56 push %r14
42 ffffffff8106df18: 41 55 push %r13
43 ffffffff8106df1a: 49 89 f5 mov %rsi,%r13
44 ffffffff8106df1d: 41 54 push %r12
45 ffffffff8106df1f: 49 83 ed 80 sub $0xffffffffffffff80,%r13
46 ffffffff8106df23: 53 push %rbx
47 ffffffff8106df24: 74 27 je ffffffff8106df4d <put_prev_task_fair+0

x3d>
48 ffffffff8106df26: 8b 46 3c mov 0x3c(%rsi),%eax
49 ffffffff8106df29: 8b 96 c0 00 00 00 mov 0xc0(%rsi),%edx

Listing 4: Register values when setting a breakpoint at
current->sched class->yield task(rq) still contain the direct phyiscal
map address in %rcx,%rdi,%r8,%r9. The indirect jmp is misspeculated into the
function put prev task fair and performs a dereference of the value in %rsi.

In this code, calling printObject first with an instance of Dummy mistrains
the branch predictor to call Dummy::print, dereferencing the first member of
the class. A subsequent call to printObject with an instance of Secret leads
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1 class Object {
2 public: virtual void print() = 0;
3 };
4 class Dummy : public Object {
5 private: char* data;
6 public: Dummy() { data = "TEST"; }
7 virtual void print() { puts(data); }
8 };
9 class Secret : public Object {

10 private: size_t secret;
11 public: Secret() { secret = 0x12300000; }
12 virtual void print() { }
13 };
14 void printObject(Object* o) { o->print(); }

Listing 5: Speculative type confusion which leaks the secret of Secret class
instances using Dereference Trap.
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Fig. 4: Timings of a cached and uncached variable and the access time after a
hypercall in a Ubuntu VM on Hyper-V.

to speculative execution of Dummy::print. However, the dereferenced member
is now the secret (Line 11) of the Secret class.

The speculative type confusion in such a code construct leads to a speculative
dereference of a value which would never be dereferenced architecturally. We can
leak this speculatively dereferenced value using the Dereference Trap attack.

E WebAssembly Register Filling

The WebAssembly method load pointer of Listing 6 takes two 32-bit Java-
Script values as input parameters. These two parameters are loaded into a 64-bit
integer variable and stored into multiple global variables. The global variables are
then used as loop exit conditions in the separate loops. To fill as many registers
as possible with the direct-physical-map address, we create data dependencies
within the loop conditions. In the spec fetch function, the registers are filled
inside the loop. After the loop, the JavaScript function yield wrapper is called.
This tries to trigger any syscall or interrupt in the browser by calling JavaScript
functions which may incur syscalls or interrupts. Lipp et al. [40] reported that
web requests from JavaScript trigger interrupts from within the browser.

F No Foreshadow on Hyper-V HyperClear

We set up a Hyper-V virtual machine with a Ubuntu 18.04 guest (kernel 5.0.0-20).
We access an address to load it into the cache and perform a hypercall before
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1 extern void yield_wrapper();
2 uint64_t G1 = 5;
3 uint64_t G2 = 5;
4 uint64_t G3 = 5;
5 uint64_t G4 = 5;
6 uint64_t G5 = 5;
7 uint64_t value = 0;
8

9 void spec_fetch()
10 {
11 for (uint64_t i = G1+5; i > G1; i--)
12 for (uint64_t k = G3+5; k > G3; k--)
13 for (uint64_t j = G2-5; k < G2; j++)
14 for(uint64_t l = G4; i < G4;l++)
15 for(uint64_t m = G5-5;m<G5;m++)
16 value = l + j + k + i;
17 yield_wrapper();
18 }
19

20 int load_pointer(int high, int low)
21 {
22 uint64_t a = (((uint64_t)high) << 32ull) |
23 ((uint64_t)(unsigned int)low);
24 G1 = a;
25 G2 = a;
26 G3 = a;
27 G4 = a;
28 G5 = a;
29 spec_fetch();
30 return a;
31 }
32

33 int main()
34 {
35 load_pointer(0x12345678,0x9abcdef0);
36 }

Listing 6: WebAssembly code to speculatively fetch an address from the ker-
nel direct-physical map into the cache. We combine this with a state-of-the-art
Evict+Reload loop in JavaScript to determine whether the guess for the direct-
physical map address was correct.

accessing the variable and measuring the access time. Since hypercalls are per-
formed from a privileged mode, we developed a kernel module for our Linux
guest machine which performs our own malicious hypercalls. We observe a tim-
ing difference (see Figure 4) between a memory access which hits in the L1
cache (dotted), a memory access after a hypercall (grid pattern), and an un-
cached memory access (crosshatch dots). We observe that after each hypercall,
the access times are ≈ 20 cycles slower. This indicates that the guest addresses
are flushed from the L1 data cache. In addition, we create a second experiment
where we load a virtual address from a process running on the host into several
registers when performing a hypercall from the guest. On the host system, we
perform Flush+Reload on the virtual address in a loop and verify whether the
virtual address is fetched into the cache. We do not observe any cache hits on
the host process when performing hypercalls from the guest system. Thus we
conclude that either the L1 cache is always flushed, contradicting the documen-
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tation, or creating a situation where the L1 cache is not flushed requires a more
elaborate attack setup. However, we believe that speculative dereferencing is
the reason why Microsoft adopted the retpoline mitigation despite having other
Spectre-BTB mitigations already in place.

G Evaluation Framework for Speculative Dereferencing
in Syscalls

We created a framework that runs the experiment from Section 3.4 with 20
different syscalls (after filling the registers) and computes the F1-score. We per-
form different syscalls before filling the registers to mistrain the branch predic-
tion. One direct-physical-map address has a corresponding mapping to a virtual
address and should trigger speculative fetches into the cache. The other direct-
physical-map address should not produce any cache hits on the same virtual
address. If there is a cache hit on the correct virtual address, we count it as a
true positive. Conversely, if there is no hit when there should have been one, we
count it as a false negative. On the second address, we count the false positives
and true negatives. For syscalls with parameters, e.g., mmap, we set the value of all
parameters to the direct-physical-map address, i.e., mmap(addr, addr, addr,

addr, addr, addr). We repeat this experiment 1000 times for each syscall on
each system and compute the F1-Score. Table 2 lists the results of our evalution.
As can be seen the pipe syscall achieves the highest F1-Score.
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Table 2: F1-Scores for speculative cache fetches with different syscalls on dif-
ferent CPU architectures.
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sched yield

None 66.40 % 91.49 % 99.29 % 76.61 %
send-to 56.42 % 4.60 % 52.94 % 44.88 %
geteuid 46.62 % 1.90 % 63.94 % 48.82 %
stat 77.37 % 57.44 % 69.28 % 63.57 %

pipe

None 100.00 % 99.35 % 100.00 % 100.00 %
send-to 99.90 % 99.60 % 100.00 % 100.00 %
geteuid 99.90 % 99.61 % 100.00 % 100.00 %
stat 99.90 % 99.55 % 99.90 % 100.00 %

read

None 10.42 % 0.09 % 8.50 % 57.95 %
send-to 14.47 % 21.26 % 1.90 % 78.86 %
geteuid 15.32 % 56.73 % 2.35 % 73.73 %
stat 28.32 % 24.07 % 9.70 % 23.32 %

write

None 7.69 % 91.24 % 76.46 % 58.95 %
send-to 14.29 % 9.88 % 11.00 % 45.68 %
geteuid 15.49 % 32.21 % 52.94 % 49.47 %
stat 9.16 % 9.70 % 52.83 % 12.03 %

nanosleep

None 21.20 % 27.43 % 52.61 % 87.40 %
send-to 46.59 % 13.43 % 76.23 % 82.83 %
geteuid 29.93 % 96.05 % 89.62 % 69.63 %
stat 59.84 % 99.14 % 89.68 % 77.67 %


