
www.tugraz.at

Oh my Cache! 2
More fun with caches.
Daniel Gruss
Graz University of Technology

October 13, 2017 — QSP Lab

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab1

www.tugraz.at

Whoami

Daniel Gruss

Post-Doc @ Graz University of Technology

Twitter: @lavados

Email: daniel.gruss@iaik.tugraz.at

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab2

www.tugraz.at

Get your computer ready!

Within the first two hours we will:

Checkout https://github.com/IAIK/cache_template_attacks

Make a histogram

Key stroke attack on an editor

Try to establish a covert channel

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab3

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab4

www.tugraz.at

Information leakage

Shared hardware

x86 CPU

Data and
instruction

cache

Arithmetic
logic
unit

Branch
prediction

unit

Memory

Memory
bus

Memory
deduplication

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab5

www.tugraz.at

Why targeting the cache?

shared across cores

fast

→ fast cross-core attacks!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab6

www.tugraz.at

Why targeting the cache?

shared across cores

fast

→ fast cross-core attacks!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab6

www.tugraz.at

Timing differences

caches improve performance

SRAM is expensive→ small caches

different timings for memory accesses

data is cached→ cache hit→ fast
data is not cached→ cache miss→ slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab7

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab8

www.tugraz.at

Mesuring timing leakage

How every timing attack works:

learn timing of different corner cases

later, we recognize these corner cases by timing only

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab9

www.tugraz.at

Mesuring timing leakage

How every timing attack works:

learn timing of different corner cases

later, we recognize these corner cases by timing only

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab9

www.tugraz.at

Calibration

git clone https://github.com/IAIK/cache_template_attacks.git

cd calibration

make

./calibration

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab10

www.tugraz.at

Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab11

www.tugraz.at

Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab11

www.tugraz.at

Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab11

www.tugraz.at

Step 1.1. Cache hits

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab12

www.tugraz.at

Step 1.2. Cache misses

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab13

www.tugraz.at

Step 2. Accurate timings

very short timings

rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab14

www.tugraz.at

Step 2. Accurate timings

do you measure what you think you measure?

out-of-order execution→ what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab15

www.tugraz.at

Step 2. Accurate timings

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab16

www.tugraz.at

Step 2. Accurate timings

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab16

www.tugraz.at

Step 2. Accurate timings

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab16

www.tugraz.at

Step 2. Accurate timings

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64
Instruction Set Architectures White Paper, December 2010.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab16

www.tugraz.at

Step 3. Histogram

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab17

www.tugraz.at

Step 3. Histogram

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab18

www.tugraz.at

Step 4. Find threshold

as high as possible

most cache hits are below

no cache miss below

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab19

www.tugraz.at

Side-channel attack on user input

locate key-dependent memory accesses

with cache template attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab20

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

A
Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update number of cache hits per event

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21

www.tugraz.at

What to profile?

ps -A | grep gedit

cat /proc/pid/maps

00400000-00489000 r-xp 00000000 08:11 396356

/usr/bin/gedit

7f5a96991000-7f5a96a51000 r-xp 00000000 08:11 399365

/usr/lib/x86_64-linux-gnu/libgdk-3.so.0.1400.14

...

memory range, access rights, offset, –, –, file name

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab22

www.tugraz.at

Profiling a single event

cd ../profiling/generic_low_frequency_example

put the threshold into spy.c (MIN_CACHE_MISS_CYCLES)

make

./spy

start the targeted program

sleep 2; ./spy 200 400000-489000 -- 20000

-- -- /usr/bin/gedit

... and hold down key in the targeted program
save addresses with peaks!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab23

www.tugraz.at

Exploitation phase

cd ../exploitation/generic

put the threshold into spy.c (MIN_CACHE_MISS_CYCLES)

make

./spy file offset

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab24

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab25

www.tugraz.at

Directly mapped cache

Memory Address

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

2n cache lines

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Problem: working on congruent addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26

www.tugraz.at

2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

2n cache linesf

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27

www.tugraz.at

2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27

www.tugraz.at

2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27

www.tugraz.at

2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27

www.tugraz.at

2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data
→ replacement policy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27

www.tugraz.at

Caches today

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

L1 and L2 are private

last-level cache:

divided in slices
shared across cores
inclusive

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab28

www.tugraz.at

Cache levels: Latency comparison

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: >120 cycles

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab29

www.tugraz.at

Cache levels: Latency comparison

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: >120 cycles

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab29

www.tugraz.at

Cache levels: Latency comparison

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: >120 cycles

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab29

www.tugraz.at

Cache levels: Latency comparison

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: >120 cycles

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab29

www.tugraz.at

Cache levels: Latency comparison

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: >120 cycles

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab29

www.tugraz.at

(Unprivileged) cache maintainance

User programs can optimize cache usage:

prefetch: suggest CPU to load data into cache

clflush: throw out data from from all caches

... based on virtual addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab30

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab31

www.tugraz.at

CPU cache attacks

cache-based keylogging

crypto key recovery

various implementations (AES, RSA, ECC, ...)
up to 97% key bits recovered after 1 encryption

cross-VM, cross-core, even cross-CPU

any CPU vendor

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab32

www.tugraz.at

Cross-core attacks?

using the inclusive property

last-level cache is a superset of L1 and L2

data evicted from last-level cache→ evicted from L1 and L2

a core can evict lines in the private L1 of another core

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab33

www.tugraz.at

Cross-core attacks?

using the inclusive property

last-level cache is a superset of L1 and L2

data evicted from last-level cache→ evicted from L1 and L2

a core can evict lines in the private L1 of another core

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab33

www.tugraz.at

Cross-core attacks?

using the inclusive property

last-level cache is a superset of L1 and L2

data evicted from last-level cache→ evicted from L1 and L2

a core can evict lines in the private L1 of another core

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab33

www.tugraz.at

Cross-core attacks?

using the inclusive property

last-level cache is a superset of L1 and L2

data evicted from last-level cache→ evicted from L1 and L2

a core can evict lines in the private L1 of another core

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab33

www.tugraz.at

Access-driven attacks

Attacker monitors its own activity to find sets accessed by victim.

Prime+Probe
Percival 2005
Liu et al. 2015

Maurice, Neumann, et al. 2015

Flush+Reload
Gullasch et al. 2011

Yarom and Falkner 2014
Gruss, Spreitzer, et al. 2015

Same techniques for covert and side channels

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab34

www.tugraz.at

Flush+Reload: Building Blocks

Shared Library / load binary twice / page deduplication

clflush throws data out of cache

→ We can throw other shared code out of the cache

rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab35

www.tugraz.at

Flush+Reload: Building Blocks

Shared Library / load binary twice / page deduplication

clflush throws data out of cache

→ We can throw other shared code out of the cache

rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab35

www.tugraz.at

Flush+Reload: Building Blocks

Shared Library / load binary twice / page deduplication

clflush throws data out of cache

→ We can throw other shared code out of the cache

rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab35

www.tugraz.at

Flush+Reload: First steps

Measure timing of cached memory

Measure timing of non-cached memory (flush before measuring)

Draw a histogram

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab36

www.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37

www.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

cached cached

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37

www.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line

flushes

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37

www.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption

loads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37

www.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption
step 3: attacker reloads data→ fast access if the victim loaded the line

reloads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37

www.tugraz.at

Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab38

www.tugraz.at

Variants of Flush+Reload

Flush+Flush Gruss, Maurice, Wagner, et al. 2016

Evict+Reload Gruss, Spreitzer, et al. 2015 on ARM Lipp et al. 2016

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab39

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

fast access

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

slow access

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40

www.tugraz.at

Prime+Probe

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab41

www.tugraz.at

Issues with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab42

www.tugraz.at

#1.1: Which physical addresses to access?

“LRU eviction”:

assume that cache uses LRU replacement

accessing n addresses from the same cache set to evict an n-way set

eviction from last level→ from whole hierarchy (it’s inclusive!)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab43

www.tugraz.at

#1.2: Which addresses map to the same set?

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

function H that maps slices is
undocumented

reverse-engineered by
Maurice, Le Scouarnec, et al.
2015; Inci et al. 2015; Yarom,
Ge, et al. 2015

hash function basically an
XOR of address bits

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab44

www.tugraz.at

#1.2: Which addresses map to the same set?

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

function H that maps slices is
undocumented

reverse-engineered by
Maurice, Le Scouarnec, et al.
2015; Inci et al. 2015; Yarom,
Ge, et al. 2015

hash function basically an
XOR of address bits

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab44

www.tugraz.at

#1.2: Which addresses map to the same set?

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab45

www.tugraz.at

#2: Obtain information without root privileges

last-level cache is physically indexed

root privileges needed for physical addresses

use 2 MB pages→ lowest 21 bits are the same as virtual address

→ enough to compute the cache set

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab46

www.tugraz.at

#2: Obtain information without root privileges

last-level cache is physically indexed

root privileges needed for physical addresses

use 2 MB pages→ lowest 21 bits are the same as virtual address

→ enough to compute the cache set

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab46

www.tugraz.at

#2: Obtain information without root privileges

last-level cache is physically indexed

root privileges needed for physical addresses

use 2 MB pages→ lowest 21 bits are the same as virtual address

→ enough to compute the cache set

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab46

www.tugraz.at

#2: Obtain information without root privileges

last-level cache is physically indexed

root privileges needed for physical addresses

use 2 MB pages→ lowest 21 bits are the same as virtual address

→ enough to compute the cache set

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab46

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910

load

11

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11
load

12

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 12

load

13

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213

load

14

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 14

load

15

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab47

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910

load

11

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11

load

12

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112

load

13

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314
load

15

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 15
load

16

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab48

www.tugraz.at

#3.3: Cache eviction strategy
A

dd
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time
Figure: Fast and effective on Haswell. Eviction rate >99.97%.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab49

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab50

www.tugraz.at

Side channels vs covert channels

side channel: attacker spies a victim process

covert channel: communication between two processes

that are not supposed to communicate
that are collaborating

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab51

www.tugraz.at

1-bit cache covert channels

ideas for 1-bit channels:

Prime+Probe: use one cache set to transmit

0: sender does not access the set→ low access time in receiver
1: sender does access the set→ high access time in receiver

Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address→ high access time in
receiver

1: sender does access the address→ low access time in receiver

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab52

www.tugraz.at

1-bit cache covert channels

ideas for 1-bit channels:

Prime+Probe: use one cache set to transmit

0: sender does not access the set→ low access time in receiver
1: sender does access the set→ high access time in receiver

Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address→ high access time in
receiver

1: sender does access the address→ low access time in receiver

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab52

www.tugraz.at

1-bit cache covert channels

ideas for 1-bit channels:

Prime+Probe: use one cache set to transmit

0: sender does not access the set→ low access time in receiver
1: sender does access the set→ high access time in receiver

Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address→ high access time in
receiver

1: sender does access the address→ low access time in receiver

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab52

www.tugraz.at

1-bit covert channels

1 bit data, 0 bit control?

idea: divide time into slices (e.g., 50µs frames)

synchronize sender and receiver with a shared clock

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab53

www.tugraz.at

1-bit covert channels

1 bit data, 0 bit control?

idea: divide time into slices (e.g., 50µs frames)

synchronize sender and receiver with a shared clock

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab53

www.tugraz.at

Problems of 1-bit covert channels

errors?

→ error-correcting codes

retransmission may be more efficient (less overhead)

desynchronization

optimal transmission duration may vary

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab54

www.tugraz.at

Problems of 1-bit covert channels

errors? → error-correcting codes

retransmission may be more efficient (less overhead)

desynchronization

optimal transmission duration may vary

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab54

www.tugraz.at

Multi-bit covert channels

combine multiple 1-bit channels

avoid interferences

→ higher performance

use 1-bit for sending = true/false

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab55

www.tugraz.at

Multi-bit covert channels

combine multiple 1-bit channels

avoid interferences

→ higher performance

use 1-bit for sending = true/false

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab55

www.tugraz.at

Multi-bit covert channels

combine multiple 1-bit channels

avoid interferences

→ higher performance

use 1-bit for sending = true/false

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab55

www.tugraz.at

Packets / frames

Organize data in packets / frames:

some data bits

check sum

sequence number

→ keep sender and receiver synchronous

→ check whether retransmission is necessary

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab56

www.tugraz.at

State of the art

method raw capacity err. rate true capacity env.
F+F Gruss, Maurice, Wagner, et al. 2016 3968Kbps 0.840% 3690Kbps native
F+R Gruss, Maurice, Wagner, et al. 2016 2384Kbps 0.005% 2382Kbps native
E+R Lipp et al. 2016 1141Kbps 1.100% 1041Kbps native
P+P Liu et al. 2015 600Kbps 1.000% 552Kbps virt

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab57

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab58

www.tugraz.at

Cache Template Attacks

Profiling Phase

Preprocessing step to find exploitable addresses automatically

w.r.t. “events” (keystrokes, encryptions, ...)
called “Cache Template”

Exploitation Phase

Monitor exploitable addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab59

www.tugraz.at

Cache Template Attacks

Profiling Phase

Preprocessing step to find exploitable addresses automatically

w.r.t. “events” (keystrokes, encryptions, ...)
called “Cache Template”

Exploitation Phase

Monitor exploitable addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab59

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

A
Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update cache hit ratio (per event and address)

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for all events

B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for all events

C

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling Phase

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab60

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling a Single Event

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab61

www.tugraz.at

Profiling Phase: 1 Event, 1 Address

A
D

D
R

E
S

S

KEY
n

0x7c800

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab62

www.tugraz.at

Profiling Phase: 1 Event, 1 Address

A
D

D
R

E
S

S

KEY
n

0x7c800

Example: Cache Hit Ratio for (0x7c800, n): 200 / 200

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab62

www.tugraz.at

Profiling Phase: All Events, 1 Address

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c800

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab63

www.tugraz.at

Profiling Phase: All Events, 1 Address

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c800

Example: Cache Hit Ratio for (0x7c800, u): 13 / 200

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab63

www.tugraz.at

Profiling Phase: All Events, 1 Address

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c800

Distinguish n from other keys by monitoring 0x7c800

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab63

www.tugraz.at

Profiling Phase: All Events, All Addresses

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab64

www.tugraz.at

Exploitation Phase

Monitor addresses from Cache Template

Report to log file / attacker

Manual analysis of log file

Find password in keypress log, etc.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab65

www.tugraz.at

Exploitation Phase

Monitor addresses from Cache Template

Report to log file / attacker

Manual analysis of log file

Find password in keypress log, etc.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab65

www.tugraz.at

Exploitation Phase

Monitor addresses from Cache Template

Report to log file / attacker

Manual analysis of log file

Find password in keypress log, etc.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab65

www.tugraz.at

Example Attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab66

www.tugraz.at

Attack 1: Keystroke Timings

Spy on keystroke timings on
Linux, Windows and OS X

Sub-microsecond accuracy

Derive text input from timings

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab67

www.tugraz.at

Attack 1: Keystroke Timings

Spy on keystroke timings on
Linux, Windows and OS X

Sub-microsecond accuracy

Derive text input from timings
0 0.1 0.2

Miss

Hit

TIME IN CYCLES

2.24 2.25 2.26

·107

Event trace Cache-hit trace

E
ve

nt
st

ar
t

C
ac

he
-h

it
ph

as
e

E
ve

nt
en

d

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab67

www.tugraz.at

Attack 1: Keystroke Timings

Spy on keystroke timings on
Linux, Windows and OS X

Sub-microsecond accuracy

Derive text input from timings
0 0.1 0.2

Miss

Hit

TIME IN CYCLES

2.24 2.25 2.26

·107

Event trace Cache-hit trace

E
ve

nt
st

ar
t

C
ac

he
-h

it
ph

as
e

E
ve

nt
en

d

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab67

www.tugraz.at

Attack 2: Keylogging

Linux with GTK: monitor
keystrokes of specific keys

Detect groups of keys

Some keys distinct

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab68

www.tugraz.at

Attack 3: Locate AES T-Tables

AES uses T-Tables (precomputed from S-Boxes)

4 T-Tables

T0
[
k{0,4,8,12} ⊕ p{0,4,8,12}

]
T1

[
k{1,5,9,13} ⊕ p{1,5,9,13}

]
...

If we know which entry of T is accessed, we know the result of ki ⊕ pi.
Known-plaintext attack (pi is known)→ ki can be determined

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab69

www.tugraz.at

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

Most addresses in two groups:

Cache hit ratio 100% (always cache hits)
Cache hit ratio 0% (no cache hits)

One 4096 byte memory block:

Cache hit ratio of 92%

Cache hits depend on key value and plaintext value
The T-Tables

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab70

www.tugraz.at

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

Most addresses in two groups:

Cache hit ratio 100% (always cache hits)
Cache hit ratio 0% (no cache hits)

One 4096 byte memory block:

Cache hit ratio of 92%

Cache hits depend on key value and plaintext value
The T-Tables

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab70

www.tugraz.at

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

Most addresses in two groups:

Cache hit ratio 100% (always cache hits)
Cache hit ratio 0% (no cache hits)

One 4096 byte memory block:

Cache hit ratio of 92%

Cache hits depend on key value and plaintext value
The T-Tables

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab70

www.tugraz.at

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

Eliminate key candidates
Reduction of key space in first-round attack:

64 bits after 16–160 encryptions

State of the art: full key recovery after 30000 encryptions

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab71

www.tugraz.at

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

Eliminate key candidates
Reduction of key space in first-round attack:

64 bits after 16–160 encryptions

State of the art: full key recovery after 30000 encryptions

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab71

www.tugraz.at

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

Eliminate key candidates

Reduction of key space in first-round attack:
64 bits after 16–160 encryptions

State of the art: full key recovery after 30000 encryptions

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab71

www.tugraz.at

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

Eliminate key candidates
Reduction of key space in first-round attack:

64 bits after 16–160 encryptions

State of the art: full key recovery after 30000 encryptions

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab71

www.tugraz.at

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

Eliminate key candidates
Reduction of key space in first-round attack:

64 bits after 16–160 encryptions

State of the art: full key recovery after 30000 encryptions

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab71

www.tugraz.at

Attack 4: AES T-Table Template

k0 = 0x00 k0 = 0x55

(transposed)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab72

www.tugraz.at

Conclusion

Novel technique to find any cache side-channel leakage

Attacks
Detect vulnerabilities

Works on virtually all Intel CPUs
Works even with unknown binaries
Marks a change of perspective:

Large scale analysis of binaries
Large scale automated attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab73

www.tugraz.at

Conclusion

Novel technique to find any cache side-channel leakage

Attacks
Detect vulnerabilities

Works on virtually all Intel CPUs
Works even with unknown binaries

Marks a change of perspective:

Large scale analysis of binaries
Large scale automated attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab73

www.tugraz.at

Conclusion

Novel technique to find any cache side-channel leakage

Attacks
Detect vulnerabilities

Works on virtually all Intel CPUs
Works even with unknown binaries
Marks a change of perspective:

Large scale analysis of binaries
Large scale automated attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab73

www.tugraz.at

Conclusion

Novel technique to find any cache side-channel leakage

Attacks
Detect vulnerabilities

Works on virtually all Intel CPUs
Works even with unknown binaries
Marks a change of perspective:

Large scale analysis of binaries
Large scale automated attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab73

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab74

www.tugraz.at

Yet another cache: Linux page cache

Files buffered page-wise in “page cache”

Lower access time for frequently accessed data

Use up all the memory

Pages are freed on demand

Deduplicate pages (copy-on-write)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab75

www.tugraz.at

Yet another cache: Linux page cache

Files buffered page-wise in “page cache”

Lower access time for frequently accessed data

Use up all the memory

Pages are freed on demand

Deduplicate pages (copy-on-write)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab75

www.tugraz.at

Copy-on-Write
Virtual Address Space

Physical Address Space

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Physical Address Space

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

fork

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Process B tries to write

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Process B tries to write

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

write

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab76

www.tugraz.at

Write vs. Copy-on-Write

Regular write access < 0.2µs

Write access with copy-on-write pagefault > 3.0µs

Clearly distinguishable

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab77

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Processes started
independently

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

Done!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B

Deduplication
Thread

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab78

www.tugraz.at

Page Deduplication (without fork)

Deduplication between processes:

1. in same OS instance (Android, Windows)
2. in different VMs (KVM, VMWare, ...)

Code pages, data pages - even kernel pages

Time until deduplication 2-45 minutes

depends on system configuration

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab79

www.tugraz.at

Page Deduplication (without fork)

Deduplication between processes:

1. in same OS instance (Android, Windows)
2. in different VMs (KVM, VMWare, ...)

Code pages, data pages - even kernel pages

Time until deduplication 2-45 minutes

depends on system configuration

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab79

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Attacker generates
a page suspected

in process B

Benign
Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

Attacker waits
for deduplication

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

Attacker waits
for deduplication

t = time();
p[0] = p[0];
∆ = time() - t;

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

m
easure

∆

∆
in
µ
s

Time
0

4

6=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

=

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

write and measure ∆

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

write and measure ∆

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

w
rite

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Attacker learns that
another process had

an identical page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Attacker learns that
another process had

an identical page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Attacker learns that
another process had

an identical page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Attacker learns that
another process had

an identical page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Attacker learns that
another process had

an identical page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

∆
in
µ
s

Time
0

4

Attacker learns that
another process had

an identical page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab80

www.tugraz.at

What can be attacked?

Detect binary versions in co-located VMs

Detect downloaded image in Firefox under certain conditions

→ Attacks on hypervisors

Native code only

Suzaki et al. 2011; Owens and Wang 2011; J. Xiao et al. 2013; J. Xiao et al.
2012

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab81

www.tugraz.at

What can be attacked?

Detect CSS files and images of opened websites

Chrome, Firefox and Internet Explorer

Perform the attack in JavaScript

→ Attacks on KVM, Windows 8.1 and Android

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab82

www.tugraz.at

Attacking Browsers

Images and CSS files are page-aligned in memory

Load them into memory for all websites of interest

Detect deduplication

→ Malicious ad networks: alternative to tracking pixels?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab83

www.tugraz.at

Detect Image (Native, Cross-VM, KVM)

500 1,000 1,500 2,000 2,500 3,000 3,500
100

101

102

103

104

105

Page

C
yc

le
s

Image not loaded Image loaded

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab84

www.tugraz.at

Challenges of JavaScript-based attacks

No cycle counting (rdtsc)

No access to virtual addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab85

www.tugraz.at

Page Deduplication Attacks in JavaScript

Only require microsecond accuracy

performance.now() is accurate enough
Can even work with millisecond accuracy

Accumulate time difference
Only possible with enough image/CSS data

Large typed arrays are allocated page-aligned

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab86

www.tugraz.at

Detect Image (JavaScript, Cross-VM, KVM)

500 1,000 1,500 2,000 2,500 3,000 3,500
102

103

104

105

Page

N
an

os
ec

on
ds

Image not loaded Image loaded

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab87

www.tugraz.at

Detection of Open Websites

Attacker chosen set of websites

Load website images and CSS files into arrays

Reuse HTTP headers of system under attack

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab88

www.tugraz.at

Countermeasures

JavaScript:

Reduce timer accuracy?

Prevent page-aligned arrays?

Website diversification?

Prevent control over full pages

Every n-th byte not part of JavaScript array

Generic:

Disable page deduplication (for writable pages)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab89

www.tugraz.at

Countermeasures

JavaScript:

Reduce timer accuracy?

Prevent page-aligned arrays?

Website diversification?

Prevent control over full pages

Every n-th byte not part of JavaScript array

Generic:

Disable page deduplication (for writable pages)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab89

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab90

www.tugraz.at

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab91

www.tugraz.at

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab91

www.tugraz.at

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab91

www.tugraz.at

DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab91

www.tugraz.at

DRAM organization

chip
bank 0

row 0
row 1
row 2
. . .

row 32767

row buffer

bits in cells in rows

access: activate row,
copy to row buffer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab92

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activatedactivate 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activated
→ row 1 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activated
→ row 1 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2
→ row 2 activated

activate 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1 → slow (row conflict)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer

return

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer
→ fast (row hit)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

row buffer = cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93

www.tugraz.at

DRAM refresh

cells leak→ repetitive refresh necessary

refresh ≈ reading (destructive) + writing same data again

maximum interval between refreshes to guarantee data integrity

cells leak faster upon proximate accesses→ Rowhammer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab94

www.tugraz.at

DRAM refresh

cells leak→ repetitive refresh necessary

refresh ≈ reading (destructive) + writing same data again

maximum interval between refreshes to guarantee data integrity

cells leak faster upon proximate accesses→ Rowhammer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab94

www.tugraz.at

Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab95

www.tugraz.at

Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab95

www.tugraz.at

Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab95

www.tugraz.at

Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab95

www.tugraz.at

Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab95

www.tugraz.at

Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab95

www.tugraz.at

Requirements

Memory accesses must be

uncached: reach DRAM

fast: race against the next row refresh

targeted: reach specific row

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab96

www.tugraz.at

How do we get enough uncached accesses?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab97

www.tugraz.at

Impact of the CPU cache

CPU
core

CPU
cache

DRAM

only non-cached accesses reach DRAM

either remove data from cache

or don’t put it there in the first place

→ next access will be served from DRAM

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab98

www.tugraz.at

Impact of the CPU cache

CPU
core

CPU
cache

DRAM

only non-cached accesses reach DRAM

either remove data from cache

or don’t put it there in the first place

→ next access will be served from DRAM

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab98

www.tugraz.at

Impact of the CPU cache

CPU
core

CPU
cache

DRAM

only non-cached accesses reach DRAM

either remove data from cache

or don’t put it there in the first place

→ next access will be served from DRAM

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab98

www.tugraz.at

Impact of the CPU cache

CPU
core

CPU
cache

DRAM

only non-cached accesses reach DRAM

either remove data from cache

or don’t put it there in the first place

→ next access will be served from DRAM

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab98

www.tugraz.at

Access techniques

1. clflush instruction→ original paper (Kim et al. 2014)

2. cache eviction (Gruss, Maurice, and Mangard 2016; Aweke et al. 2016)

3. non-temporal accesses (Qiao and Seaborn 2016)

4. uncached memory (Veen et al. 2016)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab99

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
u
s
h

c
l
f
l
u
s
h

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
u
s
h

c
l
f
l
u
s
h

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

reload

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
u
s
h

c
l
f
l
u
s
h

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
u
s
h

c
l
f
l
u
s
h

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
u
s
h

c
l
f
l
u
s
h

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
u
s
h

c
l
f
l
u
s
h

wait for it. . .

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

bit flip!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab100

www.tugraz.at

How widespread is the issue?

DDR3:
Kim et al.: 110/129
modules from 3 vendors,
all but 3 since mid-2011

Seaborn and Dullien:
15/29 laptops

DDR4 believed to be safe:
we showed bit flips (Pessl
et al. 2016)

Figure: *

Prevalence, by Kim et al. 2014Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab101

www.tugraz.at

Flush, reload, flush, reload. . .

the core of Rowhammer is essentially a Flush+Reload loop

as much an attack on DRAM as on cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab102

www.tugraz.at

#2 Hammering with cache eviction

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab103

www.tugraz.at

#2 Hammering with cache eviction

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!

→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab103

www.tugraz.at

#2 Hammering with cache eviction

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab103

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad
load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad

load
Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1
lo

ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

reload

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

repeat!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it. . .

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

bit flip!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab104

www.tugraz.at

Cache eviction strategies

Not as simple as that → replacement policy is not LRU

A
dd

re
ss

a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

→ fast and effective on Haswell: eviction rate >99.97%
→ we evaluated 10 000+ strategies to find the best one

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab105

www.tugraz.at

Cache eviction strategies

Not as simple as that → replacement policy is not LRU
A

dd
re

ss

a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

→ fast and effective on Haswell: eviction rate >99.97%

→ we evaluated 10 000+ strategies to find the best one

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab105

www.tugraz.at

Cache eviction strategies

Not as simple as that → replacement policy is not LRU
A

dd
re

ss

a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

→ fast and effective on Haswell: eviction rate >99.97%
→ we evaluated 10 000+ strategies to find the best one

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab105

www.tugraz.at

Hammering with cache eviction on Haswell

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

100

102

104

106

Refresh interval in µs (BIOS configuration)

N
um

be
ro

fb
it

fli
ps

w
ith

in
15

m
in

ut
es clflush Evict (Native) Evict (JavaScript)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab106

www.tugraz.at

#3 Hammering with non-temporal accesses

non-temporal accesses: data accessed just once, not in the future

NTA instructions→ bypass cache to minimize cache pollution

NT stores to 1 address are combined at WC buffer

only last write goes to DRAM→ rate not sufficient

following cached access to same address

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab107

www.tugraz.at

#3 Hammering with non-temporal accesses

non-temporal accesses: data accessed just once, not in the future

NTA instructions→ bypass cache to minimize cache pollution

NT stores to 1 address are combined at WC buffer

only last write goes to DRAM→ rate not sufficient

following cached access to same address

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab107

www.tugraz.at

#3 Hammering with non-temporal accesses

non-temporal accesses: data accessed just once, not in the future

NTA instructions→ bypass cache to minimize cache pollution

NT stores to 1 address are combined at WC buffer

only last write goes to DRAM→ rate not sufficient

following cached access to same address

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab107

www.tugraz.at

#3 Hammering with non-temporal accesses

begin:

movnti %eax, (X)

movnti %eax, (Y)

mov %eax, (X)

mov %eax, (Y)

jmp begin

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab108

www.tugraz.at

#4 Hammering with uncached memory

Sometimes, everything fails,

e.g., on mobile devices

ARMv7 flush instruction is privileged

cache eviction seems to be too slow

ARMv8 non-temporal stores are still cached in practice

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab109

www.tugraz.at

#4 Hammering with uncached memory

Sometimes, everything fails, e.g., on mobile devices

ARMv7 flush instruction is privileged

cache eviction seems to be too slow

ARMv8 non-temporal stores are still cached in practice

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab109

www.tugraz.at

#4 Hammering with uncached memory

Sometimes, everything fails, e.g., on mobile devices

ARMv7 flush instruction is privileged

cache eviction seems to be too slow

ARMv8 non-temporal stores are still cached in practice

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab109

www.tugraz.at

#4 Hammering with uncached memory

Sometimes, everything fails, e.g., on mobile devices

ARMv7 flush instruction is privileged

cache eviction seems to be too slow

ARMv8 non-temporal stores are still cached in practice

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab109

www.tugraz.at

#4 Hammering with uncached memory

Sometimes, everything fails, e.g., on mobile devices

ARMv7 flush instruction is privileged

cache eviction seems to be too slow

ARMv8 non-temporal stores are still cached in practice

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab109

www.tugraz.at

#4 Hammering with uncached memory

ION: memory management since Android 4.0

apps can use /dev/ion for uncached, physically contiguous memory

no privilege and no permission needed

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab110

www.tugraz.at

How do we target accesses?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab111

www.tugraz.at

Physical addresses and DRAM

fixed map: physical addresses→ DRAM cells

undocumented for Intel

reverse-engineering for Sandy Bridge (Seaborn 2015)

and by us for Sandy, Ivy, Haswell, Skylake, . . . (Pessl et al. 2016)

using the timing difference between row hits and row conflicts

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab112

www.tugraz.at

Rowhammer preparations

For starting it’s easier with an empty file cache

sync && echo 3 | sudo tee /proc/sys/vm/drop_caches

and swap disabled

sudo swapoff -a

and with full CPU speed

sudo cpupower -c all set -b 0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab113

www.tugraz.at

How do I reverse my own DRAM?

https://github.com/IAIK/DRAMA

taskset 0x4 sudo ./measure -p 0.5 -s 16

taskset core for stability

sudo for pagemap access

-p 0.5 allocate 50% of memory, the more the better

-s I expect at least 16 sets (I have 32)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab114

www.tugraz.at

How do I flip bits?

https://github.com/IAIK/rowhammerjs

Copy functions from measure result

make ivy # or your microarchitecture

sudo ./rowhammer-ivy -d 2

sudo for pagemap

-d 2, for 2 DIMMs

sudo ./rowhammer-ivy -d 2 -f 0

-f 0, only test offset 0 of every row

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab115

www.tugraz.at

Demo

Demo!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab116

www.tugraz.at

Rowhammer without clflush?

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab117

www.tugraz.at

Rowhammer without clflush?

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!

→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab117

www.tugraz.at

Rowhammer without clflush?

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab117

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1
lo

ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1
lo

ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

repeat!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it. . .

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

bit flip!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab118

www.tugraz.at

Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM

2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab119

www.tugraz.at

Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM

2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab119

www.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?

2. how to get physical addresses in JS?

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab120

www.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab120

www.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?→ easy

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab120

www.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?→ easy

3. which physical addresses to access? → already solved

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab120

www.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?→ easy

3. which physical addresses to access? → already solved

4. in which order to access them? → already earlier today

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab120

www.tugraz.at

Challenge #1: accurate timing in JavaScript?

native code: rdtsc

JavaScript: window.performance.now()

recent patch: time rounded to 5 microseconds

still works: we measure millions of accesses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab121

www.tugraz.at

Challenge #1: accurate timing in JavaScript?

native code: rdtsc

JavaScript: window.performance.now()

recent patch: time rounded to 5 microseconds

still works: we measure millions of accesses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab121

www.tugraz.at

Challenge #2: physical addresses and JavaScript

OS optimization: use 2MB pages

= last 21 bits (2MB) of physical address

= last 21 bits (2MB) of virtual address

= last 21 bits (2MB) of JS array indices Gruss, Bidner, et al. 2015

several DRAM rows per 2MB page

several congruent addresses per 2MB page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab122

www.tugraz.at

Challenge #2: physical addresses and JavaScript

OS optimization: use 2MB pages

= last 21 bits (2MB) of physical address

= last 21 bits (2MB) of virtual address

= last 21 bits (2MB) of JS array indices Gruss, Bidner, et al. 2015

several DRAM rows per 2MB page

several congruent addresses per 2MB page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab122

www.tugraz.at

Challenge #2: physical addresses and JavaScript

OS optimization: use 2MB pages

= last 21 bits (2MB) of physical address

= last 21 bits (2MB) of virtual address

= last 21 bits (2MB) of JS array indices Gruss, Bidner, et al. 2015

several DRAM rows per 2MB page

several congruent addresses per 2MB page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab122

www.tugraz.at

Challenge #3: physical addresses and DRAM

fixed map: physical addresses→ DRAM cells

undocumented for Intel CPUs

reverse-engineered for Sandy Bridge Seaborn 2015

and by us for Sandy, Ivy, Haswell, Skylake, . . . Pessl et al. 2016

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab123

www.tugraz.at

Challenge #3: physical addresses and cache sets

fixed map: physical addresses→ cache sets

undocumented for Intel CPUs but reverse-engineered Maurice,
Le Scouarnec, et al. 2015

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab124

www.tugraz.at

Challenge #4: replacement policy
A

dd
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time

→ fast and effective on Haswell: eviction rate >99.97%

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab125

www.tugraz.at

Cache eviction strategy: New representation

represent accesses as a sequence of numbers:
1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

can be a long sequence

all congruent addresses are indistinguishable w.r.t eviction strategy

→ adding more unique addresses can increase eviction rate

→ multiple accesses to one address can increase the eviction rate

indistinguishable→ balanced number of accesses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab126

www.tugraz.at

Cache eviction strategy: New representation

represent accesses as a sequence of numbers:
1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

can be a long sequence

all congruent addresses are indistinguishable w.r.t eviction strategy

→ adding more unique addresses can increase eviction rate

→ multiple accesses to one address can increase the eviction rate

indistinguishable→ balanced number of accesses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab126

www.tugraz.at

Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab127

www.tugraz.at

Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab127

www.tugraz.at

Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

D: different addresses per
inner access loop

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab127

www.tugraz.at

Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

D: different addresses per
inner access loop

L: step size of the inner
access loop

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab127

www.tugraz.at

Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

D: different addresses per
inner access loop

L: step size of the inner
access loop

C: number of repetitions of the
inner access loop

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab127

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

S = 4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

S = 4

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

S = 4

D = 2

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

C = 2

S = 4

D = 2

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

C = 2
L = 1

S = 4

D = 2

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4
C = 2

L = 1
S = 4

D = 2

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab128

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17
P -1-1-1-20 20

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7
P -1-1-1-20 20 99.82% 3

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34 99.86% 3

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34 99.86% 3 191 ns 3

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34 99.86% 3 191 ns 3
P -2-2-1-17 64

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34 99.86% 3 191 ns 3
P -2-2-1-17 64 99.98% 3

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34 99.86% 3 191 ns 3
P -2-2-1-17 64 99.98% 3 180 ns 3

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17 74.46% 7 307 ns 3
P -1-1-1-20 20 99.82% 3 934 ns 7
P -2-1-1-17 34 99.86% 3 191 ns 3
P -2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab129

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

Miss
(intended)

Miss
(intended)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H

Miss
(intended)

Miss
(intended) H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Cache eviction strategies: Illustration

P -1-1-1-17 (17 accesses, 307ns)

P -2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended) H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended) H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab130

www.tugraz.at

Execution time vs. bit flips

0 1,000 2,000 3,000 4,000 5,000 6,000
0

5

10

15

20

Execution time in ns

#
B

it
fli

ps

→ low execution time is better.
Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab131

www.tugraz.at

Eviction rate vs. bit flips

98.0% 98.5% 99.0% 99.5% 100%
0

5

10

15

20

Eviction rate

#
B

it
fli

ps

→ high eviction rate is better. Average: 73.96%.
Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab132

www.tugraz.at

Eviction strategies on Haswell

Table: The fastest 5 eviction strategies with an eviction rate above 99.75%
compared to clflush and LRU eviction on Haswell.

C D L S Accesses Hits Misses Time (ns) Eviction

- - - - - 2 2 60 99.9999%
5 2 2 18 90 34 4 179 99.9624%
2 2 1 17 64 35 5 180 99.9820%
2 1 1 17 34 47 5 191 99.8595%
6 2 2 18 108 34 5 216 99.9365%
1 1 1 17 17 96 13 307 74.4593%
4 2 2 20 80 41 23 329 99.7800%
1 1 1 20 20 187 78 934 99.8200%

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab133

www.tugraz.at

Evaluation on Haswell

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
100

102

104

106

Refresh interval in µs (BIOS configuration)

B
it

fli
ps

clflush Evict (Native) Evict (JavaScript)

Figure: Number of bit flips within 15 minutes.
Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab134

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab135

www.tugraz.at

How to exploit random bit flips?

They are not random→ highly reproducible flip pattern!

1. choose a data structure that you can place at arbitrary memory
locations

2. scan for “good” flips
3. place data structure there
4. trigger bit flip again

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab136

www.tugraz.at

Strategy: Modify instructions

idea from Seaborn and Dullien 2015

x86 op codes are variable length

unsafe op codes (syscall) ∈ safe but long multi-byte op codes
only a problem with jumps to arbitrary addresses

flip a bit in a validated NaCl instruction sequence

safe + validated jump→ arbitrary jump

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab137

www.tugraz.at

Page Table Entries

P RW US WT UC R D S G

X

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab138

www.tugraz.at

Page Table Entries

P RW US WT UC R D S G Ignored

Ignored X

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab138

www.tugraz.at

Page Table Entries

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab138

www.tugraz.at

Page Table Entries

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

Each 4 KB page table consists of 512 such entries

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab138

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 0

PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x0 – 0xFFF

0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 0

PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x0 – 0xFFF

0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 0

PTE 1

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x0 – 0xFFF

0x1000 – 0x1FFF

User Page

User Page

User Page

User Page

User Page

User Page

Kernel Page

Page Table

User Page

User Page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab139

www.tugraz.at

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab140

www.tugraz.at

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab140

www.tugraz.at

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab140

www.tugraz.at

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab140

www.tugraz.at

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab140

www.tugraz.at

Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab140

www.tugraz.at

Release page with flip

Row 0 Row 23

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab141

www.tugraz.at

Release page with flip

Row 0 Row 23

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab141

www.tugraz.at

Fill all remaining memory with page tables

Row 0 Row 23

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab142

www.tugraz.at

Fill all remaining memory with page tables

Row 0 Row 23

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab142

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

Page Table

Page Table

User Page

Page Table

Page Table

Page Table

Kernel Page

Page Table

Page Table

Page Table

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab143

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

Page Table

Page Table

User Page

Page Table

Page Table

Page Table

Kernel Page

Page Table

Page Table

Page Table

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab143

www.tugraz.at

Page Table Manipulation

PTE 7

PTE 6

PTE 5

PTE 4

PTE 3

PTE 2

PTE 1

PTE 0

0x7000 – 0x7FFF

0x6000 – 0x6FFF

0x5000 – 0x5FFF

0x4000 – 0x4FFF

0x3000 – 0x3FFF

0x2000 – 0x2FFF

0x1000 – 0x1FFF

0x0 – 0xFFF

Page Table

Page Table

User Page

Page Table

Page Table

Page Table

Kernel Page

Page Table

Page Table

Page Table

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab143

www.tugraz.at

Strategy: Flipping Page Table PPN bits

1. scan for flips

2. exhaust or massage memory to place a page table at target location

3. gain access to your own page table→ kernel privileges

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab144

www.tugraz.at

Flipping Page Table PPN bits

idea from Seaborn and Dullien 2015

same idea applied in several other works:

Rowhammer.js (Gruss, Maurice, and Mangard 2016)
One bit flips, one cloud flops (Y. Xiao et al. 2016)
Drammer (Veen et al. 2016)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab145

www.tugraz.at

Post-Rowhammer Exploitation

scan entire physical memory (very fast) and:

modify binary pages executed in root privileges (Y. Xiao et al. 2016)
modify credential structs (Veen et al. 2016)
read keys (Y. Xiao et al. 2016)
corrupt RSA signatures (Bhattacharya and Mukhopadhyay 2016)
modify certificates
configurations
etc.

pages are pretty unique: 32768 bits per page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab146

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

Page with bit flip is filled with target content

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

OS or hypervisor searches for duplicate pages

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

Hammer again + flip again

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Bit Flips + Page Deduplication

Row 0 Row 23

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab147

www.tugraz.at

Strategy: Flipping in Deduplicated Pages

1. scan for flips

2. place content for deduplication so that flip can be exploited

3. perform the bit change through Rowhammer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab148

www.tugraz.at

Flipping in Deduplicated Pages

idea from Bosman et al. 2016

change data type (double→ pointer)
change pointer to good object→ counterfeit object

and from Razavi et al. 2016

corrupt authorized SSH keys
corrupt Debian update URLs + RSA public key file

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab149

www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab150

www.tugraz.at

Mitigations

Different mitigations have been proposed:

detection vs prevention

software vs hardware

short-term vs long-term

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab151

www.tugraz.at

Quick fixes

no clflush instruction

→
Rowhammer.js

increase the refresh rate

→ would need to be increased
by 7× to eliminate all bit flips

→ implementation: increased
by 2× by BIOS vendors

Figure: *

Errors depending on
refresh interval (Kim et al.

2014)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab152

www.tugraz.at

Quick fixes

no clflush instruction→
Rowhammer.js

increase the refresh rate

→ would need to be increased
by 7× to eliminate all bit flips

→ implementation: increased
by 2× by BIOS vendors

Figure: *

Errors depending on
refresh interval (Kim et al.

2014)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab152

www.tugraz.at

Quick fixes

no clflush instruction→
Rowhammer.js

increase the refresh rate

→ would need to be increased
by 7× to eliminate all bit flips

→ implementation: increased
by 2× by BIOS vendors

Figure: *

Errors depending on
refresh interval (Kim et al.

2014)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab152

www.tugraz.at

Quick fixes

no clflush instruction→
Rowhammer.js

increase the refresh rate

→ would need to be increased
by 7× to eliminate all bit flips

→ implementation: increased
by 2× by BIOS vendors

Figure: *

Errors depending on
refresh interval (Kim et al.

2014)Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab152

www.tugraz.at

Quick fixes

no clflush instruction→
Rowhammer.js

increase the refresh rate

→ would need to be increased
by 7× to eliminate all bit flips

→ implementation: increased
by 2× by BIOS vendors

Figure: *

Errors depending on
refresh interval (Kim et al.

2014)Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab152

www.tugraz.at

What about ECC?

ECC protection: server can handle or correct single bit errors

no standard for event reporting

in practice (Lanteigne 2016)

common: server counts ECC errors and report only if they reach a
threshold (e.g., > 100 bit flips / hour)
some server vendors never report errors to the OS
one server did not even halt when bit flips were non-correctable

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab153

www.tugraz.at

What about ECC?

ECC protection: server can handle or correct single bit errors

no standard for event reporting

in practice (Lanteigne 2016)

common: server counts ECC errors and report only if they reach a
threshold (e.g., > 100 bit flips / hour)
some server vendors never report errors to the OS
one server did not even halt when bit flips were non-correctable

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab153

www.tugraz.at

What about ECC?

ECC protection: server can handle or correct single bit errors

no standard for event reporting

in practice (Lanteigne 2016)

common: server counts ECC errors and report only if they reach a
threshold (e.g., > 100 bit flips / hour)

some server vendors never report errors to the OS
one server did not even halt when bit flips were non-correctable

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab153

www.tugraz.at

What about ECC?

ECC protection: server can handle or correct single bit errors

no standard for event reporting

in practice (Lanteigne 2016)

common: server counts ECC errors and report only if they reach a
threshold (e.g., > 100 bit flips / hour)
some server vendors never report errors to the OS

one server did not even halt when bit flips were non-correctable

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab153

www.tugraz.at

What about ECC?

ECC protection: server can handle or correct single bit errors

no standard for event reporting

in practice (Lanteigne 2016)

common: server counts ECC errors and report only if they reach a
threshold (e.g., > 100 bit flips / hour)
some server vendors never report errors to the OS
one server did not even halt when bit flips were non-correctable

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab153

www.tugraz.at

Detecting Rowhammer attacks

Rowhammer: lots of cache misses that can be monitored with
hardware performance counters (Herath and Fogh 2015; Gruss, Maurice,
Wagner, et al. 2016; Chiappetta et al. 2015; Payer 2016)

Firefox
OpenTTD

stress -m 1

Flush+Reload
Rowhammer

100

102

104

Cache misses (normalized) Cache hits (normalized)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab154

www.tugraz.at

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from Kim et al. 2014

making better DRAM chips that are not vulnerable,

using error correcting codes (ECC)

increasing the refresh rate

remapping/retiring faulty cells after manufacturing

identifying hammered rows at runtime and refreshing neighbors

→ expensive, performance overhead, or increased power consumption

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab155

www.tugraz.at

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from Kim et al. 2014

making better DRAM chips that are not vulnerable,

using error correcting codes (ECC)

increasing the refresh rate

remapping/retiring faulty cells after manufacturing

identifying hammered rows at runtime and refreshing neighbors

→ expensive, performance overhead, or increased power consumption

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab155

www.tugraz.at

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156

www.tugraz.at

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156

www.tugraz.at

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156

www.tugraz.at

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156

www.tugraz.at

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156

www.tugraz.at

Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refreshrefresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refreshrefresh
hammer

refresh
hammer

refreshrefresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab157

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh
Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammer

Wait for refresh
Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158

www.tugraz.at

Preventing Rowhammer attacks in software

MASCAT - Stopping Microarchitectural Attacks Before Execution
(Irazoqui et al. 2016)

static analysis of the binary

detect suspicious instruction sequences (clflush, rdtsc, fences, . . .)

open problem: false positives

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab159

www.tugraz.at

Preventing Rowhammer attacks in software

ANVIL (Aweke et al. 2016)

uses performance counters to
detect rowhammer

activate rows neighbor rows to
prevent flips

similar as PARA, but in software refresh
hammer

hammer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab160

www.tugraz.at

Preventing Rowhammer attacks in software

ANVIL (Aweke et al. 2016)

uses performance counters to
detect rowhammer

activate rows neighbor rows to
prevent flips

similar as PARA, but in software refresh
hammer

refresh
hammer

refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab160

www.tugraz.at

Preventing Rowhammer attacks in software

B-CATT: disable vulnerable physical memory (Brasser et al. 2017)
G-CATT: isolate security domains in physical memory based on
potential vulnerability (Brasser et al. 2017)

G-CATTB-CATT

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab161

www.tugraz.at

Preventing Rowhammer attacks in software

B-CATT: disable vulnerable physical memory (Brasser et al. 2017)
G-CATT: isolate security domains in physical memory based on
potential vulnerability (Brasser et al. 2017)

G-CATTB-CATT

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab161

www.tugraz.at

Conclusion

Rowhammer attacks are easy to mount

works on most systems (if you know the DRAM mapping)

most countermeasures are too expensive or ineffective

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab162

www.tugraz.at

Oh my Cache! 2
More fun with caches.
Daniel Gruss
Graz University of Technology

October 13, 2017 — QSP Lab

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab163

www.tugraz.at

Bibliography I

Aweke, Zelalem Birhanu, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd Austin (2016). “ANVIL: Software-Based
Protection Against Next-Generation Rowhammer Attacks”. In: ASLPOS’16.

Bhattacharya, Sarani and Debdeep Mukhopadhyay (2016). “Curious case of
Rowhammer: Flipping Secret Exponent Bits using Timing Analysis”. In:
CHES’16.

Bosman, Erik, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida (2016). “Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector”. In:
S&P’16.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab164

www.tugraz.at

Bibliography II
Brasser, Ferdinand, Lucas Davi, David Gens, Christopher Liebchen, and

Ahmad-Reza Sadeghi (2017). “CAn’t Touch This: Software-only Mitigation
against Rowhammer Attacks targeting Kernel Memory”. In: USENIX Security
Symposium.

Chiappetta, Marco, Erkay Savas, and Cemal Yilmaz (2015). Real time detection of
cache-based side-channel attacks using Hardware Performance Counters.
Cryptology ePrint Archive, Report 2015/1034.

Corbet, Jonathan (2016). Defending against Rowhammer in the kernel. URL:
https://lwn.net/Articles/704920/.

Gruss, Daniel, David Bidner, and Stefan Mangard (2015). “Practical Memory
Deduplication Attacks in Sandboxed JavaScript”. In: 20th European Symposium
on Research in Computer Security (ESORICS’15).

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab165

www.tugraz.at

Bibliography III
Gruss, Daniel, Clémentine Maurice, and Stefan Mangard (2016). “Rowhammer.js:

A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16.
Gruss, Daniel, Clémentine Maurice, Klaus Wagner, and Stefan Mangard (2016).

“Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16.
Gruss, Daniel, Raphael Spreitzer, and Stefan Mangard (2015). “Cache Template

Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX
Security Symposium.

Gullasch, David, Endre Bangerter, and Stephan Krenn (2011). “Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab166

www.tugraz.at

Bibliography IV
Herath, Nishad and Anders Fogh (2015). “These are Not Your Grand Daddys CPU

Performance Counters – CPU Hardware Performance Counters for Security”. In:
Black Hat 2015 Briefings. URL:
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-

Are-Not-Your-Grand-Daddys-CPU%2DPerformance-Counters-CPU-Hardware-

Performance-Counters%2DFor-Security.pdf.
Inci, Mehmet Sinan, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar (2015). “Seriously, get off my cloud! Cross-VM RSA Key Recovery in
a Public Cloud”. In: Cryptology ePrint Archive, Report 2015/898, pp. 1–15.

Irazoqui, Gorka, Thomas Eisenbarth, and Berk Sunar (2016). “MASCAT: Stopping
Microarchitectural Attacks Before Execution”. In: Cryptology ePrint Archive:
Report 2016/1196.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab167

www.tugraz.at

Bibliography V
Kim, Yoongu, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu (2014). “Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors”. In:
ISCA’14.

Lanteigne, Mark (2016). How Rowhammer Could Be Used to Exploit Weaknesses
in Computer Hardware. URL: http://www.thirdio.com/rowhammer.pdf.

Lipp, Moritz, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard (2016). “ARMageddon: Last-Level Cache Attacks on Mobile
Devices”. In: USENIX Security Symposium.

Liu, Fangfei, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee (2015).
“Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab168

www.tugraz.at

Bibliography VI
Maurice, Clémentine, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,

and Aurélien Francillon (2015). “Reverse Engineering Intel Complex Addressing
Using Performance Counters”. In: RAID.

Maurice, Clémentine, Christoph Neumann, Olivier Heen, and Aurélien Francillon
(2015). “C5: Cross-Cores Cache Covert Channel”. In: DIMVA’15.

Owens, Rodney and Weichao Wang (2011). “Non-interactive OS fingerprinting
through memory de-duplication technique in virtual machines”. In: 30th IEEE
International Performance Computing and Communications Conference, pp. 1–8.

Payer, Matthias (2016). “HexPADS: a platform to detect “stealth” attacks”. In:
ESSoS’16.

Percival, Colin (2005). “Cache missing for fun and profit”. In: Proceedings of
BSDCan.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab169

www.tugraz.at

Bibliography VII
Pessl, Peter, Daniel Gruss, Clémentine Maurice, and Stefan Mangard (2016).

“Reverse Engineering Intel DRAM Addressing and Exploitation”. In: USENIX
Security Symposium.

Qiao, Rui and Mark Seaborn (2016). “A new approach for rowhammer attacks”. In:
HOST 2016.

Razavi, Kaveh, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos (2016). “Flip Feng Shui: Hammering a Needle in the Software
Stack”. In: USENIX Security Symposium.

Seaborn, Mark (2015). How physical addresses map to rows and banks in DRAM.
http://lackingrhoticity.blogspot.com/2015/05/how-physical-

addresses-map-to-rows-and-banks.html. Retrieved on July 20, 2015.
Seaborn, Mark and Thomas Dullien (2015). “Exploiting the DRAM rowhammer bug

to gain kernel privileges”. In: Black Hat 2015 Briefings.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab170

www.tugraz.at

Bibliography VIII
Suzaki, Kuniyasu, Kengo Iijima, Toshiki Yagi, and Cyrille Artho (2011). “Memory

Deduplication as a Threat to the Guest OS”. In: Proceedings of the 4th European
Workshop on System Security.

Veen, Victor van der, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and
Cristiano Giuffrida (2016). “Drammer: Deterministic Rowhammer Attacks on
Mobile Platforms”. In: CCS’16.

Xiao, Jidong, Zhang Xu, Hai Huang, and Haining Wang (2012). “A covert channel
construction in a virtualized environment”. In: CCS’12.

– (2013). “Security implications of memory deduplication in a virtualized
environment”. In: 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN).

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab171

www.tugraz.at

Bibliography IX
Xiao, Yuan, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu (2016). “One

Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege
Escalation ”. In: USENIX Security Symposium.

Yarom, Yuval and Katrina Falkner (2014). “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium.

Yarom, Yuval, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser (2015).
“Mapping the Intel Last-Level Cache”. In: Cryptology ePrint Archive, Report
2015/905, pp. 1–12.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab172

	Quick Start
	Measuring and exploiting timing leakage
	CPU caches
	Cache attacks
	Cache covert channels
	Cache template attacks
	Page Deduplication Attacks
	Bitflips!
	How to exploit bit flips?
	How to mitigate Rowhammer?

