

Introduction to Microarchitectural Attacks

Daniel Gruss

June 18, 2019

Graz University of Technology

- security and privacy rely on secrets (unknown to attackers)
- secrets can leak through side channels

- security and privacy rely on secrets (unknown to attackers)
- secrets can leak through side channels
- software-based \rightarrow no physical access

1337 4242

FOOD CACHE

Revolutionary concept!

Store your food at home, never go to the grocery store during cooking.

Can store **ALL** kinds of food.

ONLY TODAY INSTEAD OF \$1,300

ORDER VIA PHONE: +555 12345

printf("%d", i); printf("%d", i);

www.tugraz.at

www.tugraz.at

www.tugraz.at

- Very short timings
- rdtsc instruction: "cycle-accurate" timestamps

[...] rdtsc function() rdtsc [...]

- Do you measure what you think you measure?
- Out-of-order execution \rightarrow what is really executed?

rdtsc	rdtsc	rdtsc
function()	[]	rdtsc
[]	rdtsc	function()
rdtsc	function()	[]

• use pseudo-serializing instruction rdtscp (recent CPUs)

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid
- and/or use fences like mfence

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid
- and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures White Paper, December 2010.

AUGUST 22, 2018 BY BRUCE

Intel Publishes Microcode Security Patches, No Benchmarking Or

Comparison Allowed!

UPDATE: Intel has resolved their microcode licensing issue which I complained about in this blog post. The new license text is here.

Cache Hits

www.tugraz.at

Cache Hits Cache Misses

Memory Hierarchy

www.tugraz.at

• L1 and L2 are private

- L1 and L2 are private
- last-level cache:

- L1 and L2 are private
- last-level cache:
 - divided in slices

- L1 and L2 are private
- last-level cache:
 - divided in slices
 - shared across cores

- L1 and L2 are private
- last-level cache:
 - divided in slices
 - shared across cores
 - inclusive

• inclusive LLC: superset of L1 and L2

• inclusive LLC: superset of L1 and L2

• inclusive LLC: superset of L1 and L2

- **inclusive** LLC: superset of L1 and L2
- data evicted from the LLC is also evicted from L1 and L2

- inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also evicted from L1 and L2
- a core can evict lines in the private L1 of another core

• Locate key-dependent memory accesses

- Locate key-dependent memory accesses
- How?

• Preprocessing step to find exploitable addresses automatically

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)
 - called "Cache Template"

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)
 - called "Cache Template"

- Preprocessing step to find exploitable addresses automatically
 - w.r.t. "events" (keystrokes, encryptions, ...)
 - called "Cache Template"

Exploitation Phase

• Monitor exploitable addresses

Victim address space

Cache is empty

Attacker triggers an event

Attacker checks one address for cache hits ("Reload")

Update number of cache hits per event

Attacker flushes shared memory

Victim address space

Repeat for higher accuracy

Continue with next address

Daniel Gruss — Graz University of Technology

Victim address space

Continue with next address

Daniel Gruss — Graz University of Technology

Victim address space

	Terminal		- 0	×	Cinen 🕳	4	Untitled	Document 1	Saue	± :	
File Edit View Search Terminal Help											
% sleep 2; ./spy 300 7f05 8050 ∎	5140a4000-7f051417b000 r-xp 0 /usr/lib/x86_64-linux-gnu/ge	r-xp 0x20000 08: gnu/gedit/libged	02 2 11t.s	2 26 t.so	1						
							I				
- Director son		SUM- 00 01 6010 F	1-14-2								
12				×							
File Edit View Search Terminal Help shark% ./spy []											
phome/gamer.ja.							Plain Text 👻	Tab Width: 2 🐱	Ln 1, Col 1		INS

Profiling Phase: 1 Event, 1 Address

ADDRESS

Example: Cache Hit Ratio for (0x7c800, n): 200 / 200

Profiling Phase: All Events, 1 Address

Example: Cache Hit Ratio for (0x7c800, u): 13 / 200

Daniel Gruss — Graz University of Technology

15

Profiling Phase: All Events, 1 Address

Distinguish n from other keys by monitoring 0x7c800

Profiling Phase: All Events, All Addresses

Directly mapped cache

Memory Address

Directly mapped cache

Memory Address

Tag	Data

Memory Address

Cache

Tag	Data

www.tugraz.at

Directly mapped cache

Daniel Gruss — Graz University of Technology

2^b bytes

Problem: working on congruent addresses

 \rightarrow replacement policy

Flush+Reload

Flush+Reload

www.tugraz.at

Flush+Reload

Flush+Reload

www.tugraz.at

Flush+Reload

Pros: fine granularity (1 line)

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

Pros: fine granularity (1 line)

Cons: restrictive

- 1. needs clflush instruction (not available e.g., in JS)
- 2. needs shared memory

1. no need for clflush instruction (not available e.g., in JS)

- 1. no need for clflush instruction (not available e.g., in JS)
- 2. no need for shared memory

- 1. no need for clflush instruction (not available e.g., in JS)
- 2. no need for shared memory

- 1. no need for clflush instruction (not available e.g., in JS)
- 2. no need for shared memory

Cons: coarser granularity (1 set)

• Paging: memory translated page-wise from virtual to physical
- Paging: memory translated page-wise from virtual to physical
- TLB (translation lookaside buffer) caches virtual to physical mapping

- Paging: memory translated page-wise from virtual to physical
- TLB (translation lookaside buffer) caches virtual to physical mapping
- TLB has some latency

- Paging: memory translated page-wise from virtual to physical
- TLB (translation lookaside buffer) caches virtual to physical mapping
- TLB has some latency
- Worst case for Cache: mapping not in TLB, need to load mapping from RAM

- Paging: memory translated page-wise from virtual to physical
- TLB (translation lookaside buffer) caches virtual to physical mapping
- TLB has some latency
- Worst case for Cache: mapping not in TLB, need to load mapping from RAM
- Solution: Use virtual addresses instead of physical addresses

• VIVT: Virtually indexed, virtually tagged

- VIVT: Virtually indexed, virtually tagged
- PIPT: Physically indexed, physically tagged

- VIVT: Virtually indexed, virtually tagged
- PIPT: Physically indexed, physically tagged
- PIVT: Physically indexed, virtually tagged

- VIVT: Virtually indexed, virtually tagged
- PIPT: Physically indexed, physically tagged
- PIVT: Physically indexed, virtually tagged
- VIPT: Virtually indexed, physically tagged

• Shared memory more than once in cache

• Shared memory more than once in cache

• Using more bits is unpractical (like VIVT)

- Using more bits is unpractical (like VIVT)
- $\rightarrow~{\sf Cache~size}\,\leq\,\#$ ways $\cdot~{\sf page~size}$

• L1 caches: VIVT or VIPT

- L1 caches: VIVT or VIPT
- L2/L3 caches: PIPT

We need to evict cache lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

We need to evict cache lines without clflush or shared memory:

- 1. which addresses do we access to have congruent cache lines?
- 2. without any privilege?

We need to evict cache lines without clflush or shared memory:

- 1. which addresses do we access to have congruent cache lines?
- 2. without any privilege?
- 3. and in which order do we access them?

"LRU eviction":

• assume that cache uses LRU replacement

"LRU eviction":

- assume that cache uses LRU replacement
- accessing *n* addresses from the same cache set to evict an *n*-way set

"LRU eviction":

- assume that cache uses LRU replacement
- accessing *n* addresses from the same cache set to evict an *n*-way set
- eviction from last level \rightarrow from whole hierarchy (it's inclusive!)

#1.2: Which addresses map to the same set?

#1.2: Which addresses map to the same set?

#1.2: Which addresses map to the same set?

• function H that maps slices is undocumented

- function H that maps slices is undocumented
- reverse-engineered by Maurice et al

- function H that maps slices is undocumented
- reverse-engineered by Maurice et al
- hash function basically an XOR of address bits

3 functions, depending on the number of cores

			Address bit																														
		3	3	3	3	3	3	3	3	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	0	0	0	0
		7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6
2 cores	<i>o</i> 0						\oplus		\oplus		\oplus	\oplus	\oplus	\oplus	\oplus		\oplus		\oplus		\oplus	\oplus	\oplus		\oplus		\oplus		\oplus				\oplus
4 cores	00					\oplus	\oplus		\oplus		\oplus	\oplus	\oplus	\oplus	\oplus		\oplus		\oplus		\oplus	\oplus	\oplus		\oplus		\oplus		\oplus				\oplus
	o_1				\oplus	\oplus		\oplus		\oplus	\oplus		\oplus		\oplus	\oplus	\oplus	\oplus	\oplus	\oplus				\oplus									
	<i>o</i> 0		\oplus	\oplus		\oplus	\oplus		\oplus		\oplus	\oplus	\oplus	\oplus	\oplus		\oplus		\oplus		\oplus	\oplus	\oplus		\oplus		\oplus		\oplus				\oplus
8 cores	o_1	\oplus		\oplus	\oplus	\oplus		\oplus		\oplus	\oplus		\oplus		\oplus	\oplus	\oplus	\oplus	\oplus	\oplus				\oplus									
	02	\oplus	\oplus	\oplus	\oplus			\oplus			\oplus			\oplus	\oplus				\oplus														

• last-level cache is physically indexed
- last-level cache is physically indexed
- root privileges needed for physical addresses

- last-level cache is physically indexed
- root privileges needed for physical addresses
- use 2 MB pages \rightarrow lowest 21 bits are the same as virtual address

- last-level cache is physically indexed
- root privileges needed for physical addresses
- use 2 MB pages \rightarrow lowest 21 bits are the same as virtual address
- $\rightarrow\,$ enough to compute the cache set

www.tugraz.at

www.tugraz.at

64k cells 1 capacitor, 1 transitor each

CPU wants to access row 1

- $\ensuremath{\mathsf{CPU}}$ wants to access row 1
- ightarrow row 1 activated

DRAM bank

- $\ensuremath{\mathsf{CPU}}$ wants to access row 1
- ightarrow row 1 activated
- ightarrow row 1 copied to row buffer

CPU wants to access row 2

- CPU wants to access row 2
- \rightarrow row 2 activated

DRAM bank

CPU wants to access row 2

 \rightarrow row 2 activated

ightarrow row 2 copied to row buffer

- CPU wants to access row 2 \rightarrow row 2 activated \rightarrow row 2 copied to row buffer
- \rightarrow slow (row conflict)

CPU wants to access row 2-again

CPU wants to access row 2-again

ightarrow row 2 already in row buffer

DRAM bank

CPU wants to access row 2—again

ightarrow row 2 already in row buffer

- CPU wants to access row 2—again
- \rightarrow row 2 already in row buffer
- \rightarrow fast (row hit)

row buffer = cache

Timing difference

• Cache set is determined by part of physical address

- Cache set is determined by part of physical address
- We have no knowledge of physical addresses

- Cache set is determined by part of physical address
- We have no knowledge of physical addresses
- Use the reverse-engineered DRAM mapping

- Cache set is determined by part of physical address
- We have no knowledge of physical addresses
- Use the reverse-engineered DRAM mapping
- Exploit timing differences to find DRAM row borders

- Cache set is determined by part of physical address
- We have no knowledge of physical addresses
- Use the reverse-engineered DRAM mapping
- Exploit timing differences to find DRAM row borders
- The 18 LSBs are '0' at a row border

Physical Addresses

Physical Addresses

Daniel Gruss — Graz University of Technology

www.tugraz.at

40

www.tugraz.at

www.tugraz.at

Daniel Gruss — Graz University of Technology

Result on an Intel i5-6200U

Daniel Gruss — Graz University of Technology

www.tugraz.at

42

Daniel Gruss — Graz University of Technology

• LRU replacement policy: oldest entry first

- LRU replacement policy: oldest entry first
- timestamps for every cache line

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

• no LRU replacement

Daniel Gruss — Graz University of Technology

• no LRU replacement

Daniel Gruss — Graz University of Technology

• no LRU replacement

• no LRU replacement

- no LRU replacement
- only 75% success rate on Haswell

- no LRU replacement
- only 75% success rate on Haswell
- $\bullet\,$ more accesses $\rightarrow\,$ higher success rate, but too slow

 \rightarrow fast and effective on Haswell: eviction rate ${>}99.97\%$

• represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

- represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- can be a long sequence

- represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- can be a long sequence
- all congruent addresses are indistinguishable w.r.t eviction strategy

- represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- can be a long sequence
- all congruent addresses are indistinguishable w.r.t eviction strategy
- $\rightarrow\,$ adding more unique addresses can increase eviction rate

- represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- can be a long sequence
- all congruent addresses are indistinguishable w.r.t eviction strategy
- $\rightarrow\,$ adding more unique addresses can increase eviction rate
- $\rightarrow~$ multiple accesses to one address can increase the eviction rate

- represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- can be a long sequence
- all congruent addresses are indistinguishable w.r.t eviction strategy
- $\rightarrow\,$ adding more unique addresses can increase eviction rate
- $\rightarrow~$ multiple accesses to one address can increase the eviction rate
 - \bullet indistinguishable \rightarrow balanced number of accesses

S: total number of different addresses

• P-2-2-1-4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

•
$$P-2-2-1-4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

•
$$P - 2 - 2 - 1 - 4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4'$$

Daniel Gruss — Graz University of Technology

48

•
$$P - 2 - 2 - 1 - 4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

 $D = 2$

•
$$P-2-2-1-4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

 $D=2$
 $C=2$

•
$$P-2-2-1-4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

 $L=1$
 $D=2$
 $C=2$

•
$$P-2-2-1-4 \rightarrow (1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4)$$

 $L=1$
 $D=2$
 $C=2$

• P-1-1-1-4 ightarrow 1, 2, 3, 4 ightarrow LRU eviction with set size 4

strategy	# accesses	eviction rate	loop time
P-1-1-1-17	17		
P-1-1-20	20		

¹Executed in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	
P-1-1-20	20	99.82% 🗸	

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡

¹Executed in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34		

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64		

 $^1\mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64	99.98% 🗸	

 $^1\mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64	99.98% 🗸	180 ns 🗸

 $^1\mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64	99.98% 🗸	180 ns 🗸

 \rightarrow more accesses, smaller execution time?

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

P-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns
Miss	Miss
(intended)	(intended)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н
--------------------	--------------------	---

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	н	н	н
--------------------	--------------------	---	---	---	---	---	---	---

Time in ns

Miss (intended)	Miss (intended)	н	Miss
--------------------	--------------------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ļ		1		н	н	н	н	н	
--------------------	--------------------	---	--	---	--	---	---	---	---	---	--

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss
--------------------	--------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)		н	н	н	н	H	н	ŀ	н	Miss
------------------------------------	--	---	---	---	---	---	---	---	---	------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss
--------------------	--------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	н	н	н	н	Miss	н	
--------------------	--------------------	---	---	---	---	---	---	---	---	------	---	--

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss
--------------------	--------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	н	н	41	E H	н	н	н	Miss	н	н	
------------------------------------	---	---	----	-----	---	---	---	------	---	---	--

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss
--------------------	--------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	HHHHHHH Miss	нн	4
------------------------------------	--------------	----	---

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ННИНИНИИ Miss	н	н	н	н	
------------------------------------	---------------	---	---	---	---	--

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss
------------------------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ннннннн Маа	нннн
------------------------------------	-------------	------

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss
------------------------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ННННННН Miss	нынын
------------------------------------	--------------	-------

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss
------------------------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	н	н	н	н	н	н	H	н		Miss	H	-	01	H	•	ŀ		
------------------------------------	---	---	---	---	---	---	---	---	--	------	---	---	----	---	---	---	--	--

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss
------------------------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)		н	ŀ	-	,	4	•		H		н		-	н		Miss	н	-			н	н	ŀ	4	I	
------------------------------------	--	---	---	---	---	---	---	--	---	--	---	--	---	---	--	------	---	---	--	--	---	---	---	---	---	--

Time in ns

Miss Miss (intended) (intende) H	Miss	Miss	Miss	
----------------------------------	-----	------	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	HHHHHHHH Miss	а НИИННИИ Miss
------------------------------------	---------------	----------------

Time in ns

Miss (intended)	Miss (intended)	l Miss	Miss	Miss	н	Miss
--------------------	--------------------	--------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннинини	Miss	нннннн	f Miss
--------------------	--------------------	---------	------	--------	--------

Time in ns

Miss (intended)	Miss (intended)	l Miss	Miss	Miss	н	Miss
--------------------	--------------------	--------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intender	нннннн	Miss H H	ннннн	Miss
-----------------------------------	--------	----------	-------	------

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss M (intended) (inter	iss nded) нинининин	Miss H	нинини	Miss	н
-----------------------------	------------------------	--------	--------	------	---

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended) (i	Miss intended) HHHHHHHHH	Miss H H H	ннынн	Miss H F	нн
-----------------------	-----------------------------	------------	-------	----------	----

Time in ns

Miss (intended)	Miss (intended)	l Miss	Miss	Miss	н	Miss
--------------------	--------------------	--------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	l Miss	Miss	Miss	н	Miss
--------------------	--------------------	--------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	нинини	Miss	нынынын Miss	ныныны
------------------------------------	--------	------	--------------	--------

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss	Miss
------------------------------------	---	------	------	------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ННННННН Miss	нинини	Miss ННННННН
------------------------------------	--------------	--------	--------------

Time in ns

Miss Miss (intended) (intended)	ŀ	Miss	Miss	Miss	н	Miss	Miss
------------------------------------	---	------	------	------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ННННННН Miss	нининии	Miss ННННННН
------------------------------------	--------------	---------	--------------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нининии	Miss	ымынымы	Miss ННННН	H Miss
--------------------	--------------------	---------	------	---------	------------	--------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended) (Miss (intended)	н Місс НІННИНИ	Miss HHHHHHH Miss I
----------------------	--------------------	----------------	---------------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нннннн Miss	инынныны м	fiss нининини	Miss HH
--------------------	--------------------	-------------	------------	---------------	---------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ННННННН Miss	нныннын Міза	ННННННН Miss P	нн
------------------------------------	--------------	--------------	----------------	----

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннинини	Miss	ннинини	Miss HHHHHHHH	Miss HHHH
--------------------	--------------------	---------	------	---------	---------------	-----------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нннннн	Miss HHHHHHHH	Miss ИННИНИИ	Miss HHHHH
--------------------	--------------------	--------	---------------	--------------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	н
--------------------	--------------------	---	------	------	------	---	------	------	------	---

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ныны	Miss ННИНИНИ	Miss HHHHHHHH	Miss HHHHH
--------------------	--------------------	------	--------------	---------------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	н	Miss
--------------------	--------------------	--------	------	------	--------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нннннн	Miss HHHHHHHH	Miss ИННИНИИ	Miss HHHHH
--------------------	--------------------	--------	---------------	--------------	------------

Time in ns
Miss (intended)	Miss (intended)	H Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss	Miss	
--------------------	--------------------	--------	------	------	---	------	------	------	---	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нныныны	Miss HHHHH	(HH Miss	нинини	Miss HHHHH
--------------------	--------------------	---------	------------	----------	--------	------------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нныныны	Miss HHHHH	(HH Miss	нинини	Miss HHHHH
--------------------	--------------------	---------	------------	----------	--------	------------

Time in ns

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss	H
--------------------	--------------------	--------	------	------	--------	------	------	--------	------	------	---

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нныныны	Miss HHHHH	(HH Miss	нинини	Miss HHHHH
--------------------	--------------------	---------	------------	----------	--------	------------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нныныны	Miss HHHHH	(HH Miss	нинини	Miss HHHHH
--------------------	--------------------	---------	------------	----------	--------	------------

Time in ns

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss
--------------------	--------------------	--------	------	------	--------	------	------	--------	------	------	--------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нннннн	Miss HHHHHHHH	Miss ИННИНИИ	Miss HHHHH
--------------------	--------------------	--------	---------------	--------------	------------

Time in ns

HELLO FROM THE OTHER SIDE (DEMO): VIDEO STREAMING OVER CACHE COVERT CHANNEL

DRAM bank

- Cells leak \rightarrow repetitive refresh necessary
- Maximum interval between refreshes to guarantee data integrity
- Cells leak faster upon proximate accesses \rightarrow Rowhammer

- Cells leak → repetitive refresh necessary
- Maximum interval between refreshes to guarantee data integrity
- Cells leak faster upon proximate accesses \rightarrow Rowhammer

- Cells leak → repetitive refresh necessary
 - Maximum interval between refreshes to guarantee data integrity
 - Cells leak faster upon proximate accesses \rightarrow Rowhammer

- Cells leak → repetitive refresh necessary
- Maximum interval between refreshes to guarantee data integrity
- Cells leak faster upon proximate accesses \rightarrow Rowhammer

- Cells leak → repetitive refresh necessary
 - Maximum interval between refreshes to guarantee data integrity
 - Cells leak faster upon proximate accesses \rightarrow Rowhammer

- Cells leak → repetitive refresh necessary
- Maximum interval between refreshes to guarantee data integrity
- Cells leak faster upon proximate accesses \rightarrow Rowhammer

• There are two different hammering techniques

- There are two different hammering techniques
- #1: Hammer one row next to victim row and other random rows

- There are two different hammering techniques
- #1: Hammer one row next to victim row and other random rows
- #2: Hammer two rows neighboring victim row

- There are three different hammering techniques
- #1: Hammer one row next to victim row and other random rows
- #2: Hammer two rows neighboring victim row
- #3: Hammer only one row next to victim row

#1 - Single-sided hammering

#1 - Single-sided hammering

#2 - Double-sided hammering

#2 - Double-sided hammering

#2 - Double-sided hammering

DRAM bank _

Daniel Gruss — Graz University of Technology

DRAM bank _

Daniel Gruss — Graz University of Technology

• They are not random \rightarrow highly reproducible flip pattern!

- They are not random \rightarrow highly reproducible flip pattern!
 - 1. Choose a data structure that you can place at arbitrary memory locations

- They are not random \rightarrow highly reproducible flip pattern!
 - 1. Choose a data structure that you can place at arbitrary memory locations
 - 2. Scan for "good" flips

- They are not random \rightarrow highly reproducible flip pattern!
 - 1. Choose a data structure that you can place at arbitrary memory locations
 - 2. Scan for "good" flips
 - 3. Place data structure there

- They are not random \rightarrow highly reproducible flip pattern!
 - 1. Choose a data structure that you can place at arbitrary memory locations
 - 2. Scan for "good" flips
 - 3. Place data structure there
 - 4. Trigger bit flip again

• Many applications perform actions as root

• Many applications perform actions as root

- Many applications perform actions as root
- They can be used by unprivileged users as well

- Many applications perform actions as root
- They can be used by unprivileged users as well

- Many applications perform actions as root
- They can be used by unprivileged users as well
- sudo

• 85% affected [Kim+14] (see Figure)

- 85% affected [Kim+14] (see Figure)
- 52% affected [SD15]

- 85% affected [Kim+14] (see Figure)
- 52% affected [SD15]

• First believed to be safe

- 85% affected [Kim+14] (see Figure)
- 52% affected [SD15]

- First believed to be safe
- We showed bit flips [Pes+16]

- 85% affected [Kim+14] (see Figure)
- 52% affected [SD15]

- First believed to be safe
- We showed bit flips [Pes+16]
- 67% affected [Lan16]

- 85% affected [Kim+14] (see Figure)
- 52% affected [SD15]

- First believed to be safe
- We showed bit flips [Pes+16]
- 67% affected [Lan16]

	1111111	1111111
	1111111	1010011
	0000000	0000000
activate >	1111111	1000000
	1111111	1111111
	1111111	1111111
	1111111	1111111
	1111111	1111111
		-

DRAM bank

		_	-
	1111111	1111111	
activate >	1111111	1010011	
	0000000	0000000	
	1111111	1000000	
	1111111	1111111	
	1111111	1111111	
	1111111	1111111	
	1111111	1111111	
			-

DRAM bank

	1111111	1111111
	1111111	1010011
	0000000	0000000
activate >	1111111	1000000
	1111111	1111111
	1111111	1111111
	1111111	1111111
	1111111	1111111
		-

DRAM bank

		_	-
	1111111	1111111	
activate >	1111111	1010011	
	0000000	0000000	
	1111111	1000000	
	1111111	1111111	
	1111111	1111111	
	1111111	1111111	
	1111111	1111111	
			-

DRAM bank

	1111111	1111111
	1111111	1010011
	0000000	0000000
activate >	1111111	1000000
	1111111	1111111
	1111111	1111111
	1111111	1111111
	1111111	1111111
		-

DRAM bank
RAMbleed

• We want the performance optimizations

- We want the performance optimizations
- Many side-channel attacks exploit intended behavior

- We want the performance optimizations
- Many side-channel attacks exploit intended behavior
- Often a trade-off between security and performance

- We want the performance optimizations
- Many side-channel attacks exploit intended behavior
- Often a trade-off between security and performance
- Every optimization is potentially a side channel

• We won't get rid of side channels

- We won't get rid of side channels
- $\bullet\,$ More optimizations $\rightarrow\,$ more side channels

- We won't get rid of side channels
- More optimizations \rightarrow more side channels
- But: low hanging fruits will disappear

Introduction to Microarchitectural Attacks

Daniel Gruss

June 18, 2019

Graz University of Technology