
SCIENCE PASSION TECHNOLOGY

Microarchitectural Attacks: Meltdown and Spectre

Daniel Gruss

April 21, 2018

Graz University of Technology

1 Daniel Gruss — Graz University of Technology

Whoami www.tugraz.at

• Daniel Gruss

• Post-Doc @ Graz University of Technology

• Twitter: @lavados

• Email: daniel.gruss@iaik.tugraz.at

2 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

it is in the news, all over the w rld

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

• there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

• there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

• there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

• there are comics, including xkcd

• you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Fallout www.tugraz.at

You realize it is something big when...

• it is in the news, all over the world

• you get a Wikipedia article in multiple languages

• there are comics, including xkcd

• you get a lot of Twitter follower after Snowden mentioned you

3 Daniel Gruss — Graz University of Technology

The Wall www.tugraz.at

4 Daniel Gruss — Graz University of Technology

The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

This isolation is a combination of

hardware and software

User applications cannot access

anything from the kernel

There is only a well-defined

interface syscalls

Userspace Kernelspace

Applications
Operating

System Memory

6 Daniel Gruss — Graz University of Technology

The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

User applications cannot access

anything from the kernel

There is only a well-defined

interface syscalls

Userspace Kernelspace

Applications
Operating

System Memory

6 Daniel Gruss — Graz University of Technology

The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

There is only a well-defined

interface syscalls

Userspace Kernelspace

Applications
Operating

System Memory

6 Daniel Gruss — Graz University of Technology

The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating

System Memory

6 Daniel Gruss — Graz University of Technology

6 Daniel Gruss — Graz University of Technology

6 Daniel Gruss — Graz University of Technology

6 Daniel Gruss — Graz University of Technology

6 Daniel Gruss — Graz University of Technology

1337 4242

Revolutionary concept!

Store your food at home,

never go to the grocery store

during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cac

he
miss

printf("%d", i);

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cach

e mi
ss

Requ
est

printf("%d", i);

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cach

e mi
ss

Requ
est

Resp
onse

printf("%d", i);

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cach

e mi
ss

Requ
est

Resp
onsei

printf("%d", i);

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cach

e mi
ss

Requ
est

Resp
onsei

printf("%d", i);

Cach
e hit

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cach

e mi
ss

Requ
est

Resp
onsei

printf("%d", i);

Cach
e hit

DRAM acces
s,

slow

7 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cach

e mi
ss

Requ
est

Resp
onsei

printf("%d", i);

Cach
e hit

No DRAM a
ccess,

much faster

DRAM acces
s,

slow

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

ca
ch

ed
cached

VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush

access
access

8 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush

access
access

fast if victim accessed data,
slow otherwise

8 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

9 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

9 Daniel Gruss — Graz University of Technology

Cache Template Attack Demo

Cache Template www.tugraz.at

A
d
d
r
e
s
s

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680

0x7c6c0

0x7c700

0x7c740

0x7c780

0x7c7c0

0x7c800

0x7c840

0x7c880

0x7c8c0

0x7c900

0x7c940

0x7c980

0x7c9c0

0x7ca00

0x7cb80

0x7cc40

0x7cc80

0x7ccc0

0x7cd00

11 Daniel Gruss — Graz University of Technology

Out-of-order Execution

11 Daniel Gruss — Graz University of Technology

11 Daniel Gruss — Graz University of Technology

11 Daniel Gruss — Graz University of Technology

Wait for an hour

11 Daniel Gruss — Graz University of Technology

Wait for an hour

LATENCY

11 Daniel Gruss — Graz University of Technology

11 Daniel Gruss — Graz University of Technology

Parallelize
D

e
p
e
n
d

e
n
cy

11 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);

12 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);

Parallelize
D

e
p
e
n
d

e
n
cy

12 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1

2

Kernel addresses are not accessible

Are privilege checks also done when executing instructions out of rder?

13 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

Kernel addresses are not accessible

Are privilege checks also done when executing instructions out of rder?

13 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

Are privilege checks also done when executing instructions out of rder?

13 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?

13 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Adapted code

1 *(volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

Static code analyzer is not happy

1 warn ing : De r e f e r e n c e o f n u l l p o i n t e r

2 ∗(l t i l e ch r ∗) 0 ;

14 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Adapted code

1 *(volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : De r e f e r e n c e o f n u l l p o i n t e r

2 ∗(v o l a t i l e char ∗) 0 ;

14 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

Exception was only thrown afterwards

15 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

15 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

Then check whether any part of is cached

16 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

16 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

Permission check is in some cases not fast enough

17 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

17 Daniel Gruss — Graz University of Technology

Leaking Passwords from your Password Manager www.tugraz.at

21 Daniel Gruss — Graz University of Technology

Not so fast. . .

22 Daniel Gruss — Graz University of Technology

Take the kernel addresses... www.tugraz.at

• Kernel addresses in user space are a problem

Why don’t we take the kernel addresses...

23 Daniel Gruss — Graz University of Technology

Take the kernel addresses... www.tugraz.at

• Kernel addresses in user space are a problem

• Why don’t we take the kernel addresses...

23 Daniel Gruss — Graz University of Technology

...and remove them www.tugraz.at

• ...and remove them if not needed?

User accessible check in hardware is not reliable

24 Daniel Gruss — Graz University of Technology

...and remove them www.tugraz.at

• ...and remove them if not needed?

• User accessible check in hardware is not reliable

24 Daniel Gruss — Graz University of Technology

Idea www.tugraz.at

• Let’s just unmap the kernel in user space

Kernel addresses are then no longer present

Memory which is not mapped cannot be accessed at all

25 Daniel Gruss — Graz University of Technology

Idea www.tugraz.at

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

Memory which is not mapped cannot be accessed at all

25 Daniel Gruss — Graz University of Technology

Idea www.tugraz.at

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

25 Daniel Gruss — Graz University of Technology

25 Daniel Gruss — Graz University of Technology

Kernel Address Isolation to have Side channels Efficiently Removed

25 Daniel Gruss — Graz University of Technology

Kernel Address Isolation to have Side channels Efficiently Removed

KAISER /ˈkʌɪzə/

1. [german] Emperor,

ruler of an empire

2. largest penguin,

emperor penguin

25 Daniel Gruss — Graz University of Technology

Userspace Kernelspace

Applications
Operating

System Memory

25 Daniel Gruss — Graz University of Technology

Userspace Kernelspace

Applications
Operating

System Memory

Userspace Kernelspace

Applications

Kernel View User View

context switch
25 Daniel Gruss — Graz University of Technology

Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

Microsoft implemented similar concept in Windows

Apple implemented it in macOS 10.13.2 and called it “Double Map”

All share the same idea: switching address spaces on context switch

26 Daniel Gruss — Graz University of Technology

Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

Microsoft implemented similar concept in Windows

Apple implemented it in macOS 10.13.2 and called it “Double Map”

All share the same idea: switching address spaces on context switch

26 Daniel Gruss — Graz University of Technology

Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

Apple implemented it in macOS 10.13.2 and called it “Double Map”

All share the same idea: switching address spaces on context switch

26 Daniel Gruss — Graz University of Technology

Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

All share the same idea: switching address spaces on context switch

26 Daniel Gruss — Graz University of Technology

Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch

26 Daniel Gruss — Graz University of Technology

Meltdown and Spectre www.tugraz.at

27 Daniel Gruss — Graz University of Technology

Meltdown and Spectre www.tugraz.at

27 Daniel Gruss — Graz University of Technology

27 Daniel Gruss — Graz University of Technology

Prosciutto
27 Daniel Gruss — Graz University of Technology

Funghi
27 Daniel Gruss — Graz University of Technology

Diavolo
27 Daniel Gruss — Graz University of Technology

Diavolo
27 Daniel Gruss — Graz University of Technology

Diavolo
27 Daniel Gruss — Graz University of Technology

Diavolo
27 Daniel Gruss — Graz University of Technology

»A table for 6 please«

27 Daniel Gruss — Graz University of Technology

27 Daniel Gruss — Graz University of Technology

Speculative Cooking

27 Daniel Gruss — Graz University of Technology

»A table for 6 please«

27 Daniel Gruss — Graz University of Technology

27 Daniel Gruss — Graz University of Technology

27 Daniel Gruss — Graz University of Technology

27 Daniel Gruss — Graz University of Technology

27 Daniel Gruss — Graz University of Technology

What does Spectre do? www.tugraz.at

• Mistrains branch prediction

CPU speculatively executes code which should not be executed

Can also mistrain indirect calls

Spectre “convinces” program to execute code

28 Daniel Gruss — Graz University of Technology

What does Spectre do? www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

Can also mistrain indirect calls

Spectre “convinces” program to execute code

28 Daniel Gruss — Graz University of Technology

What does Spectre do? www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

Spectre “convinces” program to execute code

28 Daniel Gruss — Graz University of Technology

What does Spectre do? www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

28 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 1) www.tugraz.at

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

29 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

swim()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

swim()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

swim()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

swim()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly
()

Prediction

fly()
swim

()

30 Daniel Gruss — Graz University of Technology

Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly
()

Prediction

swim()
swim

()

30 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

No wrong speculation if there is no speculation

Problem: massive performance hit!

Also: How to disable it?

Speculative execution is deeply integrated int CPU

31 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

Problem: massive performance hit!

Also: How to disable it?

Speculative execution is deeply integrated int CPU

31 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

Also: How to disable it?

Speculative execution is deeply integrated int CPU

31 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

Speculative execution is deeply integrated int CPU

31 Daniel Gruss — Graz University of Technology

Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

31 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

W rkaround: insert instructions stopping speculation

insert after every bounds check

x86: , ARM:

Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

32 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping speculation

insert after every bounds check

x86: , ARM:

Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

32 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping speculation

→ insert after every bounds check

x86: , ARM:

Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

32 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

32 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Workaround: insert instructions stopping speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

32 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

Speculation barrier requires compiler supp rted

Already implemented in GCC, LLVM, and MSVC

Can be automated (MSVC) not really reliable

Explicit use by programmer:

33 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

Already implemented in GCC, LLVM, and MSVC

Can be automated (MSVC) not really reliable

Explicit use by programmer:

33 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

Can be automated (MSVC) not really reliable

Explicit use by programmer:

33 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

Explicit use by programmer:

33 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer: builtin load no speculate

33 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

34 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

34 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

Speculation barrier w rks if affected code constructs are

known

Programmer has to fully understand vulnerability

Automatic detection is not reliable

Non-negligible performance overhead of barriers

35 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier works if affected code constructs are

known

Programmer has to fully understand vulnerability

Automatic detection is not reliable

Non-negligible performance overhead of barriers

35 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier works if affected code constructs are

known

• Programmer has to fully understand vulnerability

Automatic detection is not reliable

Non-negligible performance overhead of barriers

35 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier works if affected code constructs are

known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

Non-negligible performance overhead of barriers

35 Daniel Gruss — Graz University of Technology

Spectre Variant 1 Mitigations www.tugraz.at

• Speculation barrier works if affected code constructs are

known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

• Non-negligible performance overhead of barriers

35 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

lesser privileged code cannot influence predictions

Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

lesser privileged code cannot influence predictions

Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

36 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2:

4 lfence

5 jmp 2b

6 1:

7 lea 8(% rsp), %rsp

8 ret

always predict to enter an endless loop

instead of the correct (or wrong) target function performance?

On Broadwell r newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

instead of the correct (or wrong) target function performance?

On Broadwell r newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

performance?

On Broadwell r newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

On Broadwell r newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

37 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

• ARM provides hardened Linux kernel

Clears branch-predictor state on context switch

Either via instruction ()...

...or w rkaround (disable/enable MMU)

Non-negligible performance overhead (≈ 200-300 ns)

38 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

Either via instruction ()...

...or w rkaround (disable/enable MMU)

Non-negligible performance overhead (≈ 200-300 ns)

38 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

...or w rkaround (disable/enable MMU)

Non-negligible performance overhead (≈ 200-300 ns)

38 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

Non-negligible performance overhead (≈ 200-300 ns)

38 Daniel Gruss — Graz University of Technology

Spectre Variant 2 Mitigations (Software) www.tugraz.at

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)

38 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

Own timer using timing thread

Flush instruction only privileged

Cache eviction through memory accesses

Just move secrets into secure w rld

Spectre w rks on secure enclaves

39 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

Flush instruction only privileged

Cache eviction through memory accesses

Just move secrets into secure w rld

Spectre w rks on secure enclaves

39 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

Cache eviction through memory accesses

Just move secrets into secure w rld

Spectre w rks on secure enclaves

39 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

Just move secrets into secure w rld

Spectre w rks on secure enclaves

39 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

Spectre w rks on secure enclaves

39 Daniel Gruss — Graz University of Technology

What does not work www.tugraz.at

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

39 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

Out-of-Order Execution

has nothing to do with branch prediction

turning off speculative execution entirely

has no effect on Meltdown

melts down the isolation provided by the

-bit

in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

Speculative Execution (subset of

Out-of-Order Execution)

fundamentally builds on branch

(mis)prediction

turning off speculative execution entirely

would w rk

has nothing to do with the

-bit

KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• Out-of-Order Execution

has nothing to do with branch prediction

turning off speculative execution entirely

has no effect on Meltdown

melts down the isolation provided by the

-bit

in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

• Speculative Execution (subset of

Out-of-Order Execution)

fundamentally builds on branch

(mis)prediction

turning off speculative execution entirely

would w rk

has nothing to do with the

-bit

KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• Out-of-Order Execution

• has nothing to do with branch prediction

turning off speculative execution entirely

has no effect on Meltdown

melts down the isolation provided by the

-bit

in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

• Speculative Execution (subset of

Out-of-Order Execution)

• fundamentally builds on branch

(mis)prediction

turning off speculative execution entirely

would w rk

has nothing to do with the

-bit

KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• Out-of-Order Execution

• has nothing to do with branch prediction

• turning off speculative execution entirely

has no effect on Meltdown

melts down the isolation provided by the

-bit

in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

• Speculative Execution (subset of

Out-of-Order Execution)

• fundamentally builds on branch

(mis)prediction

• turning off speculative execution entirely

would work

has nothing to do with the

-bit

KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• Out-of-Order Execution

• has nothing to do with branch prediction

• turning off speculative execution entirely

has no effect on Meltdown

→ melts down the isolation provided by the

user accessible-bit

in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

• Speculative Execution (subset of

Out-of-Order Execution)

• fundamentally builds on branch

(mis)prediction

• turning off speculative execution entirely

would work

• has nothing to do with the

user accessible-bit

KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• Out-of-Order Execution

• has nothing to do with branch prediction

• turning off speculative execution entirely

has no effect on Meltdown

→ melts down the isolation provided by the

user accessible-bit

• in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

• Speculative Execution (subset of

Out-of-Order Execution)

• fundamentally builds on branch

(mis)prediction

• turning off speculative execution entirely

would work

• has nothing to do with the

user accessible-bit

• KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• Out-of-Order Execution

• has nothing to do with branch prediction

• turning off speculative execution entirely

has no effect on Meltdown

→ melts down the isolation provided by the

user accessible-bit

• in theory: OoO not required, pipelining

can be sufficient

• mitigated by KAISER

Spectre

• Speculative Execution (subset of

Out-of-Order Execution)

• fundamentally builds on branch

(mis)prediction

• turning off speculative execution entirely

would work

• has nothing to do with the

user accessible-bit

• KAISER has no effect on Spectre at all

40 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

performs illegal memory accesses we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

performs only legal memory accesses

• has nothing to do with exception

handling

or suppression

• abc

• abc

tw papers, tw names, etc.

41 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• performs illegal memory accesses → we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

• performs only legal memory accesses

• has nothing to do with exception

handling

or suppression

• abc

• abc

tw papers, tw names, etc.

41 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• performs illegal memory accesses → we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

• performs only legal memory accesses

• has nothing to do with exception

handling

or suppression

• abc

• abc

tw papers, tw names, etc.

41 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• performs illegal memory accesses → we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

• performs only legal memory accesses

• has nothing to do with exception

handling or suppression

• abc

• abc

tw papers, tw names, etc.

41 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• performs illegal memory accesses → we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

• performs only legal memory accesses

• has nothing to do with exception

handling or suppression

• abc

• abc

tw papers, tw names, etc.

41 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown

• performs illegal memory accesses → we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

• performs only legal memory accesses

• has nothing to do with exception

handling or suppression

• abc

• abc

→ two papers, two names, etc.

41 Daniel Gruss — Graz University of Technology

What if we want to modify data?

41 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells

capacitor,

transitor each

43 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells

1 capacitor,

1 transitor each

43 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2! • Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

44 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are two different hammering techniques

#1: Hammer one row next to victim row and other random rows

#2: Hammer tw rows neighb ring victim row

#3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

#2: Hammer tw rows neighb ring victim row

#3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

#3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are three different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

46 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

47 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

48 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a (kernel) data structure that you can place at arbitrary memory locations

2. Scan for “good” flips

3. Place (kernel) data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

They can be used by unprivileged users as well

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JL
0 1 1 1 1 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JO
0 1 1 1 0 0 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JBE
0 1 1 1 0 1 1 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

51 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

use ECC memory to mitigate bit flips

in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

• in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

• in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

• in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

• in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

• in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

→ use ECC memory to mitigate bit flips

• in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

→ difficult to optimize with an intelligent adversary

52 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

attacks on crypto “software should be fixed”

attacks on ASLR “ASLR is broken anyway”

attacks on SGX and TrustZone “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto

“software should be fixed”

attacks on ASLR “ASLR is broken anyway”

attacks on SGX and TrustZone “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

attacks on ASLR “ASLR is broken anyway”

attacks on SGX and TrustZone “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

“ASLR is broken anyway”

attacks on SGX and TrustZone “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

attacks on SGX and TrustZone “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

“not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks

“only affects cheap sub-standard m dules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

53 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

the side channels were documented in the Intel manual

only now we understand the implications

54 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

only now we understand the implications

54 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

54 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

Motor Vehicle Deaths in U.S. by Year

55 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

A unique chance to

• rethink processor design

grow up, like other fields (car industry, construction industry)

dedicate more time into identifying problems and not solely in

mitigating known problems

56 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

dedicate more time into identifying problems and not solely in

mitigating known problems

56 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• dedicate more time into identifying problems and not solely in

mitigating known problems

56 Daniel Gruss — Graz University of Technology

SCIENCE PASSION TECHNOLOGY

Microarchitectural Attacks: Meltdown and Spectre

Daniel Gruss

April 21, 2018

Graz University of Technology

57 Daniel Gruss — Graz University of Technology

