Systematic Analysis of Randomization-based Protected Cache Architectures

Antoon Purnal*, Lukas Giner†, Daniel Gruss‡, and Ingrid Verbauwhede*

*imec-COSIC, KU Leuven
†Graz University of Technology

Abstract—Recent secure cache designs aim to mitigate side-channel attacks by randomizing the mapping from memory addresses to cache sets. As vendors investigate deployment of these caches, it is crucial to understand their actual security.

In this paper, we consolidate existing randomization-based secure caches into a generic cache model. We then comprehensively analyze the security of existing designs, including CEASER-S and SCATTERCACHE, by mapping them to instances of this model. We tailor cache attacks for randomized caches using a novel PRIME+PRUNE+PROBE technique, and optimize it using burst accesses, bootstrapping, and multi-step profiling. PRIME+PRUNE+PROBE constructs probabilistic but reliable eviction sets, enabling attacks previously assumed to be computationally infeasible. We also simulate an end-to-end attack, leaking secrets from a vulnerable AES implementation. Finally, a case study of RIME reveals that cryptographic weaknesses in the randomization algorithm can lead to a complete security subversion.

Our systematic analysis yields more realistic and comparable security levels for randomized caches. As we quantify how design parameters influence the security level, our work leads to important conclusions for future work on secure cache designs.

I. INTRODUCTION

Caches reduce the latency for memory accesses with high locality. This is crucial for performance but also an inherent side channel that has been exploited in many microarchitectural attacks, e.g., on cryptographic implementations [3], [34], [54], [14], user input [40], [33], [12], [32], system secrets [13], [16], [9], covert channels [27], [11], [30], and transient-execution attacks like Spectre [19], [6], [4] and Meltdown [23], [47].

Due to the limited size of the cache, some addresses are bound to be allocated to the same cache set, i.e., they are congruent and contend for the same resources. While some attacks are enabled by the attacker’s capability to flush cache lines, others work purely with this cache contention. The basic building block for measuring cache contention is the eviction set, a set of congruent addresses. Accessing the addresses in this eviction set brings the cache into a known state. Measuring how long this takes, tells the attacker whether some process worked on congruent addresses since the last eviction.

To mitigate contention-based attacks, the cache hardware can be augmented to so-called protected cache architectures. One line of work reduces interference through better isolation [41], [17], [50], [55], [56], [24], [18], [42], or partial isolation (e.g., locking cache lines) [51], [8]. Another promising line of work is randomized cache architectures [51], [52], [21], [25], [26], [45], [38], [39], [53], which randomize the otherwise predictable mapping of memory addresses to cache sets. Several recently proposed randomized caches [45], [38], [39], [53] evaluate a dedicated hardware mapping to perform the randomization on the fly. Consequently, these architectures only slightly change the interface to the outside, and can maintain efficient and scalable sharing of caches. However, even if the randomized mapping is (cryptographically) unpredictable, there are cache collisions due to the limited size of the cache. Hence, existing proposals incorporate some notion of rekeying, i.e., renewing randomization at runtime. This limits the temporal window in which eviction sets can be used for an attack.

While randomized cache architectures show promise to thwart eviction-based cache attacks with reasonable overhead, supporting them with quantified security claims (a default for cryptographic algorithms) is challenging. Figure 1 depicts the established security argument. The randomized mapping is used as a trust anchor for security in ideal attack conditions, yielding a (conservative) estimate for the rekeying condition. Currently, the security transfer from the randomization mapping to ideal-case security is not well-understood, which we highlight by improving state-of-the-art attacks by orders of magnitude. Assuming that system activity increases the attack complexity, ideal-case security implies real-world security. However, it is unclear to which extent the rekeying condition can be relaxed.

The high interest in these novel cache designs and their seeming relevance to mitigate a growing list of attacks motivates the following fundamental questions of this paper:

Can we accurately compare security levels for randomized caches? How realistic are security levels reported for secure randomized caches? Do secure randomized caches provide substantially higher security levels than regular caches?

In this paper, we systematically cover the attack surface of randomization-based protected caches. We consolidate existing proposals into a generic randomized cache model, and identify attacker objectives in such caches. We then analyze this model, resulting in a comprehensive and parametrized analysis, serving as a baseline for future secure caches and their analysis.

We present PRIME+PRUNE+PROBE (PPP), a technique to find probabilistic but reliable eviction sets in randomized caches. Improving the approach by Werner et al. [53], PPP dramatically outperforms traditional eviction, turning infeasible attacks (e.g.,...
We falsify this assumption for C cores and to simplify cache coherency and lookups.

We analyze non-ideal effects in profiling on randomized caches, and demonstrate the first end-to-end attack.

We study the security requirements of the core randomized mapping and show that the security of CEASER-S can be completely subverted, even with frequent rekeying.

Outline. Section II provides background. Section III presents our generalized cache model. Section IV generalizes contention-based attacks for randomized caches. Section V presents ideal-case eviction set construction, Section VI describes optimizations, and Section VII considers aggravating system effects. Section VIII shows how exploiting internals can completely subvert security guarantees. Section IX discusses results and compares existing proposals. Section X concludes.

II. Background

A. Caches and Cache Hierarchies

CPUs hide memory latency using caches to buffer data expected to be used in the near future. Caches are organized in cache lines. In a directly mapped cache, each memory address can be cached by exactly one of the cache lines, determined by a fixed address-based mapping. If a memory address can be cached in any cache line, the cache is called fully-associative. If a memory address can only be cached in a (fixed) subset of cache lines, the cache is called set-associative. Addresses mapping to the same set are called congruent. Upon a cache line fill request, a replacement policy determines which cache line in the set is replaced. The so-called cache line tag uniquely identifies a cached address. CPU caches can be virtually or physically indexed and tagged, i.e., cache (set) index and the cache line tag are derived from the virtual or physical address.

CPUs have multiple cache levels, with the lower levels being faster and smaller than the higher levels. If all cache lines from a cache A are required to be also present in a cache B, cache B is called inclusive with respect to cache A. If a cache line can only reside in one of two cache levels at the same time, the caches are called exclusive. If the cache is neither inclusive nor exclusive, it is called non-inclusive. The last-level cache (LLC) is often inclusive to lower-level caches and shared across cores to enhance the performance upon transitioning threads between cores and to simplify cache coherency and lookups.

The L1 cache is often considered the lowest level cache. It is usually virtually indexed and physically tagged. All higher-level caches are usually physically indexed and physically tagged.

Again for performance, the last-level cache today is typically composed of multiple independent slices, e.g., one slice per physical or logical core. Each (physical) address maps to one of the slices. After selecting the slice, the cache (set) index is selected as described before. The slices are interconnected, e.g., by a ring bus, allowing all cores to access all last-level cache lines. The mapping from physical addresses to slices has been reverse-engineered for certain microarchitectures [28]. In this work, we focus on the complete mapping function which combines the mapping from addresses to slices, sets, and lines.

B. Cache Attacks

Caches reduce the latency of memory accesses with temporal or spatial locality, e.g., recent memory accesses. An attacker can observe the latency and make deductions, e.g., on other recent memory accesses. The first cache attacks deduced cryptographic secrets by observing the execution time [20], [35], [46], [3]. The best techniques today are FLUSH+RELOAD [54] and PRIME+PROBE [34]. FLUSH+RELOAD flushes an address, then waits, and by reloading determines whether the victim accessed it in the meantime. While FLUSH+RELOAD requires a flush instruction to remove a cache line from all cache levels, EVICT+RELOAD [12] uses cache contention. Both FLUSH+RELOAD and EVICT+RELOAD only work on (read-only) memory shared between attacker and victim. PRIME+PROBE [34] overcomes this limitation. PRIME+PROBE measures cache contention instead of memory latency. The attacker fills (primes) a subset of the cache (e.g., a slice, a set, a line) and measures (probes) how long it takes. The time to fill the subset is higher if a victim replaces an attacker cache line with a congruent address.

Mounting PRIME+PROBE requires information about how addresses map to cache lines, which can be gained implicitly in certain scenarios. This is trivial for the L1 cache and, hence, the first PRIME+PROBE attacks targeted the L1 cache [36], [34]. More recently, PRIME+PROBE attacks were mounted on last-level caches [27], [33], [29], [22], [30].

Cache attacks based on cache contention generally consist of two phases. In the profiling phase, the attacker finds a so-called eviction set, a set of addresses with a high degree of contention in a subset of the cache. In the exploitation phase, the attacker accesses this eviction set to bring the cache into a known state. For EVICT+RELOAD, the attacker uses it to evict an entire cache set (including a target address) and to later on reload the target address to determine whether it has been accessed in the meantime. PRIME+PROBE works similarly, except that it does not reload the target address but accesses the eviction set again to measure contention caused by victim memory accesses.

Early approaches for finding eviction sets were based on knowing addresses and their congruence, and simply collected a set of such addresses. With address information unavailable, the attacker instead starts with a set of addresses, large enough to be a superset of an eviction set with high probability. Elements are removed from this set until it has minimal size. Recently,
this eviction set reduction has been improved from quadratic to linear complexity in the size of the initial set [49], [39].

C. Randomized Cache Architectures

State-of-the-art randomized cache architectures replace predictable address-to-index mappings with deterministic but random-looking mappings. The original proposals consider a software-managed look-up table, whereas newer designs compute the randomized mapping on-the-fly in hardware.

1) Table-based architectures: RPCache [51] uses a permutation table to randomize the mapping from memory addresses to cache lines. Occasionally updating the permutation aims to mitigate statistical attacks. Random-fill cache [25] issues cache fill requests to random addresses in spatial proximity instead of the accessed ones. Table-based architectures face scalability issues, which are especially prohibitive for last-level caches.

2) Computation-based architectures: Recent designs (Time-Secure Cache [45], CEASER [38], [39], SCATTERCACHE [53]) cope with this scalability problem by computing the mapping in hardware instead of storing it. This computation should have very low latency. Given their flexibility and scalability, computation-based designs are proposed for last-level caches, which have the largest latency budget and are important to protect as they are usually shared across cores.

3) Cache partitions: Algorithmic advances in eviction set construction [49], [39] have shown that only randomizing the memory address is insufficient to protect against contention-based cache attacks. As a key insight, CEASER-S and SCATTERCACHE partition the cache and use the randomized mapping to derive a different cache-set index in each of these partitions. Not only does this significantly raise the bar for finding eviction sets, but it also hinders using them in the exploitation phase.

4) Rekeying: Even if the mapping from address to cache set in each partition is unpredictable, the attacker can, over time, still identify sets of addresses contending in the cache. Thus, randomized caches rely on rekeying, i.e., sampling a new key to refresh the randomization. Selecting an appropriate rekeying condition marks an important security-performance trade-off.

5) Security analysis: Computation-based randomized caches show promise to mitigate cache-based side-channel attacks. Although all proposals come with first-party security analyses, they currently lack a systematic and complete analysis (that we rely on and know, e.g., for cryptographic schemes).

III. GENERIC RANDOMIZED CACHE MODEL

In this section, we present a generic randomized cache model that covers all proposed computation-based randomized caches to this date. We use it to cover the attack surface of randomized caches systematically. In later sections, we will quantify the influence of each parameter on the residual attack complexity.

A. Randomization-based Protected Cache Model

Although some protected cache designs fix the cache configuration, we consider a generic n_w-way set-associative cache with 2^b sets (i.e., b index bits). Then, let $N = n_w \cdot 2^b$ denote the number of cache lines. As with traditional caches, the atomic unit of the mapping from addresses to cache sets is the cache line, for which we assume a generic size of 2^b bytes (i.e., o line offset bits). The model makes abstraction of the line offset bits, as they do not contribute to the randomization.

In accordance with traditional caches, processes cannot monitor the data in the cache directly, nor can they infer to which cache way a certain memory address is allocated. The only interface available is the access latency when reading specific addresses, i.e., it is low in case of a cache hit and high in case of a miss. In some practical cases, an attacker might also have access to flush semantics. However, our attacks do not rely on it and we thus assume it to be disabled architecturally.

1) Generic model: Figure 2 depicts our generic computation-based randomized cache, featuring the following components:

 - The memory address a is the primary input to the randomization design. a is either a physical or virtual address, impacting the degree of control an attacker has over a.
 - The key K captures the design’s entropy (unpredictability).
 - The security domain separator s optionally differentiates the randomization for processes in different threat domains.
 - The randomized mapping $R_K(a, s)$ is the core of the architecture. It is a pseudorandom mapping, i.e., deterministic but random-looking, for which the algorithmic description is publicly known, but the key K is not (Kerckhoff’s principle). The LLC slicing function can be encapsulated in R (i.e., one randomized cache), or not (i.e., per-slice randomized caches).
 - The randomized cache is divided into P partitions, where $1 \leq P \leq n_w$. An input address a has, in general, a different index in each of these partitions. To accommodate this, R has to supply $P \cdot b$ pseudorandom bits. We assume P divides n_w.
 - When caching a, one of the partitions is truly randomly selected, and the corresponding cache-set index in this partition is determined based on the pseudorandom output of R. Then, one of the cache lines in this set is replaced by a, adhering to the replacement policy within the partition. We consider random replacement (RAND) and least-recently used (LRU). Under attack, several stateful policies can degenerate to LRU [10].
 - The rekeying period T denotes the condition for entropy renewal. It should be strict enough to maintain high security, and loose enough to maintain high performance.

2) Instantiating Caches: Table I shows how existing designs instantiate this model. The key K can be a cryptographic key (CEASER-S, SCATTERCACHE), a set of cryptographic keys, or selection of a random permutation (TIME-SECURE CACHE). TIME-SECURE CACHE (TSC) implements domain separation
with a per-process key. SCATTERCACHE via additional input to the mapping, and CEA/SER-S mentions it without implementation details. Traditional unprotected caches, CEA/SER, and TSC all have one single partition. In SCATTERCACHE, \(P = n_w \) (the maximum), whereas CEA/SER-S recommends \(2 \leq P \leq 4 \). The rekeying condition \(T \) can use, e.g., the wall-clock time, the number of accesses to the cache, or more complex policies.

3) Software Simulator: We implement our model as a C++ randomized LLC simulator, which we parametrize and use to obtain all experimental results in this work. For simulation purposes, many well-analyzed cryptographic primitives can be used for \(R_k \). We use AES because of its hardware support.

B. Attacker Models

We now systematically cover the attack surface of randomized caches and define relevant attacker models in such caches. Leveraging a provable security methodology from cryptography, we propose to analyze the randomized mapping \(R \) separately from how it is used. On the one hand, we consider black-box attacks, which assume that \(R \) behaves ideally. In this case, processes cannot efficiently recover \(K \), find inputs to \(R_k \) that produce output collisions, or infer any information about cache set indices in one partition based on observations in another. On the other hand, we also consider shortcut attacks that exploit \(R \) directly. Physical side-channel attacks on \(R \) (e.g., using power consumption) are out of scope for this work but can be addressed orthogonally with established approaches [7].

We further assume full attacker control over input address \(a \) as the mapping \(R \) should dissolve any attacker control regardless of the input. The key \(K \) is considered full entropy (e.g., generated by a TRNG). If security domains are supported, we assume that an attacker cannot obtain the same identifier \(s \) as the victim. The attacker cannot observe the output of \(R \) directly, but only gather metadata about it by measuring cache contention. Finally, the attacker cannot modify the rekeying condition (e.g., it is enforced in hardware).

In line with Figure 1, we consider the following three attacks:

- **\(\hat{A}_{\text{ideal}} \):** In an ideal black-box attack, the mapping \(R \) is considered to behave ideally, and the system is completely noise-free. The victim performs only a single memory access, exactly the one the attacker wants to observe later (cf. Sections V and VI).

- **\(\hat{A}_{\text{nonideal}} \):** In a non-ideal black-box attack, \(\hat{A}_{\text{ideal}} \) is extended with aggravating system assumptions, and serves to study the increase in attack complexity with respect to \(\hat{A}_{\text{ideal}} \). E.g., noise and multiple victim accesses (cf. Section VII).

- **\(\hat{A}_{\text{short}} \):** In a shortcut attack, internals of the mapping \(R \) are exploited to find eviction sets much faster than in the black-box case, i.e., a shortcut is found (cf. Section VIII).

Existing analyses [39], [53] study attacker \(\hat{A}_{\text{ideal}} \), as it describes the transfer of security properties from the mapping \(R_k \) to the cache architecture (cf. Figure 1). It allows selecting a conservative rekeying condition for a specific design. Besides its general applicability, it also covers some practical settings. For instance, trusted execution environments like Intel SGX are subject to precise control over victim execution [31], i.e., precisely stepping to a single instruction (e.g., a memory access) and even repeating it an arbitrary number of times [48], [43].

IV. Exploiting Contention on Randomized Caches

This section introduces generalized eviction to overcome the challenges introduced by randomized caches. Next, it generalizes traditional attacker objectives to randomized caches.

A. Generalizing Eviction

1) Full congruence: In an eviction set for a traditional cache, every address \(a_i \) in this set is fully congruent with \(x \). Hence, if \(x \) is currently cached, each \(a_i \) has the potential to evict it.

In a randomized cache, an attacker can theoretically still find a set of addresses that collide with the target address \(x \) in every partition. However, the probability for a randomly selected address to be fully congruent with \(x \) is \(2^{-bw} \), i.e., it plummets exponentially with \(P \). Already for \(P \geq 2 \), relying on full congruence to construct eviction sets is highly impractical.

2) Partial congruence: To overcome the full congruence problem, one can also try to evict a target address \(x \) based on partial congruence. This approach, introduced by Werner et al. [53] for special case \(P = n_w \), constructs an eviction set using addresses congruent with the target in one partition only.

To understand eviction with partial congruence in general, consider Figure 3, where the attacker wants to evict a target \(x \) in a toy randomized cache with 6 ways \((n_w = 6) \), 8 sets \((b = 3) \) and 3 partitions \((P = 3) \). Assume the attacker has found sets of addresses \(G_i \), satisfying that all elements in \(G_i \) are congruent with \(x \) in partition \(i \) but not in the other partitions.

Eviction based on partial congruence is probabilistic. If \(x \) is allocated to partition \(i \), it could be evicted by \(G_i \). An element in \(G_i \) can only contribute to evicting \(x \) when it is also assigned to partition \(i \); this assignment is truly random (i.e., not pseudorandom). In what follows, we let a generalized eviction set \(G \) for a target address \(x \) denote the superset of addresses that collide with \(x \) in one partition: \(G = \bigcup_{i=1}^{P} G_i \).
3) Eviction probability: Given a target \(x \) to evict, we now derive the eviction probability \(p_e \) as a function of the size \(|G| \) of the generalized eviction set \(G \). We assume that \(G \) contains an equal share for every partition, i.e., \(|G_i| = \frac{|G|}{P} \), (1 ≤ \(i \) ≤ \(P \)). This assumption holds probabilistically in practice, and we will show how it can be met deterministically in Section VI-B.

For replacement policy \(\text{RAND} \), the eviction probability generalizes the expression by Werner et al. [53]. Regardless of the partition in which \(x \) resides, \(\frac{|G|}{P} \) addresses in \(G \) could evict it, each with probability \(\frac{1}{n_w-1} \). Consequently, we have:

\[
p_{e,\text{RAND}} (|G|) = 1 - \left(1 - \frac{1}{n_w-1}\right)^{|G|/P}
\]

For \(\text{LRU} \), evicting \(x \) requires the attacker to evict the full set in the partition in which \(x \) currently resides. This corresponds to the event that at least \(\frac{w}{P} \) out of the \(\frac{|G|}{P} \) addresses for the designated partition are actually mapped to this partition. It is described by the complement of the cumulative binomial with \(\frac{|G|}{P} \) trials, \(\frac{n_w}{P} - 1 \) successes and success probability \(\frac{1}{P} \):

\[
p_{e,\text{LRU}} (|G|) = 1 - \text{binom} \left(\frac{|G|}{P}, \frac{n_w}{P}, 1 - \frac{1}{P} \right) = 1 - \sum_{i=0}^{\frac{n_w}{P}-1} \binom{\frac{|G|}{P}}{i} \left(1 - \frac{1}{P}\right)^i \left(\frac{1}{P}\right)^{\frac{|G|}{P} - i}
\]

Conversely, selecting the eviction probability \(p_e \) fixes \(|G| \), presented in Table II for different cache configurations and \(p_e \).

B. Generalizing Attacker Objectives

We now generalize eviction set objectives from traditional to randomized caches and evaluate their utility.

A targeted eviction set for an address \(x \) is a set of addresses that, when accessed, evicts \(x \) from the cache with high probability. The complexity and utility of this objective depends on the capability of the attacker to access the target address \(x \).

The attacker can access \(x \) if it is an in-process address or resides in memory shared between attacker and victim. By accessing \(x \) directly, the attacker can measure its access latency. This objective is useful even in randomized caches, e.g., for \(\text{EVICT+RELOAD} \) side- and covert channels or to trigger direct DRAM accesses for eviction-based Rowhammer [2], [10].

In the other case, the attacker does not learn the access latency of \(x \), and victim accesses to \(x \) are needed for constructing eviction sets. It is the primary attack vector for randomized caches, as it represents the general scenario where \(x \) is not accessible by the attacker (unshared memory), or accessible to the attacker but decoupled in the cache for different security domains. In addition to the previous objectives, generalized eviction sets in this setting are useful, e.g., for \(\text{PRIME+PROBE} \) side- and covert channels, or to extend transient execution windows by evicting branch condition values from the cache.

An arbitrary eviction set (normally the easiest to construct [49]) is a set of memory addresses that, when accessed, has a high probability that at least one of its elements is evicted from the cache. Although this objective has proven to be useful in traditional caches, e.g., for covert channels [30], its generalization to randomized caches with \(P > 1 \) and security domains does not seem to map to any known adversarial goals.

Takeaway: Generalize eviction to avoid full congruence.
Rely on partially congruent addresses to efficiently (but probabilistically) measure contention in randomized caches.

V. Constructing Generalized Eviction Sets

The generalized eviction set \(G \) is the primitive at hand for attacking randomized caches. Once \(G \) has been constructed, contention-based attacks like \(\text{PRIME+PROBE} \) are also possible in randomized caches, although with a larger set and lower success probability (cf. Section IV-A). The major hurdle is the profiling attack stage, i.e., constructing \(G \) itself. Purnal and Verbauwhede [37] performed an initial study of this problem.

This section is concerned with the construction of \(G \) for a target address \(x \), using the capabilities of the black-box attack \(\text{A}_{\text{ideal}} \) (cf. Section III-B). We focus on the general case of a target \(x \) that is not attacker-accessible (cf. Section IV-B), as the security domain separator \(s \) lifts most attack objectives from the accessible to the non-accessible case. We will later show the optimizations that can be applied should they be accessible. Our novel profiling approach is generally applicable and efficient, improving state-of-the-art methods by orders of magnitude.

Conventionally, eviction sets are constructed by reducing a large set of addresses to a smaller set while maintaining a high eviction rate. This traditional top-down approach is highly effective for \(P = 1 \), but both the size of its initial set and its reduction step are strongly hindered by partitioning the cache (\(P > 1 \)). We cope with the sheer infeasibility of reducing the initial set by adopting a new bottom-up approach: The attacker starts from an empty set and incrementally adds addresses for which cache contention with the target address was observed.

When measuring contention with a target \(x \) that is not attacker-accessible, the only available procedure is to prepare the cache state, wait for victim execution, and observe changes in the cache state. Finding a generalized eviction set \(G \) then comprises several iterations of this procedure. A successful iteration is one that catches an access to \(x \), and the success probability of an iteration is the catching probability \(p_c \).

Takeaway: Adopt a bottom-up strategy to construct \(G \).
In partitioned randomized caches, detecting contention is much more efficient than detecting absence of contention.

A. Generic Prime+Prune+Probe

To maximize the probability of catching a victim access to \(x \) in a given iteration, we develop a specialized \(\text{PRIME+PROBE} \), tailored for finding eviction sets in randomized caches.
what follows, we consider both a cached and uncached instance, and whether the target address is cached or not.

<table>
<thead>
<tr>
<th>RP</th>
<th>Catching probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAND</td>
<td>$p_{c,n}$ (not cached)</td>
</tr>
</tbody>
</table>
| LRU | $\frac{k'}{N}$ | $\sum_{i=1}^{b} \binom{n}{i} \frac{k'^{i} (N-k')^{n-i}}{n^{i} N^{n-i}}$

$\approx 1 - \binom{k}{n} \frac{N!}{P \cdot 2^{P}}$ (cached)

$\approx p_{c,n} \cdot p_{c,n}(P-1)+1$ (not cached)

1) Prime+Prune+Probe: An iteration begins with a prime step, where the attacker accesses a set of k addresses, loading them into the cache. For $k > 1$, there can be cache contention within this set. Thus, as a key step to eliminate false positives, the prune step iteratively re-accesses the set. This forces all self-evicted addresses to be cached again, at a potentially different location than before. The prune step terminates as soon as no more self-evictions occur when accessing the set.

In case the target address is already cached, a single PPP iteration must both evict the target address and catch it to the cache. In the probe step, the attacker accesses the set of k' addresses again, adding addresses with high latency to G (i.e., victim evicted them).

In Prime+Prune+Probe (PPP), the prune step is crucial and noise-absorbing. Without it, the attacker cannot distinguish evictions due to victim accesses from those by the priming set. By pruning, the attacker completely removes these false positives. Appendix A experimentally relates pruning parameters k, k' and m_{pr} for different cache configurations.

The Prime+Prune+Probe procedure is repeated until enough accesses are caught and added to G. This constitutes the bottom-up approach; G is not the result of shrinking a large initial set. Instead, it is built from the ground up.

2) Penalty for being cached: In case the target address is already cached, a single PPP iteration must both evict x and catch the access to x when it is reloaded into the cache.

The attacker can either (1) first evict x probabilistically, by accessing many different addresses or other techniques; (2) apply PPP as-is, tolerating a suboptimal catching probability p_c. These strategies trade off the success probability of one iteration (p_c) with its execution time (number of accesses). In what follows, we consider both a cached and uncached x. Any profiling strategy then has higher p_c than when the target is always cached, and lower p_c than when it is never cached.

B. Catching Probability p_c

The catching probability p_c is the success rate of one Prime+Prune+Probe iteration and depends on the randomized cache (n_{wr}, b, P, policy RP) and attack parameter k'. Table III establishes p_c for several configurations. We distinguish whether x is cached (denoted $p_{c,c}$), vs. not cached (denoted $p_{c,n}$).

1) Target is not cached ($p_{c,n}$): After prime and prune, the victim access to x caches it in a random partition, and R_K pseudorandomly determines the cache set within this partition. For RAND, x evicts an attacker address with probability equal to the coverage of the cache after pruning (i.e., $p_{c,n} = k'/N$).

For LRU, x evicts a target address if there are at least $\frac{n}{P}$ addresses in the attacker set that were mapped to the same cache partition and set of x during prime and prune.

It can be approximated (and lower-bounded) by the complement of the cumulative binomial with k trials, $\frac{n}{P} - 1$ successes and binomial success probability $(P: 2^{b})^{-1}$ i.e., $p_{c,n} = 1 - \binom{k}{n} \frac{N!}{P \cdot 2^{P}}$. In practice, due to self-evictions during pruning, the actual number of binomial trials is slightly higher than k, resulting in increased $p_{c,n}$.

2) Target is cached ($p_{c,c}$): Catching an access to a cached target x requires both evicting x and detecting its reintroduction in the cache, resulting in a penalty on p_c. The probabilities $p_{c,c}$ (exact for RAND, approximate for LRU) are derived in Appendix B and collected in Table III. The penalty is maximal for $k' = 1$, being n_{wr} (RAND) or P (LRU), and decreases with k' as prime/prune implicitly evict an increasing cache portion.

Appendix C complements the theoretical analysis with empirical validation. It also explores the relation between p_c and k', and the penalty on p_c for a cached target.

Takeaway: Add pruning to Prime+Probe profiling.

Pruning enables testing more than one guess per iteration. It improves profiling for RAND and is essential for LRU.

VI. OPTIMIZATIONS FOR PRIME+PRUNE+PROBE

This section describes optimizations of Prime+Prune+Probe for (A) total cache accesses and (B) victim invocations. We then evaluate PPP strategies on a range of cache instances.

A. Optimizing for total cache accesses

1) Burst Accesses: As derived, the caching probability $p_{c,c}$ (target already cached) holds at the start of constructing the generalized eviction set G. As the elements of G have explicitly been observed to collide with x, they can be accessed in burst before the PPP iteration, essentially implementing a targeted eviction of x. As profiling progresses and G grows, the burst becomes more successful, and the penalty for a cached target shrinks, hence $p_{c,c} \to p_{c,n}$ asymptotically. The burst access optimization thus hides the caching penalty. It applies to both RAND and LRU, but the latter can be accelerated even more.

2) Bootstrapping: A PPP iteration for LRU succeeds if prime/prune fill the full set for x in the designated partition. As G contends with x, we add G as bootstrapping elements to the PPP set. Thus, filling the full set becomes more likely.

However, if a victim access to x evicts a bootstrapping element instead of a PPP guess, the iteration is wasted: G was already known to contend with x. This issue can be resolved by relying on LRU statefulness. Adding G at the end of the PPP set ensures that PPP evictions precede bootstrapping evictions.
Bootstrapping implicitly implements burst accesses, and works very well for LRU. However, it is unattractive for RAND.

Takeaway: Use elements in G to accelerate finding more. Burst accesses hide caching penalty effectively as G grows. Bootstrapping increases p_c by helping to fill the LRU set.

B. Optimizing for victim invocations

We now explicitly minimize the required victim accesses A_v. This is relevant, e.g., for long victim programs or cases where victim runs are limited. We decouple it as $A_v = \frac{1}{k^v}$, relating it to accesses c needed to be caught (i.e., successful iterations), and to p_c (i.e., success probability of one iteration).

Section V already maximized denominator p_c with PRIME+PRUNE+PROBE. We now independently minimize numerator c, forming a flexible profiling framework to globally optimize A_v.

It first preselects candidate addresses that have higher catching probabilities. The framework comprises three steps:

1) **Step 1.** Use PRIME+PRUNE+PROBE to find, for every partition i, one address a_i that collides with x in that partition.

2) **Step 2.** For each a_i, construct a candidate pool with addresses that collide with it in at least one partition.

3) **Step 3.** Resume PRIME+PRUNE+PROBE with the obtained candidate pools instead of randomly selected addresses.

The first step simply constructs a smaller G with PPP. Assume it needs to continue until G contains at least one element for every partition. The expected accesses to catch is then given by the coupon collector problem in statistics, with one set of P coupons: $E[c] = P(1 + 1/2 + \cdots + 1/P)$.

The second step finds addresses that contend with the a_i obtained in Step 1, instead of profiling x directly. As the a_i are attacker-accessible, their access latency can be measured, and no victim accesses are required. Addresses that contend with a_i also contend with x with probability $\geq P^{-1}$, which is much more likely than a randomly selected address ($\approx 2^{-b}$).

The third step resumes PPP for target x with candidate pools for the a_i. Every iteration access the pools, prunes, triggers access to x, and probes. For sufficiently large candidate pools, $p_c \approx 1$, significantly reducing A_v compared to Step 1.

Conceptually, the first and third step are similar in nature. They can also be independently accelerated, as in Section VI-A.

We now explore the complexity and acceleration opportunities of Step 2. As the access latency of the a_i can be measured, catching probabilities can increase, and there is no penalty if the a_i are already cached. We again distinguish between replacement policies, and measure the complexity in attacker accesses A_v (as there are no victim accesses).

1) **Optimizing Step 2 for RAND:** We propose to construct the candidate pool through reverse PRIME+PRUNE+PROBE. Let $S = \{a_1, a_2, \ldots, a_c\}$ be the starting set obtained in Step 1. The elements of S are now the targets instead of the victim address x. Every iteration tries one random address guess g.

PRIME+PRUNE+PROBE (PPP) primes the cache with k guesses and observes eviction by the target. Reverse PPP instead primes the cache with the targets S, prunes, accesses the guess g, then probes S. If accessing an element of S is slow, say a_k, we add g to the candidate pool for a_k. Every iteration has $p_c^\approx = \frac{1}{k^v}$, and there are $\approx c+1$ attacker accesses per iteration, (i.e., very little pruning, and probe overlaps with the next prime). The expected number of attacker accesses to obtain one element for the candidate pool hence is $E[\mathbb{A}_v] \approx N$.

2) **Optimizing Step 2 for LRU:** For LRU, reverse PPP is even more effective. Again, let $S = \{a_1, a_2, \ldots, a_c\}$ be the set from Step 1, and let g denote a random address guess.

Assume the attacker primes the cache with S, prunes it, and observes self-evictions. For LRU, this implies that S fills a full cache set ($\frac{c}{k^v}$ lines). In this case, the attacker does reverse PRIME+PRUNE+PROBE, where one iteration consists of prime and prune with S, accessing g, and prune with S. If accessing an element of S is slow in the probe step, say a_k, we add g to the candidate pool for a_k. This approach has $p_c = \frac{1}{k^v}$, and there are $\approx c+1$ accesses per iteration, resulting in expected number of attacker accesses $E[\mathbb{A}_v] \approx (c+1) \cdot P^b$.

Importantly, as g collides with multiple a_i in S, it very likely collides with x and can directly be added to S. Thus, it immediately grows eviction set G without accesses by the victim, bypassing Step 3. However, it can only be started if profiling S has observed self-evictions. Interleaving it with Step 1 implicitly generates new attempts at this precondition.

3) **Flexibility of the Framework:** The three-step framework flexibly instantiates randomized caches and attack scenarios. If the victim program is tiny and executes continuously, all profiling time is spent in Step 1. The shares of Step 2 and Step 3 grow as soon as the victim program becomes the bottleneck in any way. Finally, if x is attacker-accessible, reverse PPP from Step 2 is used immediately. The framework also enables splitting G based on the partition of contention with x, making the eviction probabilities (Section IV-A) exact.

Takeaway: Use elements in G to reduce victim accesses. Filtering candidate addresses based on contention with G allows to (partially) refrain from victim invocations.

C. Evaluation of profiling strategies

Figure 4 depicts victim and total cache accesses for the presented profiling strategies, obtained from simulated profiling runs (cf. Section III-A3). We observe a mostly linear progression in constructing G. One exception is reverse PPP, where the construction of the candidate pools does not grow G immediately (jump), but accelerates the profiling that follows.

Optimizations like burst accesses and bootstrapping improve both total and victim accesses. In contrast, probabilistic full cache evictions and three-step profiling incur a trade-off between total accesses and victim invocations. Of course, one can freely interpolate between these extreme strategies.

D. Influence of randomized cache instance

1) **Sets, ways and partitions:** Both profiling and exploitation in randomized caches are influenced by the parameters of the instance. We investigate the effectiveness of PPP on several
Victim addresses of interest are not attacker-accessible. She can, therefore, the profiling needs, it cannot exist. While the accesses per element of (e.g.,) we now leverage the security of , we can only infer accesses with PPP (cf. Section V-A1): bring cache quality complexities to construct generalized eviction sets known techniques does not account for potential improvements. Although tempting, setting is the design’s security margin. Although we find that PPP can be hindered by tuning states and rekeying period is the idealized PPP replacement. The only degree of freedom in the idealized PPP is the number of addresses in each partition, neglecting the necessary expansion to full . In particular, increases for the same access probability , and profiling is prolonged as increases while the accesses per element of (e.g.,). Similarly, for the same cache dimensions (), both PPP profiling and exploitation suffer from increased partitioning . Especially for , there is no indication from our ideal-case analysis why one should not opt for maximal partitioning.

In general, we find that PPP can be hindered by tuning cache sets, ways, and partitions, but not to the point where it becomes infeasible. What really works is limiting the cache access budget for the attacker (i.e., a strict rekeying condition).

2) Rekeying period: The difference between the profiling state of the art and rekeying period is the design’s security margin. Although tempting, setting to the very least , and profiling accesses to different partitions. Indeed, an attack with has inferred information about partitions for which no memory access has been caught. By contradiction with , it cannot exist. Beyond , we further contrive the setting in favor of the attacker. We consider strongly idealized pruning (i.e.,), and permanently uncached target (i.e.,). Furthermore, we scope the algorithm as catching a single access in partitions, neglecting the necessary expansion to full .

A perfectly ideal iteration then requires accesses for , for , for , for the victim access, and to . Assuming the attacker somehow manages to combine of one iteration with of the next, we use accesses per iteration as lower bound.

We outline the idea for a randomized cache with random replacement. The only degree of freedom in the idealized PPP is the number of addresses in the step. Indeed, their order or frequency does not impact the cache coverage .

Given a rekeying period of accesses, the probability of observing at least one access in at least distinct partitions is (using a generalization of the birthday problem in statistics):

\[
\max_k \left[\sum_{i=m}^{T} \binom{T}{i} \left(\frac{T}{K+i} \right)^{-1} \sum_{l=0}^{P} \binom{P}{l} \frac{\binom{T}{l}}{l!} \left(1 - \frac{T}{K+i} \right)^{l-1} \right]
\]
Conversely, Table IV captures rekeying periods T that upper bound the fraction of successful rekeying periods. Pessimistically assuming that every memory access is a cache hit, it gives an expected continuous profiling time of having one successful construction of G within the rekeying period. As the obtained G is only useful for one period, Table IV also includes the case where half of it is used for exploitation. Note that these minimal efforts strongly depend on m, and hence on the quality of G that can be tolerated for exploitation (C).

VII. LIFTING IDEALIZING ASSUMPTIONS

In this section, we explore for the first time the more challenging attack A_{att} with complicating system activity (cf. Section IV), as opposed to the commonly assumed A_{ideal}.

We start with a victim program performing more memory accesses than of interest to the attacker and present an end-to-end attack on a vulnerable AES implementation. We then quantify the influence of random noise on PRIME+PROBE+PROBE.

The central assumption is that the attacker wants to profile specific addresses of the victim and that the access probability of said addresses can be changed via inputs to the victim.

A. Multiple Victim Accesses

In the profiling phase, the attacker identifies addresses of interest in a victim program and distinguishes between them if there are multiple, requiring disjoint eviction sets for each target. From this perspective, we model the execution of victim code as a set of static and dynamic memory accesses. Static accesses are performed regardless of the attacker’s input, i.e., code and data accesses performed in all victim executions. Dynamic accesses do not always occur, e.g., state- or input-dependent code or data accesses.

The attack targets are one or more addresses that are accessed upon a certain event the attacker wants to spy on [12]. Like Gruss et al. [12], we cannot distinguish addresses in the static set, as the cause-effect relationship is the same for all of them. Hence, for our attack, all targets are in the dynamic set.

To profile the cache addresses of interest, we propose a two-phase approach. First, we collect a superset of addresses containing colliding addresses for all static and dynamic cache lines. Second, we obtain disjoint sets of addresses from the superset, each with colliding addresses for one target.

The attacker distinguishes static and dynamic accesses by the property that dynamic accesses are statistically performed less often than static accesses, which are always performed. With the assumption from the beginning of this section, we consider a scenario where an attacker controls, e.g., via input, which dynamic accesses the victim performs in any given execution. This control can be exerted positively (i.e., a dynamic access is always performed for a specific input) as well as negatively (i.e., a dynamic access is never performed for a specific input). The latter scenario repeatedly calls the victim with inputs that cause it to access all but one address. Thus, it can be separated from the superset, as all other addresses in it are accessed eventually. In general, any manipulation of access probabilities in the victim can be observed. This approach describes a stronger attacker, as targeted addresses can be distinguished from others in both the dynamic and static set in the same step.

1) Implementation: In the following, we focus on maximum partitioning $P = n_w$, as non-random replacement policies like LRU generally require special treatment but behave predictably. We employ catching with intermediate full eviction. The analysis of Section V-B1 applies. To generate distinct and large eviction sets for our n_{target} target addresses, we slightly modify the three-step approach described in Section VI-B. All experiments are obtained in simulation (cf. Section III-A3).

To find sets of addresses a_i in Step 1, we first construct the previously described superset using PRIME+PROBE+PROBE (Section VI-B). Instead of only one victim memory access, all n_{stat} static and n_{dyn} dynamic victim accesses are now observed by the attacker. To identify a enough colliding addresses for all targets, we construct a superset of at least $n_w \cdot (n_{stat} + n_{dyn})$ addresses. The expected amount of memory required to find a collision in a specific
way is $\frac{\text{cachsize}}{n_w}$, though higher confidence requires more. We can apply the coupon collector’s problem (cf. Section VI-B) for an estimated factor of $\frac{\text{coupon}(n_w)}{n_w}$, but as more addresses need to be profiled, the probability to catch enough addresses for all targets decreases. Consequently, this step requires a number of repetitions, depending on the prime parameter k.

Next, we separate unwanted addresses from target addresses within the superset. To this end, we call the victim with inputs that exclude exactly one of the n_{target} cache lines. By repeatedly evicting the cache, calling the victim with the required parameters, and measuring accesses in the superset, we generate a histogram for all target addresses. After a certain number of repetitions, addresses that are never evicted by the victim are very likely to collide with the targeted address.

Repeating this process n_{target} times, we get disjoint sets of addresses for each target cache line. Step 2 and Step 3 can be applied to these sets of addresses (a_i) to construct the final generalized eviction sets like in the single-access case.

From our experiments (cf. Figure 6), we estimate that the number of cache misses (the largest factor of the execution time) increases sub-linearly with the total amount of accesses by the victim ($n_{\text{stat}} + n_{\text{dyn}}$). This is because the catching probability p_e increases with n_{target}. The superset’s separation depends linearly on n_{target} and the overall size of the superset.

2) End-to-end Attack on AES T-Tables: We choose the 10 round T-table implementation of AES in OpenSSL 1.1.0g as an example, as it is a well-known target for cache attacks [3], [34], [44], [12]. We perform the One-Round Attack, described by Osvik et al. [34], and thus recover 64 bits in the 16 upper nibbles of the 16-byte key (see Appendix D).

The parameters for this attack are $n_{\text{stat}} = 27$ and $n_{\text{dyn}} = 65$. With $n_{\text{target}} = 64$, the 4 T-tables are a difficult attack target, as the profiling time scales linearly with n_{target}.

For profiling, we require AES runs that access all but the target address, for each target. We can prepare 64 such key/plaintext pairs offline. All AES runs are recorded as memory access traces with the Intel PIN Tool [15] and injected into the simulator (cf. Section III-A3) at the appropriate times. Lacking more efficient eviction methods, we rely on probabilistic full cache eviction. In total, eviction accounts for $\approx 90\%$ of all accesses during the attack, which in turn makes the superset-splitting step of the profiling the largest contributor to the overall runtime. Because we assume no restriction on the number of encryptions, we do not perform Step 2 for this attack, as pruning the generated candidate pools would also require the costly splitting phase. Instead, we see that using fewer colliding addresses for each target (cf. Table V) still performs well. We can compensate for the lower detection probability by increasing the number of encryptions during the exploitation phase.

We use cache parameters from modern Intel processors: 8 slices (with a slicing function [28]) of 1MB each, so each slice is a randomized cache with $n_w = 8/16$ and $b = 11$. We run the same attack for $P = n_w = 8/16$ and $P = 2$, with replacement policies random and LRU. As seen in Table V, the attack is generic enough for all configurations, without special considerations for LRU. The variance in the number of addresses found per target increases for $P = 2$, especially for LRU, but since this specific attack sums over the hits on different addresses, this effect is mitigated for the end result (see Appendix D). For $P = 2$, we speed up the attack by reducing the cache lines used for full cache eviction from $2N$ to $1.5N$, as well as reducing the superset size (cf. Section VI-D1).

This end-to-end implementation is not optimal, as there are many parameters that could be optimized. Nonetheless, we can see that cache attacks can still be executed in a reasonable time frame. If we model the attack as a mixture of sequential accesses for full cache evictions and timed random accesses for the sets, we can calculate the average attack times shown in Table V. For this rough estimate, we use access times measured on a real system with the same miss rates (17-8700K @ 3.60GHz, sequential access: $\approx 11.4c$, timed (rtdsc) random miss: $\approx 235c$, hit: $\approx 222c$).

Takeaway: Unpredictability requires key agility.

Frequent rekeying is essential to maintain the benefits of randomization, even in non-ideal conditions.

B. Influence of Noise

In the ideal case (A_{ideal}), there is no noise from memory accesses by the attacker process itself, nor the victim, or any other process in the system (including the operating system). Section VII-A already implicitly includes noise generated by the victim’s code execution. We now additionally consider noise introduced by other system activity. We make the simplifying assumption that noise accesses are random and occur at a rate of ν random accesses for every attacker access.

Multiple steps of the (unmodified) profiling algorithm from Section VI-B are affected by noise. Spurious memory accesses during the prune step increase the number of pruning iterations m_{pr} significantly and reduce the size k' of the

TABLE V: End-to-end attack on T-table AES for different configurations (means over 100 runs).

<table>
<thead>
<tr>
<th>n_w</th>
<th>P</th>
<th>policy</th>
<th>misses (10^7)</th>
<th>hits (10^7)</th>
<th>AES collisions/addr.</th>
<th>correct nibbles est. t [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8 a</td>
<td>RAND</td>
<td>1.13 ± 1.50</td>
<td>56663 ± 2097</td>
<td>20.47 ± 3.61</td>
<td>15.90 ± 0.33, 1.58</td>
</tr>
<tr>
<td>8</td>
<td>2 a</td>
<td>RAND</td>
<td>1.78 ± 2.25</td>
<td>23892 ± 1553</td>
<td>15.52 ± 1.37</td>
<td>16.00 ± 0.00, 0.61</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>LRU</td>
<td>3.21 ± 1.75</td>
<td>2060 ± 1774</td>
<td>17.44 ± 7.53</td>
<td>15.94 ± 0.28, 0.78</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>RAND</td>
<td>4.69 ± 3.91</td>
<td>39192 ± 2662</td>
<td>26.62 ± 7.85</td>
<td>15.91 ± 0.26, 1.32</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>LRU</td>
<td>7.85 ± 2.63</td>
<td>66440 ± 2699</td>
<td>26.99 ± 11.66</td>
<td>15.75 ± 0.71, 2.60</td>
</tr>
</tbody>
</table>

- n_w: Number of repetitions, addresses that are required parameters, and measuring accesses in the superset.

- misses (10^7): Average number of cache misses.

- hits (10^7): Average number of cache hits.

- AES collisions/addr.: Average number of AES collisions per address.

- correct nibbles: Number of correct nibbles estimated.

- t [min]: Average attack time in minutes.

- RAND: Random replacement policy.

- LRU: Least Recently Used replacement policy.
resulting set. The probe step samples noise in addition to the collisions with the targeted victim cache line.

Figure 7 and Figure 8 show both effects. Though the unmodified prune step terminates, the resulting set size \(k' \) can be seen to decrease quickly with \(\nu \), while the number of pruning iterations \(m_{pr} \) increases. Hence, with noise, the attacker could explore the PPP parameter space in favor of a smaller \(k \). Figure 8 also shows a faster decrease in correct collisions for higher \(k \), while the cost of pruning grows.

Alternatively, the attacker can consider early-aborting pruning, i.e., terminating prune before it is entirely free of misses. Indeed, a large part of the pruning iterations are no longer due to self-evictions, but due to sampling noise. The false positives introduced by the early-abort are then removed in a later stage.

The separation phase from Section VII-A is effective at filtering false positives caused by noise during PPP, since static victim accesses, dynamic victim accesses, and false positives exhibit different behavior in the separation phase. In contrast to static or dynamic accesses, false positives occur only in some runs, leading to multiple runs with 0 accesses. Hence, they appear in more than one set in the end and can be removed.

Figure 6 shows the total number of cache misses for the generation of supersets for victims of different total sizes \((n_{stat}+n_{dyn})\). These supersets contain exactly \(3 \cdot n_w \cdot (n_{stat}+n_{dyn}) \) addresses that collide with victim cache lines in exactly one way. They additionally contain non-colliding addresses introduced by noise and self-eviction in the proportion shown in Figure 8, which is removed during separation. We can see that the number of cache misses (and by extension, the runtime) for this step grows approximately linearly with noise.

C. Infrequent victim events

In the case where an event in the victim happens only once or a limited number of times (e.g., user input), the probe set \(G \) needs to be large enough to achieve a very high detection probability, which places more weight on accurate profiling compared to VII-A2. On the other hand, when events trigger accesses to multiple cache lines, all of them can be used for detection. Attacks will mostly need to be asynchronous, which necessitates some form of continuous monitoring. We leave an investigation of practical implementations for future work.

VIII. Shortcut Attacks

In this section, we consider attack \(\mathcal{A}_{bsho} \) and draw attention to the soundness of the randomized mapping by achieving shortcuts during a case study on CEASER-S.

In particular, we demonstrate how weaknesses in their common randomized mapping allow us to reliably construct eviction sets without any memory accesses. We first describe Low-Latency Block Cipher (LLBC), the CEASER-specific implementation of the mapping \(R_K \). Drawing inspiration from differential cryptanalysis, we show how input differences propagate through the LLBC, and we derive an expression for precomputing address differences that systematically yield cache set collisions, independent of key, partition, and address.

We describe the attack first for CEASER [38] before tackling the generalized and improved CEASER-S [39].

A. Low-Latency Block Cipher in CEASER(-S)

CEASER instantiates \(R_K \) by encrypting the input address \(a \) with a custom LLBC with 40-bit blocks and 80-bit key. In particular, it divides the input address in two equally sized (left-right) chunks \(a = (L || R) \) and produces an output encrypted address \(R_K(a) = (L' || R') \). From this output, the lowermost \(b \) bits determine the cache set index: \(s = [R_K(a)]_b = [R']_b \).

The encryption proceeds as a keyed four-stage Feistel network (depicted in Figure 9). Each stage instantiates a round function \(F(X,K) \), taking 40-bit input (20 bit \(X \) and 20 bit \(K \)) and producing 20-bit output \(Y \). In each round function, 20 intermediary bits \(W_i \) are first computed as \(W_i = S_i(X,K) \), where \(S_i \) defines exclusive or (\(\oplus \)) of 20 input bits (out of 40). The \(W_i \) are shifted with a bit-permutation \(P \) to obtain \(Y \).

In CEASER, the round functions are randomly sampled, fixed at design time, and explicitly different in every stage. Let \(F^r \) denote the round function for stage \(r \), and \(K^{[r]} \) the 20-bit subkey for this stage. Describe the bit-permutation with \(i \leftarrow P(i) \), i.e., a bit at position \(i \) moves to position \(j \). Next, let \(X_i \) and \(K_j \) denote the indices from resp. \(X \) and \(K^{[r]} \).
that are XORed to obtain intermediary bit \(W_i = S_i(X, K) \).
The round function output is \(Y = (Y_0)_{i=0}^{15} \), where \(Y_0 = \{W_{P_{(0)}}[W_{P_{(1)}}[...][W_{P_{(19)}}]\} \).
The round function \(\mathcal{F}[r] \) thus comprises 20 functions \(\mathcal{F}[r](X, K[r]) \) each computing one \(Y_i \):
\[
Y_i = \mathcal{F}[r](X, K[r]) = \sum_{j \in X_{P[(i)]}} X_i + \sum_{k \in K_{P[(i)]}} K_k[r]
\]
Observing the linearity in the entire cipher (particularly in the SBoxes \(S_i \), supposed to be non-linear), we draw inspiration from differential cryptanalysis to bypass \(R_K \) altogether.

B. Constructing and Using the Shortcut

The outcome of the shortcut is a set of addresses \(a_i \) that collides in the cache with a target address \(a \), i.e., \(R_K(a_i) = R_K(a) \). The attacker could attempt this shortcut by recovering the mapping key \(K \), granting the shortcut for the lifetime of the key. Our approach, in contrast, is fully key-independent. It is a restricted take on chosen-plaintext attacks, where the restriction stems from being embedded in a cache. Specifically, the adversary can choose a set of plaintexts to \(R_K \) (i.e., input addresses \(a_i \)), but does not observe any cryptographic output.

We rephrase the shortcut as a differential problem, i.e., to finding a set of \(\Delta a \) satisfying \(R_K(a + \Delta a) = R_K(a) \). Matching with the Feistel topology, we denote the input difference \(\Delta a = (\Delta L||\Delta R) \) and the output difference \((\Delta L'||\Delta R') \). Achieving the shortcut is then equivalent to finding pairs \(\Delta L \) and \(\Delta R \), not both zero, that result in the same set index bits: \(\Delta R |_b = 0^b \).

1) \(\Delta \)-Propagation: We derive the propagation first through the round function \(\mathcal{F}[r] \), then the full LLBC. Let \(+ \) denote \(GF(2) \) addition (bitwise XOR). As a well-known cryptanalytic fact, differences propagate unaffected through addition. Let \(\Delta X \) and \(\Delta Y \) denote differences at the input and output of \(\mathcal{F}[r] \). Stated differently, \(Y = \mathcal{F}[r](X, K[r]) \) and \(Y' = \mathcal{F}[r](X + \Delta X, K[r]) \), then \(\Delta Y = Y' + Y \). Now compute the \(i \)-th output bit \(\Delta Y_{i} \):
\[
\Delta Y_{i} = Y'_{i} + Y_{i} = \mathcal{F}[r](X + \Delta X, K'[r]) + \mathcal{F}[r](X, K'[r])
\]
\[
= \sum_{j \in X_{P[(i)]}} (X_j + \Delta X_j + X_j) + \sum_{k \in K_{P[(i)]}} (K_k'[r] + K_k[r])
\]
\[
= \sum_{j \in X_{P[(i)]}} \Delta X_j + \mathcal{F}[r](\Delta X)
\]
If we let \(\Delta Y = \mathcal{F}[r](\Delta X) \), then \(\mathcal{F}[r] \) captures the effect of round function \(\mathcal{F}[r] \) on an input difference \(\Delta X \). Similar to \(\mathcal{F}[r] \) before, \(\mathcal{F}[r] \) is an umbrella for 20 functions:
\[
\mathcal{F}[r](\Delta X) = (f'_r[(\Delta X) || f'_r[(\Delta X)] || ... || f'_r[(\Delta X)])
\]
Note that \(f'_r \) only depends on the input difference \(\Delta X \). Crucially, it is independent of both \(X \) itself and the key \(K \).

2) Shortcut Equation: Armed with the \(\Delta \)-propagation through round functions \(\mathcal{F}[r] \), Figure 9 shows our probability 1 differential trail through CEASER full LLBC, yielding an expression for output difference \(\Delta R \). This expression, which we dub the SHORTCUT EQUATION, describes \(\Delta a = (\Delta L||\Delta R) \) satisfying output collision: \(|\Delta R |_b = 0^b \Rightarrow R_K(a) = R_K(a + \Delta a) \).

A straightforward way to find solutions to this equation fixes \(\Delta L \) and tests variable \(\Delta R \) for equality. The expected offline complexity for each \(\Delta a = (\Delta L||\Delta R) \) is \(2^{b-1} \) evaluations of the shortcut equation. Since very often \(b < 20 \), the naive computation is very practical. As the shortcut equation describes twenty linear equations over \(GF(2) \), one could also algebraically determine a compact expression for \(\Delta L \) and \(\Delta R \).

3) Implications: The shortcut does not require knowledge of key \(K \), and is even completely independent of \(K \). Furthermore, it is also independent of the input \(a \). Although in general \(R_K(a) \neq R_K'(a) \), eviction sets constructed for key \(K' \) and input \(a' \) are still eviction sets for any other \((K, a)\) pair:
\[
R_K(a) = R_K(a + \Delta a) \Rightarrow R_K'(a' + \Delta a) = R_K'(a')
\]
This follows from the key-independence of the SHORTCUT EQUATION. Hence, rekeying does not invalidate eviction sets constructed using the shortcut. This has the devastating consequence that, as soon as the \(\Delta a \) have been precomputed offline, the attacker can construct arbitrary eviction sets for any target \(a \) with zero cache accesses, completely bypassing \(R_K \).

4) Extension to CEASER-S: CEASER-S implements partitions with parallel LLBC instances with different keys. By Equation (2), collision in one partition implies collision in all partitions. Thus, our shortcut equally impacts CEASER-S, allowing easy construction of fully congruent eviction sets.

5) Mitigation: At the very least, the LLBC rounds should incorporate non-linear SBox layers. This spot mitigation throttles the presented shortcut, but more subtle attacks could remain.

Takeaway: Do not overestimate the mapping’s security.

Shortcut attacks can be fundamentally eliminated by a randomization mapping that resists formal cryptanalysis.

IX. Discussion

In this section, we relate and compare the contributions in this paper to the most closely related work, as well as provide specific recommendations and directions for future work.

A. Prime+Prune+Probe on specific designs

Our generic model for computation-based randomized caches permits to instantiate existing designs, extend their security analysis, and compare them in terms of profiling effort.

We consider an 8 MB cache with 16 ways (\(n_w \)) and 13 index bits (\(b \) (i.e., \(N = 131072 \)). We assume a non-accessible target address (e.g., by enabling security domain separation \(s \)). Although we consider \(A_{cons} \) (cf. Section III-B), i.e., we are able to pinpoint one target access of interest, victim execution time cannot be neglected. Therefore, we assume a modestly-sized victim program, performing 1000 accesses per invocation.

Figure 10 shows total cache accesses to profile a generalized eviction set \(G \) with \(p_e = 90\% \). For each instance we use PRIME+PRUNE+PROBE and optimize for total cache accesses.

1) Single-partition caches: Randomized caches with \(P = 1 \) (CEASER, TSC) can be treated as traditional caches without adversary control over physical addresses. They require extremely frequent rekeying, given that fully congruent eviction sets (i.e., \(p_e = 100\% \)) can be obtained with the efficient top-down profiling approach [49], [39].

2) CEASER-S: First-party CEASER-S analysis [39] only considers fully congruent eviction. As fully congruent addresses are extremely scarce, it is completely infeasible for larger \(P \).

We instantiate the model to CEASER-S2 (resp. CEASER-S4) by setting \(P = 2 \) (resp. \(P = 4 \)) and replacement policy
not investigated, TSC risks shortcuts due to absence of cryptographic structure. Shortcuts in SCATTERCACHE are only possible by significant cryptanalytic advances for QARMA [1].

B. Future Work

Our work serves as a baseline to which future secure cache designs, and their analysis, could be compared. This paper also shows the importance of cryptanalytic resistance of the core randomization mapping. Stringent latency constraints could inspire new designs in the space of low-latency cryptography.

The rekeying period may be varied for different security levels. This can be transparently implemented through frequently and unpredictably updating s for high-security processes (e.g., enclaves), while refreshing K in larger intervals for regular processes. We also propose heuristic-based rekeying, invalidating eviction sets upon observation of certain microarchitectural events (e.g., many LLC cache misses or PPP signatures). It should be noted that rapid rekeying only mitigates attacks in scope for randomized caches, i.e., potential cache-contention channels that do not target set contention might remain.

The gap between our conservative rekeying periods (Section VI-D2) and PPP profiling in practice is quite large. Future work could explore closing this gap by improving profiling, relaxing theoretical bounds, or a combination of both.

X. Conclusion

Analyzing the residual attack surface of randomized cache architectures is a complex undertaking. In this work, we have established a generic framework to jointly analyze all existing computation-based randomized caches. We showed that, similar to cryptanalysis, randomized cache designs must be subjected to systematic analysis to gain confidence in their security. In this effort, we have contributed on three main fronts.

First, we have advanced the profiling state of the art for randomization-based secure caches. We developed novel attack techniques for such caches, including PRIME+PRUNE+PROBE and optimizations like bootstrapping and multi-step profiling.

Second, we have started bridging the gap between the usually assumed ideal attack and complicating effects like noise and multiple victim accesses. We have simulated an end-to-end attack, leaking AES keys from a vulnerable implementation. The more conservative designs (100N, 200N) resist PPP for the majority of rekeying periods, though with considerably reduced security margin. We observe an extreme gap between PPP and previous idealized estimates, easily exceeding 20 orders of magnitude for $P = 4$ and 50 orders of magnitude for $P = 8$ (not displayed).

3) SCATTERCACHE: First-party analysis [53] already considers generalized eviction. Their approach can be seen as a corner case of PPP, i.e., using $k = 1$ (cf. Section V).

We instantiate SCATTERCACHE by setting $P = n_w = 16$, implicitly with replacement RAND. Optimized for total accesses, PPP improves profiling with three orders of magnitude for the considered configuration. The main contribution of PPP is that it requires much fewer victim invocations, as it permits to test many addresses in parallel ($k \gg 1$). While SCATTERCACHE does not specify a rekeying frequency, our results indicate that it should be determined more conservatively than expected.

4) Shortcuts: With a case study on CEASER-S, we show with devastating consequences that the security of the randomization should not be taken for granted, even if its output is not directly observable. A similar study was conducted in concurrent work [5]. Instantiating a sound cryptographic algorithm thwarts all shortcuts but affects performance. Though

Fig. 10: Complexity (A_{ideal}) to construct a fully congruent or generalized ($p_e = 90\%$ or $p_e = 50\%$) eviction set. Randomized caches are monolithic 8MB ($n_w = 16$, $b = 13$, $N = 131072$ lines). Cost metric is total cache accesses; victim runtime is modeled with 1000 accesses. Fully congruent eviction assumes initial set (before reduction) of 2N. PPP uses the best-performing strategy (cf. Section VI-C), with $k = \frac{2}{N}$ (EASER) or $k = \frac{4}{N}$ (LRU).
when it is reloaded. Given that P_k with random replacement. Furthermore, they generally end up

A. Relation between k, k' and m_{pr}

Figure 11 experimentally (cf. Section III-A3) relates pruning parameters k, k' and m_{pr} for different cache instances.

It shows that the prune step does not shrink the initial set that much ($k' \approx k$), unless k is very large.

We also observe that instances with stateful replacement policy (LRU) require fewer pruning iterations m_{pr} than those with random replacement. Furthermore, they generally end up with a larger set after pruning (k').

B. Penalty for a cached target

We now derive the catching probability for a target address x that is already cached. Recall that, to detect an access to x, the attacker must first evict it from the cache, and detect its reintroduction in the cache. Let E denote the event that the Prime+Prune+Probe iteration successfully evicts x from the cache, and D the event that probe detects an access to x when it is reloaded. Given that $P[D,E] = 0$ we have that

$$p_{c,c} = P[D] = P[D,E] = P[D|E] \cdot P[E]$$

1) Random replacement: We have that $P[E] = p_{c,n}(k')$. Recall that for RAND, the target x has n_w potential cache lines to which it can be mapped. Let I denote the number of those locations that the Prime+Prune+Probe iteration occupies.

$$P[D|E] = \sum_{i=0}^{n_w} P[D,I = i|E] \quad \text{(law of total probability)}$$

$$= \sum_{i=0}^{n_w} P[D|E,I = i] \cdot P[I = i|E] \quad \text{(conditional)}$$

$$= \sum_{i=0}^{n_w} \frac{i \cdot P[E|I = i] \cdot P[I = i]}{P[E]} \quad \text{(Bayes’ rule)}$$

$$= \sum_{i=0}^{n_w} \frac{i \cdot (n_w)_{k'}^{(N-k')^{n_w-i}}}{N^{n_w}} \quad \text{(binomial pmf)}$$

Consequently, we obtain the expression from Table III:

$$p_{c,c} = P[D] = \sum_{i=1}^{n_w} \left(\frac{n_w}{i} \right) \frac{i^2 \cdot k^{k'} \cdot (N-k')^{n_w-i}}{N^{n_w}}$$

2) Least recently used (LRU): For LRU, we derive an approximation for $p_{c,c}$. We have that $P[E] = p_{c,n}$. Assume that x is cached in partition P_i and let P_R be the random variable denoting the partition to which x is reloaded.

$$P[D|E] = \sum_{i=1}^{n_w} P[D|P_R = P_i|E] = P[D,P_R = P_i|E]$$

$$= P[D,P_R = P_i|E] \cdot P[P_R = P_i|E]$$

$$\approx 1 \cdot \frac{1}{P} + \sum_{i \neq l} p_{c,n} \cdot \frac{1}{P}$$

Consequently, we obtain the expression from Table III:

$$P_c = P[D] \approx p_{c,n} \cdot \frac{p_{c,n}(P - 1) + 1}{P}$$

C. Theoretical vs. experimental catching probabilities

Figure 12 presents experimental and visual support for the analysis in Section V-B. Since the attacker cannot directly set k', we choose k as the independent variable in Figure 12. However, recall that in Table III, the catching probabilities p_c are described in terms of k' for RAND, i.e., after pruning, and in terms of k for LRU, i.e., before pruning. The reason is that the prune step does not allow concise statistical modeling.

Hence, for RAND, we approximate k' with k, noting that the exact p_c in terms of k' becomes an upper bound in terms of k. We observe theory to match practice very well for $k \leq 0.6N$, as $k \approx k'$ (cf. Appendix A). The upper bound becomes noticeable for very large k, exactly because k' and k diverge.

For LRU, the theoretical expressions were derived as a lower bound (cf. Section V-B1). It is a good approximation for low k. For larger k, although prune does not eliminate a lot of elements (cf. Appendix A), it increases p_c significantly because addresses that were evicted and reintroduced have another attempt at hitting the correct cache set and partition.

In principle, one can also choose $k > N$ to increase p_c beyond those depicted in Figure 12, all the way to $p_c \approx 1$. However, for such a configuration, the prune step becomes excessive, both for RAND and LRU. It will require a large number of non-aggressive iterations to avoid shrinking k' too fast (cf. Appendix A), followed by many aggressive iterations until there are no more self-evictions. As a result, the cache accesses needed to terminate the prune step are significant.

D. Known-Plaintext AES T-Tables Attack

We implement the "One-Round Attack" proposed by Osvik et al. [34]. Because their work already describes the attack in detail, we only add a high-level overview here and discuss implications for our cache model.

In the T-tables implementation of 128-bit AES, each of the first 9 rounds accesses all 4 T-tables 4 times each. Per round, one access is made for each key byte and plaintext byte pair.
Fig. 12: Catching probabilities for cached and uncached targets in theory and practice. Experimental results obtained from simulating a standalone 8MB randomized cache ($n_w = 16$, $b = 13$), averaged over 10^5 runs. The prune step becomes aggressive from the sixth iteration, if not already terminated.

We construct a matrix M of 16×16 bins, where columns represent the key byte position i, and rows the upper key nibble candidate $[k_i]_4$. Because of the table association mentioned before, table T_j produces columns $M_{*,i}$. We now measure accesses to our probe sets $A_{j,l}$ for all 16 addresses of each table, and simply add the resulting amount of misses from each probe set to a bin for each plaintext byte: $M[l \oplus p_i, i] += \text{misses}(A_{j,l})$. The key nibbles are now the highest value in each column. Depending on the size and quality of the probe sets, this takes several thousand random plaintexts. Figure 13 shows the matrix for a successful attack.

The noteworthy part for our attack is that, for uniformly distributed random plaintexts, each table address contributes equally to each bin in the appropriate columns of M. For this reason, this attack absorbs differences in probe set sizes.

Fig. 13: Result of the AES T-tables attack. Columns normed to the highest value. The partial key can be read from left to right by the darkest field in each column. Pictured: Key=0x00102030405060708090a0b0c0d0e0f0

$p_i \oplus k_i$ to table T_j, $j \equiv i \mod 4$, $i \in [0..15]$. T-tables consist of 256 entries of 4 bytes each, but as cache lines are typically 64 bytes in size, we can consider them arrays of 16 entries each, addressed by the upper nibble of $p_i \oplus k_i$. Thus entries $T_j[\lfloor p_i \oplus k_i \rfloor_4]$ will always be accessed in round 1, while other entries may be accessed in later rounds. This produces the statistical difference we exploit.