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Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters?

→ No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key?

→ Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload?

→ No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings?

→ Yes

3 Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

3 Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at
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• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations
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But what about these two?
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Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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printf("%d", i);

printf("%d", i);

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss

printf("%d", i);

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

printf("%d", i);

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
se

printf("%d", i);

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

DRAM access,
slow

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

No DRAM acces
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DRAM access,
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Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access
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Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise
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Cache Template Attack Demo
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Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf
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2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy
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Prime+Probe www.tugraz.at

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory (→ cross-VM)

Cons: coarser granularity (1 set)
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Replacement policy on older CPUs www.tugraz.at

“LRU eviction” memory accesses

cache set

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp
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“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow
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Cache eviction strategies www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];
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Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17

74.46% 7 307 ns 3

P-1-1-1-20 20

99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

1Executed in a loop, on a Haswell with a 16-way last-level cache
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SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]
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Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...2

2M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.

19 Daniel Gruss — Graz University of Technology



Attacking a weak RSA implementation inside SGX www.tugraz.at
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent4

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

4M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.
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What is ScatterCache? www.tugraz.at

• Secure design for n-way set associative caches

• Addresses → cache sets

• Increases number of possible cache sets

• IDs for security domains

• Established/existing concepts

• Skewed caches / slices

• Low latency cryptography (e.g., QARMA-64 [Ava17])
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ScatterCache - Naive Concept www.tugraz.at

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

(nways ·2bindices+nways−1
nways

)
possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 296.7 sets

• Index Derivation Function (IDF)

takes an address and returns a

cache set

• Depends on hardware key and

optional Security Domain ID

(SDID)

• → Unique combination of cache

lines for each address

− Potential index collisions

− One nways multi-port memory
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ScatterCache - Concept www.tugraz.at

We want something that is closer to a traditional cache!

instead of this:
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2bindices ·nways possible cache sets

512 KiB (32 B lines), nways = 8, bindices = 11

→ 288 sets

• Skewed cache [Sez93] (i.e.,

traditional cache + more

addressing logic) and an IDF

• Like cache slices

• Random replacement policy (for

now)
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ScatterCache - Selecting the IDF www.tugraz.at

• Inputs: cache line address, SDID, key

• Outputs: nways indices (bindices bits)

• Existing concepts and crypto primitives

• SCv1: hashing

• Block ciphers (e.g., PRINCE [Bor+12])

• Tweakable block ciphers (e.g., QARMA [Ava17])

• Permutation-based primitives (e.g., Keccak-p [Ber+11])

• SCv2: permutation

• Prevents birthday-bound index collisions

• No off-the-shelf primitives
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ScatterCache - System Integration www.tugraz.at

• ScatterCache → last-level cache

• Hardware managed key

• Randomly generated at boot time

• Rekeying with full cache flush

• Potential for iterative rekeying

→ concurrent: CEASER-S @ISCA [Qur19]

• SDID management via page table (indirection)

• x86: Page Attribute Tables (PATs)

• ARM: Memory Attribute Indirection Register (MAIRs)
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ScatterCache - Software Support www.tugraz.at

• no OS support? → default SDID = 0

• OS support? → page-wise security domains

→ shared read-only pages can be private in the cache!

• OS defines domains

(pages, processes, containers, VMs, . . . )

• Software-based page rekeying by changing the SDID
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Applicable Cache Attacks www.tugraz.at

• Unshared memory has no shared (physical) addresses

→ No Flush+Reload, Evict+Reload, Flush+Flush

→ Specialized Prime+Probe is possible

• Shared, read-only memory

→ Like unshared memory given OS support

→ Otherwise, eviction-based attacks are hindered

• Shared, writable memory can’t be separated

→ Eviction-based attacks are hindered

31 Daniel Gruss — Graz University of Technology
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ScatterCache - Prime+Probe www.tugraz.at

• No end-to-end attack yet

→ Simplified setting: perfect control, single access, no noise

→ Investigate the building blocks in simulation and analytically

• Finding congruent addresses (nways = 8, bindices = 11)

• Full collisions are unlikely → use partial collisions

• Approach in the paper: ≈ 225 profiled victim accesses

• Generalized by Purnal and Verbauwhede [PV19]: ≈ 210

• Evicting one set with 99 % needs 275 addresses

• Two Prime+Probe variants (nways = 8, bindices = 12)

• 99 % confidence: 35 to 152 victim accesses (repetitions)

• Between 9870 and 1216 congruent addresses

• Noise? Leakage analysis?

32 Daniel Gruss — Graz University of Technology
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ScatterCache - Performance www.tugraz.at

• Micro benchmarks using the gem5 full system simulator (ARM)

• Poky Linux from Yocto 2.5 (kernel version 4.14.67)

• GAP, MiBench, lmbench, scimark2

• SPEC CPU 2017 on custom cache simulator

• Cache hit rate ≥ set-associative caches (random replacement)

• 2 %− 4 % below LRU on micro benchmarks, 0 %− 2 % for SPEC
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all these cache attacks over the past decades...
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Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

34 Daniel Gruss — Graz University of Technology
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Building Meltdown www.tugraz.at

char data = *(char*)0xffffffff81a000e0;

printf("%c\n", data);

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of

order?

35 Daniel Gruss — Graz University of Technology
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Let’s see whether this works... www.tugraz.at

• Adapted code

*( volatile char*)0;

array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : D e r e f e r e n c e o f n u l l p o i n t e r

2 ∗( v o l a t i l e char ∗) 0 ;

36 Daniel Gruss — Graz University of Technology
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Let’s see whether this works... www.tugraz.at

• Flush+Reload over all pages of the array
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s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Check whether any part of array is cached

38 Daniel Gruss — Graz University of Technology
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It does work... www.tugraz.at

• Flush+Reload over all pages of the array
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• Index of cache hit reveals data

• Permission check is in some cases not fast enough
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Spectre-PHT (v1) www.tugraz.at

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead

46 Daniel Gruss — Graz University of Technology
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Spectre-PHT (v1) www.tugraz.at

LUT
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index = 0;
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a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return
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“Speculative Buffer Overflows”5 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ = Meltdown-RW

5V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows: Attacks and Defenses. In:

arXiv:1807.03757 (2018).
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Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [32]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [54, 52]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [54, 18]

BTB-CA-OP [54]

BTB-SA-IP ⭑

BTB-SA-OP [18]Cross-address-space

Same-address-space RSB-CA-IP [64, 56]

RSB-CA-OP [56]

RSB-SA-IP [64]

RSB-SA-OP [64, 56]

Meltdown-NM [86]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [10, 41]

Meltdown-US [61]

Meltdown-P [93, 96]

Meltdown-RW [52]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [44]

Meltdown-BND ⭑

prediction

fault
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Table 1: Spectre-type defenses and what they mitigate.

Attack

Defense
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D
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B

Intel

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

ARM

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

AMD

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Symbols show if an attack is mitigated ( ), partially mitigated ( ), not mitigated ( ), theoretically

mitigated ( ), theoretically impeded ( ), not theoretically impeded ( ), or out of scope ( ).
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Table 2: Reported performance impacts of countermeasures

Defense

Impact
Performance Loss Benchmark

InvisiSpec 22% SPEC

SafeSpec 3% (improvement) SPEC2017 on MARSSx86

DAWG 2–12%, 1–15% PARSEC, GAPBS

RSB Stuffing no reports

Retpoline 5–10% real-world workload servers

Site Isolation only memory overhead

SLH 36.4%, 29% Google microbenchmark suite

YSNB 60% Phoenix

IBRS 20–30% two sysbench 1.0.11 benchmarks

STIPB 30– 50% Rodinia OpenMP, DaCapo

IBPB no individual reports

Serialization 62%, 74.8% Google microbenchmark suite

SSBD/SSBB 2–8% SYSmark R©2014 SE & SPEC integer

KAISER/KPTI 0–2.6% system call rates

L1TF mitigations -3–31% various SPEC
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core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM
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• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers
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Serializing Barrier

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

lfence

st
al

lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o

t
ex

ec
u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o

t
ex
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u

te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)
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• Taint tracking is complicated and expensive

→ we don’t do that

• Software unintentionally losing taint? → software problem

• Variable copies? → compiler should avoid / warn

• Otherwise: always load/store from the same location (compiler

does that anyway)
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Avoiding Taint Explosion www.tugraz.at

• Fully overwriting a tainted register → untaint

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache
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• Parameter declared secret? → non-transient (over-tainting)

• Copy to non-secret local variable if necessary (e.g., based on
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→ No need for a more complicated transient-execution attack
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Conclusions www.tugraz.at

• different classes of attacks need different classes of defenses

• interesting opportunities for new defensive research

• we need more cat-and-mouse game in system security (like in

crypto algorithm design)
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