Software-based Microarchitectural Attacks

Daniel Gruss IAIK, Graz University of Technology

June 14, 2017 — PhD Defense

www.iaik.tugraz.at

Thesis in numbers

www.iaik.tugraz.at

Thesis in numbers

32 months

Thesis in numbers

32 months

10 invited talks and presentations at international venues

Thesis in numbers

- **32** months
- 10 invited talks and presentations at international venues
- **13** publications co-authored (**7** times tier 1)

Thesis in numbers

- **32** months
- 10 invited talks and presentations at international venues
- 13 publications co-authored (7 times tier 1)
- 6 included in thesis (3 times tier 1)

Software-based Side-Channel Attacks

- security and privacy rely on secrets (unknown to attackers)
- secrets can leak through side channels

Software-based Side-Channel Attacks

- security and privacy rely on secrets (unknown to attackers)
- secrets can leak through side channels
- software-based \rightarrow no physical access

Plan (from March 2015)

7

7

1. Introduction

- 2. Background
- 3. Contributions

4. Conclusion

CPU Caches

- buffer frequently used slow memory for the fast CPU
- every memory reference goes through the cache
- transparent to OS and programs

Memory Access Latency

10

Memory Access Latency

10

Date and Instruction Caches

Date and Instruction Caches

last-level cache:

shared

inclusive

 $\rightarrow\,$ shared memory shared is in cache, across cores!

Date and Instruction Caches

last-level cache:

shared

inclusive

 \rightarrow shared memory shared is in cache. across cores!

function maps addresses to slices (Maurice, Le Scouarnec, et al. 2015)

Flush+Reload

Flush+Reload

Flush+Reload

Flush+Reload

Flush+Reload

3. Contributions

- Cache Template Attacks

- Page Deduplication Attacks in JavaScript
- Rowhammer.js
- Flush+Flush
- ARMageddon
- Prefetch Attacks

F_			- • ×	Open 🗸	+	Untitled [Document 1	Save	=	 - ×
File Edit View Search Terminal Help										
% sleep 2; ./spy 300 7f0 8050 ∎	05140a4000-7f051417b000 r /usr/lib/x86_64-linux-g	xp 0x20000 08: nu/gedit/libged	:02 26 dit.so	1						
Inrefetch1		<pre><dir> 14 03 2017 2</dir></pre>	1-44-26							
•										
File Edit View Search Terminal Help shark% ./spy []										
vnome/ganievia:						Plain Text 👻	Tab Width: 2 👻	Ln 1, Col 1		INS

Cache Template

3. Contributions

- Cache Template Attacks
- Page Deduplication Attacks in JavaScript
- Rowhammer.js
- Flush+Flush
- ARMageddon
- Prefetch Attacks

Virtual Address Space

Physical Address Space

Our Attack

First page deduplication attack which

- detects CSS files/images on websites,
- runs in JavaScript (no rdtsc, no addresses),
- runs on KVM, Windows 8.1 and Android.

Detect Image (JavaScript, Cross-VM, KVM)

3. Contributions

- Cache Template Attacks
- Page Deduplication Attacks in JavaScript
- Rowhammer.js
- Flush+Flush
- ARMageddon
- Prefetch Attacks

Rowhammer

- Rowhammer: DRAM bug that causes bit flips (Kim et al. 2014)
- Bug used in security exploits (Seaborn 2015)
- Only non-cached accesses reach DRAM
- Very similar to Flush+Reload

DRAM bank

Daniel Gruss, IAIK June 14, 2017 — PhD Defense

Daniel Gruss, IAIK June 14, 2017 — PhD Defense

DRAM bank

DRAM bank

Daniel Gruss, IAIK June 14, 2017 — PhD Defense

DRAM bank

Daniel Gruss, IAIK June 14, 2017 — PhD Defense

Challenges:

- 1. How to get accurate timing (in JS)?
- 2. How to get physical addresses (in JS)?
- 3. Which physical addresses to access?
- 4. In which order to access them?

Challenges:

- 1. How to get accurate timing (in JS)? \rightarrow easy
- 2. How to get physical addresses (in JS)? \rightarrow easy
- 3. Which physical addresses to access? \rightarrow already solved
- 4. In which order to access them? \rightarrow our contribution

"LRU eviction" memory accesses

LRU replacement policy: oldest entry first

- LRU replacement policy: oldest entry first
- timestamps for every cache line

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

- LRU replacement policy: oldest entry first
- timestamps for every cache line
- access updates timestamp

Replacement policy on recent CPUs

"LRU eviction" memory accesses

no LRU replacement

Replacement policy on recent CPUs

"LRU eviction" memory accesses

no LRU replacement
"LRU eviction" memory accesses

- no LRU replacement
- only 75% success rate on Haswell

"LRU eviction" memory accesses

- no LRU replacement
- only 75% success rate on Haswell
- more accesses \rightarrow higher success rate, but too slow

Write eviction strategies as: \mathcal{P} -C-D-L-S

S: total number of different addresses (= set size)

$$\bullet \mathcal{P} - 2 - 2 - 1 - 4 \to 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

$$\bullet \mathcal{P} - 2 - 2 - 1 - 4 \to 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

• \mathcal{P} -1-1-1-4 \rightarrow 1, 2, 3, 4 \rightarrow LRU eviction with set size 4

29

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
P-1-1-17	17		
\mathcal{P} -1-1-20	20		

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	
\mathcal{P} -1-1-20	20	99.82% 🗸	

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34		

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34	99.86% 🗸	

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
\mathcal{P} -1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34	99.86% 🗸	191 ns 🗸

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
\mathcal{P} -1-1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34	99.86% 🗸	191 ns 🗸
\mathcal{P} -2-2-1-17	64		

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
\mathcal{P} -1-1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34	99.86% 🗸	191 ns 🗸
\mathcal{P} -2-2-1-17	64	99.98% 🗸	

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34	99.86% 🗸	191 ns 🗸
\mathcal{P} -2-2-1-17	64	99.98% 🗸	180 ns 🗸

We evaluated more than 10000 strategies...

strategy	# accesses	eviction rate	loop time
\mathcal{P} -1-1-17	17	74.46% 🗡	307 ns 🗸
\mathcal{P} -1-1-20	20	99.82% 🗸	934 ns 🗡
\mathcal{P} -2-1-1-17	34	99.86% 🗸	191 ns 🗸
\mathcal{P} -2-2-1-17	64	99.98% 🗸	180 ns 🗸

 \rightarrow more accesses, smaller execution time? Executed in a loop, on a Haswell with a 16-way last-level cache

P-1-1-17 (**17** accesses, **307**ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-34 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	н	н	н	H	
--------------------	--------------------	---	---	---	---	---	---	---	---	--

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-34 (34 accesses, 191ns)

|--|

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-34 (34 accesses, 191ns)

|--|

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)		н	н	н	н				-	н		Miss	н		
--	--------------------	--------------------	--	---	---	---	---	--	--	--	---	---	--	------	---	--	--

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)		Miss	ннн
--	--------------------	--------------------	--	------	-----

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ныныныны	Miss	нннн

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)	нныныны	Miss	нөнөн
--	--------------------	--------------------	---------	------	-------

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)	нининин м	liss HHHHHH
--	--------------------	--------------------	-----------	-------------

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)	н	ŀ		н			н	ŀ		н	н		Miss		н	-	Þ	•		1	н	н	
--	--------------------	--------------------	---	---	--	---	--	--	---	---	--	---	---	--	------	--	---	---	---	---	--	---	---	---	--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	Miss	нанананан

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	H
--------------------	--------------------	---	------	------	------	---

P-2-1-1-34 (34 accesses, 191ns)

(intended) (intended)

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-34 (34 accesses, 191ns)

(intended) (intended)

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (intended) Hit Hit Hit Hit Hit Miss Her Hit Hit Hit Miss	Miss (intended)	MODOODOO Miss MODOOOOO Miss M	
--	--------------------	-------------------------------	--

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-34 (34 accesses, 191ns)

(intended) (intended) Pilling and an Miss Participation Miss Participa	Miss (intended)	Miss (intended)	нининин	Miss		Miss HH
--	--------------------	--------------------	---------	------	--	---------

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	
--------------------	--------------------	---	------	------	------	---	------	--

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (intended) Highlightight Miss Highlightight Miss	нын	
--	-----	--

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended)	•	Miss	Miss	Miss	н	Miss
----------------------	---	------	------	------	---	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (intended) Miss Miss Miss Miss Miss	ныны
---	------

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	
--------------------	--------------------	---	------	------	------	---	------	--

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (intended) 바바바바바바 Miss 바바바바바바 Mis	нонн
---	------

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Mas (intended) P0+0+0+0+1 Miss +0+0+0+0+0 Miss H0+0+0+0+	н
---	---

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	•	Miss	Miss	Miss	н	Miss	Miss
------------------------------------	---	------	------	------	---	------	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (intended) PD-0-0-0-0-0-0 Miss PD-0-0-0-0-0 Miss PD-0-0

P-1-1-1-17 (17 accesses, 307ns)

Miss Miss (intended) (intended)	•	Miss	Miss	Miss	н	Miss	Miss
------------------------------------	---	------	------	------	---	------	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (intended) +0+0+0+0+0 Miss +0+0+0+0+0 Miss +0+0	ннинн	
---	-------	--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

Mass (intended) Mass (intended) ゆゆゆゆゆゆ Mass ゆゆゆゆゆゆ Mass ゆゆゆゆゆゆ Mass	
---	--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

(intended) 한마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마	Miss (intended)	Miss (intended)	нн	нн	нн	нн		Miss	нн	нннннн	Miss		н	l	101	н		н	н	Miss	
--	--------------------	--------------------	----	----	----	----	--	------	----	--------	------	--	---	---	-----	---	--	---	---	------	--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)	нининин	Miss HHHHHHHHH	Miss	нананана	Miss	н	H
--	--------------------	--------------------	---------	----------------	------	----------	------	---	---

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

Miss (ntended) Miss (ntended) Miss Miss Miss Miss Miss		н		H	1	ľ	
--	--	---	--	---	---	---	--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

|--|

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

Mas Mas (refereded) P++++++++++++++++++++++++++++++++++++	н	н	I			1	1			
---	---	---	---	--	--	---	---	--	--	--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	
--------------------	--------------------	---	------	------	------	---	------	------	------	--

P-2-1-1-34 (34 accesses, 191ns)

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss
--------------------	--------------------	--------	------	------	---	------	------	------	---	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (retended) Miss Holdword Miss Hold
--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss	Miss	
--------------------	--------------------	--------	------	------	---	------	------	------	---	------	------	--

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (retended) Miss Holdword Miss Hold
--

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss	Miss	Miss
--------------------	--------------------	--------	------	------	---	------	------	------	---	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)	нананан	Miss		Miss	нанананан	Miss	нынын
--	--------------------	--------------------	---------	------	--	------	-----------	------	-------

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss	
--------------------	--------------------	--------	------	------	--------	------	------	--------	------	------	--

P-2-1-1-34 (34 accesses, 191ns)

|--|

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss
--------------------	--------------------	--------	------	------	--------	------	------	--------	------	------	--------

P-2-1-1-34 (34 accesses, 191ns)

	Miss (intended)	Miss (intended)	нананан	Miss		Miss	нанананан	Miss	нынын
--	--------------------	--------------------	---------	------	--	------	-----------	------	-------

P-1-1-1-17 (17 accesses, 307ns)

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	Miss	Miss	Miss	H Miss	Miss	Miss	Miss	Miss
--------------------	--------------------	--------	------	------	------	------	------	--------	------	------	------	------

P-2-1-1-34 (34 accesses, 191ns)

Miss Miss (retended) Miss where Miss where the Miss
--

Evaluation on Haswell

Figure: Number of bit flips within 15 minutes.

3. Contributions

- Cache Template Attacks
- Page Deduplication Attacks in JavaScript
- Rowhammer.js
- Flush+Flush
- ARMageddon
- Prefetch Attacks
Flush+Flush: Motivation

- cache attacks \rightarrow many cache misses
- detect via performance counters
- $\rightarrow\,$ good idea, but not good enough

step 1: attacker flushes the shared line

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker reloads data \rightarrow fast access if the victim loaded the line

step 0: attacker maps shared library \rightarrow shared memory, shared in cache

step 0: attacker maps shared library \rightarrow shared memory, shared in cache

step 0: attacker maps shared library \rightarrow shared memory, shared in cache step 1: attacker flushes the shared line

step 0: attacker maps shared library \rightarrow shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 0: attacker maps shared library \rightarrow shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker flushes data \rightarrow high execution time if the victim loaded the line

Flush+Flush: Conclusion

- 496 KB/s covert channel
- same side channel targets as Flush+Reload
- attacker causes no cache misses
 - \rightarrow fast
 - \rightarrow stealthy

3. Contributions

- Cache Template Attacks
- Page Deduplication Attacks in JavaScript
- Rowhammer.js
- Flush+Flush
- ARMageddon
- Prefetch Attacks

Cache Attacks on mobile devices?

- powerful cache attacks on Intel x86 in the last 10 years
- nothing like Flush+Reload or Prime+Probe on mobile devices
- \rightarrow why?

- 1. no flush instruction
- 2. pseudo-random replacement
- 3. cycle counters require root
- 4. last-level caches not inclusive
- 5. multiple CPUs

- 1. no flush instruction \rightarrow Evict+Reload
- 2. pseudo-random replacement
- 3. cycle counters require root
- 4. last-level caches not inclusive
- 5. multiple CPUs

- 1. no flush instruction \rightarrow Evict+Reload
- 2. pseudo-random replacement \rightarrow eviction strategies from Rowhammer.js
- 3. cycle counters require root
- 4. last-level caches not inclusive
- 5. multiple CPUs

- 1. no flush instruction \rightarrow Evict+Reload
- 2. pseudo-random replacement \rightarrow eviction strategies from Rowhammer.js
- 3. cycle counters require root \rightarrow new timing methods
- 4. last-level caches not inclusive
- 5. multiple CPUs

- 1. no flush instruction \rightarrow Evict+Reload
- 2. pseudo-random replacement \rightarrow eviction strategies from Rowhammer.js
- 3. cycle counters require root \rightarrow new timing methods
- 4. last-level caches not inclusive \rightarrow let L1 spill to L2

5. multiple CPUs

- 1. no flush instruction \rightarrow Evict+Reload
- 2. pseudo-random replacement \rightarrow eviction strategies from Rowhammer.js
- 3. cycle counters require root \rightarrow new timing methods
- 4. last-level caches not inclusive \rightarrow let L1 spill to L2
- 5. multiple CPUs \rightarrow remote fetches + flushes

15:57

Tue, November 1

shell@zeroflte:/data/local/tmp \$./keyboard_spy -c 0

Google J 1 \bigcirc #

ARMageddon Demo

3. Contributions

- Cache Template Attacks
- Page Deduplication Attacks in JavaScript
- Rowhammer.js
- Flush+Flush
- ARMageddon
- Prefetch Attacks

Prefetch: Motivation

Idea: Would this also work on inaccessible kernel memory?

Prefetch: Kernel Memory Layout

Prefetching Kernel Addresses

Prefetch: Locate Kernel Driver (defeat KASLR)

www.iaik.tugraz.at

1. microarchitectural attacks can be widely automated

- 1. microarchitectural attacks can be widely automated
- 2. unknown and novel side channels are likely to exist

- 1. microarchitectural attacks can be widely automated
- 2. unknown and novel side channels are likely to exist
- 3. minimal requirements enable attacks through websites

- 1. microarchitectural attacks can be widely automated
- 2. unknown and novel side channels are likely to exist
- 3. minimal requirements enable attacks through websites
- 4. constructing countermeasures is difficult and requires solid understanding of attacks

Author's Publications in this Thesis I

- Daniel Gruss, Raphael Spreitzer, et al. (2015). "Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches". In: USENIX Security Symposium
- 2. Daniel Gruss, David Bidner, et al. (2015). "Practical Memory Deduplication Attacks in Sandboxed JavaScript". In: ESORICS'15
- 3. Daniel Gruss, Clémentine Maurice, Klaus Wagner, et al. (2016). "Flush+Flush: A Fast and Stealthy Cache Attack". In: DIMVA'16
- Daniel Gruss, Clémentine Maurice, and Stefan Mangard (2016).
 "Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript". In: DIMVA'16

48

Author's Publications in this Thesis II

- 5. Moritz Lipp et al. (2016). "ARMageddon: Cache Attacks on Mobile Devices". In: USENIX Security Symposium
- Daniel Gruss, Clémentine Maurice, Anders Fogh, et al. (2016). "Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR". In: CCS'16

Further Contributions I

- 1. Peter Pessl et al. (2016). "DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks". In: USENIX Security Symposium
- 2. Victor van der Veen et al. (2016). "Drammer: Deterministic Rowhammer Attacks on Mobile Platforms". In: CCS'16
- Clémentine Maurice, Manuel Weber, et al. (2017). "Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud". In: NDSS'17
- Michael Schwarz, Clémentine Maurice, et al. (2017). "Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript". In: Financial Cryptography 2017

Further Contributions II

- 5. Daniel Gruss, Moritz Lipp, et al. (2017). "KASLR is Dead: Long Live KASLR". In: ESSoS'17. (to appear)
- Michael Schwarz, Daniel Gruss, et al. (2017). "Malware Guard Extension: Using SGX to Conceal Cache Attacks". In: DIMVA'17. (to appear)
- Daniel Gruss, Julian Lettner, et al. (2017). "Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory". In: USENIX Security Symposium. (to appear)

Software-based Microarchitectural Attacks

Daniel Gruss IAIK, Graz University of Technology

June 14, 2017 — PhD Defense
Bibliography I

Gruss, Daniel, David Bidner, et al. (2015). "Practical Memory Deduplication Attacks in Sandboxed JavaScript". In: ESORICS'15.

- Gruss, Daniel, Julian Lettner, et al. (2017). "Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory". In: USENIX Security Symposium. (to appear).
- Gruss, Daniel, Moritz Lipp, et al. (2017). "KASLR is Dead: Long Live KASLR". In: ESSoS'17. (to appear).

Gruss, Daniel, Clémentine Maurice, Anders Fogh, et al. (2016). "Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR". In: CCS'16.
Gruss, Daniel, Clémentine Maurice, and Stefan Mangard (2016). "Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript". In: DIMVA'16.

Bibliography II

Gruss, Daniel, Clémentine Maurice, Klaus Wagner, et al. (2016). "Flush+Flush: A Fast and Stealthy Cache Attack". In: DIMVA'16.

- Gruss, Daniel, Raphael Spreitzer, et al. (2015). "Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches". In: USENIX Security Symposium.
- Kim, Yoongu et al. (2014). "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors". In: ISCA'14.
- Lipp, Moritz et al. (2016). "ARMageddon: Cache Attacks on Mobile Devices". In: USENIX Security Symposium.

Maurice, Clémentine, Nicolas Le Scouarnec, et al. (2015). "Reverse Engineering Intel Complex Addressing Using Performance Counters". In: RAID'15.
Maurice, Clémentine, Manuel Weber, et al. (2017). "Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud". In: NDSS'17.

Bibliography III

Pessl, Peter et al. (2016). "DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks". In: USENIX Security Symposium.

- Schwarz, Michael, Daniel Gruss, et al. (2017). "Malware Guard Extension: Using SGX to Conceal Cache Attacks ". In: DIMVA'17. (to appear).
- Schwarz, Michael, Clémentine Maurice, et al. (2017). "Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript". In: Financial Cryptography 2017.
- Seaborn, Mark (2015). Exploiting the DRAM rowhammer bug to gain kernel privileges. Retrieved on June 26, 2015. URL:
 - http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html.
- Veen, Victor van der et al. (2016). "Drammer: Deterministic Rowhammer Attacks on Mobile Platforms". In: CCS'16.