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The Fallout www.tugraz.at

You realize it is something big when...

it is in the news, all over the w rld

you get a Wikipedia article in multiple languages

there are comics, including xkcd

you get a lot of Twitter follower after Snowden mentioned you
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The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

This isolation is a combination of

hardware and software

User applications cannot access

anything from the kernel

There is only a well-defined

interface syscalls

Userspace Kernelspace

Applications
Operating

System Memory
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1337 4242

Revolutionary concept!

Store your food at home, 

never go to the grocery store 

during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);
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Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush

access
access
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Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush

access
access

fast if victim accessed data,
slow otherwise
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Memory Access Latency www.tugraz.at
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Cache Template Attack Demo



Cache Template www.tugraz.at

A
d
d
r
e
s
s

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680

0x7c6c0

0x7c700

0x7c740

0x7c780

0x7c7c0

0x7c800

0x7c840

0x7c880

0x7c8c0

0x7c900

0x7c940

0x7c980

0x7c9c0

0x7ca00

0x7cb80

0x7cc40

0x7cc80

0x7ccc0

0x7cd00
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Out-of-order Execution
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Wait for an hour
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Wait for an hour

LATENCY
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Parallelize
D

e
p
e
n
d

e
n
cy

11 Daniel Gruss — Graz University of Technology



Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);
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Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1

2

Kernel addresses are not accessible

Are privilege checks also done when executing instructions out of rder?
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Building Meltdown www.tugraz.at

• Adapted code

1 *( volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

Static code analyzer is not happy

1 warn ing : De r e f e r e n c e o f n u l l p o i n t e r

2 ∗( l t i l e ch r ∗) 0 ;
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Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array
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300
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Page
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s]

• “Unreachable” code line was actually executed

Exception was only thrown afterwards
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1 char data = *(char*)0xffffffff81a000e0;
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Then check whether any part of is cached
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Leaking Passwords from your Password Manager www.tugraz.at
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Not so fast. . .
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Take the kernel addresses... www.tugraz.at

• Kernel addresses in user space are a problem

Why don’t we take the kernel addresses...
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...and remove them www.tugraz.at

• ...and remove them if not needed?

User accessible check in hardware is not reliable
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Idea www.tugraz.at

• Let’s just unmap the kernel in user space

Kernel addresses are then no longer present

Memory which is not mapped cannot be accessed at all
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Kernel Address Isolation to have Side channels Efficiently Removed
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Kernel Address Isolation to have Side channels Efficiently Removed

KAISER /ˈkʌɪzə/

1. [german] Emperor,

ruler of an empire

2. largest penguin, 

emperor penguin
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Userspace Kernelspace

Applications
Operating

System Memory
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Userspace Kernelspace

Applications
Operating

System Memory

Userspace Kernelspace

Applications

Kernel View User View

context switch
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Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

Microsoft implemented similar concept in Windows

Apple implemented it in macOS 10.13.2 and called it “Double Map”

All share the same idea: switching address spaces on context switch
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Prosciutto
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Funghi
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Diavolo
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»A table for 6 please«
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Speculative Cooking
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What does Spectre do? www.tugraz.at

• Mistrains branch prediction

CPU speculatively executes code which should not be executed

Can also mistrain indirect calls

Spectre “convinces” program to execute code
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Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction
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Mitigating Spectre www.tugraz.at

• Trivial approach: disable speculative execution

No wrong speculation if there is no speculation

Problem: massive performance hit!

Also: How to disable it?

Speculative execution is deeply integrated int CPU
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insert after every bounds check

x86: , ARM:

Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8
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Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

lesser privileged code cannot influence predictions

Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads
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Spectre Variant 2 Mitigations (Software) www.tugraz.at

Retpoline (compiler extension)

1 push <call_target >

2 call 1f

3 2:

4 lfence

5 jmp 2b

6 1:

7 lea 8(% rsp), %rsp

8 ret

always predict to enter an endless loop

instead of the correct (or wrong) target function performance?

On Broadwell r newer:

• ret may fall-back to the BTB for prediction

microcode patches to prevent that
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Spectre Variant 2 Mitigations (Software) www.tugraz.at

• ARM provides hardened Linux kernel

Clears branch-predictor state on context switch

Either via instruction ( )...

...or w rkaround (disable/enable MMU)

Non-negligible performance overhead (≈ 200-300 ns)
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What does not work www.tugraz.at

• Prevent access to high-resolution timer

Own timer using timing thread

Flush instruction only privileged

Cache eviction through memory accesses

Just move secrets into secure w rld

Spectre w rks on secure enclaves
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Meltdown vs. Spectre www.tugraz.at

Meltdown

Out-of-Order Execution

has nothing to do with branch prediction

turning off speculative execution entirely

has no effect on Meltdown

melts down the isolation provided by the

-bit

in theory: OoO not required, pipelining

can be sufficient

mitigated by KAISER

Spectre

Speculative Execution (subset of

Out-of-Order Execution)

fundamentally builds on branch

(mis)prediction

turning off speculative execution entirely

would w rk

has nothing to do with the

-bit

KAISER has no effect on Spectre at all
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Meltdown vs. Spectre www.tugraz.at

Meltdown

performs illegal memory accesses we

need to take care of processor exceptions

• exception handling

• exception suppression with TSX

• exception suppression with branch

misprediction

Spectre

performs only legal memory accesses

• has nothing to do with exception

handling

or suppression

• abc

• abc

tw papers, tw names, etc.
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What if we want to modify data?
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DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology



DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology



DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology



DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology



DRAM organization www.tugraz.at

chip
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row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells

capacitor,

transitor each
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Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer
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. . .
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row bufferrow buffer
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bit flips in row 2! • Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer
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Hammering techniques www.tugraz.at

• There are two different hammering techniques

#1: Hammer one row next to victim row and other random rows

#2: Hammer tw rows neighb ring victim row

#3: Hammer only one row next to victim row
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#1 - Single-sided hammering www.tugraz.at
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate
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#3 - One-location hammering www.tugraz.at
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How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a (kernel) data structure that you can place at arbitrary memory locations

2. Scan for “good” flips

3. Place (kernel) data structure there

4. Trigger bit flip again
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What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

They can be used by unprivileged users as well
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What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JL
0 1 1 1 1 1 0 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JO
0 1 1 1 0 0 0 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JBE
0 1 1 1 0 1 1 0

51 Daniel Gruss — Graz University of Technology



Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1
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ECC memory vs. refresh rate www.tugraz.at

Apple had a great idea:

• lowering the refresh rate saves energy but produces more bit flips

use ECC memory to mitigate bit flips

in the end: it’s an optimization problem.

• too aggressive? bit flips will be possible

• too cautious? waste of energy

• what if the “too aggressive” changes over time?

• what if attackers come up with slightly better attacks?

difficult to optimize with an intelligent adversary
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What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

attacks on crypto “software should be fixed”

attacks on ASLR “ASLR is broken anyway”

attacks on SGX and TrustZone “not part of the threat model”

Rowhammer attacks “only affects cheap sub-standard m dules”

for years we solely optimized for performance
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When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

the side channels were documented in the Intel manual

only now we understand the implications
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What do we learn from it? www.tugraz.at

Motor Vehicle Deaths in U.S. by Year
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Conclusions www.tugraz.at

A unique chance to

• rethink processor design

grow up, like other fields (car industry, construction industry)

dedicate more time into identifying problems and not solely in

mitigating known problems
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