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Get your computer ready!

Within the first two hours we will:

Checkout https://github.com/IAIK/cache_template_attacks

Make a histogram

Key stroke attack on an editor

Try to establish a covert channel

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab3
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab4
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Information leakage

Shared hardware

x86 CPU

Data and
instruction

cache

Arithmetic
logic
unit

Branch
prediction

unit

Memory

Memory
bus

Memory
deduplication

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab5
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Why targeting the cache?

shared across cores

fast

→ fast cross-core attacks!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab6
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Timing differences

caches improve performance

SRAM is expensive→ small caches

different timings for memory accesses

data is cached→ cache hit→ fast
data is not cached→ cache miss→ slow

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab7
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Mesuring timing leakage

How every timing attack works:

learn timing of different corner cases

later, we recognize these corner cases by timing only

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab9
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Calibration

git clone https://github.com/IAIK/cache_template_attacks.git

cd calibration

make

./calibration

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab10
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Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab11
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Step 1.1. Cache hits

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab12
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Step 1.2. Cache misses

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab13
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Step 2. Accurate timings

very short timings

rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab14
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Step 2. Accurate timings

do you measure what you think you measure?

out-of-order execution→ what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab15
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Step 2. Accurate timings

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab16
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Step 2. Accurate timings

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64
Instruction Set Architectures White Paper, December 2010.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab16
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Step 3. Histogram

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab17
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Step 3. Histogram

Daniel Gruss, Graz University of Technology
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Step 4. Find threshold

as high as possible

most cache hits are below

no cache miss below

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab19
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Side-channel attack on user input

locate key-dependent memory accesses

with cache template attacks

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab20
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

A
Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update number of cache hits per event

Shared 0x0

Shared 0x0

Shared 0x0

Daniel Gruss, Graz University of Technology
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab21
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What to profile?

# ps -A | grep gedit

# cat /proc/pid/maps

00400000-00489000 r-xp 00000000 08:11 396356

/usr/bin/gedit

7f5a96991000-7f5a96a51000 r-xp 00000000 08:11 399365

/usr/lib/x86_64-linux-gnu/libgdk-3.so.0.1400.14

...

memory range, access rights, offset, –, –, file name

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab22
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Profiling a single event

cd ../profiling/generic_low_frequency_example

# put the threshold into spy.c (MIN_CACHE_MISS_CYCLES)

make

./spy

# start the targeted program

sleep 2; ./spy 200 400000-489000 -- 20000

-- -- /usr/bin/gedit

... and hold down key in the targeted program
save addresses with peaks!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab23
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Exploitation phase

cd ../exploitation/generic

# put the threshold into spy.c (MIN_CACHE_MISS_CYCLES)

make

./spy file offset

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab24
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5. Cache covert channels

6. Cache template attacks
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8. Bitflips!

9. How to exploit bit flips?
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Directly mapped cache

Memory Address

Daniel Gruss, Graz University of Technology
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Directly mapped cache

Memory Address Cache
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Directly mapped cache

Memory Address Cache
Tag Data
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Directly mapped cache

Memory Address Cache
Tag Data
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Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes
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Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index
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Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

2n cache lines
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Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26
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Directly mapped cache

Memory Address Cache
Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Problem: working on congruent addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab26
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2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

2n cache linesf

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27
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2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

Daniel Gruss, Graz University of Technology
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2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag
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2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data
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2-way set associativity

Memory Address Cache
Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data
→ replacement policy

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab27
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Caches today

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

L1 and L2 are private

last-level cache:

divided in slices
shared across cores
inclusive

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab28
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Cache levels: Latency comparison

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: >120 cycles

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab29
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(Unprivileged) cache maintainance

User programs can optimize cache usage:

prefetch: suggest CPU to load data into cache

clflush: throw out data from from all caches

... based on virtual addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab30
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?
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CPU cache attacks

cache-based keylogging

crypto key recovery

various implementations (AES, RSA, ECC, ...)
up to 97% key bits recovered after 1 encryption

cross-VM, cross-core, even cross-CPU

any CPU vendor

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab32
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Cross-core attacks?

using the inclusive property

last-level cache is a superset of L1 and L2

data evicted from last-level cache→ evicted from L1 and L2

a core can evict lines in the private L1 of another core

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab33
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Access-driven attacks

Attacker monitors its own activity to find sets accessed by victim.

Prime+Probe
Percival 2005
Liu et al. 2015

Maurice, Neumann, et al. 2015

Flush+Reload
Gullasch et al. 2011

Yarom and Falkner 2014
Gruss, Spreitzer, et al. 2015

Same techniques for covert and side channels

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab34
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Flush+Reload: Building Blocks

Shared Library / load binary twice / page deduplication

clflush throws data out of cache

→ We can throw other shared code out of the cache

rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab35
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Flush+Reload: First steps

Measure timing of cached memory

Measure timing of non-cached memory (flush before measuring)

Draw a histogram

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab36
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37



www.tugraz.at

Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

cached cached
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line

flushes
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption

loads data
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption
step 3: attacker reloads data→ fast access if the victim loaded the line

reloads data

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab37



www.tugraz.at

Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab38
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Variants of Flush+Reload

Flush+Flush Gruss, Maurice, Wagner, et al. 2016

Evict+Reload Gruss, Spreitzer, et al. 2015 on ARM Lipp et al. 2016

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab39
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)

Daniel Gruss, Graz University of Technology
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

loads data
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address space Cache Victim
address space
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address space Cache Victim
address space

step 0: attacker fills the cache (prime)
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

fast access

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed

slow access

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab40
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Prime+Probe

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab41
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Issues with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab42



www.tugraz.at

#1.1: Which physical addresses to access?

“LRU eviction”:

assume that cache uses LRU replacement

accessing n addresses from the same cache set to evict an n-way set

eviction from last level→ from whole hierarchy (it’s inclusive!)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab43
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#1.2: Which addresses map to the same set?

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

function H that maps slices is
undocumented

reverse-engineered by
Maurice, Le Scouarnec, et al.
2015; Inci et al. 2015; Yarom,
Ge, et al. 2015

hash function basically an
XOR of address bits

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab44
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#1.2: Which addresses map to the same set?

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
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#2: Obtain information without root privileges

last-level cache is physically indexed

root privileges needed for physical addresses

use 2 MB pages→ lowest 21 bits are the same as virtual address

→ enough to compute the cache set
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#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses
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load

13

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

no LRU replacement

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow
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#3.3: Cache eviction strategy
A

dd
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time
Figure: Fast and effective on Haswell. Eviction rate >99.97%.

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab49



www.tugraz.at

1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?
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Side channels vs covert channels

side channel: attacker spies a victim process

covert channel: communication between two processes

that are not supposed to communicate
that are collaborating

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab51
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1-bit cache covert channels

ideas for 1-bit channels:

Prime+Probe: use one cache set to transmit

0: sender does not access the set→ low access time in receiver
1: sender does access the set→ high access time in receiver

Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address→ high access time in
receiver

1: sender does access the address→ low access time in receiver

Daniel Gruss, Graz University of Technology
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1-bit covert channels

1 bit data, 0 bit control?

idea: divide time into slices (e.g., 50µs frames)

synchronize sender and receiver with a shared clock
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Problems of 1-bit covert channels

errors?

→ error-correcting codes

retransmission may be more efficient (less overhead)

desynchronization

optimal transmission duration may vary
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Multi-bit covert channels

combine multiple 1-bit channels

avoid interferences

→ higher performance

use 1-bit for sending = true/false
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Packets / frames

Organize data in packets / frames:

some data bits

check sum

sequence number

→ keep sender and receiver synchronous

→ check whether retransmission is necessary

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab56
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State of the art

method raw capacity err. rate true capacity env.
F+F Gruss, Maurice, Wagner, et al. 2016 3968Kbps 0.840% 3690Kbps native
F+R Gruss, Maurice, Wagner, et al. 2016 2384Kbps 0.005% 2382Kbps native
E+R Lipp et al. 2016 1141Kbps 1.100% 1041Kbps native
P+P Liu et al. 2015 600Kbps 1.000% 552Kbps virt

Daniel Gruss, Graz University of Technology
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels
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Cache Template Attacks

Profiling Phase

Preprocessing step to find exploitable addresses automatically

w.r.t. “events” (keystrokes, encryptions, ...)
called “Cache Template”

Exploitation Phase

Monitor exploitable addresses
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty
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Profiling Phase

Attacker address space

Cache

Victim address space

A
Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update cache hit ratio (per event and address)

Shared 0x0

Shared 0x0

Shared 0x0
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for all events

B
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Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for all events

C
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Profiling Phase

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40
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Profiling Phase

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80
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Profiling a Single Event
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Profiling Phase: 1 Event, 1 Address

A
D

D
R

E
S

S

KEY
n

0x7c800
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Profiling Phase: 1 Event, 1 Address

A
D

D
R

E
S

S

KEY
n

0x7c800

Example: Cache Hit Ratio for (0x7c800, n): 200 / 200
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Profiling Phase: All Events, 1 Address

A
D

D
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KEY
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Profiling Phase: All Events, 1 Address

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c800

Example: Cache Hit Ratio for (0x7c800, u): 13 / 200
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Profiling Phase: All Events, 1 Address

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c800

Distinguish n from other keys by monitoring 0x7c800
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Profiling Phase: All Events, All Addresses

A
D

D
R

E
S

S
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g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00
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Exploitation Phase

Monitor addresses from Cache Template

Report to log file / attacker

Manual analysis of log file

Find password in keypress log, etc.
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Example Attacks
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Attack 1: Keystroke Timings

Spy on keystroke timings on
Linux, Windows and OS X

Sub-microsecond accuracy

Derive text input from timings
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Attack 2: Keylogging

Linux with GTK: monitor
keystrokes of specific keys

Detect groups of keys

Some keys distinct

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00
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Attack 3: Locate AES T-Tables

AES uses T-Tables (precomputed from S-Boxes)

4 T-Tables

T0
[
k{0,4,8,12} ⊕ p{0,4,8,12}

]
T1

[
k{1,5,9,13} ⊕ p{1,5,9,13}

]
...

If we know which entry of T is accessed, we know the result of ki ⊕ pi.
Known-plaintext attack (pi is known)→ ki can be determined

Daniel Gruss, Graz University of Technology
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Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

Most addresses in two groups:

Cache hit ratio 100% (always cache hits)
Cache hit ratio 0% (no cache hits)

One 4096 byte memory block:

Cache hit ratio of 92%

Cache hits depend on key value and plaintext value
The T-Tables
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Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

Known-plaintext attack

Events: encryption with only one fixed key byte

Profile each event

Exploitation phase:

Eliminate key candidates
Reduction of key space in first-round attack:

64 bits after 16–160 encryptions

State of the art: full key recovery after 30000 encryptions
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Attack 4: AES T-Table Template

k0 = 0x00 k0 = 0x55

(transposed)

Daniel Gruss, Graz University of Technology
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Conclusion

Novel technique to find any cache side-channel leakage

Attacks
Detect vulnerabilities

Works on virtually all Intel CPUs
Works even with unknown binaries
Marks a change of perspective:

Large scale analysis of binaries
Large scale automated attacks
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
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Yet another cache: Linux page cache

Files buffered page-wise in “page cache”

Lower access time for frequently accessed data

Use up all the memory

Pages are freed on demand

Deduplicate pages (copy-on-write)
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Copy-on-Write
Virtual Address Space

Physical Address Space
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Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

fork

Process B
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Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B
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Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

Process B tries to write

copy
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Copy-on-Write
Virtual Address Space

Process A

Physical Address Space

Process B

write
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Write vs. Copy-on-Write

Regular write access < 0.2µs

Write access with copy-on-write pagefault > 3.0µs

Clearly distinguishable

Daniel Gruss, Graz University of Technology
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Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B
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Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Processes started
independently

Process B
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Page Deduplication
Virtual Address Space

Process A

Physical Address Space

Process B
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Done!
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Page Deduplication (without fork)

Deduplication between processes:

1. in same OS instance (Android, Windows)
2. in different VMs (KVM, VMWare, ...)

Code pages, data pages - even kernel pages

Time until deduplication 2-45 minutes

depends on system configuration
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Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Attacker generates
a page suspected

in process B

Benign
Process B
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Page Deduplication Attack

Virtual Address SpaceAttacker
Process A

Physical Address Space

Benign
Process B

Attacker waits
for deduplication

t = time();
p[0] = p[0];
∆ = time() - t;
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What can be attacked?

Detect binary versions in co-located VMs

Detect downloaded image in Firefox under certain conditions

→ Attacks on hypervisors

Native code only

Suzaki et al. 2011; Owens and Wang 2011; J. Xiao et al. 2013; J. Xiao et al.
2012

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab81
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What can be attacked?

Detect CSS files and images of opened websites

Chrome, Firefox and Internet Explorer

Perform the attack in JavaScript

→ Attacks on KVM, Windows 8.1 and Android

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab82
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Attacking Browsers

Images and CSS files are page-aligned in memory

Load them into memory for all websites of interest

Detect deduplication

→ Malicious ad networks: alternative to tracking pixels?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab83
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Detect Image (Native, Cross-VM, KVM)

500 1,000 1,500 2,000 2,500 3,000 3,500
100

101

102

103

104

105

Page

C
yc

le
s

Image not loaded Image loaded
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Challenges of JavaScript-based attacks

No cycle counting (rdtsc)

No access to virtual addresses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab85
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Page Deduplication Attacks in JavaScript

Only require microsecond accuracy

performance.now() is accurate enough
Can even work with millisecond accuracy

Accumulate time difference
Only possible with enough image/CSS data

Large typed arrays are allocated page-aligned

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab86
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Detection of Open Websites

Attacker chosen set of websites

Load website images and CSS files into arrays

Reuse HTTP headers of system under attack

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab88
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Countermeasures

JavaScript:

Reduce timer accuracy?

Prevent page-aligned arrays?

Website diversification?

Prevent control over full pages

Every n-th byte not part of JavaScript array

Generic:

Disable page deduplication (for writable pages)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab89
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab90
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DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip
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DRAM organization

chip
bank 0

row 0
row 1
row 2
. . .

row 32767

row buffer

bits in cells in rows

access: activate row,
copy to row buffer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab92
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Daniel Gruss, Graz University of Technology
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
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row bufferrow buffer

CPU wants to access row 2
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How reading from DRAM works

DRAM bank
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How reading from DRAM works

DRAM bank
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1 → slow (row conflict)
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works

DRAM bank
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
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CPU wants to access row 2—again
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer
→ fast (row hit)
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

row buffer = cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab93
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DRAM refresh

cells leak→ repetitive refresh necessary

refresh ≈ reading (destructive) + writing same data again

maximum interval between refreshes to guarantee data integrity

cells leak faster upon proximate accesses→ Rowhammer

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab94
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Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

Daniel Gruss, Graz University of Technology
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Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

Daniel Gruss, Graz University of Technology
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Requirements

Memory accesses must be

uncached: reach DRAM

fast: race against the next row refresh

targeted: reach specific row

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab96
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How do we get enough uncached accesses?

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab97
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Impact of the CPU cache

CPU
core

CPU
cache

DRAM

only non-cached accesses reach DRAM

either remove data from cache

or don’t put it there in the first place

→ next access will be served from DRAM

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab98
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Access techniques

1. clflush instruction→ original paper (Kim et al. 2014)

2. cache eviction (Gruss, Maurice, and Mangard 2016; Aweke et al. 2016)

3. non-temporal accesses (Qiao and Seaborn 2016)

4. uncached memory (Veen et al. 2016)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab99
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#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

Daniel Gruss, Graz University of Technology
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#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

c
l
f
l
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c
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h

wait for it. . .
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#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

bit flip!

Daniel Gruss, Graz University of Technology
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How widespread is the issue?

DDR3:
Kim et al.: 110/129
modules from 3 vendors,
all but 3 since mid-2011

Seaborn and Dullien:
15/29 laptops

DDR4 believed to be safe:
we showed bit flips (Pessl
et al. 2016)

Figure: *

Prevalence, by Kim et al. 2014Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab101
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Flush, reload, flush, reload. . .

the core of Rowhammer is essentially a Flush+Reload loop

as much an attack on DRAM as on cache

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab102
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#2 Hammering with cache eviction

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab103
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#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1
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#2 Hammering with cache eviction

DRAM bank
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reload

reload
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#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

repeat!
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#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

bit flip!
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Cache eviction strategies

Not as simple as that → replacement policy is not LRU

A
dd

re
ss

a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

→ fast and effective on Haswell: eviction rate >99.97%
→ we evaluated 10 000+ strategies to find the best one
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Hammering with cache eviction on Haswell
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#3 Hammering with non-temporal accesses

non-temporal accesses: data accessed just once, not in the future

NTA instructions→ bypass cache to minimize cache pollution

NT stores to 1 address are combined at WC buffer

only last write goes to DRAM→ rate not sufficient

following cached access to same address

Daniel Gruss, Graz University of Technology
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#3 Hammering with non-temporal accesses

begin:

movnti %eax, (X)

movnti %eax, (Y)

mov %eax, (X)

mov %eax, (Y)

jmp begin

Daniel Gruss, Graz University of Technology
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#4 Hammering with uncached memory

Sometimes, everything fails,

e.g., on mobile devices

ARMv7 flush instruction is privileged

cache eviction seems to be too slow

ARMv8 non-temporal stores are still cached in practice

Daniel Gruss, Graz University of Technology
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#4 Hammering with uncached memory

ION: memory management since Android 4.0

apps can use /dev/ion for uncached, physically contiguous memory

no privilege and no permission needed

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab110
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How do we target accesses?
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Physical addresses and DRAM

fixed map: physical addresses→ DRAM cells

undocumented for Intel

reverse-engineering for Sandy Bridge (Seaborn 2015)

and by us for Sandy, Ivy, Haswell, Skylake, . . . (Pessl et al. 2016)

using the timing difference between row hits and row conflicts

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab112
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Rowhammer preparations

For starting it’s easier with an empty file cache

sync && echo 3 | sudo tee /proc/sys/vm/drop_caches

and swap disabled

sudo swapoff -a

and with full CPU speed

sudo cpupower -c all set -b 0

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab113
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How do I reverse my own DRAM?

https://github.com/IAIK/DRAMA

taskset 0x4 sudo ./measure -p 0.5 -s 16

# taskset core for stability

# sudo for pagemap access

# -p 0.5 allocate 50% of memory, the more the better

# -s I expect at least 16 sets (I have 32)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab114
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How do I flip bits?

https://github.com/IAIK/rowhammerjs

Copy functions from measure result

make ivy # or your microarchitecture

sudo ./rowhammer-ivy -d 2

# sudo for pagemap

# -d 2, for 2 DIMMs

sudo ./rowhammer-ivy -d 2 -f 0

# -f 0, only test offset 0 of every row

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab115
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Demo

Demo!

Daniel Gruss, Graz University of Technology
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Rowhammer without clflush?

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

repeat!
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it. . .
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

bit flip!
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Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM

2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing
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Rowhammer.js: the challenges

1. how to get accurate timing in JS?

2. how to get physical addresses in JS?

3. which physical addresses to access?

4. in which order to access them?
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Challenge #1: accurate timing in JavaScript?

native code: rdtsc

JavaScript: window.performance.now()

recent patch: time rounded to 5 microseconds

still works: we measure millions of accesses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab121



www.tugraz.at

Challenge #1: accurate timing in JavaScript?

native code: rdtsc

JavaScript: window.performance.now()

recent patch: time rounded to 5 microseconds

still works: we measure millions of accesses

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab121



www.tugraz.at

Challenge #2: physical addresses and JavaScript

OS optimization: use 2MB pages

= last 21 bits (2MB) of physical address

= last 21 bits (2MB) of virtual address

= last 21 bits (2MB) of JS array indices Gruss, Bidner, et al. 2015

several DRAM rows per 2MB page

several congruent addresses per 2MB page

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab122
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Challenge #3: physical addresses and DRAM

fixed map: physical addresses→ DRAM cells

undocumented for Intel CPUs

reverse-engineered for Sandy Bridge Seaborn 2015

and by us for Sandy, Ivy, Haswell, Skylake, . . . Pessl et al. 2016
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Challenge #3: physical addresses and cache sets

fixed map: physical addresses→ cache sets

undocumented for Intel CPUs but reverse-engineered Maurice,
Le Scouarnec, et al. 2015
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Challenge #4: replacement policy
A

dd
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time

→ fast and effective on Haswell: eviction rate >99.97%
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Cache eviction strategy: New representation

represent accesses as a sequence of numbers:
1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

can be a long sequence

all congruent addresses are indistinguishable w.r.t eviction strategy

→ adding more unique addresses can increase eviction rate

→ multiple accesses to one address can increase the eviction rate

indistinguishable→ balanced number of accesses

Daniel Gruss, Graz University of Technology
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Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

Daniel Gruss, Graz University of Technology
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Cache eviction strategy: Notation (1)

Write eviction strategies as: P -C-D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

D: different addresses per
inner access loop

L: step size of the inner
access loop

C: number of repetitions of the
inner access loop
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Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P - 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P -1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4

Daniel Gruss, Graz University of Technology
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Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)
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Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P -1-1-1-17 17
P -1-1-1-20 20

Daniel Gruss, Graz University of Technology
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Execution time vs. bit flips
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→ low execution time is better.
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Eviction rate vs. bit flips
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→ high eviction rate is better. Average: 73.96%.
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Eviction strategies on Haswell

Table: The fastest 5 eviction strategies with an eviction rate above 99.75%
compared to clflush and LRU eviction on Haswell.

C D L S Accesses Hits Misses Time (ns) Eviction

- - - - - 2 2 60 99.9999%
5 2 2 18 90 34 4 179 99.9624%
2 2 1 17 64 35 5 180 99.9820%
2 1 1 17 34 47 5 191 99.8595%
6 2 2 18 108 34 5 216 99.9365%
1 1 1 17 17 96 13 307 74.4593%
4 2 2 20 80 41 23 329 99.7800%
1 1 1 20 20 187 78 934 99.8200%

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab133
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Evaluation on Haswell
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Figure: Number of bit flips within 15 minutes.
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?
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How to exploit random bit flips?

They are not random→ highly reproducible flip pattern!

1. choose a data structure that you can place at arbitrary memory
locations

2. scan for “good” flips
3. place data structure there
4. trigger bit flip again

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab136
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Strategy: Modify instructions

idea from Seaborn and Dullien 2015

x86 op codes are variable length

unsafe op codes (syscall) ∈ safe but long multi-byte op codes
only a problem with jumps to arbitrary addresses

flip a bit in a validated NaCl instruction sequence

safe + validated jump→ arbitrary jump

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab137
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Page Table Entries

P RW US WT UC R D S G

X
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Page Table Entries

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

Each 4 KB page table consists of 512 such entries
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Page Table Manipulation
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Search for page with flip

Row 0 Row 23

Hammering memory locations in different rows
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Release page with flip

Row 0 Row 23
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Fill all remaining memory with page tables

Row 0 Row 23
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Strategy: Flipping Page Table PPN bits

1. scan for flips

2. exhaust or massage memory to place a page table at target location

3. gain access to your own page table→ kernel privileges

Daniel Gruss, Graz University of Technology
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Flipping Page Table PPN bits

idea from Seaborn and Dullien 2015

same idea applied in several other works:

Rowhammer.js (Gruss, Maurice, and Mangard 2016)
One bit flips, one cloud flops (Y. Xiao et al. 2016)
Drammer (Veen et al. 2016)

Daniel Gruss, Graz University of Technology
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Post-Rowhammer Exploitation

scan entire physical memory (very fast) and:

modify binary pages executed in root privileges (Y. Xiao et al. 2016)
modify credential structs (Veen et al. 2016)
read keys (Y. Xiao et al. 2016)
corrupt RSA signatures (Bhattacharya and Mukhopadhyay 2016)
modify certificates
configurations
etc.

pages are pretty unique: 32768 bits per page

Daniel Gruss, Graz University of Technology
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Bit Flips + Page Deduplication

Row 0 Row 23
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Bit Flips + Page Deduplication

Row 0 Row 23

Page with bit flip is filled with target content
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Bit Flips + Page Deduplication

Row 0 Row 23

Hammer again + flip again
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Strategy: Flipping in Deduplicated Pages

1. scan for flips

2. place content for deduplication so that flip can be exploited

3. perform the bit change through Rowhammer

Daniel Gruss, Graz University of Technology
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Flipping in Deduplicated Pages

idea from Bosman et al. 2016

change data type (double→ pointer)
change pointer to good object→ counterfeit object

and from Razavi et al. 2016

corrupt authorized SSH keys
corrupt Debian update URLs + RSA public key file

Daniel Gruss, Graz University of Technology
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1. Quick Start

2. Measuring and exploiting timing leakage

3. CPU caches

4. Cache attacks

5. Cache covert channels

6. Cache template attacks

7. Page Deduplication Attacks

8. Bitflips!

9. How to exploit bit flips?

10. How to mitigate Rowhammer?

Daniel Gruss, Graz University of Technology
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Mitigations

Different mitigations have been proposed:

detection vs prevention

software vs hardware

short-term vs long-term

Daniel Gruss, Graz University of Technology
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Quick fixes

no clflush instruction

→
Rowhammer.js

increase the refresh rate

→ would need to be increased
by 7× to eliminate all bit flips

→ implementation: increased
by 2× by BIOS vendors

Figure: *

Errors depending on
refresh interval (Kim et al.

2014)

Daniel Gruss, Graz University of Technology
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What about ECC?

ECC protection: server can handle or correct single bit errors

no standard for event reporting

in practice (Lanteigne 2016)

common: server counts ECC errors and report only if they reach a
threshold (e.g., > 100 bit flips / hour)
some server vendors never report errors to the OS
one server did not even halt when bit flips were non-correctable
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Detecting Rowhammer attacks

Rowhammer: lots of cache misses that can be monitored with
hardware performance counters (Herath and Fogh 2015; Gruss, Maurice,
Wagner, et al. 2016; Chiappetta et al. 2015; Payer 2016)

Firefox
OpenTTD

stress -m 1

Flush+Reload
Rowhammer

100

102

104

Cache misses (normalized) Cache hits (normalized)

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab154



www.tugraz.at

Preventing Rowhammer attacks in hardware (1/3)

Original ideas from Kim et al. 2014

making better DRAM chips that are not vulnerable,

using error correcting codes (ECC)

increasing the refresh rate

remapping/retiring faulty cells after manufacturing

identifying hammered rows at runtime and refreshing neighbors

→ expensive, performance overhead, or increased power consumption

Daniel Gruss, Graz University of Technology
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Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation (Kim et al. 2014)

one row closed→ one adjacent row opened with low probability p

Rowhammer: one row opened and closed a high number of times Nth

statistically, neighbor rows are refreshed→ no bit flip

implementation at the memory controller level

advantage: stateless→ not expensive

for p = 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab156
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Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)

counter per row

increment neighbor rows

refresh when counter reaches a
threshold

refresh
hammer

refresh
hammer

refresh
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Preventing Rowhammer attacks in software

“nohammer” kernel module Corbet 2016

refresh rate of 8 ms would prevent
Rowhammer on most systems

use PMC to measure cache misses per
64 ms interval

limit cache miss rate to 1/8 of maximum

hammerhammer

Wait for refresh

Daniel Gruss, Graz University of Technology
October 13, 2017 — QSP Lab158
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Preventing Rowhammer attacks in software

MASCAT - Stopping Microarchitectural Attacks Before Execution
(Irazoqui et al. 2016)

static analysis of the binary

detect suspicious instruction sequences (clflush, rdtsc, fences, . . . )

open problem: false positives
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Preventing Rowhammer attacks in software

ANVIL (Aweke et al. 2016)

uses performance counters to
detect rowhammer

activate rows neighbor rows to
prevent flips

similar as PARA, but in software refresh
hammer

hammer
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Preventing Rowhammer attacks in software

B-CATT: disable vulnerable physical memory (Brasser et al. 2017)
G-CATT: isolate security domains in physical memory based on
potential vulnerability (Brasser et al. 2017)

G-CATTB-CATT
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Conclusion

Rowhammer attacks are easy to mount

works on most systems (if you know the DRAM mapping)

most countermeasures are too expensive or ineffective
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Oh my Cache! 2
More fun with caches.
Daniel Gruss
Graz University of Technology

October 13, 2017 — QSP Lab
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