
Scatter and Split Securely: Defeating Cache Contention and Occupancy Attacks

Lukas Giner1, Stefan Steinegger1,4, Antoon Purnal2, Maria Eichlseder1,
Thomas Unterluggauer3, Stefan Mangard1, and Daniel Gruss1

1Graz University of Technology, 2imec-COSIC, KU Leuven, 3Intel Corporation

Abstract—In this paper, we propose SassCache, a secure
skewed associative cache with keyed index mapping. For this
purpose, we design a new two-layered, low-latency crypto-
graphic construction with configurable output coverage based
on state-of-the-art cryptographic primitives. Based on this
construction, SassCache is the first secure randomized cache
with secure spacing. Victim cache lines automatically hide in
locations the attacker cannot reach after less than 1 access on
average. Consequently, attackers cannot evict the cache line, no
matter which and how many memory accesses they perform.
Our security analysis shows that all existing techniques for
eviction set construction fail, and state-of-the-art attacks only
apply to 1 in 3 million addresses, where SassCache is still as
secure as ScatterCache. Compared to standard caches, Sass
Cache has a single-threaded performance penalty of 1.75% on
the last-level cache hit rate in the SPEC2017 benchmark, and
an average decrease of 11.7p.p. in hit rate for MiBench, GAP
and Scimark for our high-security settings.

1. Introduction
Caches hide the memory latency in modern CPUs. Modern
Intel CPUs organize caches in slices, sets, and ways, which
are selected based on the physical address. Slices are in-
dependent caches comprised of sets. Each set has multiple
ways, i.e., the 64B cache lines. Memory mapping to the
same set is called congruent. An attacker can use congruent
addresses to measure contention or to evict cache lines of a
victim process. The most notable cache attack exploiting set
contention is Prime+Probe [43], [53], [42], [27], [36], [39].
But even without direct contention within one cache set, an
attacker can still mount a cache-occupancy attack, where
the attacker only observes aggregated cache usage. Cache-
occupancy attacks have fewer requirements but contention-
based attacks are more powerful and dangerous.

Contention-based attacks [69], [70], [33], [35], [34],
[66], [49], [50], [71], [65], [54] are hindered by the scram-
bling of address-cache-line mappings in secure randomized
caches. Recent designs [49], [50], [71], [65], [54] use cryp-
tography to randomize mappings in hardware with a secret
key. This is backward-compatible on the software level and
maintains certain sharing capabilities.

4. Work done while affiliated with Graz University of Technology.

While randomized caches are a promising solution to
eviction-based attacks [46], [11], cache collisions still exist
due to limited cache sizes. Rekeying alleviates the prob-
lem, but the best rekeying interval is difficult to determine
for yet unknown attacks and known attacks require high
rekeying intervals with a significant performance cost. Fur-
thermore, some previous proposals suffer from cryptanalytic
flaws [46], [9]. Hence, we ask the research questions:
Can a secure randomized cache prevent contention between
any attacker cache line and a victim cache line in most
cases? Which cryptographic constructions provide this prop-
erty while maintaining high performance?

In this paper, we propose SassCache, a secure cache
design with better security guarantees than previous random-
ized caches and better performance than static isolation. Sass
Cache is a skewed set-associative cache with a keyed index-
derivation function per security domain and a novel isolation
property. Each security domain has access to a different and
only partially overlapping part of the cache. Once a victim
cache line is in a location the attacker cannot reach, there
is no possibility for the attacker to evict the cache line. In
our evaluation we see a victim cache line hidden from the
attacker after less than 1 eviction on average.

At the core of SassCache is a new two-layered cryp-
tographic construction with configurable output distribution
determining reachable cache lines. Inspired by QARMA [4],
we propose QARTA, tailored to our functional (i.e., uncom-
mon bit sizes), latency, and security requirements.

In the recommended configuration, the attacker cannot
build an eviction set for 99.999 97% of the victim’s ad-
dresses. For the remaining 0.000 03%, SassCache maintains
the same security as previous secure skewed caches. Even
cache-occupancy attacks are not feasible anymore because
the hiding effects affect this channel equally. We evaluate
this property and discover that an attacker can observe the
occupancy of OpenSSL AES T-Tables in less than 0.0005%
of cases and the occupancy of secret-dependent cache lines
in mbedTLS RSA-4096 in less than 0.0003% of cases.

The basic functionality of SassCache is fully compatible
with standard caches and, hence, simple to integrate into
existing CPU architectures. SassCache provides full compat-
ibility with legacy software, but to fully harness its security,
software has to configure and switch security domains. Our
main use case for SassCache are multi-tenant cloud systems,
as they offer high degrees of parallelism between clearly

defined security domains (i.e., tenants). Here, SassCache
provides inherent quality-of-service properties. We evaluate
this in SPEC2017 with multiple other cache-intense tenants
running in parallel, showing competitive performance.

We implemented SassCache in gem5, our own cache
simulator1, and in CacheFX [23]. We evaluate the im-
pact on performance and cache-hit rate. Compared to a
set-associative LRU cache, SassCache has a performance
penalty of only 1.75% on the cache hit rate in SPEC2017,
similar to previous secure caches. In MiBench-small, the
average cache hit rate of SassCache is 16% lower than for
a set-associative LRU cache; in scimark2, it is 23.6% higher.
Contributions. In summary, our main contributions are:
• We design a novel low-latency cryptographic function

with a configurable output distribution for secure caches.
• We propose SassCache, a secure cache that integrates this

function, eliminating the attacker’s capability of building
an eviction set for 99.999 97% of the addresses.

• We show that for the remaining 0.000 03%, SassCache
maintains the security level of previous secure caches.

• SassCache offers competitive performance, with only
1.75% average overhead on the LLC hit rate in
SPEC2017, compared to a set-associative LRU cache.

Outline. Section 2 provides background, Section 3 the threat
model, Section 4 the design, Section 5 our cryptography,
and Section 6 our implementation. Section 7 and Section 8
discuss security and performance. Section 9 concludes.

2. Background
In this section, we discuss non-secure and secure caches and
their attack surface and mitigation strategies.

2.1. Caches
Caches hide memory latency by buffering data. In set-
associative caches, a memory address can only be cached
in a (fixed) subset of cache lines, a so-called cache set. Ad-
dresses that map to the same set are called congruent. When
loading data from, the cache replacement policy determines
which cache line in a set to evict. Each cache line has a tag
that uniquely identifies a cached address. CPU caches can
derive indices and tags from the virtual or physical address.

Modern CPUs have multiple cache levels and use phys-
ical tags throughout the cache hierarchy. The lower cache
levels, e.g., the L1 caches, are small and fast caches that are
private to each core. Other cores cannot access them directly
but only via the coherency protocol. Most Intel and AMD
CPUs also have private, larger L2 caches.

Modern CPUs have a large (multiple MB) shared last-
level cache (LLC). It facilitates the use of code and data on
multiple cores simultaneously and simplifies coherency and
cache lookups. Typically, on Intel and AMD CPUs, this is
the L3 cache, and on ARM CPUs, the L2 cache. The LLC
is often inclusive, i.e., all cache lines in L1 or L2 caches are
also in the LLC. Some CPUs split the LLCs into so-called
slices [38], which are independent caches, e.g., per (logical)
core. The slice is selected based on the physical address,

1. https://github.com/IAIK/CacheSim

not the core. Each core can access each slice via a ring bus
that connects all cores and slices.

2.2. Index Derivation Function
Conventional caches map addresses to cache sets by simply
using a part of the physical address as a set index, but
more advanced functions can be implemented as well [61].
Werner et al. [71] introduced the term Index Derivation
Function (IDF) for these mapping functions, which we will
use going forward. An IDF generates a set of possile cache
lines for each physical address. A more complex IDF can
break the traditionally linear relationship between addresses
and sets, and may also change the static sets into dynamic
ones, such that sets are not fixed collections of cache lines
anymore. For this, a cryptographic function that works on
the physical address as well as some secret can be used.
IDFs generally need to scale well, incur low overheads, and
be fully transparent to the software level.

2.3. Cache Attacks
As the cache state depends on recent memory accesses,
an attacker can learn interactions of other programs with
memory (e.g., instruction and data accesses). Initial attacks
focused on the execution time [32], [44], [67], [8]. More
recent techniques interact directly with the shared cache.

Flush+Reload [72] relies on (read-only) shared memory
between attacker and victim: It flushes an address and later
determines whether a victim accessed it by measuring its
load latency. Prime+Probe [43] has no such restriction. It
measures contention on a portion of the cache (e.g., a cache
set) by filling this portion (prime) and measuring the time
this takes (probe). Victim accesses to congruent addresses
evict the attacker’s lines, influencing the probe time.

Contention-based attacks (e.g., Prime+Probe) on the
LLC require profiling to identify eviction sets, i.e., sets of
congruent addresses. The attacker starts with a large pool
of lines and, by timing accesses, discards those that do not
contribute to contention [36]. The profiling duration depends
on knowledge of the mappings and the number of elements
discarded per iteration [68]. Prime+Probe based attacks are
still actively being improved [46], [47], [11], [63].

2.4. Secure Caches
We can roughly categorize secure caches into designs based
on partitioning or randomization. Where partitioning designs
reserve parts of the cache per security domain, randomized
cache architectures usually make the entire cache accessible
but obfuscate the mapping of addresses to cache lines.

Randomization-based designs aim to make contention
attacks statistically hard by making the mapping of ad-
dresses to cache unpredictable and unobservable. This hin-
ders the construction of eviction sets and the observability
of targeted events (cf. Section 2.5).

Many of these designs require randomization mappings
to be dynamic, i.e., renewed over time. This rekeying (or
remapping) destroys any congruence information an attacker
may have learned. More frequent rekeying is more secure
but comes with a performance [49] and power penalty.

https://github.com/IAIK/CacheSim

CEASER-S [50], ScatterCache [71] and Phantom
Cache [65] are examples of skewed designs [59] that com-
pute indices on the fly. ScatterCache computes indices to
individual cache lines which together form a unique set
with random replacement. CEASER-S and PhantomCache
randomly select from computed indices to entire sets, which
can then use standard replacement policies like LRU. Since
computations are done on-the-fly, these designs are scalable
and suited for large LLCs. However, they have been shown
to be susceptible to recent attacks [46], [11], [62]. MI-
RAGE [54] moves the randomization to the cache directory
and uses it to approximate a fully associative cache. So
far, none of the randomization-based secure caches protect
against cache occupancy attacks.

Random Permutation (RP) Cache [69] precomputes
permutation tables per process. Newcache [70] proposes an
entirely new cache design with a secure table of indirection
that tries to approach a directly-mapped cache. These table-
based designs require overhead proportional to their size,
which can be prohibitve for large LLCs.

Partitioning splits the cache into (fixed) slices by its sets
(e.g., cache coloring [15], [73]), or its ways (e.g., Intel Cache
Allocation Technology (CAT)). The security depends on the
strength of the isolation between domains and how much
remains observable to attackers. However, static partitioning
reduces performance and lacks flexibility and scalability.

Non-Monopolizeable (Nomo) [19] cache reserves some
ways per set to be only writeable by one domain, but this
leaves reserved ways observable. Vantage [55] partitions
most of the cache while maintaining associativity. Partitions
can outgrow their allocated size into a small, unpartitioned
space. Additional cache tag bits determine the number of
partitions. AutoLock [24] prevents cross-core evictions by
locking cache lines on ARM CPUs. Hybcache [17] uses
a hybrid approach between a set-associative and a fully-
associative cache. Full associativity is realized only in a
small number of ways used for security-critical applica-
tions, whereas the rest uses the cache set-associatively. This
assumes secure and insecure domains, which differs from
the usecase for SassCache. Jigsaw [6] and Jumanji [58]
partition the cache dynamically by splitting it into shares.
Software defines capacity and mapping by assigning identi-
fiers to the Page Table entries (PTEs). Jumanji has a lower
latency, and higher performance and security than Jigsaw.

He et al. [26] analyzed static partitioning, Nomo, New-
Cache, RP Cache, and others, and found that all are, to some
degree, vulnerable to at least 2 of 4 studied attacks.

In summary, later analyses [46], [11], [26] of randomized
and partition-based caches that provide probabilistic security
have shown that these can achieve relatively high perfor-
mance, but are often not as secure as first thought. Static and
total partitioning, on the other hand, provides strong security
guarantees at the cost of flexibility and performance.

With SassCache, we combine these two strategies. We
make security guarantees for most addresses that are the
same as a statically partitioned cache (Section 7), with better
performance for our target environment (Section 8.4).

2.5. Attacking Secure Caches
Profiling secret-dependent cache lines and finding addresses
congruent to them, is an important prerequisite for success-
ful exploitation. The first proposals [49], [66] were bypassed
by optimized eviction set algorithms [68], [50], allowing
the exploitation phase to proceed as in traditional caches.
Consequently, they are practically broken since they require
impractical rekeying periods to maintain security [50].

Randomized caches with a probabilistic component [71],
[50], [65] preclude traditional eviction by design. Obtaining
fully congruent addresses, mapped to the same set in every
partition, is theoretically infeasible. In particular, the notion
of eviction sets needs generalization (i.e., weakening) if the
attacker is to succeed at all. Werner et al. [71] propose
eviction sets with addresses congruent in at least one cache
way, which was later generalized to partitions [46].

While finding generalized eviction sets is more difficult,
a resourceful attacker can still find them by observing which
lines are evicted by victim execution. To maximize the
chance of observing such evictions, Purnal et al. [48], [46]
propose Prime+Prune+Probe (PPP). It extends Prime+Probe
with a pruning step, enabling occupying a large portion
of the cache before transferring control to the victim. PPP
was originally applied to CEASER-S and ScatterCache and
reduced the complexity of finding eviction sets by orders
of magnitude. However, it also applies to other randomized
caches, e.g., those that skew across sets instead of ways [65].
Song et al. [63] propose to flush the attacker’s own lines to
speed up PPP by avoiding costly full cache evictions.

Given a rekeying period, the attacker needs to split re-
sources between profiling (i.e., gaining spatial information)
and exploitation (i.e., the actual attack). Bourgeat et al. [11]
propose a methodology to navigate this tradeoff.

At one extreme, an attacker spends no time profiling and
just measures cache occupancy [60], i.e., cache utilization.
While less accurate than congruence-based channels (i.e.,
no spatial information), it is unaffected by rekeying. Cur-
rent secure LLC designs, even those approximating fully-
associative caches [17], [54], have the property that victim
accesses are reflected in the observable cache utilization,
leaving the cache occupancy channel unmitigated. Some
designs are also vulnerable to so-called shortcut attacks that
exploit weaknesses in randomization to bypass the protec-
tion altogether [46]. Thus, it is crucial that the randomization
mapping uses well-designed cryptographic primitives.

3. Threat Model and Mitigation Goals
In this section, we describe our threat model and mitigation
goals for secure caches, forming the basis of our secure
cache design, SassCache. As shown in Section 2.5, even
modern secure caches are affected, e.g., by Prime+Prune+
Probe [46] or due to weak cryptographic constructions [46].

3.1. Threat Model
Our threat model is in line with prior work [71], [65],
[46] but takes more recent and advanced attack techniques
into account (cf. Section 2.5). In this threat model, Sass

IDF

IGL

ISL

keySDID
i
n
d
e
x

t
a
g

o
f
f
s
e
t

way 0
idx0

way 1

idx1

way 2

idx2

way 3

idx3addr

Figure 1: Our two-layer Index Derivation Function (IDF):
The first Index Generation Layer (IGL) is a cryptograph-
ically randomized mapping of addresses to indices, like
in ScatterCache; the second Index Spacing Layer (ISL)
reduces the set of reachable cache lines through another
cryptographically randomized mapping (cf. Section 5.1).

Cache constitutes the cache level that is shared between
attacker and victim. For our evaluation, we do not consider
self-eviction in the victim, because in randomized skewed
caches, reliable self-eviction only occurs with substantial
amounts of memory accesses as part of the secret-dependent
operations or active victim participation.

SassCache uses a function that maps physical addresses
to cache sets by generating indices idxi, where i counts the
ways. (Figure 1). We assume the function is known to the
attacker but uses a random secret key and a security domain
(SDID) to separate security contexts. The key is inaccessible
to the attacker, whereas the address is fully controlled.
Attacker and victim are separate tenants on a multi-tenant
system, where each has their own SDID. Consequently, they
are located in different security contexts, and the attacker
only has control over few contexts (c.f. Section 7.5). While
the attacker may be able to read the SDID, it cannot set
it; only privileged software (e.g., the hypervisor) is allowed
to set it. The generated indices idxi are not observable
directly but only via cache contention. Physical attacks on
the function, its intermediate values, or secret parameters
and bugs in the privileged software are out of scope.

3.2. Required Attributes

Functionally, a secure cache should be mostly transparent
to software but maintain performance that is comparable to
standard caches. On the security side, we extend the security
attributes of ScatterCache [71] as follows to address more
recent attacks [46] and attacks commonly considered out-of-
scope (e.g., the cache occupancy channel [71], [65], [54]):
• Software-defined security domains (based on properties

like virtual machine (VM), tenant, user, or process ID)
must not share cache lines unless cross-domain coherency
is explicitly required, e.g., writable shared memory.

• It must be hard to find congruent addresses in the cache,
i.e., it should be hard for adversaries to infer a connection
between accessed physical addresses and cache set index.

• Partially accessible addresses should become hidden with
a high probability to reduce their observability.

• It must be impossible to evict, measure or control all cache
lines from another security domain.

4. The SassCache Architecture
We present SassCache, a novel probabilistically-skewed se-
cure cache that achieves the desired security properties (cf.
Section 3.2) and maintains a backward-compatible interface.

Purnal et al. [46] show that randomized secure caches
can still be attacked both with old attacks and new attack
variations, albeit at a lower attack performance. The under-
lying problem is that the full cache is still accessible to
the attacker. On the other hand, approaches based on cache
partitioning such as cache coloring [15], [74] and Intel’s
Cache Allocation Technology (CAT) offer strict security by
splitting the cache into fixed allocations but lack flexibility
and scalability. To overcome the drawbacks of previous
randomized and partitioned caches, we combine the two
principles in SassCache. Hence, to mitigate even statistical
and occupancy attacks, the idea for SassCache is to crypto-
graphically limit the total number of cache lines accessible
to an attacker, in addition to the permutation performed by
ScatterCache. We refer to the number of accessible cache
lines (=share of the total cache) as coverage.

SassCache follows a two-layered approach for its IDF
(Figure 1): First, the Index Generation Layer (IGL) is a
permutation of cache sets as in ScatterCache. This breaks the
link between cache set and physical address across different
security domains and makes it very hard to profile the cache
for an attack [46]. If this layer were a known, non-skewing
mapping (such as a bit mask on the physical address), the
number of unique sets would be limited. A small number of
fixed sets not only makes profiling trivial, it also makes self-
eviction deterministic and more likely. This is because some
addresses would always share the same set, and therefore
compete for the same unobservable ways (Section 7.1). Ad-
ditionally, with potentially millions of profiling attempts per
successful attack (Section 7) and minutes per attempt [46],
the IGL ensures high costs for attackers. In short, the IGL
provides important support for the security of the second
layer and defense-in-depth properties.

Second, the Index Spacing Layer (ISL) restricts acces-
sible cache lines similar to partitioning-based approaches.
However, instead of statically slicing the cache into fixed
allocations, SassCache selects the accessible cache lines
pseudorandomly based on the cryptographic function we
propose in Section 5. Therefore, overlaps between security
domains become probabilistic. Some cache lines are inac-
cessible to other security domains, which makes eviction
of these cache lines by an attacker impossible. The second
layer’s parametrizable construction determines the share of
the cache available per security domain. As outlined in
Section 3, SassCache is focused on a server setting with
multiple security domains, identified by a Security Domain
Identifier (SDID). We target this environment in particular
because the security domains are well defined, and con-
current use is typical. Each security domain is assigned to
one tenant, with the hypervisor running in its own security
domain, i.e., all virtual machines of one tenant run in
one security domain. However, SassCache’s design would
also allow the definition of other security domains and

use cases, such as VMs, users, groups of processes (e.g.,
for container software), single processes, or even address
ranges (e.g., in-process isolation mechanisms). Our generic
approach leaves the choice for security domains to the
most privileged software (e.g., the hypervisor). Whatever
the use case, one domain should never be able to generate
more domains under its control to avoid collusion (c.f.
Section 7.5). As multiple security domains, i.e., tenants, will
use a CPU concurrently, each domain evicts fewer lines from
other domains, increasing fairness. Additionally, multiple
users already limit each other’s cache share, which further
alleviates the reduction in cache size per domain.

We propose SassCache as an inclusive or non-inclusive
last-level cache (LLC). We opt for a set-associative base
design with W ways, i.e., W cache arrays, exactly like
existing caches deployed in current CPUs. Each cache array
with a size S is indexed individually by one of the W
indices. Because the sets are dynamic, we use a random
replacement policy. This approach results in SW possible
cache sets after the first layer, similar to ScatterCache [71].
The second layer ISL restricts the possible indices in each
way. While this reduces the number of sets per domain, it
brings a novel security property: certain cache lines cannot
be evicted by an attacker. Our cryptographic design is the
basis that makes it improbable (cf. Section 7) for an attacker
to evict a target cache line or measure cache occupancy.

5. Cryptographic Design
For SassCache, we need a function to generate cache-set
indices from addresses to skew the cache, i.e., the Index
Derivation Function (IDF). Additionally, the IDF must limit
the number of accessible cache lines per security domain,
i.e., the coverage. Hence, in this section, we introduce the
two-layered cryptographic primitive at the core of Sass
Cache. We design a low-latency IDF that maps the address
to W indices idxi, where the mapping is controlled by
the SDID and the key (Figure 1). The IDF consists of
two layers: an Index Generation Layer (IGL) that maps the
address to W independent intermediate identifiers idi and
an Index Spacing Layer (ISL) that maps each identifier to
the final index idxi in the index space. This index idxi is
selected uniformly from a subset of the index space defined
by the SDID, key, and way i. The ISL is designed such
that the subset is expected to cover a defined share of the
full index space that we refer to as coverage.

5.1. Design of the Index Derivation Function
We design both layers using keyed permutations, i.e., block
ciphers or tweakable block ciphers. For the first IGL layer,
we profit from permutations with larger block sizes, whereas
the permutations for the second ISL layer are smaller and
faster. We refer to these as BC and TinyBC, respectively.

Assuming the IDF maps a-bit addresses (e.g., a = 48)
to n-bit indices idxi (e.g., n = 11), we use intermediate
identifiers idi of ℓ = n+ t bits (t controls the coverage).
Index Generation Layer. For the identifiers idi, the IGL
uses BC in a counter-based streaming mode with SDID,key

addrSDID,key

BC BC

TinyBC TinyBC TinyBC

idx0 idx1 idxF

•

•

. . .

. . .

01 0 addr

id0 id1 · · ·

03 0 addr

· · · idF ×

00 0 id0

× idx0

10 0 id1

× idx1

F0 0 idF

× idxF

. . .

63. . . 56 55 . . . aa–1 . . . 0

63 . . . 53 52 . . . 42 41 . . . 0

63. . . 56 55 . . . aa–1 . . . 0

63 . . . 27 26 . . . 16 15 . . . 0

63. . . 56 55 . . . 11 10 . . . 0

63 . . . 11 10 . . . 0

63. . . 56 55 . . . 11 10 . . . 0

63 . . . 11 10 . . . 0

63. . . 56 55 . . . 11 10 . . . 0

63 . . . 11 10 . . . 0

Figure 2: The address-to-index mapping function IDF with
63 % coverage, for W = 16 ways and 11-bit indices (ℓ =
n = 11). The top layer is the IGL, the bottom ISL.

as key, and the address addr as nonce to produce W ·ℓ bits
of keystream. Figure 2 (top half) illustrates this construction
for ℓ = n = 11, i.e., t = 0. For example, if BC is a
64-bit block cipher, the IGL performs ⌈(W · ℓ)/64⌉ = 3
parallel calls to BC with inputs c ∥ 0 ∥ addr, where
c ∈ {0x01,0x02,0x03} is the 8-bit counter. We start
counting at 01 for domain separation with the second layer
to support the choice BC = TinyBC. The outputs of BC
are cut into ℓ-bit chunks idi. These identifiers are expected
to be uniformly and (practically2) independently distributed
in {0, 1}ℓ. They are unpredictable, not controllable, and
not directly observable for an attacker; learning them still
does not allow recovering information about the key. If two
addresses are mapped to the same identifier idi, they are
mapped to the same index idxi; the reverse is not true.
Index Spacing Layer. To generate the final indices idxi

from idi, the ISL uses W parallel TinyBC invocations.
Prepending the counter i before idi in the input and
truncating the output of TinyBC effectively gives us a
family of ℓ-bit to n-bit pseudorandom functions, keyed with
SDID,key. For TinyBC, a cipher smaller than BC also
suffices, with a block size of at least max(n+ε, ℓ+log2 W)
bits for some small integer ε.
Coverage. When considering such a random (non-injective)
function f with domain {0, 1}ℓ and co-domain {0, 1}n,
we can derive the expected coverage of the co-domain,
i.e., E[#{f(x) | x ∈ {0, 1}ℓ}/2n], as follows. Randomly
choosing f means randomly choosing each value f(x)
uniformly and independently. Then, the expected coverage
is the same as the probability for any specific y to appear
among the values f(x) for any x ∈ {0, 1}ℓ. In other words,
the coverage equals the probability of drawing a single
golden ball from an urn containing 2n balls at least once
when drawing 2ℓ = 2n+t times with replacement. Thus, the
expected coverage C is

C = 1−
(
1− 1

2n

)2n+t

= 1−
((

1− 1
2n

)2n︸ ︷︷ ︸
→e−1 for 2n→∞

)2t ≈ 1− e−2t .

2. There is a tiny bias due to the bijectivity of BC, which is not detectable
in < 232 calls with constant SDID/key due to the birthday paradox.

We list the resulting coverage C for t ∈ {−3,−2, . . . , 2}
in Figure 3. These values depend primarily on t and are
essentially identical for all relevant values of n, e.g., n = 11.

If TinyBC is only slightly larger than max(n, ℓ +
log2 W) bits, this truncated construction can be modeled
more precisely by taking into account the bijectivity of the
block cipher. With b > max(n, ℓ+ log2 W), the block size
of TinyBC (i.e., 2b−n inputs produce the same truncated
n-bit output idxi), the expected coverage Cb is the ratio
of permutations mapping i ∥ 0 ∥ idi to idxi for any idi

among all b-bit permutations:

Cb = 1−
(2b−2b−n

2ℓ

)
· 2ℓ! · (2b − 2ℓ)!

2b!
= 1−

∏2b−n−1
i=0 (2b–2ℓ–i)∏2b−n−1
i=0 (2b − i)

= 1−
∏2b−n−1

i=0

(
1− 2ℓ

2b−i

)
≈ 1−

(
1− 1

2b−n−t

)2b−n

.

For example, for n = 11 and a b = 16-bit block cipher
TinyBC, the resulting expected coverage Cb differs by up to
0.9 % from the result C for large block ciphers. For clarity,
we take the expected value of C as a given for the security
analysis, which is appropriate as its variance is very low.

5.2. Instantiation with QARMA and QARTA

We want to instantiate this design with efficient crypto-
graphic functions BC and TinyBC. Several low-latency
block ciphers [10], [12] and tweakable block ciphers
(TBCs) [4], [7] have been published, though some provide
insufficient security [20], which share several design ideas
with PRINCE [10]. We propose an instantiation using (parts
of) QARMA [4], a TBC used for ARM pointer authentication.
Conservative instantiation. A conservative instantiation
is to use the 64-bit variant of QARMA, QARMA7-64, for
both BC and TinyBC. This TBC encrypts 64-bit plaintext
blocks with a 128-bit key K and 64-bit tweak T , fitting with
the dimensions given in Figure 2. The 192-bit combined
tweakey (K,T) is available for key material from the SDID
and key, fitting, e.g., a 128-bit key as K and 64-bit SDID as
T , or the XOR of two 128-bit values as K with T = 0. The
same key can be used for BC and TinyBC. The expected
coverage C for this construction can be derived with the
model for large block ciphers.
Low-latency instantiation. To avoid the latency of two
calls to the full TBC, we propose an optimized variant with a
latency comparable to one QARMA7-64 call: We instantiate
BC with the round-reduced QARMA5-64 (with 12 instead of
16 rounds) and use operations from the remaining 4 rounds
to run 4 ultra-light 16-bit QARTA4-16 ciphers in parallel.
The total circuit size of the IDF with fully unrolled BC and
TinyBC instances corresponds roughly to 4 QARMA7-64
instances. The expected coverage Cb of this instantiation can
be derived with the model for small block ciphers.

QARTA4-16 operates on one 16-bit column of a QARMA
state and key using the QARMA 4-bit S-box layer S
(SubCells), mixing layer M (MixColumns), and round
tweakey addition (AddRoundTweakey), without applying
an equivalent of the permutation layer τ (ShuffleCells).
Four parallel instances of one QARTA4-16 round corre-
spond to one round of QARMA without the τ operation

−5 −4 −3 −2 −1 0 1 2
0

0.5

1

3% 6% 12% 22% 39%
63%

86% 98%

C
ov

er
ag

e
C

Figure 3: Expected coverage C ≈ 1 − e−2t for t ∈
{−5, . . . , 2}.

P

T

C

h ω h ω h ω h ω

τ M S τ M S τ M S τ M S

k0

c0
k0

c1
k0

c2
k0

c3
k0

c4w0 w0

Figure 4: Four parallel invocations of QARTA4-16 (with
different, but partially related keys).

(cf. Figure 4). The key (w0, k0) and tweak T are again
derived from the SDID and key. In this instantiation, the
key material for TinyBC should be independent of that of
BC. Figure 5 shows which parts of the key material influence
which index computations. Notice that the tweak schedule
implies that the tweak material influences several columns,
and acts differently on each tweak column. The QARMA
round constants ci are also different for each column.

QARTA4-16 is not a generically secure tweakable block
cipher due to its small size and low-latency design. It is
tailored for the proposed application, where an attacker has
little control and never learns the cipher inputs except for
a few index and padding bits. Since each column depends
on at least 8 cells of the tweak T (Figure 5), the effective
tweakey size for QARTA4-16 is at least 64 bits. Regard-
ing its cryptanalytic properties, QARTA4-16 is expected
to reach its full algebraic degree after 3 rounds since its
S-box has an algebraic degree of 3 and 33 > 15. The
MixColumns matrix has a branch number of B = 4; there
are several truncated differential and linear patterns with a
total of 8 active S-boxes that are compatible with the input
format, e.g., the iterative pattern (0, 0, ∗, ∗), where ∗ denotes
active cells. Since the maximum differential probability and
absolute linear bias of the S-box are 2−2, the maximum
achievable probability for differential characteristics is 2−16.
Even with potential clustering effects, this is hard to exploit
for largely unknown cipher inputs. Still, an attacker that
observes a large number of cipher outputs might succeed in
recovering a few key bits by exploiting the few known cipher
input bits and the partially overlapping key material between
indices. However, since the key material is independent of
the key used in BC, there is little information to derive from
this potential knowledge beyond the image set of TinyBC,
which is easily obtained through direct observation rather
than cryptanalysis. The main criterion for security is, how-
ever, the statistical behavior, which we analyze next.
Coverage evaluation. Figure 6 shows the observed distri-
bution of the coverage for both instantiations of TinyBC
for 100 random keys with 16 counter values i each. Both
QARMA7-64 and QARTA4-16 behave as expected, with

0
i
d
0

1
i
d
1

2
i
d
2

3
i
d
3 · · ·

C
i
d
C

D
i
d
D

E
i
d
E

F
i
d
F

P T w0 k0

Figure 5: Mapping of QARMA-64 and QARTA-16 states.

21% 22% 23%

QARTA4-16
QARMA7-64

CbC

t = −2

38% 39% 40% 41%

QARTA4-16
QARMA7-64

CbC

t = −1

61% 62% 63% 64% 65% 66%

QARTA4-16
QARMA7-64

CbC

t = 0

84% 85% 86% 87% 88% 89% 90%

QARTA4-16
QARMA7-64

CbC

t = 1

Figure 6: Experimental coverage for t ∈ {−2, . . . , 1}
for 100 random keys and 16 ways i, with QARMA or
QARTA4-16, and expected values C and Cb, respectively.

average coverages C and Cb (b = 16), respectively. For
example, for t = −1, the coverage for QARMA7-64 ranges
from 37% to 41%, with an average of C ≈ 39%. The
coverage for QARTA4-16 ranges from 37% to 41%, with
an average close to Cb ≈ 39%.

6. Implementation of SassCache
SassCache is designed as a last-level cache (LLC) for a
server environment with multiple co-located security do-
mains. The use in an LLC enables hiding the latency of the
cryptographic functions during lower-level cache lookups.
Especially in servers (and desktops), we believe the added
energy consumption of the lightweight cryptography will be
negligible compared to regular cache and memory lookups.

6.1. Hardware Modification
While recent advances in the RISC-V community lead to
the first RISC-V CPUs with experimental L2 caches [75],
[13], they are far from state-of-the-art high-performance L3
LLCs used in server-grade CPUs and thus not yet suited for
estimations on the hardware modification costs that Intel,
AMD or ARM would see. Hence, we estimate SassCache’s
hardware costs by determining the hardware costs for the
building blocks in terms of chip-area and latency.
Area. The cryptographic primitives for the IDF make up
the main cost in hardware. We propose QARTA4-16, a cus-
tom low latency instantiation for 16 ways (cf. Section 5.2)
corresponding to roughly four QARMA7-64 instances with
34.4kGE each [4]. Therefore, in total, the IDF requires less
than 140kGE. Previous work [71] estimated that the open-
source BROOM core’s LLC takes up about 5.5MGE. Hence,
our design should result in less than 3% of that.

The additional area required to skew the cache is specific
to the overall design. In general, Djordjalian [18] noted that
additional decoders and wiring are required for each way.
For a 2-way skewed cache, Spjuth et al. [64] saw a 17%
increase in energy consumption. However, Sardashti et al.

[56] show that cache skewing only has 1.5% to 15.3%
overhead. Furthermore, most Intel cache architectures al-
ready feature cache slices; thus, they partition the cache into
smaller caches with multiple addressing circuits already.
Latency. SassCache’s latency depends on the IDF’s latency
for generating the set indices. We use QARMA, which is
already used for latency-critical applications like pointer
authentication [3] or memory tagging [41]. Notably, QARMA
achieves a latency as low as 2.20 ns when fully unrolled
at a 7 nm process [4]. For our low-latency instantiation
(cf. Section 5.2), the combined latency of QARMA5-64 and
QARTA4-16, used for IGL and ISL, is comparable to that
of QARMA7-64 at about 3.25 ns. In comparison, this is still
lower than L2 cache access on current CPUs (e.g., Intel
Xeon 8280 at 5.18 ns [16], AMD Epyc 7742 [16] at 3.86 ns,
and ARM Ampere Altra Q80-33 at 4.11 ns [22]). Since Sass
Cache is designed for shared LLCs, most if not all of the
latency is hidden in lower-level cache lookups, and our IDF
becomes viable for practical implementation. In line with
other skewed cache designs, the skewing itself does not
introduce additional latency [54], [49].

6.2. SassCache Interactions
One goal of SassCache is to make its adoption as friction-
less as possible by providing strong security benefits even
without software support.
Backward Compatibility. To make SassCache backward
compatible, we suggest to initially deactivate the spacing
layer of the IDF. While booting, privileged software (e.g.,
the hypervisor) aware of SassCache and security domains
activates the second layer via a configuration register. Thus,
legacy software still benefits from a cache similar in func-
tionality to ScatterCache without security domains, which
already protects against some cache attacks [71].
SassCache Software Interface. The software must supply
the correct SDID to SassCache. Depending on the architec-
ture and what constitutes a security domain (we focus on the
cloud use case), this can be achieved in numerous ways. On
x86-64, ARM, or RISC-V systems, we can use unused bits
in the PTEs to supply the SDID either directly or indirectly
via an additional lookup table. Using the SDID directly only
allows for a limited number of security domains, which we
therefore do not recommend. Intel x86-64 has 14 bits [31],
ARM64 4 bits [2], and RISC-V 10 bits [52] reserved for
future use in the PTEs that can be used for this.

However, by using the PTE bits as a lookup, very large
SDIDs are possible, such that there will never be domain
collisions. To do so, an additional SDID list is implemented
in hardware. The list is only writeable by privileged soft-
ware (e.g., hypervisor or OS) and has a number of slots
corresponding to the available bits in the PTE. This allows
privileged software to load specific sets of SDIDs for a
security domain during context switches. During a memory
access the Memory Management Unit (MMU) then uses
the bits from the PTE to look-up the SDID in parallel and
forward it to the cache alongside the memory request.

This indirection allows for privileged software to easily
change a large number of SDIDs on demand. Moreover, if

the number of SDID indices loaded in parallel is insufficient
for an application, one specific index can be used to trigger
an exception, albeit with a performance hit. The exception
then allows privileged software to examine the situation and
switch certain SDIDs, before returning to the application.
The size of the list limits the number of security domains
available in parallel. The overall number is only limited by
the size of the SDID and the input-size of the IDF.

Alternatively, Intel’s Page Attribute Table (PAT) and
ARM’s Memory Attribute Indirection Register (MAIR) offer
similar functionality for this purpose, i.e., define memory
types and specify caching behavior. The available bits in
the PTE index list can be used to implement the SDIDs.
Implementation Considerations. Addressing the SDID
indirectly allows for effective tenant-based separation with
only a single bit and two domain registers holding the full
SDID. This enables using two security domains simulta-
neously, e.g., privileged software (e.g., the hypervisor) and
application (e.g., the tenant’s VM). Thus, it enables coarse
separation of execution paths that require context switches,
during which the configuration registers are maintained, and
certain types of shared memory. During context switches,
the privileged software swaps the SDID for the application.
To preserve separation in the cache, different SDIDs are
used for shared memory. Hence, read-only shared memory
(e.g., libraries) is shared across security domains with differ-
ent SDIDs without further modifications. However, shared
memory used in different security domains is loaded to
different locations in the cache for each domain.

For writable shared memory, a change in the SDID also
changes which cache lines are part of the cache set. This can
lead to cache coherency issues for writeable shared memory.
Therefore, for this memory type, the privileged software
must assure that the SDID is the same across all security
domains that can access the shared memory. With the single-
bit approach, the SDID for privileged software can be reused
for shared memory. Similarly, to copy data between privilege
levels (e.g., hypervisor and VM), the correct SDID must be
loaded. Multiple VMs of one tenant are in the same security
domain to prevent collusion using multiple SDIDs.

6.3. Key Management and Rekeying
Both the IGL and ISL require a secret key to make cache in-
dices unpredictable. Thus, an attacker cannot map addresses
to indices or vice-versa, even if SDID, IGL, and ISL are
publicly known. However, this makes it essential to prevent
software from extracting the secret key used by SassCache.

SassCache uses a boot-time hardware-generated key, like
CEASER-S [49] and ScatterCache [71]. The key is stored in
a hidden CPU register and is inaccessible to software. This
prevents an attacker from predicting the resulting cache set
from a physical address and vice-versa. Only the SDID may
be set by the software to provide different security contexts.
This keeps the required software and hardware changes low
and modular, decreasing the effort to implement SassCache.

CEASER-S and ScatterCache require rekeying [49],
[71]. The frequency of rekeying is a security parameter
to adapt to improved attacks and security margins [46].

0 2 4 6 8 10 12 14 16
0

0.1

0.2
Fully Accessible

Number of ways accessible

Pr
ob

ab
ili

ty

C = 22% C = 39% C = 63%

Figure 7: Accessibility distribution of cache lines (W = 16)
for different cache coverages C. Fully accessible lines are
observable to an attacker; all others become unobservable.

Key changes work well on write-through caches as no data
inconsistencies can occur. However, rekeying costs perfor-
mance as data is invalidated, causing cache misses. Thus,
changing the key corresponds to a cache flush in terms of
performance. Implementing rekeying for write-back caches
is more costly: The key must not change before all dirty
cache lines were written to memory.

While SassCache could support rekeying for both write-
through and write-back caches, we do not recommend it.
SassCache’s main security gain over previous designs de-
rives from the Index Spacing Layer (ISL). With rekeying,
each epoch will have a certain chance that a given address
is fully reachable by an attacker. If the user decides that this
chance is too high, and the additional security provided by
the Index Generation Layer (IGL) is too low, the rekeying
period then necessarily depends only on the IGL, which
renders the ISL superfluous. This is because under the
assumption that a victim address is attackable, the rekeying
period will now have to be determined only by how long it
takes to succesfully attack the IGL, i.e., ScatterCache.

Instead, we suggest choosing the coverage parameter t
such that the remaining risk is acceptable.

7. Security Evaluation
In this section, we evaluate the security of SassCache against
state-of-the-art attacks. The security is based on two steps:
1) For t=−1, W=16 SassCache prevents full eviction of

the target cache line in 99.999 97% of cases (cf. Sec-
tion 7.1). Thus, on average, the attacker can try to
construct an eviction set for 1 in 3 000 000 cache lines,
or 64B in 185MB of memory. On CPUs with 20 ways
per cache set, this increases 1 in 125 000 000 cache lines,
or 64B in 7.6GB of memory.

2) For attackable cache lines, security reduces to that of
ScatterCache, with attack times from prior work [46].

Like previous designs [71], [54], SassCache precludes attack
techniques based on shared read-only memory (e.g., Flush+
Reload) by placing them separately in the cache per security
domain. Thus, we evaluate SassCache against the remaining
attack classes, i.e., contention- and occupancy-based attacks.

7.1. Properties of SassCache
Partially Accessible Lines. In the worst case, a victim
line falls within the attacker’s coverage in each of the W
ways. The probability PW = CW is low for practical con-

100 101 102 103 104 105 106 107
0

0.2
0.4
0.6
0.8
1

0.
00
03

%
RSA, 3

9%

0.
00
05

%
AES, 3

9%

Cache lines used by victim (M)

O
bs

er
va

bi
lit

y
pr

ob
ab

ili
ty

C = 39% C = 63%

Figure 8: Observability probability (W = 16, C = 39% &
C = 63%), increases with cache lines. A covert channel
requires thousands of cache lines. The probability of a suc-
cessful occupancy-based attack is extremely low. Example
points are openSSL AES T-Tables and mbedTLS RSA-4096.

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

Pr
ob

ab
ili

ty

C = 22% C = 39% C = 63%

Figure 9: Probability to observe partially accessible victim
line N times before it is hidden (W = 16).

figurations (e.g., PW = 0.06% in a 16-way SassCache with
C = 63% or PW = 0.000 033% with C = 39%). For such
fully accessible lines, the security of SassCache is equivalent
to that of ScatterCache with the same security domain size
(i.e., W ways, C · S sets). All other lines are partially
accessible, i.e., they can hide in the victim region, where
they are not observable nor controllable by the attacker.
Figure 7 highlights the abundance of partially accessible
lines in the distribution. The exponential dependence of PW
on the number of indices W motivates SassCache to build
on ScatterCache instead of other skewed designs.

For victim programs where M lines encode the same
information (e.g., AES T-Tables, M = 16), the probability
that at least one of them is fully accessible is PM = 1 −
(1− CW)M . Figure 8 illustrates PM for a 16-way cache.
Repeated Observations. Cache attacks typically require
many observations of sensitive lines, both for contention-
based attacks [36], [68], [46], [36], [57] and for cache oc-
cupancy attacks [37], [60]. In SassCache, accesses to victim
lines are only observable to the attacker when they evict
an attacker’s line. The probability for a partially accessible
victim line to be observable N times before being hidden is

P [N]
(1−CW)

, where P [N] =
∑W−1

i=0 [(i
W)N ·W−i

W ·
(

i
W

)
·Ci ·(1−

C)(W−i)] (cf. Figure 9). The expected number of observable
victim accesses until the line is hidden can be computed as
E[N] =

∑∞
n=0 n · P [N = n]. In a 16-way SassCache with

C = 39%, this is already after E[N] ≈ 0.72 accesses on
average, for C = 63% after E[N] ≈ 2 accesses. This reflects
the number of potentially observable victim accesses to the
cache line, i.e., assuming that the attacker occupies its full
share of the cache (C · S ·W lines).

Summarized, the vast majority of lines are not fully
accessible by the attacker, and partially accessible lines

rapidly become unobservable. Section 7.2 examines the se-
curity of SassCache against contention-based attacks, evalu-
ating state-of-the-art profiling and exploitation success rates.
Section 7.3 evaluates SassCache for cache occupancy leak-
age, an attack vector largely unmitigated by prior designs.

7.2. State-of-the-Art Attack Evaluation
We implement SassCache in CacheFX [23], which models
attack strategies on real systems with attacker and victim
code, which the framework invokes accordingly. Attacker
and victim issue requests to cache implementations that re-
spond with hits and misses. The framework analyzes attack
success statistically and offers several knobs to test caches
configured with different parameters, e.g., number of sets,
ways, and replacement policy. With the framework we test
the applicability of state-of-the-art profiling (Single Holdout
Method [49], Group Elimination Method [50], and Prime+
Prune+Probe [46]) on SassCache, to find partially congruent
addresses, i.e., lines congruent with the target in one or more
ways. We configure SassCache with 16 ways, and t = −1
(i.e., C = 39%) and test each profiling algorithm 500 times.
We sample a random victim address, let the algorithm find
an eviction set, and test the quality of the found set by (a)
determining the share of truly conflicting addresses (True
Positive Rate (TPR)) in the eviction set, and (b) computing
the success rate (SR) of evicting the victim address. We
compute the minimum, maximum, mean, and median for
TPR and SR over all runs to statistically analyze profiling
on SassCache.

We observe that all techniques fail with overwhelming
probability, as expected (cf. Section 7.1). Our analysis of the
algorithms’ progress shows that after a few victim evictions,
the victim address is not observable to the attacker anymore
and hidden in the cache, as expected (cf. Figure 9). Hence,
both the minimum and median of TPR and SR are 0.
Maximum TPR and SR vary depending on the algorithm,
the eviction set size, and the concrete cache parameters, but
occur infrequently when the victim address is fully attacker-
reachable (and SassCache falls back to ScatterCache). For
instance, the most efficient technique Prime+Prune+Probe
achieves a maximum TPR of 1 and a SR according to Figure
5 in [71]. Mean TPR and SR are skewed according to the
maximum and the probability of fully accessible lines.

Note that our empirical analysis considers a single target
victim line. Figure 8 covers the probability for profiling to
succeed on at least one out of M redundant lines, which is
low for real-world attack targets. Advanced profiling meth-
ods [46] enlarge eviction sets (of sufficient size) without
relying on further victim accesses. This does not affect Sass
Cache, as the address is mostly not reachable in the first
place. Furthermore, once a line is hidden, the attacker cannot
proceed without self-eviction by the victim (cf. Section 3).

7.3. Cache Occupancy Leakage
The cache occupancy channel is arguably the most primitive
cache side-channel. When the number of cache lines a
victim uses depends on a secret bit, an attacker can recover

the bit by simply measuring cache utilization. Traditional
shared caches as well as secure randomized caches [49],
[71], [50], [54] cannot completely close the cache occupancy
channel. This can easily be seen when looking at a fully-
associative cache: While there is no cache-set information
to gain, the occupancy of a different number of cache lines
can still be observed. SassCache improves over previous
secure randomized caches, as only part of the cache occu-
pancy of the victim is visible to the attacker. As the cache
occupancy channel covers a significant amount of irrelevant
cache lines, all cache occupancy attacks so far [37], [60]
require a large number of repetitions. Unless the victim’s
cache line is fully coverable by the attacker, it will quickly
be hidden in an attacker-unreachable part of the cache (cf.
Section 7.1). Furthermore, self-eviction of a specific cache
line is generally unreliable and unlikely (cf. Section 3). If
a victim occupies large amounts of memory, self-eviction
can occur, but with adverse effects as it reduces the overall
number of cache lines occupied by the victim as compared to
the non-self-eviction case, reducing exposure to the attacker.
This is particularly relevant for the covert channel case
where the attacker occupies a large fraction of the cache.
To obtain worst-case numbers, we assume that in this case
the attacker is completely lucky and there is no self-eviction
that conceals some of the fully coverable visible cache lines.
Consequently, the formula from Section 7.1 also applies to
the cache occupancy channel: The probability that a cache
occupancy channel encoding ‘0’ and ‘1’ into M cache lines
works successfully is the probability that at least one of
these cache lines is fully coverable (cf. PM in Section 7.1).

With the default configuration of 39% coverage, for
very low values, the success probability for the occupancy
channel is close to 0% (cf. Figure 8). If the difference
between a secret bit ‘0’ and a secret bit ‘1’ is reflected
in the access to more than two million cache lines, the
probability that the attacker can observe the occupancy
channel is 50%. For an observability probability of 95%,
more than 10 million cache lines must encode a ‘1’. This
number of cache lines is far beyond normal cache attack
targets: OpenSSL AES T-Table encryption encodes key-bit
information in 16 cache lines resulting in an observability
probability below 0.0005%. mbedTLS RSA-4096 signature
computation encodes equivalent key-bit information in up to
9 cache lines [57], resulting in an observability probability
below 0.0003%. Hence, SassCache also closes the cache
occupancy channel in many attack scenarios.

7.4. Asymmetric Domain Sizes

A convenient feature of SassCache is that its parameters can
be configured for each system. By adjusting the coverage
parameter t of the Index Derivation Function (IDF) (cf.
Section 5), we can fine-tune the security and performance
tradeoff. We will see in Section 8.4 that this tradeoff is not
necessarily bad for systems that are shared by many users.
Domain sizes can cover 12% to 98% of the available cache.
While smaller coverage increases the security, it reduces the
application’s performance due to the reduced cache size.

Maybe counterintuitively, restricting security-critical do-
mains more does not increase their security. Since attackers
only need to find congruent addresses to the victim’s in their
own address space, the only domain size that matters is the
attacker’s. As it is generally unkown which parties on a
system will be attackers, the largest domain size should be
chosen based on the security requirement for all domains.
Lower priority applications can use reduced domain sizes.

7.5. Multi-Domain Attacks and the Choice of t

Ristenpart et al. [53] showed that achieving co-location in
the cloud is possible. Inci et al. [28] also showed that, while
rare, co-location of more than 1 VM on the same system
is possible. Fang et al. [21] also show container scheduling
(e.g., Kubernetes) is vulnerable to co-location.

If attackers can occupy multiple security domains on
the same system, they may collude to mount a stronger
attack on a victim VM. When we combine the coverage
of multiple domains, the expected total coverage changes
with the attacker-controlled domains nd according to Ct =
1 − (1− C)

nd (cf. Section 5.1). Doubling the amount of
domains nd effectively reduces the security equal to an
increase of the parameter t by 1. For example, two colluding
attackers with C = 39% could, at best, mount an attack as
if the coverage C were 63%. In practice, cloud providers
need to select an appropriate base coverage for security (e.g.,
t = −1), and then adjust down with the above formula based
on their expectation of co-location probability.

7.6. Trusted Execution Environments
The threat model of Intel SGX [14] and AMD SEV-SNP [1]
explicitly allows malicious privileged software and hypervi-
sors. Without further modification for these TEEs, this goes
beyond our threat model because it contradicts our goal of
backwards compatibility. If the ISL is disabled, SassCache
falls back to the security of a secure randomized cache.

8. Performance Evaluation
In this section, we analyze SassCache’s performance in a
default configuration with 39% coverage (unless stated oth-
erwise). We use gem5 to run MiBench [25], lmbench [40],
scimark2 [45], and the GAP benchmark [5], in line with
previous works [71], [49], [50] to show the skewed cache
characteristics of SassCache. With our custom simulator
we run extensive workloads (e.g., SPEC CPU 2017) effi-
ciently and evaluate the cache’s behavior based on real-
world recorded memory access traces, e.g., for a multi-
tenant cloud scenario. We show that SassCache performs
similar to traditional set-associative caches of the same size,
and can increase in relative performance as multiple tenants
compete for the cache. All caches are evaluated without
rekeying, as this would be highly implementation dependant.

8.1. gem5 Test Setup
To evaluate SassCache in the gem5 full system simulator,
we run gem5 as a 32-bit ARM DerivO3 3GHz CPU. We
configure a two-level cache system. The L1 is made up of 2

bc
kro

n

bc
ura

nd

bfs
kro

n

bfs
ura

nd

cc
kro

n

cc
ura

nd

pr
kro

n

pr
ura

nd

sss
p kro

n

sss
p ura

nd

tc
kro

n

tc
ura

nd
mea

n
−20

−10
−5

0
5

H
it

R
at

e
∆

[%
]

(h
ig

he
r

is
be

tte
r)

LRU BIP Scatter Skewed Skewed50 Sass

Figure 10: gem5 cache hit rate in the GAP benchmark.
Comparison against Rand as a baseline.

32 kB, 8-way caches for instructions and data. As this is the
same for all configurations, the differences in performance
stem from the respective L2 implementations only. All L2
caches are configured with 1MB and 16 ways. The L1 and
L2 cache line size is 64B. This is similar to typical server
and desktop configurations today with slices functioning as
independent caches (i.e., 1MB per cache slice and 64B
cache line size), since when all cores on a system are in use,
the average per-core share of the LLC amounts to the size of
1 slice. We test 6 cache designs: (1) Bimodal Insertion Policy
(BIP), (2) Least Recently Used (LRU), and (3) random
replacement (Rand), for regular caches; (4) ScatterCache
(hash-based), (5) skewed associative caches, and (6) Sass
Cache, for skewed caches. For SassCache, we evaluate the
default security level with the coverage parameter t = −1,
i.e., a single-tenant coverage C ≈ 39%. We also include
Skewed50, a skewed cache at 50% capacity, as this is the
nearest size to 39% SassCache for a standard configuration
without changing W .

We deploy the same software setup as prior work [71],
with poky Linux (19.0.2) in Yocto 2.5 (“sumo”) and Linux
4.14.67 patched for compatibility with gem5. For the evalua-
tion, we use the cache statistics from the gem5 simulator. We
configure the QUARTA instances for our IDF with the exact
distribution and latency properties described in Section 6.

8.2. gem5 Results
In our evaluation in gem5, the benchmark is the only work-
load on the system, i.e., the only active tenant (one security
domain). Therefore, cache hit rates and performance of Sass
Cache suffer from the smaller cache size of each domain,
as only ∼39% of the cache are used by the single tenant.
We evaluate concurrent security domains in Section 8.3. We
measure only the L2 hit rate, as the L1 does not change.

The GAP benchmark consists of 6 workloads (bc, bfs,
cc, pr, sssp, tc) with 2 input graphs, kron (-g27 -k16)
and urand (-u27 -k16). Rand is the baseline for the
hit rate (cf. Figure 10). As expected, SassCache’s smaller
effective cache size lowers the hit rate on average by
11.6 p.p. (6.1 p.p. to 20 p.p.). On average, SassCache’s hit
rate is 11.5 p.p. lower than ScatterCache. For GAP, (the
best performing) LRU has an average 14.1 p.p. higher hit
rate than SassCache. Skewed50 approximates SassCache’s
effective size and closely follows its hit rate, which supports
that the delta stems mostly from the smaller effective size.

composite fft sor monte
carlo

sparse
matmult

lu
0

200

400

600

2
8
0
.4

6
0

4
6
4
.9

5
4
5
.7

1
7
2
.1

1
5
9
.12
7
9
.3

5
9
.8

4
6
5
.2

5
4
5
.7

1
7
1
.2

1
5
4
.72
7
1

5
5
.2

4
3
1
.9 5
4
5
.7

1
7
1
.2

1
5
0
.82

9
9
.8

9
3
.1

5
0
2
.6

5
4
5
.7

1
8
4
.4

1
7
3
.12
9
9
.2

9
2
.1

5
0
0
.9

5
4
5
.7

1
8
4
.3

1
7
2
.92
8
5

8
5
.5

4
7
1
.3

5
4
5
.7

1
6
8
.8

1
5
3
.52
9
7
.1

8
9
.2

5
0
2
.9

5
4
5
.7

1
8
2
.3

1
6
5
.2

Sc
or

e
(h

ig
he

r
is

be
tte

r)

BIP LRU Rand Scatter Skewed Sass Skewed50

Figure 11: Result score for the scimark2 benchmarks for the
gem5 simulator with different L2 replacement policies.

Total iTB
walker

dTB
walker

Inst Data
0

50

100

2
2
.5

9
1
.3

9
9
.3

6
1
.7

6
.32

2

8
8
.9 9
9
.3

6
9
.2

5
.6

2
2
.8

8
9
.4 9
9
.1

6
7
.7

6
.7

3
1
.2

9
0
.2

9
8
.9

6
8
.4

1
73
1
.2

9
0
.1

9
8
.9

6
8
.4

1
72
7
.2

8
5
.8 9
8

6
2

1
2
.32
8

8
6
.6 9
8
.4

6
2
.9

1
3
.3

H
it

R
at

e
[%

]
(h

ig
he

r
is

be
tte

r)

BIP LRU Rand Scatter Skewed Sass Skewed50

Figure 12: Cache hit rate by origin of cache requests for the
scimark2 benchmark in gem5 for different caches.

To evaluate the impact of the smaller effective cache
size, we use scimark2 [45] in the -large 1 configura-
tion. The cache hit rate (Figure 12) shows that SassCache
performs similar to other skewed caches for the total hit rate
and data accesses. All skewed caches show a notably higher
hit rate for the fft and composite benchmark than the
non-skewed BIP, LRU, and Rand policies. Consequently,
for scimark2, skewed caches like SassCache outperform
the non-skewed caches due to these benchmarks (cf. Fig-
ure 11) [71]. As expected, SassCache’s hit rate in this
benchmark lies slightly below the Skewed50 configuration,
due to SassCache’s smaller effective size of ∼39%. Here,
ScatterCache and the skewed cache have the highest total
hit rate, with SassCache being 4 p.p. lower, due to the data
(−4.7 p.p.) and instruction (−6.3 p.p.) hit rates. The total
hit rate of LRU is 5.2 p.p. lower than SassCache. Although
LRU’s instruction hit rate outperforms SassCache by 7.1 p.p.,
its data hit rate is 6.7 p.p. lower. The reason for this is a high
code locality but a weaker data locality in scimark2.

Caches with random replacement policy, e.g., our
skewed caches, show a smoother roll-off after the L2
cache [71]. We verified this for SassCache using the lm-
bench lat_mem_rd benchmark [40] for 8MB size and
64B (i.e., cache line size) strides, cf. Figure 13. SassCache
closely follows Skewed50, due to its smaller effective size.

With a 256B stride size the step between the L2 and
higher memory levels is shifted to a larger access size, cf.
Figure 14. This shift results from skewed caches breaking
the alignment of addresses and the cache set indices. In tra-
ditional set-associative caches, lat_mem_rd’s 256B stride
size performs sparse but aligned memory accesses that use
every fourth cache index. With skewed caches the indices
are random and, hence, there are fewer cache conflicts. Thus,
for this type of access pattern, skewed caches generally
improve the hit rate and lead to lower read latencies for

0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

ow
er

is
be

tte
r)

Sass BIP
Sass+Quarta LRU
Skewed50 Rand

Scatter Skewed

Figure 13: Memory read latency with lat_mem_rd for
different cache configurations with 64B strides.

0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

ow
er

is
be

tte
r)

Sass BIP
Sass+Quarta LRU
Skewed50 Rand

Scatter Skewed

Figure 14: Memory read latency with lat_mem_rd for
different cache configurations with 256B strides.

larger ranges of memory [71]. However, due to SassCache’s
smaller effective cache size, this effect is less pronounced
than for, e.g., ScatterCache. Still, the apparent size shifts
from 1MB to about 1.5MB (≈ 4 ∗ 0.39).

We also run the MiBench benchmark (small and large
setting) on gem5 with the Rand cache as a baseline. The av-
erage hit rate in MiBench (small dataset) is 11.8 p.p. (2.4 p.p.
to 22.5 p.p.) lower than Rand, cf. Figure 15. For MiBench
with the large dataset, cf. Figure 16, this average improves
to be 7.5 p.p. (0.8 p.p. to 20.2 p.p.) lower than Rand. Sass
Cache has on average a 12.1 p.p. and 7.6 p.p. lower hit
rate for MiBench small and large, respectively, than Scatter
Cache. SassCache’s hit rate is on average 13.6 p.p.(MiBench
small) and 9.2 p.p.(MiBench large) lower than for LRU and
BIP caches, which have the highest hit rates. In both cases,
the Skewed50 consistently has a higher hit rate than Sass
Cache but strongly correlates with it, confirming skewed
cache characteristics for SassCache and lower hit rates in the
single-tenant scenario with the lower effective cache size.

Over all GEM5 benchmarks, SassCache has a 9.8 p.p.
lower hit rate than Rand and 11.7 p.p. lower than LRU in the
single-tenant gem5 evaluation. For comparison, at C=63%,
the average hitrates go down by 4.6 p.p. and 6.4 p.p. com-
pared to Rand and LRU. The scimark2 benchmark shows
that in some workloads, skewed caches outperform non-
skewed caches, and SassCache benefits from this as well.
The variation in hit rate is expected due to each bench-
mark having different access patterns with different locality
properties. Thus, each workload benefits differently from
a particular cache architecture which are tailored towards
certain locality properties, e.g., via their replacement policy.
QUARTA Latency. Though we expect to hide latency in
lower level accesses (see Section 6.1), we also evaluate a
12c (3.25 ns@3GHz) overhead in our L2 (see Figures 13

mibe
nc

h/C
RC32

mibe
nc

h/F
FT

mibe
nc

h/a
dp

cm

mibe
nc

h/b
asi

cm
ath

mibe
nc

h/b
itc

ou
nt

mibe
nc

h/b
low

fish

mibe
nc

h/d
ijk

str
a

mibe
nc

h/g
sm

mibe
nc

h/j
pe

g

mibe
nc

h/l
am

e

mibe
nc

h/m
ad

mibe
nc

h/p
atr

ici
a

mibe
nc

h/q
so

rt

mibe
nc

h/r
ijn

da
el

mibe
nc

h/s
ha

mibe
nc

h/s
tri

ng
sea

rch

mibe
nc

h/s
us

an

mibe
nc

h/t
iff

2b
w

mibe
nc

h/t
iff

2rg
ba

mibe
nc

h/t
iff

dit
he

r

mibe
nc

h/t
iff

med
ian

mibe
nc

h/t
yp

ese
t
mea

n
−20

−10

0

H
it

R
at

e
∆

[%
]

(h
ig

he
r

is
be

tte
r)

LRU BIP Scatter Skewed Skewed50 Sass

Figure 15: MiBench cache hit rate in gem5 with a small
dataset. Percentage points over Rand.

mibe
nc

h/C
RC32

mibe
nc

h/F
FT

mibe
nc

h/a
dp

cm

mibe
nc

h/b
asi

cm
ath

mibe
nc

h/b
itc

ou
nt

mibe
nc

h/b
low

fish

mibe
nc

h/d
ijk

str
a

mibe
nc

h/g
sm

mibe
nc

h/j
pe

g

mibe
nc

h/l
am

e

mibe
nc

h/m
ad

mibe
nc

h/p
atr

ici
a

mibe
nc

h/q
so

rt

mibe
nc

h/r
ijn

da
el

mibe
nc

h/s
ha

mibe
nc

h/s
tri

ng
sea

rch

mibe
nc

h/s
us

an

mibe
nc

h/t
iff

2b
w

mibe
nc

h/t
iff

2rg
ba

mibe
nc

h/t
iff

dit
he

r

mibe
nc

h/t
iff

med
ian

mibe
nc

h/t
yp

ese
t
mea

n
−20

−10

0

H
it

R
at

e
∆

[%
]

(h
ig

he
r

is
be

tte
r)

LRU BIP Scatter Skewed Skewed50 Sass

Figure 16: MiBench cache hit rate in gem5 with a large
dataset. Percentage points over Rand.

and 14). This is a costly 30% increase at our LLC base
latency of 40c. Compared to SassCache without overhead,
hitrates remain virtually the same (<±0.2 p.p. avg. differ-
ence), while scimark scores drop 4.1% on average.

8.3. Custom Cache Simulator Setup
We build a cache simulator based on the model by Pur-
nal et al. [46]. We evaluate SassCache against ScatterCache,
CEASER-S, standard LRU, Rand, and a way-split cache (an
approximation of Intel CAT [30]), in SPEC CPU 2017.

To run benchmarks in our simulator, we collect real
memory access traces (including instructions) with the Intel
PIN tool [29]. While this is much faster than gem5 emula-
tion, we still need to limit the size of our traces. Like prior
works [71], [50], [51], we collect a representative sample
trace over 250 million instructions for each benchmark.

Our simulator implements 2 cache levels. The L1 con-
sists of 2 set-associative, 32 kB, 8-way data and instruction
caches with tree-PLRU replacement and is the same for all
LLCs. The LLC has a size of 1MB and 16 ways, similar to
modern Intel slice configurations. SassCache is configured
for 39% coverage, for CEASER-S we use 2 partitions
and LRU replacement. Our way-split cache supports evenly
splitting the cache into separate domains along the ways.

8.4. Custom Cache Simulator Results
We run our recorded traces through the cache simulator to
measure LLC hit rates in SPECspeed 2017. Since average
hit rates vary between benchmarks, we compare the ratio
of hit rates for 4 cache implementations to the Rand cache
in Figure 17. Owing to its reduced size per security do-

bw
av

es
ca

ctu

de
ep

sje
ng

ex
ch

an
ge

2

fot
on

ik

im
ag

ick lbm lee
la mcf na

b

om
ne

tpp pe
rl

po
p2 rom x2

64
xa

lan
c xz

mea
n

−10

−5

0

5

(h
r x
/h

r r
an

d
−

1)
·1
0
0

[%
]

SassCache Scatter LRU CEASER-S

Figure 17: Change in LLC hit rate over Rand for SPEC-
speed 2017. Std.dev. < 0.03% for all tests over 10 runs.

92

94

96

hi
t

ra
te

[%
]

un
lim

ite
d

sc
an

SassCache Scatter LRU CEASER-S way-split

0 1 2 3 4 5 6 7

92

94

96

hi
t

ra
te

[%
]

lim
ite

d
sc

an

Figure 18: Average simulated hit rates of SPECspeed 2017
with 0-7 parallel domain workloads. Size of way-split par-
tions: 0: 100%, 1: 50%, 2-3: 25%, 4-7: 12.5%. Top: ad-
versarial workload with 64B stride, unlimited size. Bottom:
1024B stride repeating 512 addresses.

main, SassCache performs worse than other caches in most
tests, which is more pronounced in benchmarks with larger
working sets or those optimized for LRU replacement. As
in Section 8.2, we see that SassCache is at a disadvantage
in single-threaded performance evaluations. When compared
to the overall best, LRU, we see average hit rate drops of
1.75%, 0.46%, 0.08%, and 0.52% for SassCache, Scatter
Cache, CEASER-S, and Rand, respectively.

We also examine SassCache when several competing
workloads run concurrently, e.g., in a multi-tenant cloud.
Here we simulate only the LLC, as the L1 is not shared
among cores. We run SPEC traces as before, but interleave
them with up to 7 adversarial workloads. We test 2 different
types of adversarial workloads: a linear scan over an infinite
range with 64B stride (e.g., streaming a lot of data), and
a scan over a limited set of 512 addresses with a stride of
1024B, both shown in Figure 18. We configure our way-
split cache such that it always has at least as many separate
domains as workloads, i.e., 1/2/4/8, which results in the
visible performance plateaus. In this particular test, we run
only the memory accesses of the benchmark traces, leaving
out the instruction accesses. This accentuates the different
behaviors of the caches for these parallel workloads. As
Figure 18 shows, caches like SassCache and ScatterCache
suffer under workloads that use many cache lines without
re-referencing them because of their random replacement,

which can cause evictions even on recently used lines. For
SassCache, this effect is at first counteracted by its isolation
property. With few parallel workloads, many cache lines
are exclusive to each domain. LRU-based caches fare better
in general, as often-referenced cache lines can consistently
survive streaming. The way-split cache leads under this
workload, because the complete domain separation provides
excellent thrashing protection as long as the workloads fit
within the reduced cache size. The second workload is more
adversarial to LRU-based caches, as not all sets are filled
optimally. Here, SassCache can provide higher hit rates than
a way-split cache while offering almost the same security.

These parallel tests reveal an important property of Sass
Cache. While single-threaded tests show decreased perfor-
mance because of the reduced size and random replacement,
relative performance of SassCache increases with higher
parallelism. This is because parallel workloads proportion-
ally reduce the average share of cache a thread can use.
Critically, this reduction does not compound multiplicatively
with the coverage C of SassCache, so a coverage of 39%
will already lose importance with 4 cores.

Finally, we compare the hit rates for different C of Sass
Cache for the 2-level setup. The average SPEC hit rate for
SassCache (cf. Figure 17) is 88.36% at 39% coverage. For
coverages of 12%, 22%, 63%, 86%, and 98%, this changes
to 86.18%, 87.29%, 88.89%, 89.17%, and 89.28%. This
almost reaches ScatterCache’s performance for 98% cover-
age and clearly drops towards 12% coverage as expected.

9. Conclusion
In this paper, we proposed SassCache, a novel secure cache
design based on a low-latency cryptographic function tai-
lored to this use case. SassCache eliminates the attacker’s
capability of building an eviction set in 99.999 97% of the
cases. We found that the hiding property allows for a higher
share of the cache than static partitioning, while providing
virtually the same security. Furthermore, we showed that
SassCache also mitigates the cache occupancy channel, e.g.,
a cache occupancy attack on OpenSSL AES T-Tables or
mbedTLS RSA-4096 can succeed in less than 0.0005% of
cases. Our performance evaluation revealed that SassCache
only has an overhead of 1.75% on average on the last-level
cache hit rate in the SPEC2017 and an average decrease
of 11.7 p.p. in hit rate for MiBench, GAP, and Scimark
benchmark compared to a set-associative LRU cache. Hence,
we conclude that SassCache is a promising design for use
in appropriate, security-critical contexts.

Acknowledgments
This research is supported in part by the European Research
Council (ERC #101020005), the Flemish Government
(FWO project TRAPS) and CyberSecurity Research Flan-
ders (#VR20192203). Antoon Purnal is supported by a
grant of the Research Foundation - Flanders (FWO). Addi-
tional funding was provided by a generous gift from Google.
Any opinions, findings, and conclusions or recommenda-

tions expressed in this paper are those of the authors and
do not necessarily reflect the views of the funding parties.

References
[1] AMD. AMD SEV-SNP: Strengthening VM Isolation

with Integrity Protection and More, 2020. URL: https:
//www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[2] ARM. ARM Architecture Reference Manual ARMv8. ARM Limited,
2013.

[3] ARM Connected blog. Armv8-A architecture: 2016 additions,
2016. URL: https://www.community.arm.com/processors/b/blog/
posts/armv8-a-architecture-2016-additions.

[4] Roberto Avanzi. The QARMA block cipher family: Almost MDS
matrices over rings with zero divisors, nearly symmetric even-
mansour constructions with non-involutory central rounds, and search
heuristics for low-latency S-boxes. IACR Transactions on Symmetric
Cryptology, 2017(1):4–44, 2017.

[5] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP
Benchmark Suite. arXiv:1508.03619, 2015.

[6] Nathan Beckmann and Daniel Sanchez. Jigsaw: Scalable software-
defined caches. In PACT, 2013.

[7] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In CRYPTO, 2016.

[8] Daniel J. Bernstein. Cache-Timing Attacks on AES, 2005. URL:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[9] Rahul Bodduna, Vinod Ganesan, Patanjali Slpsk, Kamakoti Veezhi-
nathan, and Chester Rebeiro. Brutus: Refuting the security claims of
the cache timing randomization countermeasure proposed in ceaser.
IEEE Computer Architecture Letters, 19(1):9–12, 2020.

[10] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun,
Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S.
Thomsen, and Tolga Yalçın. PRINCE – A low-latency block cipher
for pervasive computing applications. In ASIACRYPT, 2012.

[11] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer,
and Mengjia Yan. CaSA: End-to-end Quantitative Security Analysis
of Randomly Mapped Caches. In MICRO, 2020.

[12] Dušan Božilov, Maria Eichlseder, Miroslav Kneževic, Baptiste Lam-
bin, Gregor Leander, Thorben Moos, Ventzislav Nikov, Shahram
Rasoolzadeh, Yosuke Todo, and Friedrich Wiemer. PRINCEv2 – more
security for (almost) no overhead. In SAC, 2020.

[13] Pi-Feng Chiu, Christopher Celio, Krste Asanović, David Patterson,
and Borivoje Nikolić. An out-of-order risc-v processor with resilient
low-voltage operation in 28nm cmos. In IEEE Symposium on VLSI
Circuits, 2018.

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptol-
ogy ePrint Archive, Report 2016/086, 2016.

[15] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Min-
imal hardware extensions for strong software isolation. In USENIX
Security Symposium, 2016.

[16] Johan De Gelas. AMD Rome Second Generation EPYC Review:
2x 64-core Benchmarked, 2019. URL: https://www.anandtech.com/
show/14694/amd-rome-epyc-2nd-gen/.

[17] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
HybCache: Hybrid side-channel-resilient caches for trusted execution
environments. In USENIX Security Symposium, 2019.

[18] Andrés Djordjalian. Minimally-skewed-associative caches. In Sym-
posium on Computer Architecture and High Performance Computing.
Proceedings., 2002.

[19] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Non-Monopolizable Caches: Low-
Complexity Mitigation of Cache Side Channel Attacks. ACM Trans-
actions on Architecture and Code Optimization (TACO), 8(4), 2011.

[20] Maria Eichlseder and Daniel Kales. Clustering Related-Tweak Char-
acteristics: Application to MANTIS-6. IACR Transactions on Sym-
metric Cryptology, 2018(2):111–132, 2018.

[21] Chongzhou Fang, Han Wang, Najmeh Nazari, Behnam Omidi, Avesta
Sasan, Khaled N Khasawneh, Setareh Rafatirad, and Houman Homay-
oun. Repttack: Exploiting cloud schedulers to guide co-location
attacks. arXiv:2110.00846, 2021.

[22] Andrei Frumusanu. The Ampere Altra Review: 2x 80 Cores Arm
Server Performance Monster, 2020. URL: https://www.anandtech.
com/show/16315/the-ampere-altra-review/.

[23] Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou,
Thomas Unterluggauer, and Yuval Yarom. Cachefx: A framework
for evaluating cache security. arXiv:2201.11377, 2022.

[24] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazo-
qui, Johann Heyszl, and Thomas Eisenbarth. AutoLock: Why Cache
Attacks on ARM Are Harder Than You Think. In USENIX Security
Symposium, 2017.

[25] Matthew R. Guthaus, Jeff Ringenberg, Dan Ernst, Todd Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. In WWC, 2001.

[26] Zecheng He and Ruby B Lee. How secure is your cache against
side-channel attacks? In MICRO, 2017.

[27] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In S&P, 2013.

[28] Mehmet Sinan Inci, Berk Gulmezoglu, Thomas Eisenbarth, and Berk
Sunar. Co-location detection on the cloud. In COSADE, 2016.

[29] Intel. Pin - A Dynamic Binary Instrumentation Tool, 2012.
URL: https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool.

[30] Intel. Improving Real-Time Performance by Utilizing
Cache Allocation Technology: Enhancing Performance
via Allocation of the Processor’s Cache, 2015. URL:
https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/cache-allocation-technology-white-paper.pdf.

[31] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide, 2019.

[32] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, 1996.

[33] Jingfei Kong, Onur Acıiçmez, Jean-Pierre Seifert, and Huiyang Zhou.
Hardware-software integrated approaches to defend against software
cache-based side channel attacks. In HPCA, 2009.

[34] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache
side channel attacks in cloud computing. In HPCA, 2016.

[35] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In
MICRO, 2014.

[36] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-Level Cache Side-Channel Attacks are Practical. In S&P, 2015.

[37] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: Cross-Cores Cache Covert Channel. In DIMVA, 2015.

[38] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In RAID, 2015.

[39] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In NDSS, 2017.

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://www.community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.anandtech.com/show/14694/amd-rome-epyc-2nd-gen/
https://www.anandtech.com/show/14694/amd-rome-epyc-2nd-gen/
https://www.anandtech.com/show/16315/the-ampere-altra-review/
https://www.anandtech.com/show/16315/the-ampere-altra-review/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf

[40] Larry McVoy and Carl Staelin. Lmbench: Portable Tools for Perfor-
mance Analysis. In USENIX ATC, 1996.

[41] Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge,
Marcel Medwed, and Stefan Mangard. Cryptag: Thwarting physical
and logical memory vulnerabilities using cryptographically colored
memory. arXiv:2012.06761, 2020.

[42] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and An-
gelos D Keromytis. The Spy in the Sandbox: Practical Cache Attacks
in JavaScript and their Implications. In CCS, 2015.

[43] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA, 2006.

[44] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. Cryptology ePrint Archive, Report 2002/169, 2002.

[45] Roldan Pozo and Bruce R. Miller. Scimark 2.0, 2004. URL: https:
//math.nist.gov/scimark2/.

[46] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede.
Systematic Analysis of Randomization-based Protected Cache Archi-
tectures. In S&P, 2021.

[47] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+scope:
Overcoming the observer effect for high-precision cache contention
attacks. In CCS, 2021.

[48] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for prob-
abilistic Prime+Probe attacks and covert channels in ScatterCache.
arXiv:1908.03383, 2019.

[49] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In MICRO, 2018.

[50] Moinuddin K Qureshi. New attacks and defense for encrypted-address
cache. In ISCA, 2019.

[51] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely,
and Joel Emer. Adaptive insertion policies for high performance
caching. ACM SIGARCH Computer Architecture News, 35(2):381,
2007.

[52] RISC-V Foundation. The RISC-V Instruction Set Manual, Vol. II:
Privileged Architecture, Version 20190608-Priv-MSU-Ratified, 2019.

[53] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-
age. Hey, You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds. In CCS, 2009.

[54] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: mitigating
conflict-based cache attacks with a practical fully-associative design.
In USENIX Security Symposium, 2021.

[55] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and
efficient fine-grain cache partitioning. In ISCA, 2011.

[56] Somayeh Sardashti, André Seznec, and David A Wood. Skewed
compressed caches. In MICRO, 2014.

[57] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware Guard Extension: abusing Intel SGX
to conceal cache attacks. Cybersecurity, 3(1):2, 2020.

[58] Brian C. Schwedock and Nathan Beckmann. Jumanji: The case for
dynamic NUCA in the datacenter. In MICRO, 2020.

[59] André Seznec. A case for two-way skewed-associative caches. ACM
Computer Architecture News, 1993.

[60] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust Website
Fingerprinting Through The Cache Occupancy Channel. In USENIX
Security Symposium, 2019.

[61] Alan Jay Smith. A comparative study of set associative memory
mapping algorithms and their use for cache and main memory. IEEE
Trans. Software Eng., 4(2), 1978.

[62] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and
Peng Liu. Randomized Last-Level Caches Are Still Vulnerable to
Cache Side-Channel Attacks! But We Can Fix It. arXiv:2008.01957,
2020.

[63] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and
Peng Liu. Randomized last-level caches are still vulnerable to cache
side-channel attacks! but we can fix it. In S&P, 2021.

[64] Mathias Spjuth, Martin Karlsson, and Erik Hagersten. Skewed caches
from a low-power perspective. In Conf. Computing Frontiers, 2005.

[65] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache:
Obfuscating Cache Conflicts with Localized Randomization. In
NDSS, 2020.

[66] David Trilla, Carles Hernandez, Jaume Abella, and Francisco J.
Cazorla. Cache Side-channel Attacks and Time-predictability in High-
performance Critical Real-time Systems. In DAC, 2018.

[67] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanalysis
of DES implemented on computers with cache. In CHES, 2003.

[68] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In S&P, 2019.

[69] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. ACM SIGARCH Computer
Architecture News, 35(2):494, 2007.

[70] Zhenghong Wang and Ruby B. Lee. A Novel Cache Architecture
with Enhanced Performance and Security. In MICRO, 2008.

[71] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In USENIX Security
Symposium, 2019.

[72] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security
Symposium, 2014.

[73] Kehuan Zhang and XiaoFeng Wang. Peeping Tom in the Neighbor-
hood: Keystroke Eavesdropping on Multi-User Systems. In USENIX
Security Symposium, 2009.

[74] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical
page coloring-based multicore cache management. In EuroSys, 2009.

[75] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
Sonicboom: The 3rd generation berkeley out-of-order machine. In
Fourth Workshop on Computer Architecture Research with RISC-V,
2020.

https://math.nist.gov/scimark2/
https://math.nist.gov/scimark2/

	Introduction
	Background
	Caches
	Index Derivation Function
	Cache Attacks
	Secure Caches
	Attacking Secure Caches

	Threat Model and Mitigation Goals
	Threat Model
	Required Attributes

	The SassCache Architecture
	Cryptographic Design
	Design of the Index Derivation Function
	Instantiation with QARMA and QARTA

	Implementation of SassCache
	Hardware Modification
	SassCache Interactions
	Key Management and Rekeying

	Security Evaluation
	Properties of SassCache
	State-of-the-Art Attack Evaluation
	Cache Occupancy Leakage
	Asymmetric Domain Sizes
	Multi-Domain Attacks and the Choice of t
	Trusted Execution Environments

	Performance Evaluation
	gem5 Test Setup
	gem5 Results
	Custom Cache Simulator Setup
	Custom Cache Simulator Results

	Conclusion
	References

