
Hardware-Software Co-Design against

Microarchitectural Attacks

Daniel Gruss

September 4, 2019

Graz University of Technology

National Geographic

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters?

→ No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key?

→ Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload?

→ No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings?

→ Yes

3 Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels

lazy exception handling

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels
m

isspeculation

lazy exception handling

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels
m

isspeculation

lazy exception handling

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

Meltdown

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

Bug fixing

4 Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

But what about these two?

4 Daniel Gruss — Graz University of Technology

1337 4242

Revolutionary concept!

Store your food at home,
never go to the grocery store
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345

CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss

printf("%d", i);

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

printf("%d", i);

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
se

printf("%d", i);

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

DRAM access,
slow

5 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

No DRAM acces
s,

much faster

DRAM access,
slow

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

6 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Latency [Cycles]

N
u

m
b

er
of

A
cc

es
se

s
Cache Hits

7 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Latency [Cycles]

N
u

m
b

er
of

A
cc

es
se

s
Cache Hits Cache Misses

7 Daniel Gruss — Graz University of Technology

Cache Template Attack Demo

2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

9 Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

9 Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

9 Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

9 Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy

9 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

fast
access

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

slow
access

10 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory (→ cross-VM)

Cons: coarser granularity (1 set)

11 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory (→ cross-VM)

Cons: coarser granularity (1 set)

11 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory (→ cross-VM)

Cons: coarser granularity (1 set)

11 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory (→ cross-VM)

Cons: coarser granularity (1 set)

11 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910

load

11

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11

load

12

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 12

load

13

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213

load

14

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 14

load

15

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

12 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910

load

11

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11

load

12

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112

load

13

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314

load

15

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 15

load

16

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Replacement policy on recent CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

13 Daniel Gruss — Graz University of Technology

Cache eviction strategies www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

14 Daniel Gruss — Graz University of Technology

Cache eviction strategies www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

14 Daniel Gruss — Graz University of Technology

Cache eviction strategies www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

D: different addresses per inner access

loop

14 Daniel Gruss — Graz University of Technology

Cache eviction strategies www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

D: different addresses per inner access

loop

L: step size of the inner access

loop

14 Daniel Gruss — Graz University of Technology

Cache eviction strategies www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

D: different addresses per inner access

loop

L: step size of the inner access

loop

C : number of repetitions of the inner

access loop

14 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17

74.46% 7 307 ns 3

P-1-1-1-20 20

99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7

307 ns 3

P-1-1-1-20 20 99.82% 3

934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34

99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3

191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64

99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3

180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache

15 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)

Miss

(intended)

Miss

(intended)

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H

Miss

(intended)

Miss

(intended)
H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

16 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

17 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

17 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks.

It is the

enclave developer’s responsibility to address side-channel attack concerns.

17 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

17 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

18 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold

and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

18 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE.

Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

18 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

18 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...2

2M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.

19 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

...processed with a simple moving average...3

3M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.

20 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent4

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

4M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.

21 Daniel Gruss — Graz University of Technology

ScatterCache

What is ScatterCache? www.tugraz.at

• Secure design for n-way set associative caches

• Addresses → cache sets

• Increases number of possible cache sets

• IDs for security domains

• Established/existing concepts

• Skewed caches / slices

• Low latency cryptography (e.g., QARMA-64 [Ava17])

23 Daniel Gruss — Graz University of Technology

What is ScatterCache? www.tugraz.at

• Secure design for n-way set associative caches

• Addresses → cache sets

• Increases number of possible cache sets

• IDs for security domains

• Established/existing concepts

• Skewed caches / slices

• Low latency cryptography (e.g., QARMA-64 [Ava17])

23 Daniel Gruss — Graz University of Technology

What is ScatterCache? www.tugraz.at

• Secure design for n-way set associative caches

• Addresses → ??? → cache sets

• Increases number of possible cache sets

• IDs for security domains

• Established/existing concepts

• Skewed caches / slices

• Low latency cryptography (e.g., QARMA-64 [Ava17])

23 Daniel Gruss — Graz University of Technology

What is ScatterCache? www.tugraz.at

• Secure design for n-way set associative caches

• Addresses → ??? → cache sets

• Increases number of possible cache sets

• IDs for security domains

• Established/existing concepts

• Skewed caches / slices

• Low latency cryptography (e.g., QARMA-64 [Ava17])

23 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B

24 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B

24 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B

24 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B @DAC [Tri+18], @MICRO [Qur18]

24 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B @DAC [Tri+18], @MICRO [Qur18]

24 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B @DAC [Tri+18], @MICRO [Qur18]

24 Daniel Gruss — Graz University of Technology

ScatterCache - Idea www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

Addr. A

Addr. B @DAC [Tri+18], @MICRO [Qur18]

24 Daniel Gruss — Graz University of Technology

ScatterCache - Naive Concept www.tugraz.at

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

(nways ·2bindices+nways−1
nways

)
possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 296.7 sets

• Index Derivation Function (IDF)

takes an address and returns a

cache set

• Depends on hardware key and

optional Security Domain ID

(SDID)

• → Unique combination of cache

lines for each address

− Potential index collisions

− One nways multi-port memory

25 Daniel Gruss — Graz University of Technology

ScatterCache - Naive Concept www.tugraz.at

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

(nways ·2bindices+nways−1
nways

)
possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 296.7 sets

• Index Derivation Function (IDF)

takes an address and returns a

cache set

• Depends on hardware key and

optional Security Domain ID

(SDID)

• → Unique combination of cache

lines for each address

− Potential index collisions

− One nways multi-port memory

25 Daniel Gruss — Graz University of Technology

ScatterCache - Naive Concept www.tugraz.at

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

(nways ·2bindices+nways−1
nways

)
possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 296.7 sets

• Index Derivation Function (IDF)

takes an address and returns a

cache set

• Depends on hardware key and

optional Security Domain ID

(SDID)

• → Unique combination of cache

lines for each address

− Potential index collisions

− One nways multi-port memory

25 Daniel Gruss — Graz University of Technology

ScatterCache - Naive Concept www.tugraz.at

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

(nways ·2bindices+nways−1
nways

)
possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 296.7 sets

• Index Derivation Function (IDF)

takes an address and returns a

cache set

• Depends on hardware key and

optional Security Domain ID

(SDID)

• → Unique combination of cache

lines for each address

− Potential index collisions

− One nways multi-port memory

25 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

We want something that is closer to a traditional cache!

instead of this:

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

way 0 way 1 way 2 way 3

in
de

x
ta

g

let’s do this:

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

26 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

We want something that is closer to a traditional cache!

instead of this:

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

way 0 way 1 way 2 way 3

in
de

x
ta

g

let’s do this:

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

26 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

We want something that is closer to a traditional cache!

instead of this:

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

way 0 way 1 way 2 way 3

in
de

x
ta

g

let’s do this:

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

26 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

2bindices ·nways possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 288 sets

• Skewed cache [Sez93] (i.e.,

traditional cache + more

addressing logic) and an IDF

• Like cache slices

• Random replacement policy (for

now)

27 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

2bindices ·nways possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 288 sets

• Skewed cache [Sez93] (i.e.,

traditional cache + more

addressing logic) and an IDF

• Like cache slices

• Random replacement policy (for

now)

27 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

2bindices ·nways possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 288 sets

• Skewed cache [Sez93] (i.e.,

traditional cache + more

addressing logic) and an IDF

• Like cache slices

• Random replacement policy (for

now)

27 Daniel Gruss — Graz University of Technology

ScatterCache - Concept www.tugraz.at

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

2bindices ·nways possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 288 sets

• Skewed cache [Sez93] (i.e.,

traditional cache + more

addressing logic) and an IDF

• Like cache slices

• Random replacement policy (for

now)

27 Daniel Gruss — Graz University of Technology

ScatterCache - Selecting the IDF www.tugraz.at

• Inputs: cache line address, SDID, key

• Outputs: nways indices (bindices bits)

• Existing concepts and crypto primitives

• SCv1: hashing

• Block ciphers (e.g., PRINCE [Bor+12])

• Tweakable block ciphers (e.g., QARMA [Ava17])

• Permutation-based primitives (e.g., Keccak-p [Ber+11])

• SCv2: permutation

• Prevents birthday-bound index collisions

• No off-the-shelf primitives

28 Daniel Gruss — Graz University of Technology

ScatterCache - Selecting the IDF www.tugraz.at

• Inputs: cache line address, SDID, key

• Outputs: nways indices (bindices bits)

• Existing concepts and crypto primitives

• SCv1: hashing

• Block ciphers (e.g., PRINCE [Bor+12])

• Tweakable block ciphers (e.g., QARMA [Ava17])

• Permutation-based primitives (e.g., Keccak-p [Ber+11])

• SCv2: permutation

• Prevents birthday-bound index collisions

• No off-the-shelf primitives

28 Daniel Gruss — Graz University of Technology

ScatterCache - Selecting the IDF www.tugraz.at

• Inputs: cache line address, SDID, key

• Outputs: nways indices (bindices bits)

• Existing concepts and crypto primitives

• SCv1: hashing

• Block ciphers (e.g., PRINCE [Bor+12])

• Tweakable block ciphers (e.g., QARMA [Ava17])

• Permutation-based primitives (e.g., Keccak-p [Ber+11])

• SCv2: permutation

• Prevents birthday-bound index collisions

• No off-the-shelf primitives

28 Daniel Gruss — Graz University of Technology

ScatterCache - Selecting the IDF www.tugraz.at

• Inputs: cache line address, SDID, key

• Outputs: nways indices (bindices bits)

• Existing concepts and crypto primitives

• SCv1: hashing

• Block ciphers (e.g., PRINCE [Bor+12])

• Tweakable block ciphers (e.g., QARMA [Ava17])

• Permutation-based primitives (e.g., Keccak-p [Ber+11])

• SCv2: permutation

• Prevents birthday-bound index collisions

• No off-the-shelf primitives

28 Daniel Gruss — Graz University of Technology

ScatterCache - System Integration www.tugraz.at

• ScatterCache → last-level cache

• Hardware managed key

• Randomly generated at boot time

• Rekeying with full cache flush

• Potential for iterative rekeying

→ concurrent: CEASER-S @ISCA [Qur19]

• SDID management via page table (indirection)

• x86: Page Attribute Tables (PATs)

• ARM: Memory Attribute Indirection Register (MAIRs)

29 Daniel Gruss — Graz University of Technology

ScatterCache - System Integration www.tugraz.at

• ScatterCache → last-level cache

• Hardware managed key

• Randomly generated at boot time

• Rekeying with full cache flush

• Potential for iterative rekeying

→ concurrent: CEASER-S @ISCA [Qur19]

• SDID management via page table (indirection)

• x86: Page Attribute Tables (PATs)

• ARM: Memory Attribute Indirection Register (MAIRs)

29 Daniel Gruss — Graz University of Technology

ScatterCache - System Integration www.tugraz.at

• ScatterCache → last-level cache

• Hardware managed key

• Randomly generated at boot time

• Rekeying with full cache flush

• Potential for iterative rekeying

→ concurrent: CEASER-S @ISCA [Qur19]

• SDID management via page table (indirection)

• x86: Page Attribute Tables (PATs)

• ARM: Memory Attribute Indirection Register (MAIRs)

29 Daniel Gruss — Graz University of Technology

ScatterCache - System Integration www.tugraz.at

• ScatterCache → last-level cache

• Hardware managed key

• Randomly generated at boot time

• Rekeying with full cache flush

• Potential for iterative rekeying

→ concurrent: CEASER-S @ISCA [Qur19]

• SDID management via page table (indirection)

• x86: Page Attribute Tables (PATs)

• ARM: Memory Attribute Indirection Register (MAIRs)

29 Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

• no OS support? → default SDID = 0

• OS support? → page-wise security domains

→ shared read-only pages can be private in the cache!

• OS defines domains

(pages, processes, containers, VMs, . . .)

• Software-based page rekeying by changing the SDID

30 Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

• no OS support? → default SDID = 0

• OS support? → page-wise security domains

→ shared read-only pages can be private in the cache!

• OS defines domains

(pages, processes, containers, VMs, . . .)

• Software-based page rekeying by changing the SDID

30 Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

• no OS support? → default SDID = 0

• OS support? → page-wise security domains

→ shared read-only pages can be private in the cache!

• OS defines domains

(pages, processes, containers, VMs, . . .)

• Software-based page rekeying by changing the SDID

30 Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

• no OS support? → default SDID = 0

• OS support? → page-wise security domains

→ shared read-only pages can be private in the cache!

• OS defines domains

(pages, processes, containers, VMs, . . .)

• Software-based page rekeying by changing the SDID

30 Daniel Gruss — Graz University of Technology

Applicable Cache Attacks www.tugraz.at

• Unshared memory has no shared (physical) addresses

→ No Flush+Reload, Evict+Reload, Flush+Flush

→ Specialized Prime+Probe is possible

• Shared, read-only memory

→ Like unshared memory given OS support

→ Otherwise, eviction-based attacks are hindered

• Shared, writable memory can’t be separated

→ Eviction-based attacks are hindered

31 Daniel Gruss — Graz University of Technology

Applicable Cache Attacks www.tugraz.at

• Unshared memory has no shared (physical) addresses

→ No Flush+Reload, Evict+Reload, Flush+Flush

→ Specialized Prime+Probe is possible

• Shared, read-only memory

→ Like unshared memory given OS support

→ Otherwise, eviction-based attacks are hindered

• Shared, writable memory can’t be separated

→ Eviction-based attacks are hindered

31 Daniel Gruss — Graz University of Technology

Applicable Cache Attacks www.tugraz.at

• Unshared memory has no shared (physical) addresses

→ No Flush+Reload, Evict+Reload, Flush+Flush

→ Specialized Prime+Probe is possible

• Shared, read-only memory

→ Like unshared memory given OS support

→ Otherwise, eviction-based attacks are hindered

• Shared, writable memory can’t be separated

→ Eviction-based attacks are hindered

31 Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology

ScatterCache - Performance www.tugraz.at

• Micro benchmarks using the gem5 full system simulator (ARM)

• Poky Linux from Yocto 2.5 (kernel version 4.14.67)

• GAP, MiBench, lmbench, scimark2

• SPEC CPU 2017 on custom cache simulator

• Cache hit rate ≥ set-associative caches (random replacement)

• 2 %− 4 % below LRU on micro benchmarks, 0 %− 2 % for SPEC

33 Daniel Gruss — Graz University of Technology

ScatterCache - Performance www.tugraz.at

• Micro benchmarks using the gem5 full system simulator (ARM)

• Poky Linux from Yocto 2.5 (kernel version 4.14.67)

• GAP, MiBench, lmbench, scimark2

• SPEC CPU 2017 on custom cache simulator

• Cache hit rate ≥ set-associative caches (random replacement)

• 2 %− 4 % below LRU on micro benchmarks, 0 %− 2 % for SPEC

33 Daniel Gruss — Graz University of Technology

all these cache attacks over the past decades...

Wait for an hour

Wait for an hour

LATENCY

Parallelize
D

ep
en

de
nc

y

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

34 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

34 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of

order?

35 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of

order?

35 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of

order?

35 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of

order?

35 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Adapted code

(volatile char)0;

array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : D e r e f e r e n c e o f n u l l p o i n t e r

2 ∗(v o l a t i l e char ∗) 0 ;

36 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Adapted code

(volatile char)0;

array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : D e r e f e r e n c e o f n u l l p o i n t e r

2 ∗(v o l a t i l e char ∗) 0 ;

36 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc

es
s

ti
m

e

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

37 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc

es
s

ti
m

e

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

37 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Check whether any part of array is cached

38 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Check whether any part of array is cached

38 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Check whether any part of array is cached

38 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Check whether any part of array is cached

38 Daniel Gruss — Graz University of Technology

It does work... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc

es
s

ti
m

e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

39 Daniel Gruss — Graz University of Technology

It does work... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc

es
s

ti
m

e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

39 Daniel Gruss — Graz University of Technology

»A table for 6 please«

Speculative Cooking

»A table for 6 please«

Spectre-PHT (v1) www.tugraz.at

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’t’

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’e’
Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’e’

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’x’

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’x’

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’t’

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’t’

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’K’

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’K’

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’E’

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’E’

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’Y’

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’Y’

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 6;

if (index < 4)

LUT[data[index] * 4096] 0

th
en

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()

swim
()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return

47 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”5 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ = Meltdown-RW

5V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows: Attacks and Defenses. In:

arXiv:1807.03757 (2018).

48 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”5 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ = Meltdown-RW

5V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows: Attacks and Defenses. In:

arXiv:1807.03757 (2018).

48 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”5 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ = Meltdown-RW

5V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows: Attacks and Defenses. In:

arXiv:1807.03757 (2018).

48 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”5 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ = Meltdown-RW

5V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows: Attacks and Defenses. In:

arXiv:1807.03757 (2018).

48 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

in-place/
same-
address-space

out-of-place/
same-
address-space

Victim

Victim branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

in-place/
cross-
address-space

out-of-place/
cross-
address-space

Attacker

Shadow branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

Shared Branch Prediction State

49 Daniel Gruss — Graz University of Technology

Classification Tree www.tugraz.at

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [32]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [54, 52]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [54, 18]

BTB-CA-OP [54]

BTB-SA-IP ⭑

BTB-SA-OP [18]Cross-address-space

Same-address-space RSB-CA-IP [64, 56]

RSB-CA-OP [56]

RSB-SA-IP [64]

RSB-SA-OP [64, 56]

Meltdown-NM [86]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [10, 41]

Meltdown-US [61]

Meltdown-P [93, 96]

Meltdown-RW [52]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [44]

Meltdown-BND ⭑

prediction

fault

50 Daniel Gruss — Graz University of Technology

Mitigations?

Mitigations www.tugraz.at

Table 1: Spectre-type defenses and what they mitigate.

Attack

Defense

In
vi

si
S

p
ec

S
af

eS
p

ec
D

A
W

G
R

S
B

S
tu

ffi
ng

R
et

p
ol

in
e

P
oi

so
n

V
al

ue
In

de
x

M
as

ki
ng

S
it

e
Is

ol
at

io
n

S
L

H
Y

S
N

B
IB

R
S

S
T

IP
B

IB
P

B
S

er
ia

liz
at

io
n

T
ai

nt
T

ra
ck

in
g

T
im

er
R

ed
uc

ti
on

S
lo

th
S

S
B

D
/S

S
B

B

Intel

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

ARM

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

AMD

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not mitigated (), theoretically

mitigated (), theoretically impeded (), not theoretically impeded (), or out of scope ().

51 Daniel Gruss — Graz University of Technology

Performance Costs www.tugraz.at

Table 2: Reported performance impacts of countermeasures

Defense

Impact
Performance Loss Benchmark

InvisiSpec 22% SPEC

SafeSpec 3% (improvement) SPEC2017 on MARSSx86

DAWG 2–12%, 1–15% PARSEC, GAPBS

RSB Stuffing no reports

Retpoline 5–10% real-world workload servers

Site Isolation only memory overhead

SLH 36.4%, 29% Google microbenchmark suite

YSNB 60% Phoenix

IBRS 20–30% two sysbench 1.0.11 benchmarks

STIPB 30– 50% Rodinia OpenMP, DaCapo

IBPB no individual reports

Serialization 62%, 74.8% Google microbenchmark suite

SSBD/SSBB 2–8% SYSmark R©2014 SE & SPEC integer

KAISER/KPTI 0–2.6% system call rates

L1TF mitigations -3–31% various SPEC

52 Daniel Gruss — Graz University of Technology

ConTExT

Where can data be? www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

53 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

54 Daniel Gruss — Graz University of Technology

ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

lfence

st
al

lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

55 Daniel Gruss — Graz University of Technology

ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

55 Daniel Gruss — Graz University of Technology

ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

55 Daniel Gruss — Graz University of Technology

ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

55 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive

→ we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive

→ we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive

→ we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive

→ we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive

→ we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint?

→ software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint?

→ software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies?

→ compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies?

→ compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location

(compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location

(compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

No generic taint tracking www.tugraz.at

• Taint tracking is complicated and expensive → we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)

56 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

57 Daniel Gruss — Graz University of Technology

What about function arguments? www.tugraz.at

• Parameter declared secret? → non-transient (over-tainting)

• Copy to non-secret local variable if necessary (e.g., based on

arguments)

58 Daniel Gruss — Graz University of Technology

What about function arguments? www.tugraz.at

• Parameter declared secret? → non-transient (over-tainting)

• Copy to non-secret local variable if necessary (e.g., based on

arguments)

58 Daniel Gruss — Graz University of Technology

What about function arguments? www.tugraz.at

• Parameter declared secret? → non-transient (over-tainting)

• Copy to non-secret local variable if necessary (e.g., based on

arguments)

58 Daniel Gruss — Graz University of Technology

What about function arguments? www.tugraz.at

• Parameter declared secret? → non-transient (over-tainting)

• Copy to non-secret local variable if necessary (e.g., based on

arguments)

58 Daniel Gruss — Graz University of Technology

What about function arguments? www.tugraz.at

• Parameter declared secret? → non-transient (over-tainting)

• Copy to non-secret local variable if necessary (e.g., based on

arguments)

58 Daniel Gruss — Graz University of Technology

What about branching on secrets? www.tugraz.at

• Then you already have a side channel

→ No need for a more complicated transient-execution attack

→ Compiler issues a warning

59 Daniel Gruss — Graz University of Technology

What about branching on secrets? www.tugraz.at

• Then you already have a side channel

→ No need for a more complicated transient-execution attack

→ Compiler issues a warning

59 Daniel Gruss — Graz University of Technology

What about branching on secrets? www.tugraz.at

• Then you already have a side channel

→ No need for a more complicated transient-execution attack

→ Compiler issues a warning

59 Daniel Gruss — Graz University of Technology

What about branching on secrets? www.tugraz.at

• Then you already have a side channel

→ No need for a more complicated transient-execution attack

→ Compiler issues a warning

59 Daniel Gruss — Graz University of Technology

What about branching on secrets? www.tugraz.at

• Then you already have a side channel

→ No need for a more complicated transient-execution attack

→ Compiler issues a warning

59 Daniel Gruss — Graz University of Technology

What about branching on secrets? www.tugraz.at

• Then you already have a side channel

→ No need for a more complicated transient-execution attack

→ Compiler issues a warning

59 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• different classes of attacks need different classes of defenses

• interesting opportunities for new defensive research

• we need more cat-and-mouse game in system security (like in

crypto algorithm design)

60 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• different classes of attacks need different classes of defenses

• interesting opportunities for new defensive research

• we need more cat-and-mouse game in system security (like in

crypto algorithm design)

60 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• different classes of attacks need different classes of defenses

• interesting opportunities for new defensive research

• we need more cat-and-mouse game in system security (like in

crypto algorithm design)

60 Daniel Gruss — Graz University of Technology

Hardware-Software Co-Design against

Microarchitectural Attacks

Daniel Gruss

September 4, 2019

Graz University of Technology

