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1337 4242

Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
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Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise
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Out-of-order Execution
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Wait for an hour
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Wait for an hour

LATENCY
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Out-of-order Execution

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);
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Building Meltdown

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?
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Building Meltdown

• Adapted code

1 *( volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : D e r e f e r e n c e o f n u l l p o i n t e r

2 ∗( v o l a t i l e char ∗) 0 ;
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Building Meltdown

• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building Meltdown

• Combine the two things

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

11



Building Meltdown

• Combine the two things

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

11



Building Meltdown

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc

es
s

ti
m

e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

12



Building Meltdown

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc

es
s

ti
m

e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

12





Leaking Passwords from your Password Manager
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Kernel Address Isolation to have Side channels Efficiently Removed
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Kernel Address Isolation to have Side channels Efficiently Removed

KAISER /ˈkʌɪzə/
1. [german] Emperor,
ruler of an empire
2. largest penguin, 
emperor penguin
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KAISER Illustration

Without KAISER:
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KAISER

• We published KAISER in May 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch
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Branch Prediction
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Spectre Variant 1
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Branch Prediction: Other Patterns (Untested)

• type check

• out-of-bounds access into object

table with function pointers

1 struct foo_ops {

2 void (*bar)(void);

3 };

4 struct foo {

5 struct foo_ops *ops;

6 };

7

8 struct foo ** foo_array;

9 size_t foo_array_len;

10

11 void do_bar(size_t idx) {

12 if (idx >= foo_array_len) return;

13 foo_array[idx]->ops ->bar();

14 }
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Spectre Variant 2: Indirect Branches

• instruction stream

does not contain

target address

• target must be fetched

from memory

• CPU will speculate

about branch target

1 kvm_x86_ops ->handle_external_intr(vcpu);

2

3 struct kvm_x86_ops *kvm_x86_ops;

4

5 static struct kvm_x86_ops vmx_x86_ops = {

6 [...]

7 .handle_external_intr =

vmx_handle_external_intr ,

8 [...]

9 };

(code simplified)

21



Spectre Variant 2: Indirect Branches

• instruction stream

does not contain

target address

• target must be fetched

from memory

• CPU will speculate

about branch target

1 kvm_x86_ops ->handle_external_intr(vcpu);

2

3 struct kvm_x86_ops *kvm_x86_ops;

4

5 static struct kvm_x86_ops vmx_x86_ops = {

6 [...]

7 .handle_external_intr =

vmx_handle_external_intr ,

8 [...]

9 };

(code simplified)

21



Spectre Variant 2: Indirect Branches

• instruction stream

does not contain

target address

• target must be fetched

from memory

• CPU will speculate

about branch target

1 kvm_x86_ops ->handle_external_intr(vcpu);

2

3 struct kvm_x86_ops *kvm_x86_ops;

4

5 static struct kvm_x86_ops vmx_x86_ops = {

6 [...]

7 .handle_external_intr =

vmx_handle_external_intr ,

8 [...]

9 };

(code simplified)

21



Spectre Variant 2: Indirect Branches

• instruction stream

does not contain

target address

• target must be fetched

from memory

• CPU will speculate

about branch target

1 kvm_x86_ops ->handle_external_intr(vcpu);

2

3 struct kvm_x86_ops *kvm_x86_ops;

4

5 static struct kvm_x86_ops vmx_x86_ops = {

6 [...]

7 .handle_external_intr =

vmx_handle_external_intr ,

8 [...]

9 };

(code simplified)

21



Branch Prediction

• state is stored in a Branch Target Buffer (BTB)

• indexed and tagged by (on Intel Haswell):

• partial virtual address

• recent branch history fingerprint [sometimes]

• allowed to be wrong

• often not tagged by security domain

→ Break ASLR across security domains (“Jump over ASLR” paper)
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Spectre Variant 2 Idea

• Why not also the other way round?

• Inject misspeculation to controlled addresses across security domains

• Attack goal: Leak host memory from inside a KVM guest
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Known Predictor Internals

• direct branches:

• bits 0-30 of the source go into BTB indexing function

• BTB collisions possible between different security contexts

• predictions are calculated for 32-byte blocks of source instructions

• conditional branches: predicts both taken/not taken and target

address

• indirect branches: two prediction modes:

• “monotonic target”

• “targets that vary in accordance with recent program behavior”
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Predictor Reversing: Minimal Test

• hyperthreaded

• same code

• same memory layout (no ASLR)

• different indirect call targets

• process 1: Flush+Reload loop (always

miss)

• target injection from process 2 can cause

extra load

(explicit execution barriers omitted from diagram)
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Variant 2: first brittle PoC [in initial writeup]

• shortcuts for minimal PoC

• BTB structure from prior research (“Jump over ASLR” paper)

• Source address: low 31 bits

• ... direct branches only

• collide low 31 bits of source address, assume relative target

→ leak rate: ≈ 6 bits/second — almost all the injection attempts fail!

→ CPU distinguishes injections and hypervisor execution

→ Theory:

• injection only works for “monotonic target” prediction

• CPU prefers history-based prediction

• injection works when history-based prediction fails due to system noise

causing evictions
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Branch Prediction Model

27



Predictor Reversing: History Length

on Haswell:

• ≈ 26 branches stored

• measurements get weird around the

boundary [and are not yet entirely correct]

28



Predictor Reversing: History Length

on Haswell:

• ≈ 26 branches stored

• measurements get weird around the

boundary [and are not yet entirely correct]

28



Predictor Reversing: Branch Types

on Haswell:

• taken conditional branch 3

• not-taken conditional branch 7

• unconditional direct jump 3

• unconditional indirect branch 3

• RET 3

• IRETQ 7
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Address Bits in History

→ only low 20 bits of any address affect

history
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Address Bits in History

→ only low 20 bits of any address affect

history
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Predictor Reversing: Branch Type influence?
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Full History Control

• kinda like ROP

• use RET instructions to add history entries

• RET reads a target from RSP, jumps to the target, and

advances RSP in one byte

• RET target is fed into predictor as target

• RET target is always an IRETQ

• use IRETQ instructions to move between RET instructions

• IRETQ target is fed into predictor as source (by the

following RET)

• IRETQ target, apart from the last one, is always RET
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Full History Control
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History Buffer Structure (Haswell)

• a predictor with one bit of history (taken / not taken) per conditional branch [Agner Fog]

• good: compact storage (only one bit per history entry)

• mismatch: Haswell doesn’t seem to store not-taken branches at all

• must still be able to differentiate between “taken, not taken” and “not taken; taken”

• address of taken branch is probably used

• mismatch: seems to differentiate between many targets for a single history entry

• good: naturally forgets about old branches (shifted out)
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Attacking KVM: Overview

• goal: read from arbitrary host-kernel-virtual addresses

• attacker type: controls guest ring 0; knows precise host kernel build

• misdirect first indirect call with memory operand after guest exit

• provides speculative RIP control

• requires breaking hypervisor code ASLR

• flush L3 cache line containing memory operand

• requires L3 eviction sets (for long speculation)

• requires identifying correct eviction set

• use gadget to call into BPF interpreter

• requires register control: caller-saved registers stay intact after guest exit

• requires data at known address: locate host physmap alias of guest memory

• use BPF bytecode to read arbitrary host data and leak it
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Attacking KVM: Steps Overview

• leak host code address bits from history buffer and branch target buffer

(BTB) [dump hyper bhb, hyper btb brute]

• identify L3 cache sets using brute-force timing-based testing of eviction

sets [cacheset identify]

• determine physical address of guest page using “load from physical

address” gadget and timing [find phys mapping kassist]

• determine address of physmap region using memory load gadget and

timing [find page offset]

• select L3 set containing the legitimate indirect call target using brute

force [select set]
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Leaking host address bits (BHB)

approach: dump history buffer contents

• fill history buffer with state from

VMCALL

• shift out some of VMCALL state by

padding history buffer with zeroes;

leaving 2 bits of unknown information

• compare history buffer against controlled

history buffer using misprediction
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Leaking host address bits (BTB)

approach: execute an indirect call and observe

where the CPU jumps

• perform VM exit (VMCALL / IN) to fill

BTB with host jump addresses

• randomize history buffer to force

predictor fallback

• execute CALL with mispredicted target

• place cache-signaling gadgets at all

possible targets; two possible signals

• perform binary search over call targets

38
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Locate Guest Page in Host Memory

Find host-physical address:

• poison BTB and evict function pointer

from L1D+L2 → misspeculated host code

• Use physical-load gadget (see right) to

brute-force physical address

• test guesses with Flush+Reload

1 ; controlled r8 , r9

2 mov rax ,r8

3 movsxd r15 ,r9d

4 ; load page_offset_base

5 mov r8,QWORD PTR [r15*8-0 x7e594c40]

6 lea rdi ,[rax+r8*1]

7 ; page_offset_base + phys_addr_guess

8 mov r12 ,QWORD PTR [r8+rax *1+0 xf8]

Find host-virtual address:

• physmap is 1GiB-aligned

• bruteforce physmap base address

• test guesses by attempting to access page offset base + phys guest page address
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Full Attack: Leak Host Memory

1. place Spectre gadget BPF bytecode in guest memory

2. “Flush” leak area

3. evict call target

4. mistrain branch predictor to BPF interpreter call gadget

5. execute VMCALL

6. “Reload” leak area → obtain value
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Defenses
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Mitigating Spectre

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU
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Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing ARMv7 and ARMv8
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Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Prevents branches at lower privilege level from influencing branches at

higher privilege level

• Must be re-enabled on every switch to higher privileges

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads
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Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Skylake or newer:

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that
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What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves
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What do we learn from it?

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance
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When you read the manuals...

After learning about an exploitable microarchitectural behavior you realize:

• it was documented in the Intel manual

• only now we understand the implications
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Conclusions

• sometimes you can’t see the wood for the trees: everything was

documented

• optimizations often have security implications

• dedicate more time into identifying problems and not solely in

mitigating known problems
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