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You know water races?
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Going too fast

CPU frequency i386→ Skylake: × 160

DRAM module capacity KB→ GB: × 1 million

DRAM manufacturing size µm→ nm

Try a water race at 160× speed with tiny cups
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Intel CPUs

2008 Nehalem

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

new microarchitectures yearly

performance improvement ≈ 5%

very small optimizations: caches,
branch prediction. . .

→ more and more leakage
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Side channels

safe software infrastructure→ no bugs, e.g., Heartbleed

does not mean safe execution

information leaks because of the hardware it runs on

no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and other sensitive info, e.g., keystrokes and mouse movements
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Timing differences
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Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

L1 and L2 are private

last-level cache:

divided in slices
shared across cores
inclusive
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Inclusive property

L1

L2

LLC

core 0 core 1 inclusive LLC: superset of L1 and L2

data evicted from the LLC is also
evicted from L1 and L2

a core can evict lines in the private L1
of another core
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Inclusive property

L1

L2

LLC

core 0 core 1

eviction

inclusive LLC: superset of L1 and L2

data evicted from the LLC is also
evicted from L1 and L2

a core can evict lines in the private L1
of another core
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Set-associative caches

cache

address
tag set offset line loaded in a specific set

depending on its address

L1: virtually indexed
L2, LLC: physically indexed

several ways per set

replacement policy decides line
to evict to store a new one
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line with clflush

step 2: victim loads data while performing encryption
step 3: attacker reloads data→ fast access if the victim loaded the line

reloads data
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Flush+Reload: Applications

cross-VM side channel attacks on crypto algorithms:

RSA: 96.7% of secret key bits in a single signature
AES: full key recovery in 30000 dec. (a few seconds)

Cache Template Attacks: automatically exploits cache-based
information leakage

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

B. Gülmezoğlu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES”. . In: COSADE’15. 2015.

D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

Daniel Gruss, Graz University of Technology
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed
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Prime+Probe
Attacker

address space Cache Victim
address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption
step 2: attacker probes data to determine if the set was accessed
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Prime+Probe: Applications

cross-VM side channel attacks on crypto algorithms:

El Gamal (sliding window): full key recovery in 12 min.

tracking user behavior in the browser, in JavaScript

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.

Daniel Gruss, Graz University of Technology
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Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity15
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Stealthier cache attack: Flush+Flush

motivation: detecting cache attacks with perf counters is not enough

→ Flush+Flush: new cache attack, based on clflush timing leakage

→ stealthier than Prime+Probe and Flush+Reload
→ faster than Prime+Probe and Flush+Reload

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.

https://github.com/IAIK/flush_flush

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity16
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clflush timing leakage (1)

L1

L2

LLC

core 0 core 1

inclusion

clflush on cached data

goes to LLC, flushes line
flushes line in L1-L2

→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
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www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1

clflush

clflush on cached data

goes to LLC, flushes line

flushes line in L1-L2
→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1
clflush on cached data

goes to LLC, flushes line

flushes line in L1-L2
→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1

clflush

clflush on cached data

goes to LLC, flushes line
flushes line in L1-L2

→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1
clflush on cached data

goes to LLC, flushes line
flushes line in L1-L2

→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1
clflush on cached data

goes to LLC, flushes line
flushes line in L1-L2

→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1

clflush

clflush on cached data

goes to LLC, flushes line
flushes line in L1-L2

→ slow

clflush on non-cached data

goes to LLC, does nothing

→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (1)

L1

L2

LLC

core 0 core 1
clflush on cached data

goes to LLC, flushes line
flushes line in L1-L2

→ slow

clflush on non-cached data

goes to LLC, does nothing
→ fast

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity17



www.iaik.tugraz.at

clflush timing leakage (2)
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Flush+Reload
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

Daniel Gruss, Graz University of Technology
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Flush+Flush
Attacker

address space Cache Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption
step 3: attacker flushes data→ high execution time if the victim loaded the line
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Even more timing leakage with clflush
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ARMageddon: Challenges of ARM

1. ARM v7 CPUs have no flush instruction

2. replacement policy is pseudo-random

3. cycle-accurate timings require root

4. last-level caches are not inclusive

5. multiple CPUs do not share a cache

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Last-Level Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity22
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ARMageddon

All cache attacks from Intel x86 applicable are to ARM devices

covert channel up to 1 Mbps

→ 2-3 orders of magnitude faster than previous work

side channels

monitor taps and swipe events, keystrokes
AES T-table implementation of Bounty Castle 1.5

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity23
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What about...

... other caches?
Yes, they leak too.

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity24
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Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache. Use of software prefetch should be limited to
memory addresses that are managed or owned within the application
context. Prefetching to addresses that are not mapped to physical
pages can experience non-deterministic performance penalty. For
example specifying a NULL pointer (0L) as address for a prefetch
can cause long delays.

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity25
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Intel being overspecific
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Software prefetching

prefetch instructions are somewhat unusual

Hints – can be ignored by the CPU

Do not check privileges or cause exceptions

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity26
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Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1

···
PTE #PTI

···
PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity27
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Solution: Address Translation Caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction

Daniel Gruss, Graz University of Technology
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Kernel is mapped in every process

Today’s operating systems:
Shared address space

User memory Kernel memory
0 −1

context switch

Daniel Gruss, Graz University of Technology
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Address-Space Layout Randomization (ASLR)

Kernel and drivers at randomized offsets in virtual memory

Mitigates code reuse attacks e.g. return-oriented-programming

Attacks based on read primitives or write primitives

But: leaking kernel/driver addresses defeats ASLR

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity30
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Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

OS X, Linux, BSD, Xen PVM (Amazon EC2)

Daniel Gruss, Graz University of Technology
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Locate Kernel Driver (defeat KASLR)

0 4,000 8,000 12,000
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Page offset in kernel driver region
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Defeating SMAP/SMEP

Get direct-physical-map address of userspace address

→ jump there (it’s executable)

→ or: switch to stack there

Known as “ret2dir” attacks

V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis. “ret2dir: Rethinking kernel isolation”. In: USENIX Security Symposium. 2014, pp. 957–972.
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Prefetching via direct-physical map

0 20 40 60 80 100 120 140 160 180 200 220 240
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Beyond cache attacks

talking about DRAM:

Rowhammer.js
DRAM side-channel attacks

D. Gruss, C. Maurice, and S. Mangard. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

Daniel Gruss, Graz University of Technology
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DRAM organization example

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

Daniel Gruss, Graz University of Technology
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DRAM organization example

chip
bank 0

row 0
row 1
row 2
. . .

row 32767

row buffer

bits in cells in rows

access: activate row,
copy to row buffer

Daniel Gruss, Graz University of Technology
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DRAM refresh

cells leak→ repetitive refresh necessary

refresh ≈ reading (destructive) + writing same data again

maximum interval between refreshes to guarantee data integrity

cells leak faster upon proximate accesses→ Rowhammer

Daniel Gruss, Graz University of Technology
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Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

Daniel Gruss, Graz University of Technology
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Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload
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Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

c
l
f
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wait for it. . .
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Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

bit flip!

Daniel Gruss, Graz University of Technology
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Rowhammer without clflush?

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

Daniel Gruss, Graz University of Technology
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1
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Rowhammer without clflush
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cache set 2

cache set 1
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

repeat!
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it. . .
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

bit flip!
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Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM

2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing

Daniel Gruss, Graz University of Technology
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Rowhammer.js: the challenges

1. how to get accurate timing in JS?

2. how to get physical addresses in JS?

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity43



www.iaik.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity43



www.iaik.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?→ we solved this

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity43



www.iaik.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?→ we solved this

3. which physical addresses to access? → we solved this

4. in which order to access them?

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity43



www.iaik.tugraz.at

Rowhammer.js: the challenges

1. how to get accurate timing in JS?→ easy

2. how to get physical addresses in JS?→ we solved this

3. which physical addresses to access? → we solved this

4. in which order to access them? → we solved this

Daniel Gruss, Graz University of Technology
October 18, 2016 — Hacktivity43



www.iaik.tugraz.at

How to get accurate timing in JavaScript?

native code: rdtsc

JavaScript: window.performance.now()

recent patch: time rounded to 5 microseconds

still works: we measure millions of accesses

Daniel Gruss, Graz University of Technology
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Physical addresses and DRAM

fixed map: physical addresses→ DRAM cells

undocumented for Intel

reverse-engineering for Sandy Bridge

and by us for Sandy, Ivy, Haswell, Skylake,. . .

M. Seaborn. How physical addresses map to rows and banks in DRAM. . http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html.
Retrieved on July 20, 2015. 2015.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

Daniel Gruss, Graz University of Technology
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Physical addresses and JavaScript

OS optimization: use 2MB pages

= last 21 bits (2MB) of physical address

= last 21 bits (2MB) of virtual address

= last 21 bits (2MB) of JS array indices

several DRAM rows per 2MB page

several congruent addresses per 2MB page

D. Gruss, D. Bidner, and S. Mangard. “Practical Memory Deduplication Attacks in Sandboxed Javascript”. In: ESORICS’15. 2015.
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Which physical addresses to access?

“LRU eviction”:

assume that cache uses LRU replacement

accessing n addresses from the same cache set to evict an n-way set

using the reverse-engineered last-level cache addressing function

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID. 2015.
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Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Replacement policy on older CPUs

“LRU eviction” memory accesses
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Replacement policy on older CPUs

“LRU eviction” memory accesses
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Replacement policy on older CPUs
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Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

no LRU replacement on recent CPUs

only 75% success rate on Haswell

more accesses→ higher success rate, but too slow

Daniel Gruss, Graz University of Technology
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Replacement policy on recent CPUs

“LRU eviction” memory accesses
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Cache eviction strategy: Notation (1)

Write eviction strategies as: P-C-D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];
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Write eviction strategies as: P-C-D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

D: different addresses per
inner access loop

L: step size of the inner
access loop

C: number of repetitions of the
inner access loop
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Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P-1-1-1-4→ 1, 2, 3, 4→ LRU eviction with set size 4
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for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4
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*a[s+d];
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Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17
P-1-1-1-20 20

Executed in a loop, on a Haswell with a 16-way last-level cache
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Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3
P-1-1-1-20 20 99.82% 3 934 ns 7
P-2-1-1-17 34 99.86% 3 191 ns 3
P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache
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Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns
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Evaluation on Haswell
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Figure: Number of bit flips within 15 minutes.
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Rowhammer.js: Take-Away

cache eviction fast enough to replace clflush

independent of programming language and available instructions

first remote fault attack, from a browser

if you think a fault is not exploitable, think again

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. “Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector”. In: S&P’16. 2016.
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DRAMA: Motivation (1)

a lot of wasted time

or a side channel?
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DRAMA: Motivation (2)

cache attacks: either not across CPUs, or need shared memory

limits attacks in restrictive environments

→ exploiting the DRAM, across CPUs and without shared memory

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
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DRAM organization example

bank 0

row 0
row 1
row 2
. . .

row 32767

row buffer

bits in cells in rows

access: activate row, copy to row buffer

row buffer→ cache!

→ how to exploit these caches?
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Row hit and row conflict

When accessing a row i in a bank:

row hit: row i already opened in row buffer→ fast

row conflict: row j 6= i opened in the same bank→ slow
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DRAM timing differences
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Example attack

side-channel: template attack
allocate a large fraction of memory to be in a row with the victim
profile memory and record row-hit ratio for each address
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Take-away

performance optimizations→ side channels

caches→ leakage

today’s computers are fast because: lots of small optimizations

→ computers won’t stop leaking
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Microarchitectural Incontinence
You would leak too if you were so fast!
Daniel Gruss
Graz University of Technology

October 18, 2016 — Hacktivity
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Granularity of the attacks

8 out of 64 regions (= 512B) map to
the same bank.

each row is divided among 16
different pages (A− P )

occupying 1 page B to P enough to
spy on the eight 64-byte regions of
page A in the same bank

→ granularity: 512B = 2 cache lines
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