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Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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printf("%d", i);

printf("%d", i);
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Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise
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• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]
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What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed?

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]
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Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.
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Side-channel attack on user input www.tugraz.at

• Locate key-dependent memory accesses

• How?
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Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses
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Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Problem: working on congruent addresses
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Memory Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy
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Flush+Reload www.tugraz.at

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory
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Prime+Probe www.tugraz.at

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)
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TLB and Paging www.tugraz.at

• Paging: memory translated page-wise from virtual to physical

• TLB (translation lookaside buffer) caches virtual to physical mapping

• TLB has some latency

• Worst case for Cache: mapping not in TLB, need to load mapping from RAM

• Solution: Use virtual addresses instead of physical addresses
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• VIVT: Virtually indexed, virtually tagged

• PIPT: Physically indexed, physically tagged

• PIVT: Physically indexed, virtually tagged

• VIPT: Virtually indexed, physically tagged

24 Daniel Gruss — Graz University of Technology



Cache indexing methods www.tugraz.at

• VIVT: Virtually indexed, virtually tagged

• PIPT: Physically indexed, physically tagged

• PIVT: Physically indexed, virtually tagged

• VIPT: Virtually indexed, physically tagged

24 Daniel Gruss — Graz University of Technology



Cache indexing methods www.tugraz.at

• VIVT: Virtually indexed, virtually tagged

• PIPT: Physically indexed, physically tagged

• PIVT: Physically indexed, virtually tagged

• VIPT: Virtually indexed, physically tagged

24 Daniel Gruss — Graz University of Technology



Cache indexing methods www.tugraz.at

• VIVT: Virtually indexed, virtually tagged

• PIPT: Physically indexed, physically tagged

• PIVT: Physically indexed, virtually tagged

• VIPT: Virtually indexed, physically tagged

24 Daniel Gruss — Graz University of Technology



VIVT www.tugraz.at

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

VPN

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Fast

• Virtual Tag is not unique (Context switches)

• Shared memory more than once in cache
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PIPT www.tugraz.at

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Slow (TLB lookup for index)

• Shared memory only once in cache!
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VIPT www.tugraz.at

Virtual Address Cache

Tag Datab bitsn bitsVPN

Cache Index

TLB

PPN

f

2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Fast

• 4 KiB pages: last 12 bits of VA and PA are equal

• Using more bits is unpractical (like VIVT)

→ Cache size ≤ # ways · page size
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Remarks www.tugraz.at

• L1 caches: VIVT or VIPT

• L2/L3 caches: PIPT
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Issues with Prime+Probe www.tugraz.at

We need to evict cache lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

30 Daniel Gruss — Graz University of Technology
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#1.1: Which physical addresses to access? www.tugraz.at

“LRU eviction”:

• assume that cache uses LRU replacement

• accessing n addresses from the same cache set to evict an n-way set

• eviction from last level → from whole hierarchy (it’s inclusive!)
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#1.2: Which addresses map to the same set? www.tugraz.at

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

• function H that maps slices is

undocumented

• reverse-engineered by Maurice

et al

• hash function basically an XOR of

address bits
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#1.2: Which addresses map to the same set? www.tugraz.at

3 functions, depending on the number of cores

Address bit

3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores

o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
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#2: Obtain information without root privileges www.tugraz.at

• last-level cache is physically indexed

• root privileges needed for physical addresses

• use 2 MB pages → lowest 21 bits are the same as virtual address

→ enough to compute the cache set

34 Daniel Gruss — Graz University of Technology
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DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip
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DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each
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How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works www.tugraz.at
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Timing difference www.tugraz.at
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Physical Addresses www.tugraz.at

• Cache set is determined by part of physical address

• We have no knowledge of physical addresses

• Use the reverse-engineered DRAM mapping

• Exploit timing differences to find DRAM row borders

• The 18 LSBs are ‘0’ at a row border

39 Daniel Gruss — Graz University of Technology
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Physical Addresses www.tugraz.at
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Result on an Intel i5-6200U
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#3.1: Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp
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#3.2: Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow
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Challenge #3.3: replacement policy www.tugraz.at

A
d

d
re

ss

a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

→ fast and effective on Haswell: eviction rate >99.97%
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Cache eviction strategy: New representation www.tugraz.at

• represent accesses as a sequence of numbers: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

• can be a long sequence

• all congruent addresses are indistinguishable w.r.t eviction strategy

→ adding more unique addresses can increase eviction rate

→ multiple accesses to one address can increase the eviction rate

• indistinguishable → balanced number of accesses
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Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];
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Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4
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Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17

74.46% 7 307 ns 3

P-1-1-1-20 20

99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache
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Rowhammer www.tugraz.at

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer
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Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row
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#1 - Single-sided hammering www.tugraz.at
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activate
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#2 - Double-sided hammering www.tugraz.at
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#3 - One-location hammering www.tugraz.at
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bit flips
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How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again
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What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

<prefix>
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

<prefix>
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

<prefix>
0 1 1 0 0 1 0 0
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How widespread is the issue? www.tugraz.at

• 85% affected [Kim+14] (see Figure)

• 52% affected [SD15]

• First believed to be safe

• We showed bit flips [Pes+16]

• 67% affected [Lan16]
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RAMbleed www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate
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1 0 0 0 0 0 00 0 0 0 0 0 0

bit flips
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Countermeasures are Difficult www.tugraz.at

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

62 Daniel Gruss — Graz University of Technology



Countermeasures are Difficult www.tugraz.at

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

62 Daniel Gruss — Graz University of Technology



Countermeasures are Difficult www.tugraz.at

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

62 Daniel Gruss — Graz University of Technology



Countermeasures are Difficult www.tugraz.at

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel

62 Daniel Gruss — Graz University of Technology



The Future www.tugraz.at

• We won’t get rid of side channels

• More optimizations → more side channels

• But: low hanging fruits will disappear
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