
S C I E N C E P A S S I O N T E C H N O L O G Y

Institute for Applied Information Processing and Communications

Graz University of Technology

Daniel Gruss

Software-based Microarchitectural Attacks
Part I

PhD Thesis

Assessors: Stefan Mangard, Thorsten Holz

June 2017

Abstract

Modern processors are highly optimized systems where every single cycle of
computation time matters. Many optimizations depend on the data that is
being processed. Software-based microarchitectural attacks exploit effects
of these optimizations. Microarchitectural side-channel attacks leak secrets
from cryptographic computations, from general purpose computations, or
from the kernel. This leakage even persists across all common isolation
boundaries, such as processes, containers, and virtual machines.

Microarchitectural fault attacks exploit the physical imperfections of
modern computer systems. Shrinking process technology introduces effects
between isolated hardware elements that can be exploited by attackers to
take control of the entire system. These attacks are especially interesting
in scenarios where the attacker is unprivileged or even sandboxed.

In this thesis, we focus on microarchitectural attacks and defenses on
commodity systems. We investigate known and new side channels and
show that microarchitectural attacks can be fully automated. Further-
more, we show that these attacks can be mounted in highly restricted
environments such as sandboxed JavaScript code in websites. We show
that microarchitectural attacks exist on any modern computer system,
including mobile devices (e.g., smartphones), personal computers, and
commercial cloud systems.

This thesis consists of two parts. In the first part, we provide background
on modern processor architectures and discuss state-of-the-art attacks
and defenses in the area of microarchitectural side-channel attacks and
microarchitectural fault attacks. In the second part, a selection of our
papers are provided without modification from their original publications.1

I have co-authored these papers, which have subsequently been anony-
mously peer-reviewed, accepted, and presented at renowned international
conferences.

1Several of the original publications were in a two-column layout. Without any changes
in content, we updated the layout for all included papers from the camera-ready
versions to fit the layout and formatting of this thesis, including resizing some figures
and tables, and changing the citation format.

i

Acknowledgements

First and foremost, I want to thank my advisor Stefan Mangard. You
constantly challenged my mind with ambitious ideas like the one of a
cache-based key logger at the beginning of my PhD. You gave me the
freedom to research anything I’m interested in and supported me in all
endeavors. Thank you for your guidance throughout the last years.

I also want to thank my assessor Thorsten Holz for valuable comments
and interesting discussions at past conferences.

I really enjoyed my time at IAIK and in the Secure Systems group – you
were the best colleagues one can wish for and I owe thanks to all of you!
You all helped me directly or indirectly throughout my PhD.

I owe special thanks to some of my colleagues. Thank you Raphael for
helping me in the first months of my PhD and in my first steps on cache
attacks. Thank you Clémentine. I’ve learned so much from you – without
you, the amazing last years would not have been possible. It was a great
time and a lot of fun working with you, independent of linguistic opinions!
Thank you Michael and Moritz. You are two of the most brilliant minds I
know and I enjoy every day working with you!

I also want to thank Anders Fogh for fierce competition, great collabora-
tions, great ideas and lots of fun!

Thank you Peter Lipp and David Derler. I enjoyed teaching during my
PhD so much and not least because it’s great working in a team with you!

Finally, I want to thank my fiancée Maria Eichlseder, my friends, my
family, and my fiancée’s family for supporting me during my PhD. Thank
you Maria for supporting me in everything I do, helping me with my
numerous questions on cryptography and maths, and tolerating what I
call a healthy work-job balance.

iii

Contents

Abstract i

Acknowledgements iii

Contents 1

I Introduction to Microarchitectural Attacks 3

1. Introduction 5

2. Background 13

3. State of the Art 29

4. Future Work and Conclusions 53

References 55

1

Part I.

Introduction to
Software-based

Microarchitectural Attacks

3

1
Introduction

The idea of learning the secret code for a safe by listening to the clicking
sounds of the lock, is likely as old as safes are. The clicking sound is an
inadvertent influence on the environment revealing secret information. In
1996, Kocher [Koc96] described side-channel attacks, a technique that
allows to derive secret values used in a computation from inadvertent
influences the computation has on its environment. This seminal work
was the beginning of an entire area of research on side channels. Kocher
performed what we now describe as a timing attack, an attack exploiting
differences in the execution time of an algorithm. In the following years,
side-channel attacks have been demonstrated based on virtually any mea-
surable environmental change caused by various types of computations,
such as power consumption [MOP08], electro-magnetic radiation [RR01;
KOP09], temperature [HS13], photonic emission [Sch+12; CSW17], acous-
tic emissions [Bac+10], and many more. These attacks have in common
that they require an attacker to have some form of physical access to the
target device.

In contrast to side-channel attacks, which do not cause any damage
to the target device, there are also fault attacks [BDL97; BS97]. In a
fault attack an attacker tries to manipulate computations of a device to
either evade security mechanisms of the device or to leak its secrets. For
this purpose, the attacker manipulates the environment in a way that
influences the target device. Typically such fault-inducing environments
are at the border of or beyond the specification range of the target device.
Like for side-channel attacks, different environment manipulations have
been investigated, such as exposure to voltage glitching [Aum+02], clock
glitching [SMC09], extreme temperatures [HS13], or photons [SA02]. Again,
to perform a fault attack, some form of physical access to the target device
is required.

5

1. Introduction

Modern computer systems are highly complex and highly optimized. Conse-
quently, information leakage, the inadvertent influence of the environment
in a secret-dependent way, is not only introduced on an algorithmic level.
Optimizations are performed based on the specific data values that are
processed, the location of the data, the frequency of accesses to locations,
and many other factors. It is clear to see, that any adversary observing the
effects of these optimizations through a side channel can make deductions
on the specific cause of the optimizations. Through these deductions,
the adversary learns information about the secret data values that are
processed.

In this thesis, we investigate software-based microarchitectural attacks.
Software-based microarchitectural side-channel attacks exploit timing and
behavior differences that are (partially) caused through microarchitectural
optimizations, i.e., differences that are not architecturally documented.
Software-based microarchitectural fault attacks induce faults through mi-
croarchitectural optimizations, i.e., operate elements of modern computer
systems at the border of or beyond their specification range. Generally,
software-based microarchitectural attacks do not require physical access,
but instead only some form of code execution on the target system.

Cache attacks are the most prominent class of software-based microar-
chitectural attacks. The possibility of timing differences induced through
processor caches was first described by Kocher [Koc96]. Cache timing
attacks have first mostly been applied on cryptographic algorithms in
software-based attacks [Pag02; TSS03; Ber05; BM06].

Cache attacks in more recent works are usually instances of three generic
cache attack techniques. These techniques have been used in targeted
attacks on cryptographic algorithms [Ber05; Per05; GBK11] and were later
on generalized by Osvik et al. [OST06] and Yarom et al. [YF14]. These
generic techniques are independent of the specific cache and hardware on
which they are performed. Osvik et al. [OST06] described two generalized
cache attack techniques. First, Evict+Time, where an attacker measures
how the execution time of an algorithm is influenced by evicting a chosen
cache set. Second, Prime+Probe, where an attacker measures whether a
victim computation influences how long it takes to access every way of a
chosen cache set.

In both attacks the attacker learns that the chosen cache set was used by
the victim. Yarom et al. [YF14] introduced the third generalized attack
technique, Flush+Reload . In a Flush+Reload attack, the attacker flushes

6

a shared memory location from the cache and subsequently measures
how long it takes to reaccess it. If the victim loaded the shared memory
location back into the cache in the meantime, the reaccess is faster. In
a Flush+Reload attack the attacker does not only learn which cache set
was used by the victim, but even the specific memory location (at the
granularity of cache lines).

Based on these three attack primitives various computations have been
attacked, for instance cryptographic algorithms [YF14; Liu+15], web server
function calls [Zha+14], user input [GSM15; Gru+16b; Ore+15], kernel
addressing information [HWH13; Gru+16a].

Software-based fault attacks are considerably more difficult to build in
practice as faults must be induced in hardware. Hence, software has to
move the system component that is targeted to the border of or beyond its
specification range. Only in 2014 software-based fault attacks have been
found to be practical, in the so-called Rowhammer attack [Kim+14; SD15].
In concurrent work, Karimi et al. [Kar+15] demonstrated a second software-
based fault attack. They showed that a carefully crafted instruction stream
can deteriorate the processor stability and cause severe permanent damage
to the processor if executed continuously for weeks. Rowhammer attacks
have by now been demonstrated in JavaScript [GMM16; Bos+16], on
supposedly safe DDR4 [Pes+16], on co-located virtual machines [Raz+16;
Xia+16], and on mobile devices [Vee+16].

To develop and evaluate potential countermeasures against software-based
microarchitectural attacks, it is necessary to map and understand the
attack surface in detail. In this thesis, we aim to improve the general
understanding of the attack surface of software-based microarchitectural
attacks and to provide novel insights to software-based microarchitectural
attacks and attack vectors. Our research includes the minimization of
requirements, the automation of previous attacks, and the identification of
previously unknown side channels. Figure 1.1 gives an overview how the
papers relate to each other and where they are located in this exploration
space.

7

1. Introduction

minimization of requirements

automation of attacksnovel side channels

CTA [GSM15]

Dedup [GBM15]

RH.js [GMM16]

F+F [Gru+16b]

ARM [Lip+16]

DRAMA [Pes+16]

Prefetch [Gru+16a]

Hello [Mau+17]

Figure 1.1.: Overview of the relation of the papers to each other. The
dotted arrows illustrate where ideas from one paper facilitated the research
conducted in the other. The continuous arrows illustrate where concepts
from one paper where more directly applied in the other paper.

1.1. Main Contributions

We started the work on software-based microarchitectural attacks by en-
hancing the Flush+Reload cache attack technique [YF14] by an automated
method to find and exploit vulnerabilities. This generic technique called
Cache Template Attacks has been published at the USENIX Security 2015
conference [GSM15] in collaboration with Raphael Spreitzer and Stefan
Mangard. We demonstrated that Cache Template Attacks can be used
to identify and exploit leakage in old implementations of cryptographic
algorithms, or automatically spy on user input events such as keystrokes
or mouse movements. This publication is included as Chapter ?? of this
thesis.

While caches buffer the comparably slow DRAM, the DRAM itself buffers
the even slower hard disk. Hence, side-channel attacks are also possible
on the DRAM level. Suzaki et al. [Suz+11] demonstrated a side-channel
attack on page deduplication, as performed by the operating system or

8

1.1. Main Contributions

hypervisor, which reveals whether specific data can be found in memory.
We demonstrated that such attacks can even be performed from JavaScript
integrated into a website. Our results have been published at the ESORICS
2015 conference [GBM15] in collaboration with David Bidner and Stefan
Mangard. This publication is included as Chapter ?? of this thesis.

Based on these two works we investigated the possibility of Rowhammer
attacks [Kim+14; SD15] from JavaScript integrated into websites. For
such attacks to work it was necessary to evict data from caches using
regular memory accesses fast enough to replace the comparably fast
clflush instruction. Our investigations showed that cache eviction can
be performed fast enough for such attacks to successfully be mounted.
In our proof-of-concept implementation we were able to trigger bit flips
in exploitable memory locations from JavaScript. The results of this
research have been published at the DIMVA 2016 conference [GMM16]
in collaboration with Clémentine Maurice, and Stefan Mangard. This
publication is included as Chapter ?? of this thesis.

Related to the Flush+Reload attack we developed a new cache attack called
Flush+Flush. This technique makes cache attacks faster and stealthier as
it does not perform memory accesses itself. We evaluated the performance
and stealthiness of the attack in comparison to other cache attacks such
as Flush+Reload and Prime+Probe as well as to Rowhammer attacks.
The results of our work are also published at the DIMVA 2016 confer-
ence [Gru+16b] in collaboration with Clémentine Maurice, Klaus Wagner,
and Stefan Mangard. This publication is included as Chapter ?? of this
thesis.

Our work on fast cache eviction motivated investigations on fine-grained
access-driven cache attacks ARM Cortex-A systems, which usually has
no user-space flush instruction. We demonstrated that all cache attack
techniques can be performed on ARM Cortex-A systems as well. Based
on these attack primitives we demonstrated that Cache Template Attacks
provide a powerful means to find and exploit cache leakage on mobile
devices. Our results have been published at the USENIX Security 2016
conference [Lip+16] in collaboration with Moritz Lipp, Raphael Spreitzer,
Clémentine Maurice, and Stefan Mangard. This publication is included as
Chapter ?? of this thesis.

Besides the unified cache hierarchy there is also a second cache hierarchy
in modern processors for page table entries. We found that prefetch
instructions have a different execution time based on the state of these

9

1. Introduction

page translation caches. Even worse, the x86 prefetch instructions allow
unprivileged processes to prefetch privileged memory into the cache. We
exploited these observations in order to defeat kernel address space-layout
randomization (KASLR). Our results have been published at the CCS 2016
conference [Gru+16a] in collaboration with Clémentine Maurice, Anders
Fogh, Moritz Lipp, and Stefan Mangard. This publication is included as
Chapter ?? of this thesis.

1.2. Other Contributions

While working on this thesis, several contributions to other works that are
not included as a part of this thesis. Nonetheless, we discuss them here to
draw the complete picture of all contributions.

While working on the Rowhammer attack we observed timing differences
caused by so-called row hits and row conflicts in the DRAM module. To
get a better understanding of these timing differences we developed a fully
automated method to reverse-engineer the mapping of physical addresses
to DRAM cells in software. Using these reverse-engineered mappings
reduces the runtime of Rowhammer attacks significantly. Investigating
the timing differences in more detail, we found significant side-channel
leakage that is comparable to that of cache attacks. These novel DRAM
side-channel attacks have been published at the USENIX Security 2016
conference [Pes+16] in collaboration with Peter Pessl, Clémentine Maurice,
Michael Schwarz, and Stefan Mangard.

Our previous works on Rowhammer, cache eviction on ARM Cortex-A,
and DRAM reverse-engineering systems, sparked the idea of performing
Rowhammer attacks on Android devices. In a collaboration with Victor
van der Veen, Yanick Fratantonio, Martina Lindorfer, Clémentine Mau-
rice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, Cristiano Giuffrida we
published our results on Rowhammer attacks on mobile devices at the
ACM CCS 2016 conference [Vee+16].

Related work on software-based microarchitectural side channels typically
discusses the capacity of a side channel based on the raw capacity of a covert
channel built on top of it. Due to the nature of side channels, these covert
channels are not error-free. Previous work claimed that straightforward
application of error correcting codes is sufficient to eliminate all errors.
Thus, to provide realistic estimates the error rate is taken into account to

10

1.2. Other Contributions

compute a real-world capacity for the channel. Investigating how realistic
these estimates are, we built an entirely error-free covert channel. We found
that the application of error correcting codes is possible but has to be
combined with other error detection techniques in a non-trivial way. Our
channel is so reliable that we can even tunnel an SSH connection through it.
Our results have been published at the NDSS 2017 conference [Mau+17] in
collaboration with Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Carlo Alberto Boano, Kay Römer, and Stefan Mangard.

Many microarchitectural attacks could generally run in JavaScript, but
require high-precision timers. We investigated high-precision timing sources
in JavaScript and found techniques which allow to mount reliable attacks.
We demonstrate this by building a covert channel through DRAM between
JavaScript running on a website and an unprivileged application running
inside a virtual machine. Our results have been published at the Financial
Crypto 2017 conference [Sch+17c] in collaboration with Michael Schwarz,
Clémentine Maurice, and Stefan Mangard.

A new feature in modern Intel processors is Intel SGX, an environment
for secure execution on untrusted hardware and operating systems. SGX
enclaves are highly secure and can generally not be inspected or monitored
by the operating system. However, they are also restricted environments,
which cannot perform any system calls directly. We investigated whether
it is possible to exploit the security features to protect malicious software
running inside an SGX enclave. We built cache side-channel attacks ex-
tracting cryptographic keys from the host or from co-located SGX enclaves.
Our results will be published at the DIMVA 2017 conference [Sch+17b] in
collaboration with Michael Schwarz, Samuel Weiser, Clémentine Maurice,
and Stefan Mangard.

We investigated possible countermeasures against attacks on address-
translation caches (cf. Chapter ??). Our solution called KAISER is a
practical extension for the Linux kernel, which eliminates the leakage
entirely while having a low performance overhead on modern processors.
Our results will be published at the ESSoS 2017 conference [Gru+17b]
in collaboration with Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard.

Finally, we also investigated generic countermeasures against cache side-
channel attacks. Modern Intel processors implement hardware-transactional
memory on top of the cache hierarchy. Through creative instrumentation

11

1. Introduction

we can use hardware-transactional memory to abort upon conflicting mem-
ory operations and cache misses. This effectively eliminates the leakage
which is exploited in cache attacks. Our results will be published at the
Usenix Security 2017 conference [Gru+17a] in collaboration with Julian
Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and Manuel Costa.

1.3. Thesis Outline

This thesis consists of two parts. In the first part (Chapter 2 – Chapter 4),
a we provide an overview on software-based microarchitectural attacks.

Chapter 2 explains the relevant background. We first detail in Section 2.1
how processors are organized. We explain the basic concept of virtual
memory in Section 2.2 and discuss the idea of caching in Section 2.3. In
Section 2.4, we provide an overview of how DRAM works.

Chapter 3 discusses the state of the art in microarchitectural attacks.
We discuss software-based microarchitectural side-channel attacks in Sec-
tion 3.1. We describe how cache attacks developed in the past decades
to the current state of the art and provide a discussion of attacks on
various caches. In Section 3.2 we introduce the concept of software-based
microarchitectural fault attacks. Finally, we discuss countermeasures and
defense mechanisms in Section 3.3.

Chapter 4 discusses future work and draws conclusions.

In the second part of this thesis (Chapter ?? – Chapter ??), a list of all
publications is provided, together with transcripts for a selection of papers
constituting this thesis.

Chapter ?? consists of our USENIX Security 2015 conference paper [GSM15]
on Cache Template Attacks. Chapter ?? consists of our ESORICS 2015
conference paper [GBM15] on page deduplication attacks in JavaScript.
Chapter ?? consists of our DIMVA 2016 conference paper [GMM16] on
Rowhammer.js. Chapter ?? consists of our DIMVA 2016 conference pa-
per [Gru+16b] on Flush+Flush. Chapter ?? consists of our USENIX
Security 2016 conference paper [Lip+16] on cache attacks on ARM-based
mobile devices. Chapter ?? consists of our CCS 2016 conference pa-
per [Gru+16a] on prefetch side-channel attacks.

12

2
Background

In this chapter, we provide background which is necessary to understand
and discuss microarchitectural attacks. First of all, these attacks target
microarchitectural elements, i.e., elements of specific processor families
and models. Hence, we discuss how processors are organized in Section 2.1.
With virtual memory the processor provides process isolation for modern
operating systems. It is deeply rooted in today’s processor architectures
and influences how various microarchitectural elements work. We discuss
virtual memory in Section 2.2. Cache attacks are the most important class
of microarchitectural attacks. They typically exploit timing differences
introduced by the specific organization of the cache. We discuss caches
in detail in Section 2.3. Finally, we discuss how the memory controller
interacts with DRAM and exposes timing differences caused by the DRAM
to software in Section 2.4.

2.1. Processor organization

Modern processors are highly parallelized machines operating at extremely
high speeds. With shrinking process technology sizes, energy demands
have decreased allowing to increase processor clock frequencies. Processor
clock frequencies stayed roughly at the same level in the past decade.
However, besides the processor clock frequency, there are other ways to
improve the processing speed. Many optimizations reduce the execution
time of specific instructions by a few cycles, sometimes depending on the
data or the processor state.

Pipelining. Pipelining is one of the main contributors to performance
improvements. Pipelining splits instructions into several stages. The num-

13

2. Background

ber of stages and their purpose varies between processors. Modern proces-
sors have many pipelining stages, most importantly

• a fetch stage, loading the instruction opcode into the processor,
• a decode stage, decoding the instruction opcode to an internal

representation of the instruction,
• and an execute stage, executing the instruction.

Hence, the processor can execute multiple instructions at once, each with
a slight interleaving to the previous and the next. Modern processors can
have multiple identical stages to perform certain computations in parallel
and further improve performance.

Multi-core. Instead of optimizing the processing speed of a single exe-
cution core it is also possible to increase the number of execution cores.
Especially in server environments multiple processors are installed in a
single machine to multiply the performance for parallelizable tasks. Nat-
urally, if a task is not parallelized, there is no performance difference.
Hence, depending on the workload, a multi-processor system can provide
a significant performance improvement. Workloads on personal computers
have changed over the past decades. Today, these systems run several
hundred tasks in parallel all the time and thus benefit from multiple
processors. For this reason, multi-core processors have been introduced.
These processors combine multiple execution cores into a single processor.
Each of these execution cores has some private resources, e.g., registers
and the execution pipeline, and some shared resources, e.g., the main
memory interface.

Instruction Stream Optimization. Another idea to increase the pro-
cessor performance is to execute branches speculatively. With this opti-
mization the processor makes a guess and execute a branch before it knows
whether this branch will be executed. If the guess was correct, the proces-
sor already has the information ready when it is required. Otherwise, the
processor just discards the result. Another idea is to execute instructions
out of order. The execution of instructions with pending data dependencies
is delayed and other instructions without pending data dependencies are
executed before, to optimize the CPU throughput.

14

2.2. Virtual memory

2.2. Virtual memory

As multi-processing became more popular, proper isolation between dif-
ferent processes became more important. As a first step processor man-
ufacturers introduced coarse-grained forms of virtual memory, such as
Intel’s x86 segmentation. Virtual memory regions are mapped to physical
memory regions in large coherent blocks. At this level of virtual memory,
the operating system can specify access privileges, an offset, and a length
for each segment. Different processes use different segments and thus work
on different physical memory. Consequently, we distinguish between two
types of addresses: virtual addresses, which are specific to a process, and
physical addresses, which are valid system-wide but not directly accessible
for processes.

Instead of segmentation, modern processors employ a better form of virtual
memory, called “paging”, which works at a granularity of “pages”, which
are memory blocks of a fixed size. The entire virtual memory is sliced
into virtual pages and the entire physical memory is sliced into physical
pages. By numbering the pages we obtain page numbers. Paging can be
seen as a process-specific map from virtual page numbers to physical page
numbers. Modern processors typically support multiple page sizes where
the smallest page size is often 4 KB or 1 KB. Larger page sizes are always
multiples of smaller page sizes. Pages are aligned in physical memory and
in virtual memory to their own size, i.e., 4 KB pages are aligned to 4 KB
boundaries in virtual and physical address space.

With 64-bit processors the address-width was increased significantly from
32 bits to 48 bits and an extension to 57 bits is already planned. Address
translation is extremely critical to performance and the processor must
be able to handle the data structure. Hence, the data structure must be
similar to a simple array. An array that could possibly map every 4 KB
page of the 48-bit virtual address space to a physical page would already
consume 512 GB of physical memory just to store the map, at a map-entry
size of 64 bits. Clearly, this is not a practical solution. The idea behind
multi-level translation tables is that the virtual address space is usually
mapped sparsely to physical memory. With multiple levels, the size of the
map can be reduced to a negligible overhead.

To translate a virtual address into a physical address the processor first
locates the top-level translation table by reading its address from a pro-
cessor register. This register value is exchanged upon a context switch

15

2. Background

PML4I (9 b)PDPTI (9 b)PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0
PML4E 1

···
#PML4I

···
PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI

···
PDPTE 511

Page Directory

PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table

PTE 0
PTE 1

···
PTE #PTI

···
PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095

Figure 2.1.: Address translation for 4 KB pages on x86-64 processors.
Starting with the PML4 base address from the CR3 register, the processor
determines the physical address by gradually using parts of the virtual
address.

to enable multi-processing. This is the basis for the process isolation we
mentioned before. Each process has its own virtual address mappings and
can only access to its own address space.

Modern Intel processors have 4 levels of translation tables as shown in
Figure 2.2. The top-most level is the page map level 4 (PML4). It divides
the 48-bit virtual address space into 512 memory regions of each 512 GB
(PML4 entries). PML4 entries always map to page directory pointer tables
(PDPT), i.e., there is no possibility to map a 512 GB page. Each PML4
entry defines properties of the corresponding 512 GB memory region, e.g.,
whether the memory is mapped to physical memory, whether it is readable,
writable, and whether it is accessible to user space. The lower levels are
organized in the same way. Each PDPT again has 512 entries, with each
entry defining the properties of a 1 GB virtual memory region. This 1 GB
virtual page can directly be mapped to a so-called 1 GB page or to a
page directory (PD). Modern operating systems use 1 GB virtual pages
for instance for the large direct-physical mapping in kernel space which
allows working on physical address directly although running in virtual

16

2.3. Caches

addressing mode. Each PD again has 512 entries, defining the properties of
a 2 MB virtual memory region. Modern operating systems commonly use
2 MB pages to map files or large arrays. Alternatively, the PD entry can
map a page table (PT). Each PT again has 512 entries, each controlling a
4 KB page. This is the default page size for most use cases.

For any operation the processor performs, one or more virtual addresses
have to be translated into physical addresses. Consequently, the address
translation latency must be very small. With translation tables being
located in the main memory, this is not the case. Consequently, address
translation caches have been introduced to hide the DRAM latency as we
will see in the next section.

2.3. Caches

In this section we discuss caches and cache organization in detail. We
will discuss the general organization of caches and the basic concepts
in Section 2.3.1. Subsequently, we discuss cache replacement policies
in Section 2.3.2. We describe the relation between virtual and physical
addresses and caches in Section 2.3.3. Finally, we discuss how caches on
modern Intel processors work in Section 2.3.4.

2.3.1. Cache Organization

The plain computation speed of processors was the bottleneck for a
long time. However, with increasing processor frequencies, the latency of
physical memory (DRAM) increasingly became a new bottleneck. While
the bandwidth of DRAM has increased over the past decades, the latency
is still very high. Processors caches are small and fast buffers intended
to hide the latency of the slow DRAM. Modern processors have multiple
cache hierarchies for different purposes with each multiple levels of different
sized caches. Some caches are private to one execution core while other
caches are shared among all cores.

Generally, all memory accesses go through the cache. If a memory access
is served from the cache it is called a cache hit. Otherwise, it is a cache
miss causing a fetch from the slow main memory.

17

2. Background

Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Figure 2.2.: A directly-mapped cache. Based on the middle n bits the
cache index is computed to choose a cache line. The tag is used to check
whether an address is cached. If it is cached (cache hit), the 2b bytes data
are returned to the processor.

Directly-mapped Caches. The most simple form of a cache is a
directly-mapped cache, as illustrated in Figure 2.2. A cache consists 2n

cache lines, each consisting of a tag and 2b bytes of associated data. The
tag is computed from the corresponding memory address that is buffered in
this cache line. It is used to determine whether or not a cache line currently
buffers a specific memory address. The lowest b bits of the address are
used as an offset within the cache line data. Most modern processors have
a cache line size of 64 bytes, i.e., b = 6. The middle n bits of the memory
address are used as a cache index, telling the processor in which cache
line to look for corresponding data. The size of the cache determines how
many bits are used, i.e., how many indices there are. Addresses with the
same middle n bits are congruent, as they map to the same cache line. A
significant problem of directly-mapped caches is that they can only store
a single cache line out of all congruent cache lines. Hence, if the processor
needs to work on two or more congruent cache lines, a directly-mapped
cache would experience cache misses most of the time.

Fully-associative Caches. The congruency problem does not exist
in fully-associative caches, as illustrated in Figure 2.3. Fully-associative
caches do not have cache indices and thus they do not have any cache lines.
Instead they have multiple cache ways to store data. The tag is now used
to determine whether the corresponding memory address is cached and

18

2.3. Caches

Memory Address Cache

Tag Datab bits

f

=?

=?

=?

=?

Tag

Data

Figure 2.3.: A fully-associative cache. All cache ways are checked in parallel
using the tag. The corresponding data value is selected based on the tag
comparison.

which cache way contains the associated data. Fully-associative caches are
increasingly expensive with the number of ways. Hence, they are typically
restricted to a small number of ways, e.g., translation-lookaside buffers
with 64 ways can be found in several modern processors.

Set-associative Caches. An elegant compromise are set-associative
caches, which have cache sets instead of cache lines. These caches are
widely used in modern processors, often referred to as m-way set-associative
caches. Figure 2.4 shows an abstract model of a 2-way set-associative cache.
The cache is divided into 2n cache sets. The cache set index is determined
from the middle n bits of the memory address. Each cache set has m ways
to provide storage locations for m congruent addresses. Note that cache
sets can also be seen as tiny fully-associative caches with m ways, for
the set of congruent addresses. Hence, the tag is again used to determine
which cache way buffers a specific memory address.

Data and instruction caches today are typically implemented as m-way
set-associative caches, but processor manufacturers are also transitioning
some address translation caches from fully-associative to set-associative.

19

2. Background

Memory Address Cache

b bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.4.: A 2-way set-associative cache. The middle n bits are the
cache index, selecting the cache set. The tag is used to check all ways
simultaneously. The data in the matching cache way is returned to the
execution core.

2.3.2. Cache Replacement Policies

Inevitably, with a limited number of ways and many congruent addresses
mapping to the same cache set, the processor constantly has to evict cache
ways to replace their content with newly requested data fetched from
the main memory. Hence, a replacement policy is implemented to decide
which cache way is replaced next when loading new data into a cache
set. Processor manufacturers keep the details of their replacement policies
mostly secret as they are a relevant contributing factor for the overall
processor performance.

A wide-spread replacement policy commonly used by Intel for different
caches is least-recently used (LRU). With an LRU replacement policy,
every cache way has some form of last-usage timestamp. This is often an
approximation to reduce the implementation complexity. Whenever the
processor has to load new data into a cache set, LRU replaces the cache
way with the oldest last-usage timestamp. LRU fails in cases where the
processor works on a set of congruent addresses larger than the number
of cache ways. In this case an LRU replacement policy yields a worst-case
performance as every single memory access will be a cache miss.

20

2.3. Caches

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.5.: A virtually-indexed virtually-tagged (VIVT) cache. The virtual
address is used to compute both index and tag. The processor does not
have to translate any addresses.

ARM processors commonly employs a pseudo-random replacement policy.
Here the next cache way to be replaced is determined by a pseudo-
random number generator. Random replacement policies are the easiest
to implement in hardware [Sez93]. They additionally have the advantage
of being energy-efficient [PS05]. In practice, random replacement policies
have shown to deliver a high performance.

To overcome the limitations of simpler algorithms, since Ivy Bridge, Intel
uses a bimodal insertion policy where the CPU can switch between the
two strategies to achieve optimal cache usage [Qur+07]. For a group of
cache sets the processor can either use a quad-age LRU strategy or a
strategy that replaces more recent cache lines first unless they are accessed
multiple times. This yields a significantly better performance when using
slightly more congruent addresses than would fit in a cache set.

2.3.3. Addressing Modes

Caches can use either virtual addresses or physical addresses to compute
the cache index and tag. Three designs have found their way into real-world
processors.

21

2. Background

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.6.: A physically-indexed physically-tagged (PIPT) cache. The
physical address is used to compute both index and tag. The processor
has to translate the virtual address before the cache set lookup.

Virtually-indexed virtually-tagged (VIVT) caches (cf. Figure 2.5) use the
virtual address for both index and tag. Consequently, they don’t have to
translate addresses at all and have the advantage of a low latency. However,
this comes at the price that shared memory might not be shared in the
cache, causing an unnecessary increase in cache utilization. Furthermore,
upon a context switch it may be necessary to invalidate entries because the
virtual tag is not unique. VIVT caches have been used for the smallest and
fastest data and instruction caches in some ARM processors. Furthermore,
address translation caches are typically VIVT caches.

Physically-indexed physically-tagged (PIPT) caches (cf. Figure 2.6) use
the physical address for both index and tag. Consequently, they have a
significantly higher latency than VIVT caches. However, shared memory
will always be shared in the cache. Thus, there is no unnecessary cache
utilization. Furthermore, the tag is physically unique and thus caches do
not need to be invalidated upon context switches. Today, PIPT caches are
widely used for data and instruction caches with the address translation
latency mostly hidden in the address translation caches.

Virtually-indexed physically-tagged (VIPT) caches (cf. Figure 2.7) try to
combine the advantages of both approaches by using the virtual address
for the index which is required immediately. While the cache index is

22

2.3. Caches

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.7.: A virtually-indexed physically-tagged (VIPT) cache. The
physical address is used to compute both the tag, but the virtual address
is used to compute the index. The cache set lookup is done in parallel to
the address translation and tag computation.

looked up the tag is computed. This hides the latency of the address
translation mostly and allows using a physical tag.

To avoid the disadvantages of VIVT caches, the cache index should not
use address bits that are not part of the page offset in the virtual address.
With a page size of 4 KB and a cache line size of 64 bytes, there are 6
bits which can be used as a cache index. Most Intel x86 processors from
the past decade integrate two 8-way set-associative VIPT L1 caches per
processor core, one for instructions and one for data. Consequently, the
size of Intel’s L1 caches is 26 · 64 · 8 = 32 KB for most processors from the
past decade.

2.3.4. Caches in Modern Intel Processors

For instructions and data, Intel x86 processors have a cache hierarchy
consisting of L1, L2, and L3 cache. The instruction and data L1 caches
are the fastest and smallest caches in this hierarchy. They are private
per-core caches, i.e., they are not shared with other cores. The L2 cache is
a unified cache, storing both instruction and data cache lines. There is no
strict relation between L1 and L2 cache, i.e., cache lines can be presented

23

2. Background

Address Bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores

o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Table 2.1.: Complex addressing functions extrapolated from [Mau+15a].

in none, in one of the two caches, or in both caches. The L3 cache is a
unified cache which is shared among all CPU cores. It is also commonly
referred to as the last-level cache. The L3 cache is inclusive to L1 and L2
caches, i.e., all cache lines in the L1 and L2 caches must also be present in
the L3 cache. Both L2 and L3 cache are PIPT caches, enabling to share
cache lines based on the physical address.

To enhance the performance, the last-level cache is divided into cache
slices since the Intel Nehalem microarchitecture [Mau+15a]. On current
Intel processors, each core has its own L3 cache slice. The slices are inter-
connected by a ring bus allowing all cores to access all L3 cache lines. The
mapping from physical addresses to slices is not documented by Intel and
referred is to as a complex addressing function. This function has recently
been reversed-engineered by researchers [Mau+15a; Inc+15; Yar+15]. Ta-
ble 2.1 lists the slices functions for different processors. Knowledge of the
complex addressing functions facilitates cache side-channel attacks.

2.4. DRAM

The main memory of modern computer systems is typically DRAM.
DRAM has a significantly higher latency than the various caches inside
the processors. The reason for the latency is not only the low clock
frequency of DRAM cells but also how DRAM is organized and how it is
connected to the processor. As it is difficult to reduce the latency, hardware
manufacturers instead focused on increasing the bandwidth of DRAM. The
high bandwidth can be utilized to hide the latency, e.g., through speculative
prefetching. Modern processors have an on-chip memory controller which
communicates through the memory bus with the DRAM.

24

2.4. DRAM

Processor

Memory bus

DRAM array

R
ow

b
u

ff
er

Row 4

Row 3

Row 2

Row 1

Row 0

Figure 2.8.: A very simple computer system, with a single DRAM array,
which is connected to the processor through a memory bus. The DRAM
array consists of rows which are each 8 KB in size.

Figure 2.8 shows a very simple computer system which consists of a single
DRAM array, which is connected to the processor through a memory
bus. This DRAM array consists of DRAM rows and columns (typically
1024). Modern systems organize the memory in a way that a DRAM row
typically has a row size of 8 KB. A row can either be opened or closed. If
it is currently opened, the entire row is preserved in the row buffer.

To fetch a data value from DRAM, the processor sends a request to the
integrated memory controller. The memory controller then determines a
sequence of commands to send over the memory bus to the DRAM to
retrieve the data. If the currently opened row contains the data to retrieve,
the memory controller just fetches the data from the DRAM row buffer.
As this situation is very similar to a cache hit, we call it a row hit. If
the currently opened row does not contain the data to retrieve, we call it
a row conflict. The memory controller then first closes the current row,
i.e., writes back the entire row to the actual DRAM cells. It subsequently
activates the row with the data to retrieve, which is then loaded into the
row buffer. Then the memory controller fetches the data value from the
row buffer. Similar to cache misses, row conflicts incur an increased access
latency.

We can see that the DRAM row buffer in our simple computer system (cf.
Figure 2.8) behaves identically to a directly-mapped cache (cf. Figure 2.2).
Just as congruent memory accesses constantly lead to cache misses in a
directly-mapped cache, alternating row accesses constantly lead to row
conflicts in DRAM. Unsurprisingly, similar approaches as in the case
of caches have been implemented to increase DRAM performance and

25

2. Background

CPU Ch. DIMM BA0 BA1 BA2 BA3 Rank DIMM Channel

Sandy Bridge
1 1 13, 17 14, 18 15, 19 - 16 - -

2 1 14, 18 15, 19 16, 20 - 17 - 6

1 1 13, 17 14, 18 16, 20 - 15, 19 - -

Ivy Bridge / 1 2 13, 18 14, 19 17, 21 - 16, 20 15 -

Haswell 2 2 14, 18 15, 19 17, 21 - 16, 20 - 7, 8, 9, 12, 13, 18, 19

2 4 14, 19 15, 20 18, 22 - 17, 21 16 7, 8, 9, 12, 13, 18, 19

Skylake 2 1 7, 14 15, 19 17, 21 18, 22 16, 20 - 8, 9, 12, 13, 18, 19

2x Haswell-EP 1 2 6, 22 19, 23 20, 24 21, 25 14 7, 17 -

(interleaved) 2 4 6, 23 20, 24 21, 25 22, 26 15 7, 17 8, 12, 14, 16, 18, 20, 22, 24, 26

2x Haswell-EP 1 2 6, 21 18, 22 19, 23 20, 24 13 - -

(non-interleaved) 2 4 6, 22 19, 23, 20, 24 21, 25 14 - 7, 12, 14, 16, 18, 20, 22, 24, 26

Exynos 7420 2 - 14 15 16 8, 13 - - 7, 12

Table 2.2.: DRAM addressing functions from [Pes+16].

eliminate bottlenecks. Modern computer systems organize the DRAM into
channels, DIMMs (Dual Inline Memory Modules), ranks, and banks.

Our simple computer system (cf. Figure 2.8) had only 1 channel, 1 DIMM,
1 rank, and 1 bank. Modern DDR3 DRAM memory has 8 banks and
DDR4 DRAM memory has even 16 banks (per rank). Each of these
banks has an independent state and thus can have different rows opened
at the same time. This reduces the chance of row conflicts for random
memory accesses significantly. Modern DRAM modules typically have 1 to
4 ranks, multiplying the number of banks even further. Similarly, modern
systems often allow to install multiple DIMM modules, again multiplying
the number of banks with the number of DIMMs. Finally, the memory
controller reorders memory accesses to reduce the number of row conflicts,
e.g., accesses to the same row and bank are grouped together temporally.

This spatial parallelism reduces the number of row conflicts. Hence, it
does not directly influence the bandwidth, but the average latency. To
increase temporal parallelism and thus the bandwidth directly, modern
computer systems employ multiple channels. Each channel is operated in-
dependently and in parallel over the DRAM bus. This effectively multiplies
the bandwidth by the number of channels.

Only if two addresses map to the same DIMM, rank and bank they can
be physically adjacent in the DRAM chip. In this case the two addresses
are in the same bank. If two addresses map to the same bank number,
but to a different rank or DIMM, they are not in the same bank and thus
generally not physically adjacent in the DRAM chip.

Similar to the slice functions of the last-level cache there are functions
mapping from physical addresses to channels, DIMMs, ranks, and banks.

26

2.4. DRAM

While AMD publicly documents these addressing function [Adv13, p.
345], Intel does not. However, the addressing functions have recently been
reverse-engineered for one architecture by Seaborn [Sea15] and with a
generic software-based approach by us [Pes+16]. Table 2.2 lists the DRAM
addressing functions for several common configurations. Knowledge of the
DRAM addressing functions enables DRAM-based side-channel attacks.

27

3
State of the Art

In this chapter, we discuss the state-of-the-art microarchitectural attacks
and defenses. We discuss software-based microarchitectural side-channel
attacks in Section 3.1. We discuss software-based microarchitectural fault
attacks in Section 3.2. Finally, we discuss defenses against software-based
microarchitectural attacks in Section 3.3.

3.1. Software-based Microarchitectural
Side-Channel Attacks

In this section, we discuss the most important microarchitectural side-
channel attacks. We show that imperfections of the hardware, introduced
by optimizations on a microarchitectural level, undermine system secu-
rity and software security. The hardware leaks part of its internal state
including potentially secret information through differences in behavior
and timing. Software-based microarchitectural side-channel attacks exploit
these differences entirely from software.

With the constantly growing field of microarchitectural attacks and
software-based side-channel attacks several works aim to provide a sys-
tematization of attacks and defenses in this area of research [AK; Ge+16b;
Ge+16a; BWM16; Sze16; DK16; Spr+16; Zha+16].

We discuss state-of-the-art cache attacks in Section 3.1.1, including Evict+
Time, Prime+Probe, and Flush+Reload and variants of these attacks. We
discuss branch-prediction attacks in Section 3.1.2. We discuss attacks on
page-translation caches in Section 3.1.3, including prefetch side-channel at-
tacks. We discuss exception-based attacks in Section 3.1.4, including page
deduplication attacks. We discuss DRAM-based attacks in Section 3.1.5.

29

3. State of the Art

Finally, we discuss other microarchitectural side-channel attacks in Sec-
tion 3.1.6.

3.1.1. Cache Attacks

The idea of caches is to hide the latency of the comparably slow physical
main memory. Fetching data from the cache has a significantly lower
latency. Kocher [Koc96] described the possibility of exploiting these tim-
ing differences in so-called cache-timing attacks. The idea is to deduce
information on cryptographic secrets from the influence of the cache on the
execution time of a cryptographic implementation. Cache timing attacks
have been studied in many works [Kel+00; Pag02; TSS03; Ber05; BM06].

The first cache attacks have been cache-based timing attacks. More recent
cache attacks are usually categorized into instances of three generalized
cache attack techniques, which have first been performed on cryptographic
algorithms [Ber05; Per05; GBK11] and were later on generalized by Os-
vik et al. [OST06] (Evict+Time and Prime+Probe) and Yarom et al.
[YF14] (Flush+Reload). We discuss the different attack techniques in
detail in the following.

Bernstein’s attack. Bernstein [Ber05] described a remote cache-timing
attack on an AES T-table implementation. T-tables are preprocessed S-
box computations that directly follow the AES design [Nat01; DR13]. The
entire AES algorithm can then be implemented as a fast sequence of T-
table lookups. The T-table entries are accessed based on an algorithmically
defined scheme. For instance in the first encryption round, the algorithm
accesses the T-table entries Tj [pi ⊕ ki], where pi is the i-th plaintext
byte and ki is the i-th key byte, with i ≡ j mod 4 and 0 ≤ i < 16.
Bernstein observed that these accesses may be cached and depending on
whether they are cached a timing difference can be observed. By observing
the timing difference, the attacker can deduce which T-table entry was
accessed and thus, learns the upper 4 bits of the result of pi ⊕ ki. In a
chosen-plaintext attack the attacker can eliminate pi from the equation
and thus obtain the upper 4 bits for every key byte. Combining the
information from not only the first round but from multiple rounds yields
the full AES key. Bernstein’s attack has been reproduced and evaluated
in many works [NSW06; BM06; SP13b; Wei+14; SG14].

30

3.1. Software-based Microarchitectural Side-Channel Attacks

Evict+Time. Osvik et al. [OST06] described Evict+Time as a generic
cache-timing attack technique. The attacker triggers several victim com-
putations and measures the victim’s execution time. To measure the
influence of a specific cache set the attacker evicts the cache set before
the computation for half of the victim runs. If there is a timing difference
when evicting the cache set, the attacker can conclude that the cache set
was used by the victim computation.

Similar as in Bernstein’s attack, the timing differences observed this way
yield which T-table entries were accessed. Evict+Time yields information
on a cache-set granularity but suffers from various sources of noise on
the execution time. Hence, several hundred thousand repetitions may
be necessary to extract an entire AES key. Evict+Time requires the
attacker to be able to measure the exact starting and end time of a victim
computation. This might not be possible in asynchronous attacks where the
attacker cannot trigger the computation or more generally in many cloud
scenarios. An advantage of Evict+Time is that it does not require any
shared memory. Complex addressing functions and replacement policies
of modern processors make eviction more difficult and thus make Evict+
Time attacks harder.

Evict+Time attacks have been investigated by Osvik et al. [OST06] in an
attack on OpenSSL AES. Spreitzer et al. [SP13a; Lip+16] demonstrated
that Evict+Time on OpenSSL AES is also applicable to mobile ARM-
based devices. Hund et al. [HWH13] demonstrated that Evict+Time can
be used to defeat kernel address space-layout randomization (KASLR).

Prime+Probe. The second technique presented by Osvik et al. [OST06]
is much more powerful. In a Prime+Probe attack, the attacker continuously
fills (primes) a cache set and measures how long it takes to refill the cache
set, as illustrated in Figure 3.1. Osvik et al. described that the time it
takes to refill the cache set is proportional to the number of cache ways
that have been replaced by other processes. While this proportionality
is not strictly present anymore for more recent microarchitectures, the
general idea is still valid. A higher timing means that at least one cache
way has been replaced. A lower timing means that likely no cache way
has been replaced.

Prime+Probe has the same granularity as Evict+Time, i.e., a cache set.
The accuracy is higher than with Evict+Time as it measures the cache ac-
cess times directly, whereas Evict+Time measures it indirectly through the

31

3. State of the Art

Attacker
address space Cache

Victim
address space

step 1+3: prime + measure (=probe)

step 2: loads data

Figure 3.1.: A Prime+Probe attack illustrated in 3 steps. The attacker
continuously primes a cache set using its own memory locations and
measures the execution time of this step (step 1 and step 3). In step 2, the
victim possibly accesses (non-shared) memory locations that map to the
same cache set. If the victim accessed memory locations in the same cache
set in step 2, the execution time of the priming (i.e., the probe step) is
high as one of the cache ways has been replaced. Otherwise, the execution
time of the priming is low.

execution time. Prime+Probe does not require any measurement of the ex-
ecution time and thus allows performing asynchronous attacks. Analogous
to Evict+Time, complex addressing functions and replacement policies of
modern processors also make Prime+Probe attacks more difficult.

The first Prime+Probe attacks targeted the L1 cache. However, the reverse-
engineering of the last-level cache [Mau+15a; Inc+15; Yar+15] opened up
the possibility to perform cross-core Prime+Probe attacks through the
inclusive last-level cache. The first Prime+Probe attacks on the L1 cache
have first been demonstrated by Percival [Per05] on RSA. Neve et al. [NS06]
attacked an AES implementation, Osvik et al. [OST06] demonstrated an
an attack on OpenSSL AES, Aciicmez et al. [AK06; Acı07b; AS08a;
AS07] demonstrated attacks on OpenSSL AES and RSA exploiting the L1
instruction cache, Bonneau et al. [BM06] attack OpenSSL AES exploiting
internal collisions, Brumley and Hakala [BH09] demonstrated and attack
on ECDSA, Aciicmez et al. [ABG10] demonstrated an attack on DSA
exploiting the L1 instruction cache, Zhang et al. [Zha+12] demonstrated
an attack on ElGamal.

The first Prime+Probe attacks on the last-level cache have been per-
formed by Ristenpart et al. [Ris+09] and later by Zhang et al. [Zha+11]
to detect co-location in the cloud and eavesdrop on co-located virtual

32

3.1. Software-based Microarchitectural Side-Channel Attacks

Attacker
address space Cache

Victim
address space

step 1: flush

step 2: possibly accesses
step 3: reload

Figure 3.2.: A Flush+Reload attack illustrated in 3 steps. In step 1, the
attacker flushes a shared memory location in the attacker virtual address
space. In step 2, the victim possibly accesses the same shared memory
location in the victim virtual address space. In step 3, the attacker reloads
the shared memory location and measures the access latency. If the victim
accessed the memory location in step 2, the access latency observed in the
reload step is low. Otherwise, the access latency in the reload step is high.

machines. However, these attacks were performed on microarchitectures
with a simpler organization, i.e., before Intel Nehalem, without cache
slices and without complex addressing functions [Mau+15a]. Maurice et al.
[Mau+15b] presented a Prime+Probe covert channel through the last-level
cache on a recent Intel processor. Liu et al. [Liu+15] demonstrated an at-
tack on ElGamal, Irazoqui et al. [IES15] and later Kayaalp et al. [Kay+16]
demonstrated attacks on AES. Oren et al. [Ore+15] performed a Prime+
Probe attack in the browser to eavesdrop on user activities, Inci et al.
[Inc+15] attacked ElGamal. Our Prime+Probe attack on BouncyCastle
AES was the first last-level Prime+Probe attack on ARM-based mobile
devices [Lip+16]. Finally, we presented a fast and robust Prime+Probe
covert channel on the Amazon EC2 cloud which employs synchronization
techniques and error correction codes to achieve a 0% error rate [Mau+17].

Brasser et al. [Bra+17] showed that Prime+Probe attacks can also be per-
formed by a malicious operating system on Intel SGX enclaves. Intel SGX
enclaves aim to provide a secure execution environment where software
can be executed securely even if the operating system is compromised. We
showed that Prime+Probe attacks can even be performed from inside an
enclave [Sch+17b]. They use the protection features provided by Intel SGX
to effectively hide the attack from the operating system. They demonstrate
that they can steal most key bits of an RSA private key from a single
RSA exponentiation running on the host or a co-located enclave.

33

3. State of the Art

Flush+Reload. Flush+Reload is often considered the most powerful
cache attack. They work on a single cache line granularity and even
more, they reveal to the attacker whether a very specific memory location
was cached or not. The attack works by frequently flushing a cache line
using the clflush instruction. The attacker then measures the time it
takes to reload the data. If the reload time is low the attacker learns
that another process (i.e., the victim) must have reloaded the very same
memory location into the cache. If the reload time is high the attacker
learns that likely no other process accessed the memory location in the
meantime. This general attack flow is illustrated in Figure 3.2. Flush+
Reload exploits the availability of shared memory and especially shared
libraries between the attacker and the victim program. Hence, in scenarios
where shared memory is not available, Flush+Reload cannot be applied
and an attacker has to resort to Prime+Probe instead.

There are many variants of Flush+Reload , most prominently Evict+
Reload [GSM15; Lip+16] and Flush+Flush [Gru+16b; Lip+16], both
of which we introduced. In an Evict+Reload attack the clflush instruc-
tion is replaced by a cache eviction as in a Prime+Probe attack. This
makes Evict+Reload applicable to architectures that do not expose a
flush instruction. Flush+Flush exploits a timing difference in the clflush

instruction to determine whether a memory location is cached. Hence,
the attacker can omit the reload step from Flush+Reload and build a
significantly faster and stealthier cache attack that does not perform a
single memory access.

The first Flush+Reload -like attack has been demonstrated by Gullasch et al.
[GBK11], attacking AES. Yarom and Falkner [YF14] demonstrated the
first full Flush+Reload attack, attacking RSA. Flush+Reload attacks on
AES have been demonstrated on Intel processors by Irazoqui et al. [IES15;
Ira+15a] and Gülmezoğlu et al. [Gül+15]. We also demonstrated Flush+
Reload attacks on AES on Intel processors [GSM15] and on mobile ARM-
based devices [Lip+16]. Flush+Reload attacks have also been demonstrated
on ECDSA by Benger et al. [Ben+14], van de Pol et al. [PSY15], and
Yarom and Benger et al. [YB14]. Allan et al. [All+16] demonstrated that
a combination with a denial-of-service attack to degrade the speed of
the ECDSA algorithm can yield a more efficient Flush+Reload attack on
ECDSA. Other attacks have been performed by Zhang et al. [Zha+14] on
activities in co-located virtual machines and by Irazoqui et al. [Ira+15b]
on TLS. Inci et al. [Inc+16] demonstrated that they can recover encryption
keys used in co-located VMs on Amazon EC2 in a larger and automated

34

3.1. Software-based Microarchitectural Side-Channel Attacks

scale. Bruinderink et al. [Gro+16] demonstrated an attack on the BLISS
signature scheme. Irazoqui et al. [Ira+14; IES16] demonstrated cross-VM
and cross-CPU variants of the Flush+Reload attack. Another variation of
the Flush+Reload attack combines it with return-oriented programming
to attack cache designs that are less straightforward to attack [ZXZ16].

Beyond Flush+Reload attacks on cryptographic implementations, we
demonstrated Flush+Reload attacks on user input [GSM15; Lip+16].

3.1.2. Branch-Prediction Attacks

Another set of caches are used for branch prediction. The branch-pattern
table stores past results on branches and uses them to predict the outcome
of future branches. The branch-target buffer caches branch targets from
past branches to predict targets of future branches. Both caches are
virtually-indexed and thus an adversary can target these caches without
knowledge of physical addresses.

Software-based side-channel attacks based on branch prediction hits and
misses have first been demonstrated by Aciicmez et al. [ASK07; Acı07a] in
attacks on the RSA implementation of OpenSSL. The attacker primes the
branch-target buffer by executing a sequence of branches. If the victim
experiences a branch misprediction, an entry of the branch-target buffer
will be replaced. The attacker subsequently observes a higher execution
time due to a misprediction for one of its branches.

Bhattacharya et al. [BM15] show that branch prediction attacks based
on hardware performance counters can be used to extract RSA keys from
exponentiations running in other processes. Evtyushkin et al. [EPA15]
demonstrate a covert channel between two processes manipulating the
branch predictor. Evtyushkin et al. [EPA16] also demonstrate that KASLR
can be defeated using the branch-target buffer. They infer where code has
been executed in the kernel based on the mapping from virtual addresses
to the branch-target buffer cache lines. Lee et al. [Lee+16] show that
a malicious operating system can reverse-engineer the control flow of
SGX enclaves through branch-prediction analysis. Ge et al. [Ge+16a]
analyze besides other side channels also the capacity and error rate of a
branch-prediction-based covert channel.

35

3. State of the Art

3.1.3. Page-translation Cache Attacks

Hund et al. [HWH13] presented the first attack exploiting timing differences
caused by page-translation caches. Triggering page faults on inaccessible
memory regions reveals whether the memory region would be valid for
the kernel, as the valid page-translation entries are cached, independent
of the current privilege level. This allows recovering which addresses are
valid and even which addresses are used by specific parts of the kernel,
i.e., it defeats kernel address-space-layout randomization (KASLR). To
run the attack, multiple page faults are triggered. When processing the
first page fault, the processor walks through the page translation tables,
caching every valid entry. For every subsequent page fault on the same
address, the translation table entries are already cached and thus the time
until the page fault is triggered is significantly lower.

Jang et al. [JLK16] exploited TSX transaction aborts upon page faults to
optimize this attack. Their attack is significantly faster and more reliable
and allows defeating KASLR within seconds. Furthermore, they observed
a timing difference when trying to execute inaccessible kernel addresses.
For executable kernel addresses the latency until the TSX transaction
abort is lower than for non-executable kernel memory. Simultaneously
to their work, we demonstrated that prefetch instructions leak the same
timing difference and can be used to defeat KASLR as well [Gru+16a].

Van Schaik et al. [Sch+17a] showed that timing attacks allow to reverse-
engineer the size and structure of the page translation caches. Gras et al.
[Gra+17] showed that this information can be used in Evict+Reload
attacks to defeat ASLR from sandboxed JavaScript.

3.1.4. Exception-based Attacks

Exception-based attacks deduce information from processor exceptions
they trigger. Typical exceptions are scheduler interrupts, instruction aborts,
page faults, but also behavioral differences, e.g., instructions providing
the user with an error code. Through this behavior the CPU leaks direct
information (i.e., the behavior itself) and indirect information (i.e., timing
differences due to the behavior).

We include exception-based attacks as microarchitectural attacks, as they
exploit both architecturally defined and undefined behavior. Especially the
implementation of instructions depends on the specific microarchitectural

36

3.1. Software-based Microarchitectural Side-Channel Attacks

design. Unspecified cases may influence the processor state and operation
on some microarchitectures whereas others ignore it.

Two decades ago, Warner et al. [War+96] presented the first covert channel
based on page faults. Page faults can leak sensitive information in three
ways: the location of the page fault, the execution time of the page fault,
and the mere fact that a page fault occurred i.e., the memory access was
delayed or not successful. Page deduplication is a mechanism to share
identical memory pages across boundaries of virtual machines to reduce
the memory footprint of systems [Mi l+09]. However, the fact that a page
fault occurred reveals to a user process that a second copy of the same page
exists somewhere on the same machine. Suzaki et al. [Suz+11] presented
an attack exploiting this to detect programs running in co-located virtual
machines. Owens et al. [OW11] demonstrated fingerprinting based on
page deduplication attacks. Xiao et al. [Xia+12; Xia+13] demonstrated
cross-VM covert channels based on the page deduplication side channel.
We demonstrated page deduplication attacks from JavaScript running in
a website [GBM15].

Xu et al. [XCP15] demonstrated that page faults can be used as a side-
channel by a malicious operating system to spy on an application running
in a secure enclave. Shinde et al. [Shi+16] later confirmed their results.
The malicious operating system frequently changes the virtual memory
mappings of the enclave from valid to invalid. This forces the enclave
to experience page faults for almost every memory reference. Although
the page fault address in Intel SGX is truncated to be page-aligned
the operating system is able derive accurate information of what the
application in the secure enclave is processing. Weichbrodt et al. [Wei+16]
used a similar approach to interrupt the secure enclave frequently to
exploit double-fetch vulnerabilities in enclaves reliably. Zhang et al. [ZW09]
proposed an attack that uses system interrupts information to derive user
input. Simon et al. [SXA16] demonstrated a similar attack on Android
that allows an attacker to recover words and sentences.

3.1.5. DRAM-based Attacks

Modern cloud systems often have multiple processors installed in a multi-
socket mainboard. The processor caches are kept coherent with an inter-
processor coherency protocol. However, this only has an effect on shared
memory cache lines. For co-located virtual machines that do not share

37

3. State of the Art

memory, the cache does not provide a communication channel in this
setup.

Wu et al. [WXW12; WXW14] found that timing differences caused by
memory bus locking can be exploited to build a covert channel between
co-located virtual machines in this setup. Their covert channel works
through channel contention and has a raw capacity of 13.5 KB/s at an
error rate of 0.75% on the Amazon EC2 cloud. Inci et al. [İnc+16] found
that memory bus locking can be used to verify co-location in the Microsoft
Azure cloud.

More recently, we found found that the DRAM itself can also be ex-
ploited [Pes+16]. They described two attack primitives as so-called DRAM
addressing (DRAMA) attacks. The row-conflict attack primitive works
similar to Prime+Probe, the row-hit attack primitive is a side channel that
is comparable to a Flush+Reload attack. Both side channels work without
requiring any shared memory. DRAMA attacks exploit the DRAM row
buffer which acts similarly as a directly-mapped per-bank cache for the
DRAM rows.

In case of the row-conflict attack, the attacker and victim share a DRAM
bank, but no DRAM row. The attacker continuously opens the same row
in a bank. Whenever the victim accesses a different row in the same bank,
the attacker observes a higher latency. The row-conflict covert channel
achieves a performance of 74.5 KB/s with an error rate of 0.4% in a
cross-VM cross-processor cloud setup.

In a row-hit attack, attacker and victim share a DRAM row in hardware.
The attacker loads another row into the row buffer, comparable to the
flush-step in a Flush+Reload attack. If the victim accesses the shared row
again, it will be loaded into the row buffer. The attacker then reloads a
memory location from the shared row and measures the access latency. If
the victim accessed the shared row in the meantime, the access latency is
low. Otherwise, the access latency is high.

Bhattacharya et al. [BM16] exploited the row-conflict side channel to
locate the DRAM bank of a cryptographic secret exponent. They use this
side-channel information to perform a Rowhammer attack on the secret
exponent, leading to faulty signatures which allow a full key recovery. We
demonstrated that the timing differences of the row-conflict side channel
are large enough to be measured from JavaScript [Sch+17c]. Based on
this observation, we demonstrated a transmission from an unprivileged
process inside a virtual machine with no network access to JavaScript

38

3.2. Software-based Microarchitectural Fault Attacks

code running inside a website. The covert channel achieves a raw capacity
of 11 b/s and an error rate of 0%.

3.1.6. Other Microarchitectural Side-Channel Attacks

Besides these main categories of software-based microarchitectural side-
channel attacks, some works have investigated other interferences in in-
structions and microarchitectural elements. These interferences originate
in the throughput limitations of processors. Aciicmez et al. [AS08b] demon-
strated that parallel execution of multiplication instructions can leak an
RSA key used in a square-and-multiply exponentiation. Evtyushkin et al.
[EP16] build a covert channel exploiting timing differences of the rdseed

instruction depending on the state of the internal random number buffer.

3.2. Software-based Microarchitectural Fault
Attacks

A common assumption in system security and software security is the
security of the hardware and its error-free operation. However, hardware is
not perfect and especially when operated outside the specification, faults
can be induced by an attacker [BDL97; BS97; Aum+02; SMC09; HS13;
SA02]. A unique feature of microarchitectural fault attacks is that they use
effects caused by microarchitectural elements or operations implemented
on a microarchitectural level. In the software-based variant these effects
and operations are triggered from software.

The first software-based microarchitectural fault attack was the so-called
Rowhammer bug. Kim et al. [Kim+14] found that it can be triggered
from software and that this could have implications on system security.
They execute a sequence of memory accesses and clflush operations to
frequently open and close DRAM rows, as illustrated in Figure 3.3. If the
DRAM rows are in physical proximity, a bit can flip in another DRAM row
without accessing it. This other memory location might be inaccessible
to the attacker and even belong to another security domain. Their work
sparked a series of publications that investigated the security implications
of the Rowhammer bug and the requirements to successfully trigger it.

In early 2015, Seaborn and Dullien [SD15] presented the first two practical
Rowhammer exploits. The first exploit escapes from the Google NaCl

39

3. State of the Art

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

step 1: activate

row buffer

copy

step 2: activate

copy

1 0 1 1 1 1 1 0 1 0 1 1 1 1

step 3: bits in
the middle row

flipped from 1 to 0

Figure 3.3.: To trigger the Rowhammer bug, memory locations in the
same bank but in different rows are alternately accessed (steps 1 and
2) in a high frequency. Depending on the DRAM cell susceptibility to
Rowhammer and the activation frequency, bits flip in step 3.

sandbox by causing a bit flip in dynamically generated indirect jumps.
They spray the memory with indirect jumps, to maximize the probability
to flip a bit in one of them. After a bit flipped in the jump instruction, the
attacker gains control over the jump and can thus escape from the NaCl
sandbox. The second exploit escalates from user mode to kernel privileges
by causing a bit flip in a page table. Again they spray the memory, but
this time with page tables, by memory-mapping the same file over and
over again. Every mapping requires page table entries, which consist to
more than 80% of address bits. The file contents are only kept in memory
once. Hence, they fill almost the entire memory with address bits. When a
bit flips in an address bit, the user memory mappings change from the file
contents to another page. Hence, the user program has very likely gained
access to its own page tables and thus has gained kernel privileges.

Seaborn and Dullien found 85% of all DDR3 modules they tested to be
susceptible to the Rowhammer bug.

In July 2015, we demonstrated the first Rowhammer attack from sand-
boxed JavaScript [GMM16]. We triggered bit flips in page tables from
JavaScript, by using cache eviction instead of the clflush instruction.
We introduced a new hammering technique called amplified single-sided
hammering, where an attacker hammers two DRAM rows in a 2 MB page
to flip a bit in another 2 MB page.

40

3.2. Software-based Microarchitectural Fault Attacks

Despite claims by DRAM vendors, we publicly reported the first bit
flips on DDR4 memory in late 2015 and published our results in early
2016 [Pes+16]. For our attack we reverse-engineered the DRAM addressing
functions for this purpose to perform an optimized attack. Our results on
DDR4 were later on confirmed independently by Lanteigne [Lan16]. He
observed a susceptibility rate of 67% of the DDR4 memory modules he
tested. Aichinger [Aic15a; Aic15b] found that the Rowhammer bug also
exists in ECC memory.

Also in 2016, Qiao and Seaborn [QS16] implemented a Rowhammer attack
with non-temporal memory accesses, showing that prohibiting access to
clflush is not sufficient. Bosman et al. [Bos+16] developed a reliable
Rowhammer exploit in JavaScript exploiting page deduplication on Win-
dows systems besides the Rowhammer bug. Bhattacharya et al. [BM16]
demonstrated the first Rowhammer attack on cryptographic secrets. They
trigger bit flips in an RSA key used in an exponentiation. Subsequently,
they recover the RSA key through the Chinese remainder theorem as in
first fault attacks on RSA [BDL97]. Xiao et al. [Xia+16] implemented a
Rowhammer attack on Xen-PVM, triggering bit flips in hypervisor page
tables and consequently obtaining hypervisor privileges.

Razavi et al. [Raz+16] demonstrated a Rowhammer attack on co-located
tenants in the presence of page deduplication. They first scan the entire
DRAM of the system for bit flips using the Rowhammer attack. Subse-
quently, they fill vulnerable pages with data that they suspect to be in
a victim machine that will be co-located in the future. As soon as the
victim is co-located, the identical memory pages are deduplicated. If the
attacker now performs the Rowhammer attack again to trigger a bit flip
in the page that is now also used by the victim. Through this attack they
are able to manipulate installed certificates and update URLs used in the
co-located machine to install malicious fake updates.

Besides personal computers and servers, mobile devices can also be at-
tacked using the Rowhammer bug [Vee+16]. In our work with Van der
Veen et al. we show that memory allocation techniques on Android devices
expose uncached memory to user programs. Thus, the user can hammer
DRAM rows efficiently and flip bits in kernel-level data structures.

In simultaneous work another software-based microarchitectural fault
attack has been presented. Karimi et al. [Kar+15] demonstrated that
software can artificially age circuits used in specific pipeline stages. A
carefully crafted instruction stream increases the latency of the critical

41

3. State of the Art

path of circuits if executed for several weeks. When the latency of the
critical path exceeds the specification the subsequent pipeline stages work
with incorrect values. Consequently, any further computations on the
processor may have erroneous results.

3.3. Defenses Against Software-based
Microarchitectural Attacks

Defenses against software-based microarchitectural attacks can be imple-
mented on the user-space layer, system layer, or hardware layer. System
layer and user-space layer would allow for protecting commodity systems.
However, on a hardware level, defenses may induce a smaller performance
overhead.

Most generic defenses try to reduce the amount of resource sharing to
mitigate specific side-channel attacks. A countermeasure that has been
proposed against same-core attacks is to schedule processes in different
security domains only to different CPU cores [Per05; Mar+10]. Similarly,
to mitigate cross-core attacks one could schedule such processes to different
CPUs. For cross-CPU attacks one could perform the entire computation
on different physical systems. However, the central idea of the cloud is
to share resources and cloud providers will not eliminate multi-tenancy.
Furthermore, information leakage through a remote interface might still
be possible [Ber05].

Eliminating resource sharing does not work at all in the case of personal
computers. Users deliberately want to execute third-party code such as
native binaries or JavaScript on a website. Hence, it is important to find
defense mechanisms that do not eliminate sharing but provide protection
through other means. Furthermore, defenses against Rowhammer, as a
microarchitectural fault attack, often follow similar approaches as defenses
against microarchitectural side-channel attacks in many cases. In the
following, we discuss possible state-of-the-art defenses grouped by the
three layers: user-space layer, system layer, and hardware layer.

3.3.1. User-Space Layer

Constant-time and data-obliviousness. In his seminal work on cache
timing attacks, Bernstein [Ber05] already proposed several mitigation tech-

42

3.3. Defenses Against Software-based Microarchitectural Attacks

niques to protect AES computations. He emphasized that constant-time
implementations are the most important protection mechanisms for cryp-
tographic algorithms. Furthermore, he criticized the design of AES that
suggests to perform data-dependent lookups in software. Similar defense
mechanisms have been advised by later work [Cop+09; BLS12; Zha+12].
In his work on RSA cache timing attacks, Aciicmez et al. [Acı07a] proposed
eliminating secret-dependent branches to defeat branch prediction attacks.
Agosta et al. [Ago+07] suggested to either eliminate secret-dependent
branches by replacing the branch by arithmetic operations or by convert-
ing branches to indirect jumps. Joye et al. [JT07] proposed an oblivious
software exponentiation that performs no secret-dependent data or code
accesses and thus is cache side-channel resistant.

Today, constant-time and oblivious computations are a standard counter-
measure against attacks on cryptographic implementations. However, it
has been found very hard to write truly constant-time implementations for
some algorithms [BS13; YGH16; GBY16]. Still, microarchitectural side-
channel attacks on cryptographic algorithms can generally be mitigated
entirely in user-space implementations.

Preloading all data into the cache before running an algorithm has
been investigated as a countermeasure against cache side-channel attacks.
Hilton et al. [HLL16] demonstrated that this can improve performance
of secure enclaves significantly while eliminating leakage based on cache
misses. However, this approach is probabilistic and an attacker running
on a second core might still be able to manipulate the cache state to
restore the cache misses and thus, the leakage. However, experiments we
performed showed that prefetching or preloading AES T-tables does not
have any significant effect on asynchronous Flush+Reload and Prime+
Probe cross-core cache attacks.

3.3.2. System Layer

Constant-time and data-obliviousness. Andrysco et al. [And+15]
developed a library that allows constant-time fixed-point numeric compu-
tations. Ohrimenko et al. [Ohr+16] developed a framework that allows
making any algorithm data- and code-oblivious. Through conditional
CPU operations the control flow is always the same and memory fetches
are always performed. They demonstrated the practicality of their solu-
tion on commonly used machine learning algorithms run in Intel SGX

43

3. State of the Art

enclaves. However, the framework does not protect against accidentally
adding code that leaks side-channel information through timing or data
accesses. From a more theoretical aspect Oblivious RAM (ORAM) could
provide data-obliviousness in general. To perform an array lookup, a sim-
ple ORAM construction would access every element in the array. More
complex ORAM constructions achieve a lower runtime overhead while
still maintaining certain lower security bounds for distinguishing any two
array lookups based on the access sequence. In practice, ORAM suffers
from severe performance and latency penalties and is therefore not widely
applicable.

Manipulation of timing sources. Most microarchitectural attacks re-
quire some form of accurate timing measurements. Consequently, simulat-
ing timing sources to reduce their usefulness for attackers has been pro-
posed in several independent works [Avi+10a; Avi+10b; For12; Wu+15a;
Wu+15b; LGR13; MDS12]. In modern cloud environments, this is typically
already the case. Every virtual machine has its own timing offsets, including
low-level timers like cycle counter registers. However, microarchitectural
attacks seem widely unaffected from this [Ira+14; IES16; Liu+15].

Vattikonda et al. [VDS11] proposed to add additional fuzziness to timers
to destroy any reliable timing information for the guest. However, micro-
benchmark measurements as used in modern cache attacks only require
minimal timing differences [Gru+16b; Mau+17]. Furthermore, statistical
methods allow to align traces and recover the secret information [Liu+15].
Furthermore, even in absence of any timing source an attacker can fall-back
to a counting thread [Wra92; Lip+16] or build even more sophisticated
and accurate timers [Sch+17c; Sch+17b]. Hence, it would be necessary to
prevent any form of parallelism in the attacker process and also prevent
any access to indirect timing sources such as interrupts from a preemptive
scheduler [Dun+02; Avi+10a; Ste+13; Coc+14].

Timing differences in general can be made invisible to other processes, by
making algorithms always consume the worst case time or by bucketing
their computation time [KD09; AZM10; ZAM11; Coc+14]. This can be
effective against timing attacks including the Evict+Time cache timing
attack. However, it does not have a significant effect on other cache
side-channel attacks such as Flush+Reload or Prime+Probe, as they can
derive exactly when a memory access is performed and not only overall
execution time differences. Many threat models, especially for multi-user
environments, exclude direct measurement of the execution time of a

44

3.3. Defenses Against Software-based Microarchitectural Attacks

specific algorithm. Hence, Evict+Time is not possible in such a threat
model, whereas Flush+Reload and Prime+Probe are.

Disabling cache-line sharing and shared memory. Disabling re-
source sharing can be applied on every level for different resources with
different granularities. As the last-level cache is typically physically-indexed
and physically-tagged, cache lines can only be shared across processes if
they are part of a shared memory region. Disabling cache-line sharing by
avoiding shared memory has first been suggested by Yarom et al. [YF14]
against Flush+Reload attacks. However, this would increase memory uti-
lization significantly and also increase the execution time due to higher
cache miss rates.

Another source of shared memory is page deduplication. Suzaki et al.
[Suz+11] recommended to disable page deduplication in cloud environ-
ments to mitigate page deduplication attacks. The importance of disabling
page deduplication in cloud environments has been substantiated with
more sophisticated attacks being demonstrated [OW11; Xia+12; Xia+13;
Bar+15; Raz+16]. In our work on page deduplication attacks, we also
recommended disabling page deduplication to prevent attacks on personal
computers [GBM15]. Bosman et al. [Bos+16] came to the same conclusion
in order to prevent Rowhammer attacks on Windows systems.

While the large cloud providers have already disabled page deduplication,
cloud providers generally have a large interest in keeping page deduplica-
tion enabled to optimize resource utilization and increase cost efficiency.
Ning et al. [Nin+16] designed a system that enables page deduplication
between virtual machines belonging to the same group, while preventing
cross-group attacks.

Zhou et al. [ZRZ16] proposed “copy-on-access”, a more dynamic approach
to disable cache-line sharing. They developed a system where the operating
system or hypervisor dynamically creates copies of pages that are used
simultaneously by multiple programs. However, in practice it only increases
the amount of measurements an attacker has to perform, but does not
fully mitigate any cache side-channel attack.

To mitigate microarchitectural attacks on KASLR, we proposed to use
separate paging structures for kernel space and user space to avoid sharing
cache lines in paging structure caches [Gru+16a]. This was also proposed
in concurrent work by Jang et al. [JLK16]. Gruss et al. [Gru+17b] showed

45

3. State of the Art

that separating paging structures indeed eliminates the page-translation
cache side channel.

Avoiding cache-set sharing. Assuming the problem of cache-line shar-
ing is solved and thus Flush+Reload attacks are not possible anymore,
cache-set sharing still allows performing Prime+Probe attacks. To pre-
vent cache-set sharing, cache-coloring has been proposed as a counter-
measure against side-channel attacks by Shi et al. [Shi+11]. Kim et al.
[KPM12] implemented a protection mechanism for cryptographic im-
plementations based on cache coloring on modern Intel CPUs. God-
frey [GZ14] implemented a similar protection mechanism in the Xen
hypervisor. Cock [Coc+14] evaluated cache coloring on ARM-based de-
vices. In all cases the authors measured only a small performance impact.
However, the memory overhead is significant: colors are fixed to physical
addresses and thus large portions of physical memory have to be assigned
to the same virtual machine or process in order to provide strict cache
coloring without other virtual machines or processes working in the same
cache set. Costan et al. [CD16] proposed Sanctum, an alternative to Intel
SGX that employs cache coloring to protect against cache side-channel
attacks on enclaves.

The slices used in the last-level cache in modern Intel processors can be
utilized for cache coloring [HWH13; Mau+15a; Inc+15; Yar+15]. They
already implicitly make cache attacks more difficult as the attacker has
to gain knowledge on how addresses map to slices. Additionally, slices
facilitates implementing cache coloring schemes on a system level. With
every slice the number of colors is multiplied by 2.

With Intel CAT (cache allocation technology) [Int14], system software can
now directly control how the slices are used. Intel CAT allows restricting
cores to a subset of slices of the last-level cache. By separating processes
of different security domain to different cores and thus their data into
different cache slices, any cache-set sharing is eliminated. Liu et al. [Liu+16]
implemented CATalyst, a system that instruments Intel CAT to protect
general purpose software and cryptographic algorithms. They use Intel
CAT to pin cache lines in the cache by first restricting access to one slice
to its core and subsequently removing all cores from this slice. Still, cached
values are served from the cache, effectively pinning the values cached in
this slice into the cache. A compiler could generate the code to protect
secret-dependent operations with Intel CAT. The performance overhead
for low-memory tasks is negligible.

46

3.3. Defenses Against Software-based Microarchitectural Attacks

Intel CAT likely can also be used to prevent DRAMA side-channel attacks.
The attacker may not be able to flush or evict victim data. Consequently,
the victim process has full control over all its memory accesses in terms
of cache hits and cache misses and can avoid information leakage through
cache misses.

Weiß et al. [Wei+14] developed a scheduler that reduces the amount of
cache set sharing between different virtual machines. Moon et al. [MSR15]
proposed frequent VM migration to avoid colocation for longer periods in
time. A similar approach based on container migration has been proposed
by Azab et al. [AE16].

Avoiding spatial proximity. To mitigate Rowhammer attacks it is not
sufficient to avoid memory and cache-set sharing, but it is also necessary
to avoid spatial proximity in DRAM. Brasser et al. [Bra+16] proposed
to isolate processes running in different security domains in DRAM such
that no security domain can flip bits in another security domain.

Cache cleansing. If we assume that attacker and victim cannot access
any cache set simultaneously, the question is how to cope with leakage that
remains in the cache after the victim was descheduled. Cache cleansing
aims to protect against attacks in such a scenario. It tries to maintain
the cache in a state that leaks no information to prevent cache attacks.
Zhang et al. [ZR13] and Godfrey et al. [GZ14] proposed cache cleansing
to prevent leakage in cloud scenarios. They flush the cache upon context
switches to eliminate the secret information from the cache. Cock et al.
[Coc13] implemented a scheduler that reduces the amount of flushes on
context switches and while maintaining the same security properties.
Varadarajan et al. [VRS14] proposed a minimum-runtime guarantee for
virtual machines in the cloud to prevent frequent context switches between
different virtual machines. They also use cache cleansing to mitigate
leakage of sensitive data. While this does not degrade system performance
significantly it increases latency for requests to other VMs by up to 17%.
Braun et al. [BJB15] proposed to compile specially annotated functions to
be constant-time and data-oblivious. These functions also do not access
any shared cache sets. Furthermore, they employ cache cleansing before
and after the secret-dependent execution.

With the advent of multi-core processors, cache cleansing lost some of its
practical relevance. Although disabling hyperthreading might be viable,
disabling multi-core or the last-level cache entirely is not a practical

47

3. State of the Art

solution. Even without the last-level cache, coherency protocols can keep
cache lines coherent across processors and reintroduce the supposedly
eliminated timing differences.

Detecting vulnerabilities. A different branch of countermeasures are
mechanisms to detect vulnerabilities in software. Detected vulnerabilities
can be eliminated by patching the software.

With Cache Template Attacks [GSM15], we presented a way to scan
software for vulnerabilities. Doychev et al. [Doy+15] proposed to detect
potential leakage in applications using static analysis techniques. A similar
system has been proposed by Irazoqui et al. [IES17] to detect microar-
chitectural attacks including DRAMA and Rowhammer. Reparaz et al.
[RBV16] proposed black-box leakage detection for cryptographic implemen-
tations and other algorithms. Zankl et al. [ZHS16] advised to incorporate
automated leakage detection in the deployment process for cryptographic
libraries. In line with these works are also approaches to quantify cache
leakage using detailed abstract models of the cache [Dem+12; DK16;
Cha+16]. A developer can use this information to eliminate the leakage
through source code improvements.

To mitigate Rowhammer attacks, Kim et al. [Kim+14] proposed to detect
vulnerable DRAM rows and remap them to spare DRAM cells. Brasser et al.
[Bra+16] proposed to disable these DRAM regions in the boot loader.

Detecting and stopping ongoing attacks. Another form of detection
mechanisms aim at detecting ongoing attacks. Following the idea of virus
and malware scanners, a software runs continuously checking the system for
malicious activity and subsequently stop the attacking processes or virtual
machines. Zhang et al. [Zha+11] proposed HomeAlone, a system using
a Prime+Probe covert channel to detect colocation. Their system allows
detecting when a virtual machine is co-located with other virtual machines
on the same physical machine although being billed for a dedicated machine.
With Cache Template Attacks [GSM15], we presented a way to search
and detect ongoing cache attacks. However, both approaches increase the
system load significantly.

Cardenas et al. [CB12] used performance counters to detect microarchi-
tectural denial-of-service attacks in cloud environments. Demme et al.
[Dem+13] proposed the use of performance counters to detect abnormal
cache behavior to detect malware and Tang et al. [TSS14] enhanced this
idea by evaluating performance counters using unsupervised learning.

48

3.3. Defenses Against Software-based Microarchitectural Attacks

Chouhan et al. [CH16] proposed to use bloom filters on the cache miss
traces to detect yet unknown cache side-channel attacks. Hunger et al.
[Hun+15] proposed detecting side-channel attacks through measuring
the performance variations in a program that mimics a typical victim
application.

Herath and Fogh [HF15] proposed to monitor cache misses to detect
Flush+Reload attacks and Rowhammer. Similar approaches have been
chosen by Chiappetta et al. [CSY15] and Zhang et al. [ZZL16]. Both built
systems that use cache hit and miss traces to detect Flush+Reload attacks
in native and cloud environments respectively. We showed that detection
mechanisms through performance counters might be an insufficient solu-
tion [Gru+16b]. We showed that performance counters fail to detect all
variants of cache attacks, such as Flush+Flush and slowed-down variants of
Flush+Reload . In response, Fogh [Fog15] developed a mechanism that uses
performance-monitor interrupts on rdtsc instructions. This mechanism
checks the program code around the current instruction pointer for suspi-
cious instructions like clflush. If suspicious instructions are found, the
potentially malicious program is slowed down or terminated. Payer [Pay16]
developed a system called HexPADS, which detects cache attacks and
Rowhammer at runtime. HexPADS uses different performance events like
cache references, cache misses, and page faults to evaluate whether a pro-
cess is malicious. HexPADS can easily be applied to commodity operating
systems.

Chen et al. [Che+17] designed a framework to detect ongoing controlled-
channel attacks on SGX enclaves at runtime. They use TSX to built
a trusted in-enclave counting thread. This counting thread is used to
measure the execution time of code sections. If the execution time is too
high an interrupt must have occurred and thus the untrusted operating
system interrupted the enclave, likely to perform an attack.

To specifically detect and stop ongoing Rowhammer attacks, several works
propose the usage of performance counters to detect whether to induce or
wait for row refreshes [Kim+14; Cor16; Awe+16].

3.3.3. Hardware Layer

Eliminating timing differences. Naturally, timing differences intro-
duced by the hardware could be eliminated in hardware [Pag03; Ber05;
Per05]. The best example might be the clflush instruction, which has

49

3. State of the Art

a small but exploitable timing difference when accessing cached and un-
cached memory locations. Making this instruction constant-time would
likely not be noticed in practice [Gru+16b]. The instruction is rarely
used and a timing penalty of less than 10 cycles is negligible for rarely
used instructions. Similarly, prefetch instructions leak through timing
differences that could be eliminated without a significant performance
penalty [Gru+16a].

Timing differences due to hardware modification only occur if the soft-
ware runs through an instruction stream that runs into these hardware
optimizations. Leakage introduced this way could be avoided by providing
constant-time instructions as building blocks for more complex algorithms,
e.g., cryptographic implementations. Indeed, processor manufacturers are
incorporating and increasing number of constant-time instructions for
cryptographic primitives [Int08; AMD09; ARM12; ARM13], most promi-
nently Intel AES-NI. Instruction set extensions like AES-NI have been
proposed as countermeasures against various attacks [Pag03; Ber05; Per05].
Today, many cryptographic libraries use these instructions typically by
default [Ope].

Wang et al. [WFS14] proposed to change memory controllers to eliminate
timing side-channels. Most importantly, they suggest changes to the row-
buffer policy. Instead of keeping the row buffer open, they immediately
close the row buffer again, leaving the DRAM in a pre-charged state.
This introduces a lower latency penalty than a row conflict, but still
a significant performance penalty as compared to current implementa-
tions. This countermeasure would likely eliminate DRAMA side-channel
attacks [Pes+16].

Timing differences are no problem if the execution time does not vary
depending on secret information. Wang et al. [WL07] proposed to eliminate
cache side-channel leakage with their so-called partition-locked caches
(PLcache) and random-permutation caches (RPcache). The PLcache allows
locking cache lines in the cache and prevent their eviction. Hence, an
attacker cannot observe any cache misses from the victim process as the
victim operates entirely on the cache. The RPcache approach introduces a
different mapping from physical addresses to cache sets for every process
at runtime. Hence, each program has its own cache sets which may be
overlapping or disjoint but are never identical. Consequently, the attacker
cannot prime a cache set of the victim and thus the attacker cannot
perform a cache attack on the victim.

50

3.3. Defenses Against Software-based Microarchitectural Attacks

Kong et al. [Kon+08] showed that both the PLcache and the RPcache
protections can be circumvented by an attacker. They proposed informing
loads as an extension to the RPcache to protect against cache side channels.
Informed loads are special instructions that do not only perform the
memory load but also re-randomize data structures [Kon+09]. Liu et al.
[LL14] proposed a cache design where the mapping from addresses to
cache sets is dynamically randomized at runtime. While the randomized
address mapping does not prevent that attacker and victim share a cache
set, it does effectively prevent that attacker and victim share a cache set
over a longer period in time. Consequently, many attacks are mitigated.
Fuchs et al. [FL15] proposed to use specialized prefetching algorithms to
mitigate side-channel attacks.

Disabling resource sharing. Also on the hardware level it is possi-
ble to disable or reduce the amount of resource sharing. Page [Pag05]
suggested partitioned caches to avoid cache-set sharing across processes.
These per-process partitions are maintained dynamically, avoiding any
static cache mapping and cache sharing. Wang et al. [WL08] proposed a
new cache architecture to mitigate cache side-channel attacks. Their cache
architecture would prevent cache-set sharing between attacker and victim
using dynamic mappings between addresses and cache sets. Tiwari et al.
[Tiw+09] proposed a mechanism to execute untrusted code with tight up-
per limits on the leakage in terms of time and side effects, with a moderate
performance impact. Sanchez et al. [SK10] proposed a faster cache design
which decouples cache ways and cache associativity. This cache design is
also likely to impact the applicability of eviction-based attacks like Prime+
Probe. Domnitser et al. [Dom+11] proposed non-monopolizable caches as
a defense against cache attacks. Non-monopolizable caches prevent that
any process can allocate enough cache lines to observe cache collisions
with another process. Domnitser et al. observed a low performance penalty
for cryptographic algorithms. However, using non-monopolizable caches
for larger parts of the software stack would severely impact the system
performance, as it is equivalent to reducing the cache size per process.

To mitigate branch prediction attacks, Tan et al. [TWG14] proposed a new
branch target buffer scheme which allows detecting potentially malicious
activity. After detection, the hardware prevents that branch target buffer
entries are shared with the suspected malicious processes.

Rowhammer countermeasures in hardware. Hardware countermea-
sures against Rowhammer are specific to the Rowhammer hardware defi-

51

3. State of the Art

ciency. Kim et al. [Kim+14] proposed several solutions to the Rowhammer
bug, including usage of ECC memory, building more reliable DRAM cells,
and increasing the refresh rate. They also showed that increasing the
refresh rate is not always effective unless it is increased by a factor of 7 or
more. Instead, they propose PARA, a mechanism which probabilistically
opens adjacent rows. As Rowhammer attacks require a huge number of
accesses, the adjacent rows are very likely refreshed early enough and no
bit flip occurs.

A different mechanism is target-row refresh (TRR). TRR refreshes lines
after a certain number of accesses to adjacent lines. Although TRR has
been announced for DDR4 modules, it was removed from the final DDR4
standard [GMM16].

52

4
Future Work and Conclusions

We can draw conclusions on four different axis from this thesis and the
corresponding publications.

First, microarchitectural attacks can be widely automated. We have shown
this with our work on Cache Template Attacks [GSM15], but automation
also played a significant role in our other works [Lip+16; Mau+17]. Au-
tomation provides any unsophisticated user with the ability to perform
microarchitectural attacks. It also enables more large scale attacks. Future
work will likely investigate automation of microarchitectural attacks in
further detail.

Second, unknown and novel side channels are very likely to exist and to be
found. We showed that modern microarchitectures expose several previ-
ously unknown side channels, such as the clflush instruction [Gru+16b],
the DRAM [Pes+16], or prefetch instructions [Gru+16a]. While we found
several new side channel, it is more difficult to find all microarchitectural
side channels. Hence, we can expect to find more microarchitectural side
channels and especially find new side channels with every new microar-
chitecture. Furthermore, many microarchitectural side channels have not
been investigated in detail yet. For instance, it is likely that the prefetch
side channel [Gru+16a] contains information that has not been used in
any published attacks. Also microarchitectural elements at low levels,
closer to the execution core, should be investigated for new side channels.
Future work should investigate whether these hardware components, such
as graphic adapters, can be instrumented in attacks.

Third, it is possible to reduce and minimize requirements of known at-
tacks to a point where they can be performed in highly-restricted and
sandboxed environments. We have shown that this is the case in our work
on Rowhammer attacks in JavaScript [GMM16] and in our work on page
deduplication attacks in JavaScript [GBM15]. In terms of software-based
microarchitectural fault attacks, we are just starting to investigate various

53

4. Future Work and Conclusions

hardware elements and how they can be accessed from unprivileged envi-
ronments. Investigating the applicability of Rowhammer [Kim+14; SD15]
and MAGIC [Kar+15] attacks in different scenarios will help to assess their
risks. However, besides the DRAM and specific processor components,
there is an abundance of other hardware elements in modern systems that
could be attacked. Such novel attacks might reduce the requirements for
fault attacks even further.

Fourth, constructing both effective and efficient countermeasures is a
difficult task. Research often over-ambitiously aims to find universal
countermeasures against microarchitectural attacks, ignoring that the var-
ious attacks have vastly different requirements and properties [Gru+16b;
Pes+16]. At the core of microarchitectural attacks is usually a temporal
or behavioral difference that is intended by the processor manufacturer
to optimize the performance. Hence, it we cannot always find a universal
countermeasure that does not degrade the performance as was the case
for the prefetch side channel [Gru+16a]. Security and performance are
contradicting each other to a growing extent. Countermeasures can only
be practical if they provide useful and possibly dynamic trade-offs between
security and performance. Instead of universal countermeasures, it may ap-
pear as a low-hanging fruit to protect specific scenarios, but it is also more
likely to be practical. Especially cryptographic implementations are al-
ready being constantly improved to defend against new microarchitectural
attacks.

54

References

[ABG10] O. Acıiçmez, B. B. Brumley, and P. Grabher. New Results
on Instruction Cache Attacks. In: CHES’10. 2010 (p. 32).

[Acı07a] O. Acıiçmez. Advances in Side-Channel Cryptanalysis: Mi-
croArchitectural Attacks. PhD Thesis. Oregon State Univer-
sity, 2007 (pp. 35, 43).

[Acı07b] O. Acıiçmez. Yet Another MicroArchitectural Attack: Ex-
ploiting I-cache. In: Proceedings of the 1st ACM Computer
Security Architecture Workshop. 2007 (p. 32).

[Adv13] Advanced Micro Devices. BIOS and Kernel Developer’s
Guide (BKDG) for AMD Family 15h Models 00h-0Fh Pro-
cessors. 2013. url: http://support.amd.com/TechDocs/
42301_15h_Mod_00h-0Fh_BKDG.pdf (p. 27).

[AE16] M. Azab and M. Eltoweissy. MIGRATE: Towards a Light-
weight Moving-target Defense against Cloud Side-Channels.
In: IEEE Security and Privacy Workshops (SPW). 2016
(p. 47).

[Ago+07] G. Agosta, L. Breveglieri, G. Pelosi, and I. Koren. Coun-
termeasures against branch target buffer attacks. In: IEEE
Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC’07). 2007 (p. 43).

[Aic15a] B. Aichinger. DDR memory errors caused by Row Hammer.
In: HPEC’15. 2015 (p. 41).

[Aic15b] B. Aichinger. Row Hammer Failures in DDR Memory. In:
memcon’15. 2015 (p. 41).

[AK] O. Acıiçmez and C. K. Koç. Microarchitectural attacks and
countermeasures. In: (p. 29).

[AK06] O. Acıiçmez and Ç. K. Koç. Trace-Driven Cache Attacks on
AES (Short Paper). In: Proceedings of the 8th international
conference on Information and Communications Security.
2006, pp. 112–121 (p. 32).

[All+16] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and
Y. Yarom. Amplifying Side Channels Through Performance
Degradation. In: Proceedings of the 32th Annual Computer
Security Applications Conference (ACSAC’16). 2016 (p. 34).

55

References

[AMD09] AMD. AMD I/O Virtualization Technology (IOMMU) Spec-
ification, rev 1.26. 2009 (p. 50).

[And+15] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S.
Lerner, and H. Shacham. On subnormal floating point and
abnormal timing. In: S&P’15. 2015 (p. 43).

[ARM12] ARM Limited. ARM Architecture Reference Manual. ARM
v7-A and ARMv7-R edition. ARM Limited, 2012 (p. 50).

[ARM13] ARM Limited. ARM Architecture Reference Manual ARMv8.
ARM Limited, 2013 (p. 50).

[AS07] O. Acıiçmez and J.-P. Seifert. Cheap Hardware Parallelism
Implies Cheap Security. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC 2007) (Sept. 2007),
pp. 80–91 (p. 32).

[AS08a] O. Acıiçmez and W. Schindler. A Vulnerability in RSA
Implementations Due to Instruction Cache Analysis and Its
Demonstration on OpenSSL. In: CT-RSA 2008. 2008 (p. 32).

[AS08b] O. Acıiçmez and W. Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demon-
stration on OpenSSL. In: CT-RSA 2008. 2008 (p. 39).

[ASK07] O. Acıiçmez, J.-P. Seifert, and Ç. K. Koç. Predicting secret
keys via branch prediction. In: CT-RSA 2007. 2007 (p. 35).

[Aum+02] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P.
Seifert. Fault attacks on RSA with CRT: Concrete results
and practical countermeasures. In: CHES’02. 2002 (pp. 5,
39).

[Avi+10a] A. Aviram, S. Hu, B. Ford, and R. Gummadi. Determinating
timing channels in compute clouds. In: Proceedings of the
2nd ACM Cloud Computing Security Workshop (CCSW’10).
2010, pp. 103–108 (p. 44).

[Avi+10b] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In: Proceedings of the
9th USENIX conference on Operating systems design and
implementation (OSDI’10). 2010 (p. 44).

[Awe+16] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin. ANVIL: Software-based protec-
tion against next-generation rowhammer attacks. In: ACM
SIGPLAN Notices 51.4 (2016), pp. 743–755 (p. 49).

56

References

[AZM10] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box
mitigation of timing channels. In: CCS’10. 2010 (p. 44).

[Bac+10] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C.
Sporleder. Acoustic Side-Channel Attacks on Printers. In:
USENIX Security Symposium. 2010 (p. 5).

[Bar+15] A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN:
Silently Breaking ASLR in the Cloud. In: WOOT’15. 2015
(p. 45).

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the im-
portance of checking cryptographic protocols for faults. In:
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 1997, pp. 37–51 (pp. 5,
39, 41).

[Ben+14] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “Ooh
Aah... Just a Little Bit”: A small amount of side channel
can go a long way. In: CHES’14. 2014 (p. 34).

[Ber05] D. J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
Department of Mathematics, Statistics, and Computer Sci-
ence, University of Illinois at Chicago, 2005. url: http:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf

(pp. 6, 30, 42, 49, 50).

[BH09] B. Brumley and R. Hakala. Cache-Timing Template Attacks.
In: ASIACRYPT’09. 2009 (p. 32).

[BJB15] B. A. Braun, S. Jana, and D. Boneh. Robust and Effi-
cient Elimination of Cache and Timing Side Channels. In:
arXiv:1506.00189 (2015) (p. 47).

[BLS12] D. J. Bernstein, T. Lange, and P. Schwabe. The security
impact of a new cryptographic library. In: International
Conference on Cryptology and Information Security in Latin
America. 2012 (p. 43).

[BM06] J. Bonneau and I. Mironov. Cache-collision timing attacks
against AES. In: CHES’06. 2006 (pp. 6, 30, 32).

[BM15] S. Bhattacharya and D. Mukhopadhyay. Who watches the
watchmen?: Utilizing Performance Monitors for Compromis-
ing keys of RSA on Intel Platforms. In: Cryptology ePrint
Archive, Report 2015/621 (2015) (p. 35).

57

References

[BM16] S. Bhattacharya and D. Mukhopadhyay. Curious case of
Rowhammer: Flipping Secret Exponent Bits using Timing
Analysis. In: CHES’16. 2016 (pp. 38, 41).

[Bos+16] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est
Machina: Memory Deduplication as an Advanced Exploita-
tion Vector. In: S&P’16. 2016 (pp. 7, 41, 45).

[Bra+16] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi.
CAn’t Touch This: Practical and Generic Software-only De-
fenses Against Rowhammer Attacks. In: arXiv:1611.08396
(2016) (pp. 47, 48).

[Bra+17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S.
Capkun, and A.-R. Sadeghi. Software Grand Exposure: SGX
Cache Attacks Are Practical. In: arXiv:1702.07521 (2017)
(p. 33).

[BS13] D. J. Bernstein and P. Schwabe. A word of warning. In:
CHES’13 Rump Session. 2013 (p. 43).

[BS97] E. Biham and A. Shamir. Differential fault analysis of se-
cret key cryptosystems. In: Annual International Cryptology
Conference. Springer. 1997, pp. 513–525 (pp. 5, 39).

[BWM16] J. Betz, D. Westhoff, and G. Müller. Survey on covert chan-
nels in virtual machines and cloud computing. In: Transac-
tions on Emerging Telecommunications Technologies (2016)
(p. 29).

[CB12] C. Cardenas and R. V. Boppana. Detection and mitigation
of performance attacks in multi-tenant cloud computing. In:
1st International IBM Cloud Academy Conference, Research
Triangle Park, NC, US. 2012 (p. 48).

[CD16] V. Costan and S. Devadas. Intel SGX explained. Tech. rep.
Cryptology ePrint Archive, Report 2016/086, 2016 (p. 46).

[CH16] M. Chouhan and H. Hasbullah. Adaptive detection technique
for Cache-based Side Channel Attack using Bloom Filter for
secure cloud. In: 3rd International Conference on Computer
and Information Sciences (ICCOINS). IEEE. 2016 (p. 49).

[Cha+16] S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller. Quan-
tifying the Information Leak in Cache Attacks through Sym-
bolic Execution. In: arXiv:1611.04426 (2016) (p. 48).

58

References

[Che+17] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detect-
ing Privileged Side-Channel Attacks in Shielded Execution
with Déjà Vu. In: Proceedings of the 12th ACM on Asia
Conference on Computer and Communications Security (Asi-
aCCS’17). 2017 (p. 49).

[Coc+14] D. Cock, Q. Ge, T. Murray, and G. Heiser. The last mile:
an empirical study of timing channels on seL4. In: CCS’14.
2014 (pp. 44, 46).

[Coc13] D. Cock. Practical probability: Applying pGCL to lattice
scheduling. In: International Conference on Interactive The-
orem Proving. 2013 (p. 47).

[Cop+09] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De
Sutter. Practical mitigations for timing-based side-channel
attacks on modern x86 processors. In: S&P’09 45-60 (2009)
(p. 43).

[Cor16] J. Corbet. Defending against Rowhammer in the kernel. Oct.
2016. url: https://lwn.net/Articles/704920/ (p. 49).

[CSW17] E. Carmon, J.-P. Seifert, and A. Wool. Photonic Side Chan-
nel Attacks Against RSA. In: HOST’17. 2017 (p. 5).

[CSY15] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detec-
tion of cache-based side-channel attacks using Hardware
Performance Counters. Cryptology ePrint Archive, Report
2015/1034. 2015 (p. 49).

[Dem+12] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan.
Side-channel vulnerability factor: a metric for measuring
information leakage. In: ACM SIGARCH Computer Archi-
tecture News 40.3 (2012), pp. 106–117 (p. 48).

[Dem+13] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waks-
man, S. Sethumadhavan, and S. Stolfo. On the feasibility
of online malware detection with performance counters. In:
ACM SIGARCH Computer Architecture News 41.3 (2013),
pp. 559–570 (p. 48).

[DK16] G. Doychev and B. Köpf. Rigorous Analysis of Software
Countermeasures against Cache Attacks. In: arXiv:1603.021
87 (2016) (pp. 29, 48).

59

References

[Dom+11] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev. Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks. In: ACM Trans-
actions on Architecture and Code Optimization (TACO) 8.4
(2011) (p. 51).

[Doy+15] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke. Cache-
Audit: a tool for the static analysis of cache side channels.
In: ACM Transactions on Information and System Security
(2015) (p. 48).

[DR13] J. Daemen and V. Rijmen. The Design of Rijndael: AES –
The Advanced Encryption Standard. 2013 (p. 30).

[Dun+02] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In: ACM SIGOPS Operating
Systems Review (2002) (p. 44).

[EP16] D. Evtyushkin and D. Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation
and mitigations. In: CCS’16. 2016 (p. 39).

[EPA15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Covert
channels through branch predictors: a feasibility study. In:
Proceedings of the Fourth Workshop on Hardware and Ar-
chitectural Support for Security and Privacy. ACM. 2015,
p. 5 (p. 35).

[EPA16] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In:
International Symposium on Microarchitecture (MICRO’16).
2016 (p. 35).

[FL15] A. Fuchs and R. B. Lee. Disruptive Prefetching: Impact on
Side-Channel Attacks and Cache Designs. In: Proceedings of
the 8th ACM International Systems and Storage Conference
(SYSTOR’15). 2015 (p. 51).

[Fog15] A. Fogh. Detecting stealth mode cache attacks: Flush+Flush.
2015. url: http://dreamsofastone.blogspot.co.at/

2015 / 11 / detecting - stealth - mode - cache - attacks .

html (p. 49).

[For12] B. Ford. Plugging side-channel leaks with timing information
flow control. In: Proceedings of the 4th USENIX conference
on Hot Topics in Cloud Ccomputing. 2012 (p. 44).

60

References

[GBK11] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice.
In: IEEE Symposium on Security and Privacy – S&P. IEEE
Computer Society, 2011, pp. 490–505 (pp. 6, 30, 34).

[GBM15] D. Gruss, D. Bidner, and S. Mangard. Practical Memory
Deduplication Attacks in Sandboxed JavaScript. In: 20th
European Symposium on Research in Computer Security
(ESORICS’15). 2015 (pp. 8, 9, 12, 37, 45, 53).

[GBY16] C. P. Garćıa, B. B. Brumley, and Y. Yarom. Make Sure
DSA Signing Exponentiations Really are Constant-Time. In:
CCS’16. 2016 (p. 43).

[Ge+16a] Q. Ge, Y. Yarom, F. Li, and G. Heiser. Contemporary Pro-
cessors Are Leaky – and There’s Nothing You Can Do About
It. In: arXiv:1612.04474 (2016) (pp. 29, 35).

[Ge+16b] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A Survey of
Microarchitectural Timing Attacks and Countermeasures
on Contemporary Hardware. In: Journal of Cryptographic
Engineering (2016), pp. 1–27. doi: 10.1007/s13389-016-
0141-6 (p. 29).

[GMM16] D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA’16. 2016 (pp. 7–9, 12, 40, 52, 53).

[Gra+17] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida.
ASLR on the Line: Practical Cache Attacks on the MMU.
In: (2017) (p. 36).

[Gro+16] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom.
Flush, Gauss, and Reload – A Cache Attack on the BLISS
Lattice-Based Signature Scheme. In: CHES’16. 2016 (p. 35).

[Gru+16a] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR. In: CCS’16. 2016 (pp. 7, 8, 10, 12, 36, 45, 50, 53, 54).

[Gru+16b] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+
Flush: A Fast and Stealthy Cache Attack. In: DIMVA’16.
2016 (pp. 7–9, 12, 34, 44, 49, 50, 53, 54).

61

References

[Gru+17a] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa. Strong and Efficient Cache Side-Channel Pro-
tection using Hardware Transactional Memory. In: USENIX
Security Symposium. (to appear). 2017 (p. 12).

[Gru+17b] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard. KASLR is Dead: Long Live KASLR. In:
ESSoS’17. (to appear). 2017 (pp. 11, 45).

[GSM15] D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 7, 8, 12, 34, 35,
48, 53).

[Gül+15] B. Gülmezoğlu, M. S. Inci, T. Eisenbarth, and B. Sunar. A
Faster and More Realistic Flush+Reload Attack on AES.
In: Constructive Side-Channel Analysis and Secure Design
(COSADE). 2015 (p. 34).

[GZ14] M. M. Godfrey and M. Zulkernine. Preventing cache-based
side-channel attacks in a cloud environment. In: IEEE Trans-
actions on Cloud Computing (2014) (pp. 46, 47).

[HF15] N. Herath and A. Fogh. These are Not Your Grand Daddys
CPU Performance Counters – CPU Hardware Performance
Counters for Security. In: Black Hat 2015 Briefings. Aug.
2015 (p. 49).

[HLL16] A. Hilton, B. Lee, and T. Lehman. PoisonIvy: Safe specula-
tion for secure memory. In: Proceedings of the 49th Interna-
tional Symposium on Microarchitecture (MICRO’16). 2016
(p. 43).

[HS13] M. Hutter and J.-M. Schmidt. The temperature side channel
and heating fault attacks. In: International Conference on
Smart Card Research and Advanced Applications. Springer.
2013, pp. 219–235 (pp. 5, 39).

[Hun+15] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vish-
wanath, and M. Tiwari. Understanding contention-based
channels and using them for defense. In: IEEE 21st Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA). 2015 (p. 49).

[HWH13] R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (pp. 7, 31, 36, 46).

62

References

[IES15] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM Sand-
boxing – and its Application to AES. In: S&P’15. 2015
(pp. 33, 34).

[IES16] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross proces-
sor cache attacks. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security (Asi-
aCCS’16). 2016 (pp. 35, 44).

[IES17] G. Irazoqui, T. Eisenbarth, and B. Sunar. MASCAT: Stop-
ping Microarchitectural Attacks Before Execution. Cryptol-
ogy ePrint Archive, Report 2016/1196. 2017. url: http:
//eprint.iacr.org/2016/1196 (p. 48).

[Inc+15] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar. Seriously, get off my cloud! Cross-VM RSA Key
Recovery in a Public Cloud. Tech. rep. Cryptology ePrint
Archive, Report 2015/898, 2015., 2015 (pp. 24, 32, 33, 46).

[Inc+16] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar. Cache Attacks Enable Bulk Key Recovery on the
Cloud. In: CHES’16. 2016 (p. 34).

[İnc+16] M. S. İnci, G. Irazoqui, T. Eisenbarth, and B. Sunar. Effi-
cient, adversarial neighbor discovery using logical channels
on Microsoft Azure. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM. 2016
(p. 38).

[Int08] Intel. Advanced Encryption Standard (AES) Instructions
Set: White Paper. 2008 (p. 50).

[Int14] Intel. Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3 (3A, 3B & 3C): System Program-
ming Guide. In: 253665 (2014) (p. 46).

[Ira+14] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait
a minute! A fast, Cross-VM attack on AES. In: RAID’14.
2014 (pp. 35, 44).

[Ira+15a] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Know
Thy Neighbor: Crypto Library Detection in Cloud. In: Pro-
ceedings on Privacy Enhancing Technologies (2015) (p. 34).

[Ira+15b] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky
13 Strikes Back. In: AsiaCCS’15. 2015 (p. 34).

63

References

[JLK16] Y. Jang, S. Lee, and T. Kim. Breaking Kernel Address Space
Layout Randomization with Intel TSX. In: CCS’16. 2016
(pp. 36, 45).

[JT07] M. Joye and M. Tunstall. Securing OpenSSL against Micro-
Architectural Attacks. In: SECRYPT. 2007 (p. 43).

[Kar+15] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu, and
R. Karri. MAGIC: Malicious aging in circuits/cores. In:
ACM Transactions on Architecture and Code Optimization
(TACO) 12.1 (2015) (pp. 7, 41, 54).

[Kay+16] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel.
A high-resolution side-channel attack on last-level cache.
In: Proceedings of the 53rd Annual Design Automation
Conference. 2016 (p. 33).

[KD09] B. Köpf and M. Dürmuth. A provably secure and efficient
countermeasure against timing attacks. In: 22nd IEEE Com-
puter Security Foundations Symposium. 2009 (p. 44).

[Kel+00] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel
Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141–158 (p. 30).

[Kim+14] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM
disturbance errors. In: ISCA’14. 2014 (pp. 7, 9, 39, 48, 49,
52, 54).

[Koc96] P. C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: Crypto’96. 1996
(pp. 5, 6, 30).

[Kon+08] J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou. Decon-
structing new cache designs for thwarting software cache-
based side channel attacks. In: Proceedings of the 2nd ACM
Computer Security Architectures Workshop (2008) (p. 51).

[Kon+09] J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou. Hardware-
software integrated approaches to defend against software
cache-based side channel attacks. In: Proceedings of the 15th
International Symposium on High Performance Computer
Architecture (HPCA’09). 2009, pp. 393–404 (p. 51).

64

References

[KOP09] T. Kasper, D. Oswald, and C. Paar. EM side-channel at-
tacks on commercial contactless smartcards using low-cost
equipment. In: Information Security Applications. Springer,
2009, pp. 79–93 (p. 5).

[KPM12] T. Kim, M. Peinado, and G. Mainar-Ruiz. StealthMem:
system-level protection against cache-based side channel
attacks in the cloud. In: USENIX Security Symposium. 2012
(p. 46).

[Lan16] M. Lanteigne. How Rowhammer Could Be Used to Exploit
Weaknesses in Computer Hardware. Mar. 2016. url: http:
//www.thirdio.com/rowhammer.pdf (p. 41).

[Lee+16] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M.
Peinado. Inferring fine-grained control flow inside SGX en-
claves with branch shadowing. In: arXiv:1611.06952 (2016)
(p. 35).

[LGR13] P. Li, D. Gao, and M. K. Reiter. Mitigating access-driven
timing channels in clouds using StopWatch. In: DNS’13. 2013
(p. 44).

[Lip+16] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard. ARMageddon: Cache Attacks on Mobile Devices. In:
USENIX Security Symposium. 2016 (pp. 8, 9, 12, 31, 33–35,
44, 53).

[Liu+15] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: IEEE
Symposium on Security and Privacy – SP. IEEE Computer
Society, 2015, pp. 605–622 (pp. 7, 33, 44).

[Liu+16] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In: IEEE International
Symposium on High Performance Computer Architecture
(HPCA). 2016 (p. 46).

[LL14] F. Liu and R. B. Lee. Random Fill Cache Architecture. In:
IEEE/ACM International Symposium on Microarchitecture
(MICRO’14). 2014, pp. 203–215 (p. 51).

[Mar+10] A. Marshall, M. Howard, G. Bugher, B. Harden, C. Kauf-
man, M. Rues, and V. Bertocci. Security best practices for
developing windows azure applications. In: Microsoft Corp
(2010) (p. 42).

65

References

[Mau+15a] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A.
Francillon. Reverse Engineering Intel Complex Addressing
Using Performance Counters. In: RAID’15. 2015 (pp. 24, 32,
33, 46).

[Mau+15b] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(p. 33).

[Mau+17] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C.
Alberto Boano, S. Mangard, and K. Römer. Hello from the
Other Side: SSH over Robust Cache Covert Channels in the
Cloud. In: NDSS’17. 2017 (pp. 8, 11, 33, 44, 53).

[MDS12] R. Martin, J. Demme, and S. Sethumadhavan. TimeWarp:
rethinking timekeeping and performance monitoring mecha-
nisms to mitigate side-channel attacks. In: ACM SIGARCH
Computer Architecture News (2012) (p. 44).

[Mi l+09] G. Mi lós, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: Enlightened page sharing. In: USENIX ATC’09. 2009
(p. 37).

[MOP08] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks:
Revealing the secrets of smart cards. Vol. 31. Springer Science
& Business Media, 2008 (p. 5).

[MSR15] S.-J. Moon, V. Sekar, and M. K. Reiter. Nomad: Mitigating
arbitrary cloud side channels via provider-assisted migration.
In: CCS’15. 2015 (p. 47).

[Nat01] National Institute of Standards and Technology. Advanced
Encryption Standard. NIST FIPS PUB 197. 2001 (p. 30).

[Nin+16] F. Ning, M. Zhu, R. You, G. Shi, and D. Meng. Group-Based
Memory Deduplication against Covert Channel Attacks in
Virtualized Environments. In: IEEE Trustcom. 2016 (p. 45).

[NS06] M. Neve and J.-P. Seifert. Advances on Access-Driven Cache
Attacks on AES. In: Proceedings of the 13th international
conference on Selected areas in cryptography (SAC’06). 2006
(p. 32).

[NSW06] M. Neve, J.-P. Seifert, and Z. Wang. A refined look at Bern-
stein’s AES side-channel analysis. In: Proceedings of the
2006 ACM Symposium on Information, computer and com-
munications security (ASIACCS’06). 2006 (p. 30).

66

References

[Ohr+16] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. No-
wozin, K. Vaswani, and M. Costa. Oblivious Multi-Party
Machine Learning on Trusted Processors. In: USENIX Secu-
rity Symposium. 2016 (p. 43).

[Ope] OpenSSL. OpenSSL: The Open Source toolkit for SSL/TLS.
url: http://www.openssl.org (p. 50).

[Ore+15] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis. The Spy in the Sandbox: Practical Cache Attacks
in JavaScript and their Implications. In: ACM Conference
on Computer and Communications Security – CCS. ACM,
2015, pp. 1406–1418 (pp. 7, 33).

[OST06] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: Topics in Cryptology
– CT-RSA. Vol. 3860. LNCS. Springer, 2006, pp. 1–20 (pp. 6,
30–32).

[OW11] R. Owens and W. Wang. Non-interactive OS fingerprinting
through memory de-duplication technique in virtual ma-
chines. In: 30th IEEE International Performance Computing
and Communications Conference. Nov. 2011, pp. 1–8 (pp. 37,
45).

[Pag02] D. Page. Theoretical use of cache memory as a cryptana-
lytic side-channel. In: Cryptology ePrint Archive, Report
2002/169 (2002) (pp. 6, 30).

[Pag03] D. Page. Defending Against Cache Based Side-Channel At-
tacks. Tech. rep. Department of Computer Science, Univer-
sity of Bristol, 2003 (pp. 49, 50).

[Pag05] D. Page. Partitioned Cache Architecture as a Side-Channel
Defence Mechanism. Cryptology ePrint Archive, Report
2005/280. 2005. url: http://eprint.iacr.org/2005/280
(p. 51).

[Pay16] M. Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESSoS’16. 2016 (p. 49).

[Per05] C. Percival. Cache missing for fun and profit. In: Proceedings
of BSDCan. 2005 (pp. 6, 30, 32, 42, 49, 50).

67

References

[Pes+16] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard.
DRAMA: Exploiting DRAM Addressing for Cross-CPU At-
tacks. In: USENIX Security Symposium. 2016 (pp. 7, 8, 10,
26, 27, 38, 41, 50, 53, 54).

[PS05] K. Pagiamtzis and A. Sheikholeslami. Using cache to reduce
power in content-addressable memories (CAMs). In: Pro-
ceedings of the IEEE Custom Integrated Circuits Conference.
2005 (p. 21).

[PSY15] J. van de Pol, N. P. Smart, and Y. Yarom. Just a little bit
more. In: CT-RSA 2015. 2015 (p. 34).

[QS16] R. Qiao and M. Seaborn. A New Approach for Rowhammer
Attacks. In: HOST’16. 2016 (p. 41).

[Qur+07] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high performance
caching. In: ACM SIGARCH Computer Architecture News
35.2 (June 2007), p. 381 (p. 21).

[Raz+16] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and
H. Bos. Flip Feng Shui: Hammering a Needle in the Software
Stack. In: USENIX Security Symposium. 2016 (pp. 7, 41,
45).

[RBV16] O. Reparaz, J. Balasch, and I. Verbauwhede. Dude, is my
code constant time? Cryptology ePrint Archive, Report
2016/1123. 2016. url: http://eprint.iacr.org/2016/
1123 (p. 48).

[Ris+09] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds. In: ACM Conference on
Computer and Communications Security – CCS. ACM, 2009,
pp. 199–212 (p. 32).

[RR01] J. R. Rao and P. Rohatgi. EMpowering Side-Channel Attacks.
In: IACR Cryptology ePrint Archive 2001 (2001), p. 37 (p. 5).

[SA02] S. P. Skorobogatov and R. J. Anderson. Optical fault induc-
tion attacks. In: CHES’02. 2002 (pp. 5, 39).

[Sch+12] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P.
Seifert. Simple Photonic Emission Analysis of AES. In:
CHES’12. 2012 (p. 5).

68

References

[Sch+17a] S. van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida.
Reverse Engineering Hardware Page Table Caches Using
Side-Channel Attacks on the MMU. 2017. url: http://www.
cs.vu.nl/~herbertb/download/papers/revanc_ir-cs-

77.pdf (p. 36).

[Sch+17b] M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Man-
gard. Malware Guard Extension: Using SGX to Conceal
Cache Attacks. In: DIMVA’17. (to appear). 2017 (pp. 11, 33,
44).

[Sch+17c] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. Fan-
tastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript. In: Proceedings of
the 21th International Conference on Financial Cryptogra-
phy and Data Security (FC’17). 2017 (pp. 11, 38, 44).

[SD15] M. Seaborn and T. Dullien. Exploiting the DRAM rowham-
mer bug to gain kernel privileges. In: Black Hat 2015 Brief-
ings. 2015 (pp. 7, 9, 39, 54).

[Sea15] M. Seaborn. How physical addresses map to rows and banks
in DRAM. Retrieved on July 20, 2015. May 2015. url:
http://lackingrhoticity.blogspot.com/2015/05/how-

physical- addresses- map- to- rows- and- banks.html

(p. 27).

[Sez93] A. Seznec. A case for two-way skewed-associative caches. In:
ACM SIGARCH Computer Architecture News. Vol. 21. 2.
ACM. 1993, pp. 169–178 (p. 21).

[SG14] R. Spreitzer and B. Gérard. Towards More Practical Time-
Driven Cache Attacks. In: IFIP International Workshop on
Information Security Theory and Practice. 2014 (p. 30).

[Shi+11] J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page
coloring. In: 2011 IEEE/IFIP 41st International Conference
on Dependable Systems and Networks Workshops (DSN-W).
2011 (p. 46).

[Shi+16] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Prevent-
ing Page Faults from Telling Your Secrets. In: Proceedings
of the 11th ACM on Asia Conference on Computer and
Communications Security (AsiaCCS’16). 2016 (p. 37).

69

References

[SK10] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling ways
and associativity. In: 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’10). 2010 (p. 51).

[SMC09] D. Saha, D. Mukhopadhyay, and D. R. Chowdhury. A Di-
agonal Fault Attack on the Advanced Encryption Standard.
In: IACR Cryptology ePrint Archive 2009.581 (2009) (pp. 5,
39).

[SP13a] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2013, pp. 200–214
(p. 31).

[SP13b] R. Spreitzer and T. Plos. On the Applicability of Time-
Driven Cache Attacks on Mobile Devices. In: International
Conference on Network and System Security. 2013 (p. 30).

[Spr+16] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard. SoK:
Systematic Classification of Side-Channel Attacks on Mobile
Devices. In: arXiv:1611.03748 (2016) (p. 29).

[Ste+13] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A.
Russo, and D. Mazières. Eliminating cache-based timing
attacks with instruction-based scheduling. In: Proceedings
of the 18th European Symposium on Research in Computer
Security (ESORICS’13). 2013 (p. 44).

[Suz+11] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory Dedu-
plication as a Threat to the Guest OS. In: Proceedings of
the 4th European Workshop on System Security. 2011 (pp. 8,
37, 45).

[SXA16] L. Simon, W. Xu, and R. Anderson. Don’t Interrupt Me
While I Type: Inferring Text Entered Through Gesture Typ-
ing on Android Keyboards. In: Proceedings on Privacy En-
hancing Technologies (2016) (p. 37).

[Sze16] J. Szefer. Survey of Microarchitectural Side and Covert Chan-
nels, Attacks, and Defenses. Cryptology ePrint Archive, Re-
port 2016/479. 2016. url: http://eprint.iacr.org/2016/
479 (p. 29).

70

References

[Tiw+09] M. Tiwari, X. Li, H. M. Wassel, F. T. Chong, and T. Sher-
wood. Execution leases: A hardware-supported mechanism
for enforcing strong non-interference. In: 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’09).
2009 (p. 51).

[TSS03] Y. Tsunoo, T. Saito, and T. Suzaki. Cryptanalysis of DES
implemented on computers with cache. In: CHES’03. 2003,
pp. 62–76 (pp. 6, 30).

[TSS14] A. Tang, S. Sethumadhavan, and S. J. Stolfo. Unsupervised
anomaly-based malware detection using hardware features.
In: RAID’14. 2014 (p. 48).

[TWG14] Y. Tan, J. Wei, and W. Guo. The Micro-architectural Sup-
port Countermeasures against the Branch Prediction Analy-
sis Attack. In: 2014 IEEE 13th International Conference on
Trust, Security and Privacy in Computing and Communica-
tions. 2014 (p. 51).

[VDS11] B. C. Vattikonda, S. Das, and H. Shacham. Eliminating fine
grained timers in Xen. In: Proceedings of the 3rd ACM work-
shop on Cloud computing security workshop (CCSW’11).
2011 (p. 44).

[Vee+16] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In: CCS’16. 2016 (pp. 7, 10, 41).

[VRS14] V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-
based defenses against cross-vm side-channels. In: USENIX
Security Symposium. 2014 (p. 47).

[War+96] A. Warner, Q. Li, T. Keefe, and S. Pal. The impact of
multilevel security on database buffer management. In: Pro-
ceedings of the 4th European Symposium on Research in
Computer Security (ESORICS’96). 1996 (p. 37).

[Wei+14] M. Weiß, B. Weggenmann, M. August, and G. Sigl. On cache
timing attacks considering multi-core aspects in virtualized
embedded systems. In: International Conference on Trusted
Systems. 2014 (pp. 30, 47).

71

References

[Wei+16] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza.
AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves. In: Proceedings of the 21st European Symposium
on Research in Computer Security (ESORICS’16). 2016
(p. 37).

[WFS14] Y. Wang, A. Ferraiuolo, and G. E. Suh. Timing channel
protection for a shared memory controller. In: IEEE 20th
International Symposium on High Performance Computer
Architecture (HPCA’14). 2014 (p. 50).

[WL07] Z. Wang and R. B. Lee. New cache designs for thwarting soft-
ware cache-based side channel attacks. In: ACM SIGARCH
Computer Architecture News 35.2 (June 2007), p. 494 (p. 50).

[WL08] Z. Wang and R. B. Lee. A Novel Cache Architecture with
Enhanced Performance and Security. In: IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO’08).
2008, pp. 83–93 (p. 51).

[Wra92] J. C. Wray. An analysis of covert timing channels. In: Journal
of Computer Security 1.3-4 (1992), pp. 219–232 (p. 44).

[Wu+15a] W. Wu, E. Zhai, D. Jackowitz, D. I. Wolinsky, L. Gu,
and B. Ford. Warding off timing attacks in Deterland. In:
arXiv:1504.07070 (2015) (p. 44).

[Wu+15b] W. Wu, E. Zhai, D. Jackowitz, D. I. Wolinsky, L. Gu,
and B. Ford. Warding off timing attacks in Deterland. In:
arXiv:1504.07070 (2015) (p. 44).

[WXW12] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In: USE-
NIX Security Symposium. 2012 (p. 38).

[WXW14] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space:
High-bandwidth and Reliable Covert Channel Attacks in-
side the Cloud. In: IEEE/ACM Transactions on Networking
(2014) (p. 38).

[XCP15] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In: S&P’15. 2015 (p. 37).

[Xia+12] J. Xiao, Z. Xu, H. Huang, and H. Wang. A covert channel
construction in a virtualized environment. In: CCS’12. 2012
(pp. 37, 45).

72

References

[Xia+13] J. Xiao, Z. Xu, H. Huang, and H. Wang. Security implications
of memory deduplication in a virtualized environment. In:
2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 2013 (pp. 37,
45).

[Xia+16] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security Symposium.
2016 (pp. 7, 41).

[Yar+15] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser. Mapping
the Intel Last-Level Cache. In: Cryptology ePrint Archive,
Report 2015/905 (2015), pp. 1–12 (pp. 24, 32, 46).

[YB14] Y. Yarom and N. Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+RELOAD Cache Side-channel
Attack. Cryptology ePrint Archive, Report 2014/140. 2014.
url: http://eprint.iacr.org/2014/140 (p. 34).

[YF14] Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 6–8, 30, 34, 45).

[YGH16] Y. Yarom, D. Genkin, and N. Heninger. Cachebleed: A timing
attack on openssl constant time rsa. In: CHES’16. 2016
(p. 43).

[ZAM11] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitiga-
tion of timing channels in interactive systems. In: CCS’11.
2011 (p. 44).

[Zha+11] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Anal-
ysis. In: S&P’11. 2011 (pp. 32, 48).

[Zha+12] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
VM side channels and their use to extract private keys. In:
CCS’12. 2012 (pp. 32, 43).

[Zha+14] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In: CCS’14.
2014 (pp. 7, 34).

73

References

[Zha+16] W. Zhang, X. Jia, C. Wang, S. Zhang, Q. Huang, M. Wang,
and P. Liu. A Comprehensive Study of Co-residence Threat
in Multi-tenant Public PaaS Clouds. In: Information and
Communications Security. Springer, 2016 (p. 29).

[ZHS16] A. Zankl, J. Heyszl, and G. Sigl. Automated Detection of
Instruction Cache Leaks in Modular Exponentiation Soft-
ware. In: International Conference on Smart Card Research
and Advanced Applications. Springer. 2016 (p. 48).

[ZR13] Y. Zhang and M. Reiter. Düppel: retrofitting commodity
operating systems to mitigate cache side channels in the
cloud. In: CCS’13. 2013 (p. 47).

[ZRZ16] Z. Zhou, M. K. Reiter, and Y. Zhang. A software approach
to defeating side channels in last-level caches. In: CCS’16.
2016 (p. 45).

[ZW09] K. Zhang and X. Wang. Peeping Tom in the Neighbor-
hood: Keystroke Eavesdropping on Multi-User Systems. In:
USENIX Security Symposium. 2009 (p. 37).

[ZXZ16] X. Zhang, Y. Xiao, and Y. Zhang. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for
Android Devices. In: CCS’16. 2016 (p. 35).

[ZZL16] T. Zhang, Y. Zhang, and R. B. Lee. CloudRadar: A Real-
Time Side-Channel Attack Detection System in Clouds. In:
International Symposium on Research in Attacks, Intrusions,
and Defenses. 2016 (p. 49).

74

References

75

Information on Part II

Note that Part II is not included in this PDF. Please download the full
version for Part II.

77

	Abstract
	Acknowledgements
	Contents
	Introduction to Microarchitectural Attacks
	Introduction
	Background
	State of the Art
	Future Work and Conclusions
	References

