
Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR

Daniel Gruss∗ Clémentine Maurice∗ Anders Fogh†

Moritz Lipp∗ Stefan Mangard∗
∗ Graz University of Technology † G DATA Advanced Analytics

ABSTRACT
Modern operating systems use hardware support to protect
against control-flow hijacking attacks such as code-injection
attacks. Typically, write access to executable pages is pre-
vented and kernel mode execution is restricted to kernel code
pages only. However, current CPUs provide no protection
against code-reuse attacks like ROP. ASLR is used to pre-
vent these attacks by making all addresses unpredictable for
an attacker. Hence, the kernel security relies fundamentally
on preventing access to address information.

We introduce Prefetch Side-Channel Attacks, a new class
of generic attacks exploiting major weaknesses in prefetch
instructions. This allows unprivileged attackers to obtain
address information and thus compromise the entire system
by defeating SMAP, SMEP, and kernel ASLR. Prefetch can
fetch inaccessible privileged memory into various caches on
Intel x86. It also leaks the translation-level for virtual ad-
dresses on both Intel x86 and ARMv8-A. We build three at-
tacks exploiting these properties. Our first attack retrieves
an exact image of the full paging hierarchy of a process,
defeating both user space and kernel space ASLR. Our sec-
ond attack resolves virtual to physical addresses to bypass
SMAP on 64-bit Linux systems, enabling ret2dir attacks.
We demonstrate this from unprivileged user programs on
Linux and inside Amazon EC2 virtual machines. Finally,
we demonstrate how to defeat kernel ASLR on Windows 10,
enabling ROP attacks on kernel and driver binary code. We
propose a new form of strong kernel isolation to protect com-
modity systems incuring an overhead of only 0.06–5.09%.

CCS Concepts
•Security and privacy → Side-channel analysis and
countermeasures; Systems security; Operating sys-
tems security;

Keywords
ASLR; Kernel Vulnerabilities; Timing Attacks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978356

1. INTRODUCTION
The exploitation of software bugs imperils the security of

modern computer systems fundamentally. Especially, buffer
overflows can allow an attacker to overwrite data structures
that are used in the control flow of the program. These
attacks are not limited to user space software but are also
possible on operating system kernels [16]. Modern computer
hardware provides various features to prevent exploitation
of software bugs. To protect against control-flow hijacking
attacks, the operating system configures the hardware such
that write access to executable pages is prevented. Fur-
thermore, the hardware is configured such that in kernel
mode, the instruction pointer may not point into the user
space, using a mechanism called supervisor mode execu-
tion prevention (SMEP). Data accesses from kernel mode
to user space virtual addresses are prevented by operating
system and hardware, using a mechanism called supervi-
sor mode access prevention (SMAP). To close remaining at-
tack vectors, address-space layout randomization (ASLR) is
used to make all addresses unpredictable for an attacker and
thus make return-oriented-programming (ROP) attacks in-
feasible. All major operating systems employ kernel ASLR
(KASLR) [32, 39, 43]. Information on where objects are lo-
cated in the kernel address space is generally not available
to user programs.

Knowledge of virtual address information can be exploited
by an attacker to defeat ASLR [17,46]. Knowledge of phys-
ical address information can be exploited to bypass SMEP
and SMAP [27], as well as in side-channel attacks [11,22,34,
35,42] and Rowhammer attacks [10,29,30,45]. Thus, the se-
curity of user programs and the kernel itself relies fundamen-
tally on preventing access to address information. Address
information is often leaked directly through system inter-
faces such as procfs [27] or indirectly through side chan-
nels such as double page faults [17]. However, operating
system developers close these information leaks through se-
curity patches [30]. In this paper, we show that even if the
operating system itself does not leak address information,
recent Intel and ARM systems leak this information on the
microarchitectural level.

We introduce Prefetch Side-Channel Attacks, a new class
of generic attacks that allow an unprivileged local attacker
to completely bypass access control on address information.
This information can be used to compromise the entire phys-
ical system by bypassing SMAP and SMEP in ret2dir at-
tacks or defeating KASLR and performing ROP attacks in
the kernel address space. Our attacks are based on weak-
nesses in the hardware design of prefetch instructions. In-

deed, prefetch instructions leak timing information on the
exact translation level for every virtual address. More severely,
they lack a privilege check and thus allow fetching inacces-
sible privileged memory into various CPU caches. Using
these two properties, we build two attack primitives: the
translation-level oracle and the address-translation oracle.
Building upon these primitives, we then present three dif-
ferent attacks. Our first attack infers the translation level for
every virtual address, effectively defeating ASLR. Our sec-
ond attack resolves virtual addresses to physical addresses on
64-bit Linux systems and on Amazon EC2 PVM instances in
less than one minute per gigabyte of system memory. This
allows an attacker to perform ret2dir-like attacks. On mod-
ern systems, this mapping can only be accessed with root
or kernel privileges to prevent attacks that rely on knowl-
edge of physical addresses. Prefetch Side-Channel Attacks
thus render existing approaches to KASLR ineffective. Our
third attack is a practical KASLR exploit. We provide
a proof-of-concept on a Windows 10 system that enables
return-oriented programming on Windows drivers in mem-
ory. We demonstrate our attacks on recent Intel x86 and
ARM Cortex-A CPUs, on Windows and Linux operating
systems, and on Amazon EC2 virtual machines.

We present a countermeasure against Prefetch Side-Channel
Attacks on commodity systems, that involves reorganizing
the user and kernel address space to protect KASLR. Our
countermeasure requires only a small number of changes to
operating system kernels and comes with a performance im-
pact of 0.06–5.09%.

Our key contributions are:
1. We present two generic attack primitives leveraging

the prefetch instructions: the translation-level oracle
and the address-translation oracle. We then use these
primitives in three different attacks.

2. We present a generic attack to infer the translation
level for every virtual address to defeat ASLR.

3. We demonstrate generic unprivileged virtual-to-physical
address translation attack in the presence of a physical
direct map in kernel or hypervisor, on Linux and in a
PVM on Amazon EC2. This allows bypassing SMAP
and SMEP, enabling ret2dir attacks.

4. We present a generic attack to circumvent KASLR,
which enables ROP attacks inside the kernel. We demon-
strate our attack on a Windows 10 system.

5. We propose a new form of strong kernel isolation to
mitigate Prefetch Side-Channel Attacks and double
page fault attacks on kernel memory.

Outline.
This paper is structured as follows. Section 2 provides

background on caches and address spaces. Section 3 presents
the settings and two novel attack primitives leveraging the
prefetch instructions: the translation-level oracle and the
address-translation oracle. The translation-level oracle is
used in Section 4 to perform a translation-level recovery at-
tack to defeat ASLR. The address-translation oracle is used
in Section 5 to perform unprivileged virtual-to-physical ad-
dress translation as the basis of ret2dir attacks. Both oracles
are used in Section 6 to defeat KASLR. Section 7 shows how
to perform cache side-channel and Rowhammer attacks on
inaccessible kernel memory. Section 8 presents countermea-
sures against our attacks. Section 9 discusses related work,
and Section 10 concludes this article.

2. BACKGROUND AND RELATED WORK

2.1 Address translation
To isolate processes from each other, CPUs support vir-

tual address spaces. For this purpose, they typically use a
multi-level translation table. Which translation table is used
is determined by a value stored in a CPU register. This reg-
ister value is exchanged upon a context switch. Thus, each
process has its own address mappings and only access to
its own address space. The kernel is typically mapped into
every address space but protected via hardware-level access
control. When a thread performs a system call it switches to
an operating system controlled stack and executes a kernel-
level system call handler. However, it still has the same
translation table register value.

In the case of recent Intel CPUs, this translation table has
4 levels. On each level, translation table entries define the
properties of this virtual memory region, e.g., whether the
memory region is present (i.e., mapped to physical memory),
or whether it is accessible to user space. The upper-most
level is the page map level 4 (PML4). It divides the 48-
bit virtual address space into 512 memory regions of each
512 GB (PML4 entries). Each PML4 entry maps to page
directory pointer table (PDPT) with 512 entries each con-
trolling a 1 GB memory region that is either 1 GB of phys-
ical memory directly mapped (a so-called 1 GB page), or
to a page directory (PD). The PD again has 512 entries,
each controlling a 2 MB region that is either 2 MB of phys-
ical memory directly mapped (a so-called 2 MB page), or a
page table (PT). The PT again has 512 entries, each con-
trolling a 4 KB page. The lowest level that is involved in
the address translation is called the translation level. The
CPU has special caches and so-called translation-lookaside
buffers for different translation levels, to speed up address
translation and privilege checks.

A second, older mechanism that is used on x86 CPUs in
virtual-to-physical address translation is segmentation. User
processes can be isolated from each other and especially from
the kernel by using different code and data segments. Seg-
ments can have a physical address offset and a size limit, as
well as access control properties. However, these features are
widely redundant with the newer translation table mecha-
nism. Thus, most of these features are not available in 64-bit
mode on x86 CPUs. In particular, all general purpose seg-
ments are required to have the offset set to physical address
0 and the limit to the maximum value. Thus, the CPU can
ignore these values at runtime and does not have to perform
runtime range checks for memory accesses.

2.2 Virtual address space
The virtual address space of every process is divided into

user address space and kernel address space. The user ad-
dress space is mapped as user-accessible, unlike the kernel
space that can only be accessed when the CPU is running in
kernel mode.The user address space is divided into memory
regions for code, data, heap, shared libraries and stack. De-
pending on the operating system, the user address space may
look entirely different in different processes with respect to
the absolute virtual offsets of the regions and also the order
of the regions. In contrast, the kernel address space looks
mostly identical in all processes.

To perform context switches, the hardware requires map-
ping parts of the kernel in the virtual address space of every

Virtual address space

User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

di
re
ct
m
ap

Figure 1: Direct mapping of physical memory. A
physical address is mapped multiple times, once ac-
cessible for user space and once in the kernel space.

process. When a user thread performs a syscall or handles
an interrupt, the hardware simply switches into kernel mode
and continues operating in the same address space. The
difference is that the privileged bit of the CPU is set and
kernel code is executed instead of the user code. Thus, the
entire user and kernel address mappings remain generally
unchanged while operating in kernel mode. As sandboxed
processes also use a regular virtual address space that is pri-
marily organized by the kernel, the kernel address space is
also mapped in an inaccessible way in sandboxed processes.

Many operating systems have a physical memory region or
the whole physical memory directly mapped somewhere in
the kernel space [28,32]. This mapping is illustrated in Fig-
ure 1. It is used to organize paging structures and other data
in physical memory. The mapping is located at a fixed and
known location, even in the presence of KASLR. Some hy-
pervisors also employ a direct map of physical memory [49].
Thus, every user page is mapped at least twice, once in the
user address space and once in the kernel direct map. When
performing operations on either of the two virtual addresses,
the CPU translates the corresponding address to the same
physical address in both cases. The CPU then performs the
operation based on the physical address.

Physical direct maps have been exploited in ret2dir at-
tacks [27]. The attacker prepares a code page to be used in
the kernel in the user space. Exploiting a kernel vulnera-
bility, code execution in the kernel is then redirected to the
same page in the physical direct map. Hence, the attacker
has obtained arbitrary code execution in the kernel.

2.3 Address-space layout randomization
Modern CPUs protect against code injection attacks (e.g.,

NX-bit, W⊕X policy), code execution in user space memory
in privileged mode (e.g., SMEP, supervisor mode execution
protection), and data accesses in user space memory regions
in privileged mode (e.g., SMAP, supervisor mode access pro-
tection). However, by chaining return addresses on the stack
it is possible to execute small code gadgets that already ex-
ist in the executable memory regions, e.g., return-to-libc and
ROP attacks. In an ROP attack, the attacker injects return
addresses into the stack and in some cases modifies the stack
pointer to a user-controlled region, in order to chain the ex-
ecution of so-called gadgets. These gadgets are fragments of
code already existing in the binary, typically consisting of a
few useful instructions and a return instruction.

ASLR is a countermeasure against these control flow hi-
jacking attacks. Every time a process is started, its virtual
memory layout is randomized. ASLR can be applied on
a coarse-grained level or a fine-grained level. In the case

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
systemmemory (DRAM)

L
o
ok

u
p
d
irection

Figure 2: Paging caches are used to speed-up ad-
dress translation table lookups.

of coarse-grained ASLR, only the base addresses of differ-
ent memory regions are randomized, e.g., code, data, heap,
libraries, stack. This is mostly performed on a page-level
granularity. An attacker cannot predict addresses of code
and data and thus cannot inject modified code or manipu-
late data accesses. In particular, an attacker cannot predict
the address of gadgets to be used in an ROP attack. All
modern operating systems implement coarse-grained ASLR.
Fine-grained ASLR randomizes even the order of functions,
variables, and constants in memory on a sub-page-level gran-
ularity. However, it incurs performance penalties, and can
be bypassed [47] and thus is rarely used in practice.

User space ASLR primarily protects against remote at-
tackers that only have restricted access to the system and
thus cannot predict addresses for ROP chains. KASLR pri-
marily protects against local attackers as they cannot predict
addresses in the kernel space for ROP chains. In particular,
invalid accesses cause a crash of the application under attack
or the entire system. On Windows, the start offsets of the
kernel image, drivers and modules, are randomized.

2.4 CPU caches
CPU caches hide slow memory access latencies by buffer-

ing frequently used data in smaller and faster internal mem-
ory. Modern CPUs employ set-associative caches, where ad-
dresses are mapped to cache sets and each cache set consists
of multiple equivalent cache lines (also called ways). The in-
dex to determine the cache set for an address can be based on
the virtual or physical address. The last-level cache is typ-
ically physically indexed and shared among all cores. Thus
executing code or accessing data on one core has immediate
consequences for all other cores.

Address translation structures are stored in memory and
thus will also be cached by the regular data caches [21]. In
addition to that, address translation table entries are stored
in special caches such as the translation-lookaside buffers to
allow the CPU to work with them. When accessing virtual
addresses these buffers are traversed to find the correspond-
ing physical address for the requested memory area. The
caches of the different table lookups are represented in Fig-
ure 2. These caches are typically fully-associative.

As CPUs are getting faster, they rely on speculative execu-
tion to perform tasks before they are needed. Data prefetch-
ing exploits this idea to speculatively load data into the
cache. This can be done in two different ways: hardware
prefetching, that is done transparently by the CPU itself,
and software prefetching, that can be done by a program-
mer. Recent Intel CPUs have five instructions for software

prefetching: prefetcht0, prefetcht1, prefetch2, prefetch-
nta, and prefetchw. These instructions are treated like
hints to tell the processor that a specific memory location
is likely to be accessed soon. The different instructions al-
low hinting future repeated accesses to the same location
or write accesses. Similarly, recent ARMv8-A CPUs sup-
ply the prefetch instruction PRFM. Both on Intel and ARM
CPUs, the processor may ignore prefetch hints.

2.5 Cache attacks
Cache attacks are side-channel attacks exploiting timing

differences introduced by CPU caches. Cache attacks have
first been studied theoretically [26,31], but practical attacks
on cryptographic algorithms followed since 2002 [3, 38,48].

In the last ten years, fine-grained cache attacks have been
proposed, targeting single cache sets. In an Evict+Time at-
tack [37], the attacker measures the average execution time
of a victim process, e.g., running an encryption. The at-
tacker then measures how the average execution time changes
when evicting one specific cache set before the victim starts
its computation. If the average execution time is higher,
then this cache set is probably accessed by the victim.

A Prime+Probe attack [37,41] consists of two steps. In the
Prime step, the attacker occupies one specific cache set. Af-
ter the victim program has been scheduled, the Probe step is
used to determine whether the cache set is still occupied. A
new generation of Prime+Probe attacks have recently been
used to perform attacks across cores and virtual machine
borders [22,34,35] as well as from within sandboxes [36].

Gullasch et al. [13] built a significantly more accurate at-
tack that exploits the fact that shared memory, e.g., shared
libraries, is loaded into the same cache set for different pro-
cesses running on the same CPU core. Yarom and Falkner [50]
presented an improvement over this attack, called Flush+
Reload that targets the last-level cache and thus works across
cores. Flush+Reload attacks work on a single cache line
granularity. These attacks exploit shared inclusive last-level
caches. An attacker frequently flushes a targeted memory lo-
cation using the clflush instruction. By measuring the time
it takes to reload the data, the attacker determines whether
data was loaded into the cache by another process in the
meantime. Applications of Flush+Reload are more reliable
and powerful in a wide range of attacks [12,14,23,24,51].

Flush+Reload causes a high number of cache misses due to
the frequent cache flushes. This has recently also been used
to perform a memory corruption attack called Rowham-
mer [29]. In a Rowhammer attack, an attacker causes ran-
dom bit flips in inaccessible and higher privileged memory
regions. These random bit flips occur in DRAM memory
and the Flush+Reload loop is only used to bypass all levels
of caches to reach DRAM in a high frequency. Proof-of-
concept exploits to gain root privileges and to evade a sand-
box have been demonstrated [44]. For the attack to succeed,
an attacker must hammer memory locations that map to dif-
ferent rows in the same bank. However, the mapping from
addresses to rows and banks is based on physical addresses.
Thus, Rowhammer attacks are substantially faster and eas-
ier if physical address information is available as an attacker
can directly target the comparably small set of addresses
that map to different rows in the same bank. As a counter-
measure, operating systems have recently restricted access
to physical address information to privileged processes [30].

3. SETTING AND ATTACK PRIMITIVES
In this section, we describe the prefetch side channel and

two primitives that exploit this side channel. We build a
translation-level oracle, that determines whether a page is
present and which translation table level is used for the
mapping. This primitive is the basis for our translation-
level recovery attack described in Section 4 to defeat ASLR.
We build an address-translation oracle that allows verifying
whether a specific virtual address maps to a specific physi-
cal address. We use this to resolve the mapping of arbitrary
virtual addresses to physical addresses to mount ret2dir at-
tacks, defeating SMAP and SMEP, in Section 5. We use
both attack primitives in our the KASLR exploit described
in Section 6.

3.1 Attack setting and attack vector

Attack setting.
In our attacks, we consider a local attack scenario where

user space and KASLR are in place. The attacker can run
arbitrary code on the system under attack, but does not
have access to the kernel or any privileged interfaces such as
/proc/self/pagemap providing user space address informa-
tion. This includes settings such as an unprivileged process
in a native environment, an unprivileged process in a virtual
machine, and a sandboxed process.

To exploit a potential vulnerability in kernel code, an at-
tacker cannot inject code into a writable memory region in
the kernel, or directly jump into code located in the user
address space as this is prevented by modern CPUs with
features like the NX-bit, SMEP, and SMAP. Thus, an at-
tacker can only reuse existing code in a so-called code reuse
attack, e.g., ROP attacks. However, building an ROP pay-
load requires exact knowledge of the addresses space lay-
out. Even if the operating system does not leak any address
space information and ASLR is employed and effective, we
show that the hardware leaks a significant amount of address
space information.

The information gained allows an attacker to conduct
cache side-channel attacks and Rowhammer attacks, as well
as to defeat KASLR and bypass SMAP and SMEP in a
ret2dir-like attack.

Attack vector.
Prefetch Side-Channel Attacks are novel and generic side-

channel attacks. We exploit the following two properties:

Property 1 The execution time of prefetch instructions varies
depending on the state of various CPU internal caches.

Property 2 Prefetch instructions do not perform any priv-
ilege checks.

The execution time (Property 1) of a prefetch instruc-
tion can be directly measured. It is independent of privi-
lege levels and access permissions. We exploit this property
in our translation-level oracle. Intel states that prefetching
“addresses that are not mapped to physical pages” can in-
troduce non-deterministic performance penalties [21]. ARM
states that the prefetch instructions are guaranteed not to
cause any effect that is not equivalent to loading the address
directly from the same user process [1]. In both cases, we
found timing differences to be deterministic enough to be ex-
ploitable. That is, Property 1 can be observed on all our test

Table 1: Experimental setups.
CPU / SoC Microarchitecture System type

i5-2530M, i5-2540M Sandy Bridge Laptop
i5-3230M Ivy Bridge Laptop
i7-4790 Haswell Desktop

i3-5005U, i5-5200U Broadwell Laptop
i7-6700K Skylake Desktop

Xeon E5-2650 Sandy Bridge Amazon EC2 VM
Exynos 7420 ARMv8-A Smartphone

platforms shown in Table 1, i.e., all Intel microarchitectures
since Sandy Bridge as well as the ARMv8-A microarchitec-
ture. Thus, attacks based on Property 1 are applicable to
the vast majority of systems used in practice. We demon-
strate our translation-level recovery attack on all platforms.

The timing difference caused by the lack of privilege checks
(Property 2) can only be measured indirectly using one of
the existing cache attack techniques. The combination of
the prefetch side channel with different cache attack tech-
niques yields different properties. Intel states that software
prefetches should not be used on addresses that are not
“managed or owned” by the user process [19], but in prac-
tice does not prevent it, thus letting us do this in our attack.
Property 2 can be observed on all Intel test platforms shown
in Table 1, i.e., all microarchitectures since Sandy Bridge.
Thus, attacks based on Property 2 are applicable to the vast
majority of desktop, server, and cloud systems.

Measurements.
Measuring the execution time of instructions or memory

accesses is typically necessary to perform micro-benchmarks.
On ARM CPUs we experienced no difficulties with out-of-
order execution. We used clock_gettime() to measure time
in nanoseconds, as in previous work [33], and surrounded
the target instr. with a memory and instruction barrier con-
sisting of DSB SY; ISB. Depending on the attack we used a
memory access or the PRFM instruction as target instruction.

On Intel CPUs micro-benchmark measurements are sig-
nificantly harder, due to out-of-order execution. The in-
structions rdtsc and rdtscp both provide a sub-nanosecond
timestamp. rdtscp also waits for all memory load opera-
tions to be processed before retrieving the timestamp. The
cpuid instruction can be used to serialize the instruction
stream. To perform accurate measurements, Intel recom-
mends using a sequence of cpuid; rdtsc before executing
the code to measure and rdtscp; cpuid afterward [18]. In
cache side-channel attacks memory fences like mfence can be
used to ensure that memory store operations are also serial-
ized. However, the prefetch instruction is not serialized by
rdtscp or any memory fence, but only by cpuid [20]. Due to
these serialization issues we crafted instruction sequences to
measure exactly a target instruction in different scenarios:

1. In cases of long measurements and measurements of
memory access times, the target instruction is unlikely
to be reordered before a preceding rdtscp instruction.
We thus use:
mfence cpuid rdtscp target instr. rdtscp cpuid mfence.

2. When measuring prefetch instructions repeatedly, cor-
rect values for minimum and median latency are im-
portant. Thus, noise introduced by cpuid is tolerable
but reordering the target instruction is not, because it
could lead to a lower measurement for the minimum
latency. In this case we use:
mfence rdtscp cpuid target instr. cpuid rdtscp mfence.

Depending on the attack we used a memory access, or the
prefetch instructions prefetchnta and prefetcht2 as target
instruction.

3.2 Translation-level oracle
In the translation-level oracle, we exploit differences in

the execution time of prefetch instructions (Property 1).
Prefetch instructions resolve virtual addresses to physical
addresses to enqueue the prefetching request. Intel CPUs
follow a defined procedure to find a cache entry or a physi-
cal address for a specific virtual address (cf. Section 4.10.3.2
of Intel Manual Vol. 3A [21]):

1. Cache lookup (requires TLB lookup)
2. TLB lookup
3. PDE cache lookup
4. PDPTE cache lookup
5. PML4E cache lookup

The procedure aborts as early as possible omitting all sub-
sequent steps. Step 1 and 2 can be executed in parallel for
the L1 cache and thus the latency of step 2 is hidden in
this case. However, in case of the L2 or L3 cache, step 2
needs to be executed before to complete the cache lookup
in step 1. If no entry is found in any TLB, step 3 needs
to be executed to complete step 2 and the same applies for
steps 4 and 5. Depending on the specific CPU, some caches
may not be present and the corresponding steps are omitted.
Every step of the lookup procedure introduces a timing dif-
ferences that can be measured. For ARM CPUs, the same
mechanism applies to the corresponding translation tables.
However, on all CPUs tested, we found at least 4 distinct
average execution times for different cases.

The translation-level oracle works in two steps. First, we
calibrate the execution time of a prefetch instruction on the
system under attack. Second, we measure the execution
time of a prefetch instruction on an arbitrary virtual address.
Based on the execution time, we can now derive on which
level a prefetch instruction finished the search for a cache
entry or a physical address.

Prefetch instructions on Intel CPUs ignore privilege lev-
els and access permissions (Property 2). Thus, it is possible
to prefetch execute-only pages, as well as inaccessible ker-
nel memory. When running the procedure over the whole
address space, we now also obtain information on all kernel
pages. Note that even a process with root privileges could
not obtain this information without loading a kernel module
on modern operating systems.

3.3 Address-translation oracle
The lack of privilege checks (Property 2) is the basis for

our second oracle, as well as other privilege checks that are
not active in 64-bit mode on x86 CPUs (cf. Section 2.1). An
attacker can execute prefetch on any virtual address includ-
ing kernel addresses and non-mapped addresses. Thus, we
can use prefetch as an oracle to verify whether two virtual
addresses p and p̄ map to the same physical address. The
address-translation oracle works in three steps:

1. Flush address p
2. Prefetch (inaccessible) address p̄
3. Reload p

If the two addresses map to the same physical address, the
prefetch of p̄ in step 2 leads to a cache hit in step 3 with
a high probability. Thus, the access time in step 3 is lower
than for a cache miss. By repeating this measurement, the

0 50 100 150 200 250
100

150

200

250

Page offset in kernel direct map

M
in

.
la

te
n
cy

Figure 3: Minimum memory access time for an ad-
dress p after prefetching different inaccessible ad-
dresses, on an i5-3320M. Peak shows the single ad-
dress p̄ mapping to the same physical address as p.

confidence level can be increased to the desired value. One
measurement round takes 100–200 nanoseconds on our test
systems. Thus, an attacker can run up to 10 million such
measurements per second. Figure 3 shows the minimum
access time from step 3, over a set of inaccessible addresses p̄
measured on an i5-3320M. The peak shows the single address
p̄ that maps to the same physical address as p.

Similarly, we can also perform a microarchitectural tim-
ing attack on prefetch instructions directly. Based on the
execution time of prefetch instructions (Property 1), we can
measure whether a targeted address p is in the cache. In
this Evict+Prefetch-variant of the address-translation ora-
cle, we exploit both properties of prefetch instructions (cf.
Section 3.1). As the target address might be inaccessible,
we evict the address instead of flushing it in the first step.
The prefetching replaces the reload step and checks whether
the inaccessible address is already in the cache:

1. Evict address p
2. Execute function or system call
3. Prefetch p

If the function or system call in step 2 accesses any address
p̄ that maps to the same physical address as address p, we
will observe a lower timing in step 3 with a high probability.
Thus, as in the regular address-translation oracle, we deter-
mine whether an address p̄ and an address p map to the
same physical address. The difference is that in the Evict+
Prefetch-variant the address p̄ is unknown to the attacker.
Instead, the attacker learns that a targeted address p is used
by the function or system call.

4. TRANSLATION-LEVEL
RECOVERY ATTACK

In this section, we describe how to determine the trans-
lation level from an unprivileged user space process based
on the translation-level oracle described in Section 3.2. Pro-
cesses with root privileges can normally obtain system infor-
mation to derive the translation level, for instance on Linux
using the pagemap file in procfs. However, even here the
information provided by the operating system is incomplete
and to obtain the translation-level information for kernel
memory, it is necessary to install a kernel module for this
purpose. We instead only rely on the timing difference ob-
served when running a prefetch attack on an address.

Figure 4 shows the median prefetch execution time for 5
different cases measured on an i5-2540M compared to the
actual mapping level. We measured the execution time of
prefetchnta and prefetcht2 in 0.5 million tests. The low-
est median timing can be observed when the address is valid

PDPT PD PT

Page (cached)

Page (uncached)

200

300

400

230 246
222

181

383

Mapping level

E
x
ec

u
ti

o
n

ti
m

e

Figure 4: Median prefetch execution time in cycles
compared to the actual address mapping level, mea-
sured on an i5-2540M.

0 511

Check PML4 offsets

0 511

Check PDPT offsets

0 511

Check PDPT offsets

1GB page

0 511

Check PD offsets

2MB page
Entry present

Figure 5: Breadth-first search through the page
translation entries that are present. The attacker
obtains an accurate map of the page translation level
for user and kernel address space.

and cached, with a median of 181 cycles. It is interesting
to observe that prefetching a non-cached address when all
TLB entries are present has a median execution time of 383
cycles. Thus, we can use prefetch instructions to distinguish
cache hits and misses for valid addresses. In case the tar-
geted address is not valid, we observe different execution
times depending the mapping level where the address reso-
lution ends. If the memory region has a page directory but
the page table is not valid, the median execution time is 222
cycles. If the memory region does not have a page directory
but a PDPT, the median execution time is 246 cycles. If
the memory region does not have a PDPT, the median ex-
ecution time is 230 cycles. Note that these timings strongly
depend on the measurement techniques in Section 3.1.

We perform a breadth-first search starting with the PML4
and going down to single pages as illustrated in Figure 5.
We start the recovery attack with the top-level PML4 re-
cursively going down to the lowest level (cf. Section 2.1).
We eliminate measurement noise by checking multiple ad-
dresses in each of the 512 regions on each layer. The median
execution time of a prefetch instruction sequence is used to
decide whether a PDPT is mapped or not. On the PDPT
level we thus obtain information on 1 GB pages, on the PD
level we obtain information on 2 MB pages and on the lowest
level (PT) we obtain information on 4 KB pages. On each
level we learn whether the address is mapped directly from
this level, or a lower level, or whether it is marked as invalid.

For a single check, we perform 28 tests that in total take
less than 4ms on the i5-2540M. We check 4 addresses per
region and thus require less than 16ms per memory region.
Thus, for every translation table that is present, our attack
has a runtime of approximately 8 seconds. Programs on

Linux typically use at least 8 translations tables (1 PML4,
2 PDPTs, 2 page directories, 3 page tables). The total run-
time to only recover the translation levels for the user space
here is approximately 1 minute. However, recovering the
translation levels for the kernel can take several minutes if
1 GB pages are used by the kernel, or even several hours if
2 MB pages are used for the physical direct map. If more
addresses are mapped in the user space, the execution time
can increase to several minutes or hours, depending on the
target process.

In either case, our attack successfully recovers the trans-
lation level which is normally only accessible for processes
with root privileges. Obtaining this information effectively
defeats ASLR, as the attacker can now accurately deter-
mine which addresses are mapped to physical memory by
locating libraries or drivers in inaccessible memory regions.
Finally, our attack defeats recently proposed countermea-
sures [7] that employ execute-only mappings, as prefetch
instructions ignore access permissions.

Translation-level recovery from Android apps.
Similarly to 64-bit x86, 64-bit ARMv8-A has a 4-level page

translation mechanism. This is for instance the case on our
Samsung Galaxy S6 with an Exynos 7420 system-on-chip
with a non-rooted stock Android system. On this system, we
use the unprivileged PRFM PLDL1KEEP instruction to prefetch
memory and the unprivileged DC CIVAC instruction to flush
memory from user space.

The basic translation-level recovery attack on our ARMv8-
A CPU is the same as on Intel x86 CPUs. The timing
measurement by clock_gettime provides a measurement
on a nanosecond scale. The timing measurement is signifi-
cantly faster than on Intel x86 CPUs as there is no cpuid

instruction consuming a significant amount of cycles. We
performed 28 tests per address from an Android app. In
total this takes less than 50µs on our ARMv8-A system.
Thus, the translation-level recovery attack runs on ARM-
based devices successfully.

5. ADDRESS-TRANSLATION ATTACK
In this section, we describe how to mount ret2dir-like at-

tacks without knowledge of physical addresses based on our
address-translation oracle. We also build an efficient attack
to resolve virtual addresses to physical addresses. This at-
tack exploits the physical direct map in the kernel. Many
operating systems and hypervisors use such a mapping to
read and write on physical memory [28, 32, 49]. The phys-
ical direct map has been exploited by Kemerlis et al. [27]
to bypass SMEP in their attack called ret2dir. Similarly,
this map can also be used for return stacks in an ROP at-
tack if the attacker has knowledge of the physical address of
user-accessible memory. However, our address-translation
attack is not restricted to ret2dir-like attacks, it also pro-
vides physical address information that is necessary in many
side-channel attacks and fault attacks [11,22,29,30,34,42,45].

The attack does not require prior knowledge of the virtual
offset of the physical direct map in the kernel. This offset
is typically fixed, but it can also be determined by using a
translation-level recovery attack. We demonstrate our at-
tack on a native Ubuntu Linux system, and from within an
Amazon EC2 instance.

The attacker runs the address-translation oracle on one
address p and one address p̄ in the virtual memory area of

100 150 200 250 300 350 400
102

105

108

Latency in cycles

C
a
se

s

Prefetched Not prefetched

Figure 6: Access latency that has (or has not) been
prefetched through a kernel address. Measurements
performed on Linux on an Intel i5-3320M.

i5-2540M
i5-3230M

i7-4790
i5-5200U

i7-6700K
0

50

100

150

Experimental setup

S
ec

o
n
d
s

Expected time per GB Raw false negatives

0%

20%

40%

60%

Figure 7: Expected brute-force search time per GB
of physical memory, searching for a 2 MB page. Raw
false negative rate after a single run of the attack.
On all platforms the whole system memory can be
searched exhaustively within minutes to hours.

the kernel that is directly mapped to physical memory. The
timing difference resulting from prefetching p̄ is shown in
Figure 6. Note that p and p̄ have the same page offset, as
the page offset is identical for physical and virtual pages. By
only checking the possible offsets based on the known page
size, the attacker reduces the number of addresses to check
to a minimum. The search space for 2 MB pages is only 512
possibilities per 1 GB of physical memory and for 4 KB pages
only 262 144 possibilities per 1 GB of physical memory. The
attacker performs a brute-force search for the correct kernel
physical direct-map address by trying all possible values for
p̄. Finding an address p̄ means that the attacker has ob-
tained an address that maps user space memory in the ker-
nel address space, thus providing a bypass for SMAP and
SMEP. Thus it is possible to mount ret2dir-like attacks us-
ing this address. However, the correct physical address can
be obtained by subtracting the virtual address of the start
of the physical direct map. On Linux, the physical direct
map is located at virtual address 0xffff 8800 0000 0000.

Figure 7 shows the average brute-force search time per gi-
gabyte of physical memory, when searching for a 2 MB page.
In this search, we ran our address-translation oracle 214 to
217 times, depending on the architecture. Increasing the
number of runs of the address-translation oracle decreases
the false negative rate but at the same time increases the
execution time. We did not find any false positives in any
of the native attack settings. Depending on the architec-
ture, delays were introduced to lower the pressure on the
prefetcher. The highest accuracy was achieved on the i5-
3230M (Ivy Bridge), the i7-4790 (Haswell), and the i5-5200U
(Broadwell) systems where the false negative rate was be-

tween 7% and 13%. The accuracy was significantly lower
on the i5-2540M (Sandy Bridge) test system. However, the
false-negative rate remained at ≥ 25% even with a higher
number of address-translation oracle runs. For the expected
execution time per gigabyte of physical memory, we com-
puted how long the attacks have to be repeated until the
physical address is found with a probability of more than
99%. The i5-2540M (Sandy Bridge) test system had the
highest false negative rate and thus the expected search time
is the highest here. Similarly, on the Skylake system, the at-
tack needs to be executed 3 times to find a physical address
with a probability of more than 99%. However, as the exe-
cution time per round of the attack on the Skylake system
was much lower than on the other systems, the expected
execution time is close to the other systems.

Getting host physical addresses on Amazon EC2.
On the Amazon EC2 instance running Linux, we exploit

the Xen PVM physical direct map, located at virtual address
0xffff 8300 0000 0000. Apart from this, the basic attack
remains the same. To perform the attack on an Amazon
EC2 instance, we compensated the noise by checking mul-
tiple 4 KB offsets per 2 MB page. Our machine was sched-
uled on an Intel Xeon E5-2650 (Sandy Bridge). In a dual
CPU configuration, it can manage up to 768 GB of physical
memory. To compensate for this huge amount of poten-
tially addressable physical memory, we reduced the number
of address-translation oracle runs from 215 to 213. Our at-
tack speed is thus reduced from 154 seconds to 46 seconds
per gigabyte on average, limiting the total attack time to
less than 10 hours. While this is significantly more than
in a native environment with a smaller amount of physical
memory, it is still practical to use this attack to translate a
small number of virtual addresses to physical addresses.

As we had no direct access to the real address translation
information, we verified our results based on the technique
from Section 3.3. Translations are considered correct if mul-
tiple consecutive verification loops confirm that the hypervi-
sor physical direct-map addresses indeed allow prefetching
the targeted user virtual address, and if the mappings of
multiple addresses from the same virtual page can be con-
firmed as well using the address-translation oracle. We ob-
tained an accuracy of the attack in the cloud that is compa-
rable to the accuracy of the attack in a native environment.
The presumably correct physical address is always found,
i.e., no false negatives. When searching through the maxi-
mum 768 GB of address space, we consistently found 1 false
positive match (i.e., a 2 MB page) that was later eliminated
in the verification loop.

Other operating systems.
Many other operating systems, such as BSD or OSX,

maintain a physical direct map. However, we found no such
mapping on Windows. Thus, our address-translation oracle
can not directly be applied to Windows systems.

Although 64-bit Android has a physical direct map lo-
cated at virtual address 0xffff ffc0 0000 0000 and 32-
bit Android at virtual address 0xc000 0000, we were not
able to build an address-translation oracle on Android. As
the prefetch instructions do not prefetch kernel addresses
mapped through the second translation-table base register,
the attack is mitigated. However, an attack could be pos-
sible on systems where user space and kernel space share a

translation-table base register, while the kernel would still
be inaccessible. Similarly, the attack does not work on to-
day’s Google NaCl sandbox as it uses a 32-bit address space
using 32-bit segmentation. The sandboxed process there-
fore only partially shares an address space with the non-
sandboxed code and thus the attack is mitigated. However,
we verified that a Prefetch Side-Channel Attack using cache
eviction instead of clflush within the Google NaCl sandbox
works on the lowest 4 GB of virtual memory. Thus, when
Google NaCl introduces support for 64-bit address spaces
in the NaCl sandbox, 32-bit segmentation cannot be used
anymore and our attack is likely to succeed on all virtual
addresses and thus to leak physical addresses to sandboxed
processes.

6. KERNEL ASLR EXPLOIT
In this section, we demonstrate how to defeat KASLR by

using prefetch instructions. We demonstrate our attack on
Windows 10 and Windows 7 systems. Similarly as in the
previous attack, we try to locate mapped memory regions in
address space regions that are not accessible from user space.
Again, we exploit the omission of privilege checks by prefetch
instructions (Property 2). As described in Section 3, we use
prefetch instructions in combination with code execution to
identify the load address of drivers in kernel mode in this
first stage of the attack. In the second stage of the attack,
we determine addresses used by a specific driver. By locating
the driver, we effectively defeat KASLR.

Similarly, on Windows 7, kernel and hardware-abstraction
layer are located between virtual address 0xffff f800 0000

0000 and 0xffff f87f ffff ffff and system drivers are lo-
cated between virtual address 0xffff f880 0000 0000 and
0xffff f88f ffff ffff. On Windows 10, the address range
is extended to the region from 0xffff 8000 0000 0000 to
0xffff 9fff ffff ffff. Which drivers are present in the
driver area depends on the system configuration. Further-
more, the order in virtual address space directly depends on
the order the drivers are loaded, which again depends on
the system configuration. To exploit a kernel vulnerability
and build an ROP chain in the code of a known driver, an
attacker has to know the exact address offset of the driver.
However, the exact address offsets are randomized and can
normally not be retrieved from user processes. Our attack
exploits that KASLR does not randomize the offset of drivers
on a sub-page level. Kernel and hardware-abstraction layer
are loaded on consecutive 2 MB pages with a random 4 KB
start offset on Windows 7. Thus, we cannot attack this
memory region directly using a translation-level recovery at-
tack. However, an Evict+Prefetch attack is possible on any
kernel memory region. To build the most efficient attack, we
target the driver memory area where we can first perform a
translation-level recovery attack and an Evict+Prefetch at-
tack afterward. Windows 10 uses 4 KB pages instead, adding
entropy to the randomized driver location.

In the first stage of our attack, we locate addresses mapped
to physical memory in the driver memory area using our
translation-level recovery attack. Figure 8 illustrates the
timing difference between valid and invalid addresses in the
driver region on Windows 7 on an Intel i3-5005U. As drivers
are loaded consecutively in the virtual address space, we
found it to be sufficient for our attack to search through the
address space in 2 MB steps and measure where pages are
mapped to physical memory. On Windows 7, the average

80 100 120 140
0%

25%

50%

75%

100%

Time in cycles

C
a
se

s Valid Invalid

Figure 8: Timing difference of a prefetch sequence
on valid and invalid addresses in kernel space, from
unprivileged user space process. Measurements per-
formed on Windows 7 on an Intel i3-5005U.

0 4,000 8,000 12,000

90

100

110

120

Page offset in kernel driver region

A
v
g
.

ex
ec

u
ti

o
n

ti
m

e

Figure 9: Second stage: driver region is searched
by measuring average execution times of prefetching
addresses in the driver memory area from the first
stage. Lowest average execution time is measured
on an address in the memory of the targeted driver.

runtime for the first stage of the attack, mapping both the
kernel region and the driver region, is 7 ms on an idle sys-
tem. On Windows 10, the first stage runs in 64 KB steps and
takes 101 ms on average. As Windows 10 maps 4 KB pages
we scan the address range in 4 KB steps in an intermediate
step taking 180 ms on average. At a high system load, the
attack requires several hundred repetitions to perform the
first stage of the attack reliably, having an average runtime
below 2 seconds on Windows 7.

In the second stage of our attack, we use the Evict+
Prefetch variant of the address-translation oracle. Instead
of searching for pages that are mapped to physical memory,
we now determine whether a target address p is used by a
syscall. Therefore, we perform the Evict+Prefetch attack
over all potentially used addresses in a random order. We
run the following three steps:

1. We evict all caches. For this purpose, we access a
buffer large enough to evict all driver addresses from all
TLBs, page translation caches, code and data caches.

2. We perform a syscall to the targeted driver. If the tar-
get address p is used by the targeted driver, the CPU
fetches it into the caches while executing the syscall.

3. We measure the timing of a prefetch instruction se-
quence. This reveals whether the target address p was
loaded into the cache by the driver in the second step.

In order to verify the measurement, we perform a control
run where we omit the system call to the targeted driver. If
the execution time of a prefetch instruction sequence on the
target address p is higher without the system call, we learn
that p is in fact used by the driver and not loaded into the
cache by other driver activity on the system. The attack
can be repeated multiple times to increase the accuracy.

By determining the lowest virtual address in the driver
region that is used by the targeted driver, we learn where
the driver starts. As we know the driver version we can now
use the virtual addresses from this kernel driver in return-
oriented-programming attacks.

The average runtime for the second stage of the attack is
490 seconds on Windows 7. Thus, the total average runtime
is below 500 seconds on Windows 7 on our i3-5005U. On
Windows 10 we narrowed down the potential addresses in
the first stage more than in Windows 7. Thus, the average
runtime of the second stage is also lower on Windows 10,
requiring only 12 seconds on average to locate a driver.

7. OTHER APPLICATIONS
In this section, we discuss how prefetch instructions can

be used in other cache attacks. First, we implemented mod-
ified variant of Flush+Reload called Flush+Prefetch. The
measurement accuracy of this cache attack is comparable to
Prime+Probe while the spatial accuracy is the same as in
a Flush+Reload attack. We verified the feasibility of this
attack by implementing a cross-core covert channel. On a
Haswell i7-4790 we achieved a performance of 146 KB/s at
an error rate of< 1%. This is in the same order of magnitude
as the fastest state-of-the-art cache covert channels [11].

Second, the Evict+Prefetch variant of the address-trans-
lation oracle can be used to perform a Flush+Reload-style
attack on privileged kernel addresses. Indeed, we demon-
strated such an attack in Section 6 to detect whether specific
virtual addresses are used by a driver. However, an attacker
could also spy on the usage of known virtual addresses in
kernel code and drivers. This would allow monitoring activ-
ity on system and specific hardware interfaces.

Third, the Evict+Prefetch attack also allows performing
Rowhammer attacks on privileged addresses. An attacker
could directly target kernel page tables or any other kernel
data structure. As the execution time is lower than that
of Evict+Reload , an attack is likely possible. We verified
that bit flips can be induced by this attack on a system
running at a refresh rate reduced to 25%. However, we leave
examinations on the prevalence of this problem on default
configured systems and the study of practical Rowhammer
exploits using Evict+Prefetch open to future work.

8. COUNTERMEASURES
In this section, we discuss countermeasures against Prefetch

Side-Channel Attacks. First, we propose a new form of
strong kernel isolation, that effectively prevents all Prefetch
Side-Channel Attacks on the kernel address space. Second,
we will discuss countermeasures that have been proposed
against other side-channel attacks and hardware modifica-
tions to mitigate Prefetch Side-Channel Attacks.

Stronger kernel isolation.
Removing the identity mapping would help against our

virtual-to-physical address translation attack and completely
prevent ret2dir-like attacks, however, it would not protect
against our KASLR or translation-level recovery attacks.

We propose stronger kernel isolation, a new form of strong
kernel isolation, to provide security against a wide range of
attacks. Strong kernel isolation ensures that no address is
mapped in both user space and kernel space. This mech-
anism has initially been proposed by Kemerlis et al. [27].

Today’s operating systems:

Shared address space

User memory Kernel memory

0 −1

context switch

Stronger kernel isolation:

User address space

User memory Not mapped

0 −1

Kernel address space

Not mapped Kernel memory

0 −1

context switch

s
w
it
c
h

a
d
d
r
.

s
p
a
c
e

Interrupt
dispatcher

Figure 10: Currently kernel and user memory
are only separated through privilege levels. With
stronger kernel isolation, the kernel switches from
the user space to a dedicated kernel space, directly
after a context switch into privileged mode. Thus,
only a negligible portion of interrupt dispatcher code
is mapped in both address spaces.

Their approach unmaps pages from the kernel physical di-
rect map when they are mapped in user space. This only
introduces a performance penalty of 0.18–2.91%. However,
this is not sufficient to protect against our attacks. Instead,
stronger kernel isolation does not run syscalls and unrelated
kernel threads in the same address space as user threads.
We propose to switch the address translation tables imme-
diately after the context switch into the kernel. Thus, only
short and generic interrupt dispatching code would need to
be mapped in the same address space used by the user pro-
gram. The remainder of the kernel and also the direct map-
ping of physical memory would thus not be mapped in the
address translation tables of the user program. This layout
is illustrated in Figure 10.

Stronger kernel isolation also eliminates the double page
fault side channel [17], as no virtual address in the user pro-
gram is valid in both user space and kernel space. This
countermeasure can be implemented on commodity hard-
ware and existing operating systems and it only requires a
few modifications in operating system kernels. The perfor-
mance impact is comparably small as switching the address
translation tables has to be done once per context switch
into the kernel and once per context switch from the ker-
nel back to the user space. This is done by replacing the
value in the cr3 register on Intel x86 CPUs once per con-
text switch. We implemented a proof-of-concept to measure
the overhead of updating the cr3 as an estimate for the per-
formance penalty of stronger kernel isolation. Table 2 shows
the overhead in different benchmarks. We observe that for
benchmarks that perform a small number of syscalls, the
performance overhead is negligible, e.g., 0.06%. For other
benchmarks the overhead can be higher, e.g., up to 5.09%
in the case of pgbench.

State-of-the-art countermeasures.
While there have been recent advances in detecting cache

attacks using performance counters [6, 11, 15, 40] it is less

Table 2: Estimation of overhead.
Benchmark Baseline Stronger kernel isolation Overhead

apache 37578.83 req./s 37205.16 req./s +1.00%
pgbench 146.81 trans./s 139.70 trans./s +5.09%
pybench 1552 ms 1553 ms +0, 06%
x264 96.20 fps 96.14 fps +0.06%

clear whether this is also applicable to Prefetch Side-Channel
Attacks. Prefetch Side-Channel Attacks can indeed cause
an increased number of DTLB misses and thus could be de-
tected using hardware performance counters. We observe
approximatively 4 billion DTLB hits/minute while brows-
ing in Firefox, and approximatively 47 billion while running
our virtual-to-physical attack. A more thorough evaluation
is needed to assess false positives. While there are numerous
events related to prefetching that can be monitored with per-
formance counters, to the best of our knowledge, since Ne-
halem micro-architecture it is not possible anymore to mon-
itor software prefetching but only hardware prefetching [21].
Future work has to show whether performance counters can
indeed be used for a reliable detection mechanism. We also
note that while it is possible to disable hardware prefetching,
it is not possible to disable software prefetching.

Hardware modifications.
Complete protection against Prefetch Side-Channel At-

tacks could also be achieved through microarchitectural mod-
ifications. We think that prefetch instructions need to be
modified in two ways to completely close this attack vector.
First, if prefetch instructions performed privilege checks just
as other memory referencing instructions, prefetching kernel
addresses would trigger a segmentation fault and the process
would be killed. It would also prevent measuring the trans-
lation table levels over the whole address space as the pro-
cess would be killed after accessing the first invalid address.
Second, prefetch instructions leak timing information on the
cache state. The timing difference on our ARM-based smart-
phones was even higher than on our Intel x86 test system.
Eliminating this timing difference would only introduce a
small performance overhead, as prefetch instruction are not
used by most software. This would prevent cache attacks
based on prefetch instructions completely.

9. RELATED WORK
Hund et al. [17] demonstrated three timing side channel

attacks to obtain address information. The first is a cache
attack searching for cache collisions with kernel addresses.
The second performs double page faults to measure timing
differences for valid and invalid memory regions introduced
by the TLB. The third exploits page fault timing differences
due to the TLB and address translation caches. The first
attack is mitigated on current operating systems by prevent-
ing access to physical addresses, and the second and third
attacks can be prevented at the operating system level by
preventing excessive use of page faults leading to segmenta-
tion faults. In contrast, our attack exploits the TLB and ad-
dress translation caches without triggering any page faults.
Furthermore, as our approach leaks the timing more directly
through prefetch instructions, it is faster and retrieves infor-
mation on a finer granularity, i.e., we can obtain the exact
virtual-to-physical address translation. Our approach is also
more generic as it bypasses the operating system.

Kemerlis et al. [27] presented two methods providing a ba-
sis of ret2dir attacks. First, they use the procfs interface to
obtain physical addresses, now mitigated on current operat-
ing systems by preventing access to this interface. Second,
they perform a memory spraying attack where they can use
any address in the physical direct map for their ret2dir at-
tack. Our attack enables ret2dir-like attacks without knowl-
edge of physical addresses and recovery of physical addresses
from unprivileged user space applications, enabling ret2dir
attacks. As a countermeasure, they proposed strong kernel
isolation, which we extended in this paper.

Barresi et al. [2] focused on a cross-VM scenario to break
ASLR in the cloud with CAIN, while our work mostly fo-
cuses on a local attack, that can also be performed on a
guest VM. However, CAIN attacks assume a cloud environ-
ment that enables memory deduplication, which is already
known to be nefarious and is not deployed on e.g., Ama-
zon EC2. In contrast, our attacks do not require memory
deduplication and have been performed on Amazon EC2.

Bhattacharya et al. [4] showed that hardware prefetching,
performed automatically by the CPU, leaks information. In
contrast to this work, we exploit software prefetching which
can be triggered at any time by an attacker, from user space.
The hardware prefetcher has also been used by Fuchs and
Lee [9], as a countermeasure against cache side channels.

Concurrent to our work, Jang et al. [25] exploited In-
tel TSX transaction to defeat KASLR. TSX transactions
prevent pagefaults by jumping to an alternative code path.
When accessing or executing on kernel address the timing
difference until reaching the alternative code path leaks in-
formation on the address translation caches. Evtyushkin et al.
[8] exploit the branch-target buffer to break KASLR. Finally,
Chen et al. [5] proposed dynamic fine-grained ASLR during
runtime to defeat KASLR attacks.

10. CONCLUSION
Prefetch Side-Channel Attacks are a new class of generic

attacks exploiting fundamental weaknesses in the hardware
design of prefetch instructions. These new attacks allow un-
privileged local attackers to completely bypass access con-
trol on address information and thus to compromise an en-
tire physical system by defeating SMAP, SMEP, and kernel
ASLR. Our attacks work in native and virtualized environ-
ments alike. We introduced two primitives that build the
basis of our attacks. First, the translation-level oracle, ex-
ploiting that prefetch leaks timing information on address
translation. Second, the address-translation oracle, exploit-
ing that prefetch does not perform any privilege checks and
can be used to fetch inaccessible privileged memory into
various caches. The translation-level oracle allowed us to
defeat ASLR and locate libraries and drivers in inaccessi-
ble memory regions. Using the address-translation oracle,
we were able to resolve virtual to physical addresses on 64-
bit Linux systems and from unprivileged user programs in-
side an Amazon EC2 virtual machine. This is the basis for
ret2dir-like attacks that bypass SMEP and SMAP. Based on
both oracles, we demonstrated how to defeat kernel ASLR
on Windows 10, providing the basis for ROP attacks on ker-
nel and driver binary code. As a countermeasure against
this new class of attacks, we proposed stronger kernel isola-
tion, such that syscalls and unrelated kernel threads do not
run in the same address space as user threads. This coun-
termeasure only requires a few modifications in operating

system kernels and that the performance penalty is as low
as 0.06–5.09%. Therefore, we recommend that it is deployed
in all commodity operating systems.

11. ACKNOWLEDGMENTS
We would like to thank Klaus Wagner for help with some

experiments and our anonymous reviewers for their valuable
comments and suggestions.

Supported by EU Horizon 2020 programme
GA No. 644052 (HECTOR) and EU FP7
programme GA No. 610436 (MATTHEW).

12. REFERENCES
[1] ARM Limited. ARM Architecture Reference Manual

ARMv8. ARM Limited, 2013.

[2] A. Barresi, K. Razavi, M. Payer, and T. R. Gross.
CAIN: silently breaking ASLR in the cloud. In
WOOT’15, 2015.

[3] D. J. Bernstein. Cache-Timing Attacks on AES.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf,
2004.

[4] S. Bhattacharya, C. Rebeiro, and D. Mukhopadhyay.
Hardware prefetchers leak : A revisit of SVF for
cache-timing attacks. In 45th International Symposium
on Microarchitecture Workshops (MICRO’12), 2012.

[5] Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix:
On-demand live randomization. In 6th ACM
Conference on Data and Application Security and
Privacy, 2016.

[6] M. Chiappetta, E. Savas, and C. Yilmaz. Real time
detection of cache-based side-channel attacks using
hardware performance counters. Cryptology ePrint
Archive, Report 2015/1034, 2015.

[7] S. Crane, C. Liebchen, A. Homescu, L. Davi,
P. Larsen, A. Sadeghi, S. Brunthaler, and M. Franz.
Readactor: Practical code randomization resilient to
memory disclosure. In S&P’15, pages 763–780, 2015.

[8] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Jump Over ASLR: Attacking Branch Predictors to
Bypass ASLR. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016 (to
appear).

[9] A. Fuchs and R. B. Lee. Disruptive Prefetching:
Impact on Side-Channel Attacks and Cache Designs.
In Proceedings of the 8th ACM International Systems
and Storage Conference (SYSTOR’15), 2015.

[10] D. Gruss, C. Maurice, and S. Mangard.
Rowhammer.js: A Remote Software-Induced Fault
Attack in JavaScript. In DIMVA’16, 2016.

[11] D. Gruss, C. Maurice, K. Wagner, and S. Mangard.
Flush+Flush: A Fast and Stealthy Cache Attack. In
DIMVA’16, 2016.

[12] D. Gruss, R. Spreitzer, and S. Mangard. Cache
Template Attacks: Automating Attacks on Inclusive
Last-Level Caches. In USENIX Security Symposium,
2015.

[13] D. Gullasch, E. Bangerter, and S. Krenn. Cache
Games – Bringing Access-Based Cache Attacks on
AES to Practice. In S&P’11, 2011.

[14] B. Gülmezoğlu, M. S. Inci, T. Eisenbarth, and
B. Sunar. A Faster and More Realistic Flush+Reload

Attack on AES. In Constructive Side-Channel
Analysis and Secure Design (COSADE), 2015.

[15] N. Herath and A. Fogh. These are Not Your Grand
Daddys CPU Performance Counters – CPU Hardware
Performance Counters for Security. In Black Hat 2015
Briefings, 2015.

[16] R. Hund, T. Holz, and F. C. Freiling. Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In USENIX Security Symposium, 2009.

[17] R. Hund, C. Willems, and T. Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In
S&P’13, 2013.

[18] Intel. How to Benchmark Code Execution Times on
Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, 2010.

[19] Intel. Intel R© 64 and IA-32 Architectures Optimization
Reference Manual. 2014.

[20] Intel. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual Volume 2 (2A, 2B & 2C):
Instruction Set Reference, A-Z. 253665, 2014.

[21] Intel. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide. 253665, 2014.

[22] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A
Shared Cache Attack that Works Across Cores and
Defies VM Sandboxing – and its Application to AES.
In S&P’15, 2015.

[23] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar.
Know thy neighbor: Crypto library detection in cloud.
Proceedings on Privacy Enhancing Technologies,
1(1):25–40, 2015.

[24] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar.
Lucky 13 strikes back. In AsiaCCS’15, 2015.

[25] Y. Jang, S. Lee, , and T. Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX.
In CCS’16, 2016 (to appear).

[26] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side
Channel Cryptanalysis of Product Ciphers. Journal of
Computer Security, 8(2/3):141–158, 2000.

[27] V. P. Kemerlis, M. Polychronakis, and A. D.
Keromytis. ret2dir: Rethinking kernel isolation. In
USENIX Security Symposium, pages 957–972, 2014.

[28] kernel.org. Virtual memory map with 4 level page
tables (x86 64). https://www.kernel.org/doc/
Documentation/x86/x86 64/mm.txt, May 2009.

[29] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits in
memory without accessing them: An experimental
study of DRAM disturbance errors. In ISCA’14, 2014.

[30] Kirill A. Shutemov. Pagemap: Do Not Leak Physical
Addresses to Non-Privileged Userspace.
https://git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce, Mar.
2015. Retrieved on November 10, 2015.

[31] P. C. Kocher. Timing Attacks on Implementations of
Diffe-Hellman, RSA, DSS, and Other Systems. In
Crypto’96, pages 104–113, 1996.

[32] J. Levin. Mac OS X and IOS Internals: To the
Apple’s Core. John Wiley & Sons, 2012.

[33] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and
S. Mangard. ARMageddon: Last-Level Cache Attacks
on Mobile Devices. In USENIX Security Symposium,
2016.

[34] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee.
Last-Level Cache Side-Channel Attacks are Practical.
In S&P’15, 2015.

[35] C. Maurice, C. Neumann, O. Heen, and A. Francillon.
C5: Cross-Cores Cache Covert Channel. In
DIMVA’15, 2015.

[36] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and
A. D. Keromytis. The Spy in the Sandbox: Practical
Cache Attacks in JavaScript and their Implications. In
CCS’15, 2015.

[37] D. A. Osvik, A. Shamir, and E. Tromer. Cache
Attacks and Countermeasures: the Case of AES. In
CT-RSA 2006, 2006.

[38] D. Page. Theoretical use of cache memory as a
cryptanalytic side-channel. Cryptology ePrint Archive,
Report 2002/169, 2002.

[39] PaX Team. Address space layout randomization (aslr).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[40] M. Payer. HexPADS: a platform to detect “stealth”
attacks. In ESSoS’16, 2016.

[41] C. Percival. Cache missing for fun and profit. In
Proceedings of BSDCan, 2005.

[42] P. Pessl, D. Gruss, C. Maurice, and S. Mangard.
Reverse engineering intel DRAM addressing and
exploitation. In USENIX Security Symposium, 2016.

[43] M. E. Russinovich, D. A. Solomon, and A. Ionescu.
Windows internals. Pearson Education, 2012.

[44] M. Seaborn. Exploiting the DRAM rowhammer bug
to gain kernel privileges.
http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, March
2015. Retrieved on June 26, 2015.

[45] M. Seaborn and T. Dullien. Exploiting the DRAM
rowhammer bug to gain kernel privileges. In Black Hat
2015 Briefings, 2015.

[46] H. Shacham, M. Page, B. Pfaff, E. Goh,
N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In CCS’04, 2004.

[47] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A. R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In S&P’13, 2013.

[48] Y. Tsunoo, T. Saito, and T. Suzaki. Cryptanalysis of
DES implemented on computers with cache. In
CHES’03, pages 62–76, 2003.

[49] xenbits.xen.org. page.h source code. http://xenbits.
xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/
stable-4.3;f=xen/include/asm-x86/x86 64/page.h,
Mar. 2009.

[50] Y. Yarom and K. Falkner. Flush+Reload: a High
Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security Symposium, 2014.

[51] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-Tenant Side-Channel Attacks in PaaS Clouds.
In CCS’14, 2014.

