
Jumping Abstraction Layers:

Microarchitectural Attacks in JavaScript

Daniel Gruss

September 18, 2019

Graz University of Technology

National Geographic

Microarchitecture www.tugraz.at

Microarchitecture...

• not architectural state

• not visible to software

• hardware specific

• changes with generations

3 Daniel Gruss — Graz University of Technology

Microarchitecture www.tugraz.at

Microarchitecture...

• not architectural state

• not visible to software

• hardware specific

• changes with generations

3 Daniel Gruss — Graz University of Technology

Microarchitecture www.tugraz.at

Microarchitecture...

• not architectural state

• not visible to software

• hardware specific

• changes with generations

3 Daniel Gruss — Graz University of Technology

Microarchitecture www.tugraz.at

Microarchitecture...

• not architectural state

• not visible to software

• hardware specific

• changes with generations

3 Daniel Gruss — Graz University of Technology

1337 4242

Revolutionary concept!

Store your food at home,
never go to the grocery store
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345

CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
se

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

DRAM access,
slow

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

No DRAM acces
s,

much faster

DRAM access,
slow

4 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

5 Daniel Gruss — Graz University of Technology

First JavaScript Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): HTML5 pixel perfect attacks

• Use high-resolution timer

• Timing redraw events (visited, ...)

• SVG filter timing for pixels (known since 2011)

7 Daniel Gruss — Graz University of Technology

First JavaScript Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): HTML5 pixel perfect attacks

• Use high-resolution timer

• Timing redraw events (visited, ...)

• SVG filter timing for pixels (known since 2011)

7 Daniel Gruss — Graz University of Technology

First JavaScript Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): HTML5 pixel perfect attacks

• Use high-resolution timer

• Timing redraw events (visited, ...)

• SVG filter timing for pixels (known since 2011)

7 Daniel Gruss — Graz University of Technology

First JavaScript Side-Channel Attack www.tugraz.at

First side-channel attack in JavaScript

• Stone et al. (2013): HTML5 pixel perfect attacks

• Use high-resolution timer

• Timing redraw events (visited, ...)

• SVG filter timing for pixels (known since 2011)

7 Daniel Gruss — Graz University of Technology

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Data cached or not

8 Daniel Gruss — Graz University of Technology

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Data cached or not

8 Daniel Gruss — Graz University of Technology

First Microarchitectural Attack www.tugraz.at

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

• Timing of memory accesses

• Data cached or not

8 Daniel Gruss — Graz University of Technology

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer

• Native: rdtsc

• JavaScript: performance.now()

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

10 Daniel Gruss — Graz University of Technology

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer

• Native: rdtsc

• JavaScript: performance.now()

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

10 Daniel Gruss — Graz University of Technology

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer

• Native: rdtsc

• JavaScript: performance.now()

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

10 Daniel Gruss — Graz University of Technology

Timers in JavaScript www.tugraz.at

• We need a high-resolution timer

• Native: rdtsc

• JavaScript: performance.now()

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

— Mozilla Developer Network

10 Daniel Gruss — Graz University of Technology

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

11 Daniel Gruss — Graz University of Technology

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

11 Daniel Gruss — Graz University of Technology

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

11 Daniel Gruss — Graz University of Technology

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

11 Daniel Gruss — Graz University of Technology

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

0 1 · 105

11 Daniel Gruss — Graz University of Technology

...up to microsecond precision? www.tugraz.at

Firefox ≤ 36

Edge 38

W3C standard

Firefox ≥ 37/Chrome/Safari

Tor

Fuzzyfox

1 · 10−3

1

5

5

0

0

1 · 10−3

1

5

5

0 1 · 105

0 1 · 105

11 Daniel Gruss — Graz University of Technology

We need a higher resolution www.tugraz.at

• Current precision can’t measure cycle differences

• Two options

• Recover a higher resolution

• Build our own high-resolution timer

12 Daniel Gruss — Graz University of Technology

We need a higher resolution www.tugraz.at

• Current precision can’t measure cycle differences

• Two options

• Recover a higher resolution

• Build our own high-resolution timer

12 Daniel Gruss — Graz University of Technology

We need a higher resolution www.tugraz.at

• Current precision can’t measure cycle differences

• Two options

• Recover a higher resolution

• Build our own high-resolution timer

12 Daniel Gruss — Graz University of Technology

We need a higher resolution www.tugraz.at

• Current precision can’t measure cycle differences

• Two options

• Recover a higher resolution

• Build our own high-resolution timer

12 Daniel Gruss — Graz University of Technology

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

13 Daniel Gruss — Graz University of Technology

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

13 Daniel Gruss — Graz University of Technology

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

13 Daniel Gruss — Graz University of Technology

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

13 Daniel Gruss — Graz University of Technology

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

13 Daniel Gruss — Graz University of Technology

Recovering resolution - Clock interpolation www.tugraz.at

• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

13 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

• Edge thresholding: apply padding such that the slow function crosses one more

clock edge than the fast function.

14 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

• Edge thresholding: apply padding such that the slow function crosses one more

clock edge than the fast function.

14 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

fslow

ffast

• Edge thresholding: apply padding such that the slow function crosses one more

clock edge than the fast function.

14 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

fslow

ffast Padding

Padding

• Edge thresholding: apply padding such that the slow function crosses one more

clock edge than the fast function.

14 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0

p
er

ce
n

ta
ge

both correct fslow misclassified ffast misclassified

• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)

15 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0

p
er

ce
n

ta
ge

both correct fslow misclassified ffast misclassified

• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)

15 Daniel Gruss — Graz University of Technology

Recovering resolution - Edge thresholding www.tugraz.at

unaligned aligned padded

0

50

100

13
0

8287
100

18
0 0 0

p
er

ce
n

ta
ge

both correct fslow misclassified ffast misclassified

• Yields nanosecond resolution

• Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)

15 Daniel Gruss — Graz University of Technology

Timer evaluation www.tugraz.at

300 350 400 450 500 550 600 650 700 750

100

200

300

Access time [SharedArrayBuffer increments]

N
u

m
b

er
of

ca
se

s

cache hit cache miss

16 Daniel Gruss — Graz University of Technology

Interrupt-timing Attack in JavaScript www.tugraz.at

6 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

1.26

1.28

1.3

·105

y a h o o . c o m

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

17 Daniel Gruss — Graz University of Technology

URL Classification www.tugraz.at

am
az

on
.c

om

bai
du.c

om

fa
ce

book
.c

om

go
og

le.
co

.in

go
og

le.
co

.jp

go
og

le.
co

m

qq.c
om

wik
ip

ed
ia

.o
rg

ya
hoo.

co
m

yo
utu

be.
co

m

youtube.com

yahoo.com

wikipedia.org

qq.com

google.com

google.co.jp

google.co.in

facebook.com

baidu.com

amazon.com

0.00 0.03 0.00 0.00 0.02 0.08 0.05 0.00 0.09 0.73

0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.92 0.03

0.02 0.04 0.10 0.06 0.05 0.02 0.02 0.69 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.02 0.96 0.00 0.01 0.01

0.00 0.00 0.03 0.00 0.01 0.86 0.06 0.00 0.02 0.02

0.00 0.01 0.00 0.09 0.73 0.08 0.00 0.06 0.02 0.01

0.03 0.04 0.02 0.67 0.06 0.03 0.02 0.07 0.02 0.04

0.04 0.02 0.72 0.02 0.00 0.05 0.01 0.10 0.04 0.00

0.00 0.84 0.03 0.05 0.02 0.00 0.03 0.01 0.00 0.02

0.81 0.04 0.01 0.04 0.02 0.03 0.03 0.02 0.00 0.00

Predicted URL

A
ct

u
al

U
R

L

Figure 1: Confusion matrix for URL input.

18 Daniel Gruss — Graz University of Technology

User Classification www.tugraz.at

P
1

P
2

P
3

P
4

P4

P3

P2

P1

0.30 0.03 0.23 0.43

0.37 0.00 0.53 0.10

0.27 0.47 0.17 0.10

0.47 0.13 0.20 0.20

Predicted User

A
ct

u
al

U
se

r
Figure 2: Confusion matrix for input by different users.

19 Daniel Gruss — Graz University of Technology

Touchscreen Interactions www.tugraz.at

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1,000

2,000

tap tap swipe tap

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

Figure 3: Keystroke timing on Google Nexus 5.

20 Daniel Gruss — Graz University of Technology

Touchscreen Interactions www.tugraz.at

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3,000

3,500

4,000

4,500

tap tap swipe tap

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

Figure 4: Keystroke timing on Xiaomi Redmi Note 3.

21 Daniel Gruss — Graz University of Technology

Cross tab attack www.tugraz.at

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2,000

4,000

6,000

8,000

10,000
tap menu

redraw

new tab

redraw

tap swipe tap switch tab

redraw

select tab

redraw

activate tab

redraw

incognito tab

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

Figure 5: Chrome on Xiaomi Redmi Note 3.

22 Daniel Gruss — Graz University of Technology

PIN input www.tugraz.at

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5,000

10,000

screen off

redraw

slide 1 2 3 4

redraw

tap

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

Figure 6: Firefox on Xiaomi Redmi Note 3.

23 Daniel Gruss — Graz University of Technology

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

24 Daniel Gruss — Graz University of Technology

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

24 Daniel Gruss — Graz University of Technology

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

24 Daniel Gruss — Graz University of Technology

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

24 Daniel Gruss — Graz University of Technology

Attack requirements www.tugraz.at

• Timers were always the main focus

• Reducing timer resolution is not sufficient

• Timers can (always) be built

• Some attacks do not require timers at all

• Important to understand requirements before designing

countermeasures

24 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

26 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

26 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

26 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

26 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

• bits in cells in rows

• access: activate row,

copy to row buffer

27 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy
return

activate

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate
1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy
return

activate

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

return

activate

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

return

activate

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy
return

activate

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy
return

activate
1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

returnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

return

return

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturn

return

28 Daniel Gruss — Graz University of Technology

How reading from DRAM works www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

copy
return

activate

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copyreturnreturn

28 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

30 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

30 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

30 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

30 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

30 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

30 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1
lo

ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

lo
ad

load

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

reload

reload

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

repeat!

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it. . .

31 Daniel Gruss — Graz University of Technology

Hammering with cache eviction www.tugraz.at

DRAM bank

cache set 2

cache set 1

bit flip!

31 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4

load

9

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 49

load

10

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910

load

11

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 11

load

12

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112

load

13

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314

load

15

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314 15

load

16

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

32 Daniel Gruss — Graz University of Technology

Cache eviction strategies www.tugraz.at

A
d

d
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time

→ fast and effective on Haswell: eviction rate >99.97%

33 Daniel Gruss — Graz University of Technology

Cache eviction strategy: New representation www.tugraz.at

• represent accesses as a sequence: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

• what can improve eviction rates?

→ adding more unique addresses

→ more accesses to the same addresses

• indistinguishable → balanced number of accesses

34 Daniel Gruss — Graz University of Technology

Cache eviction strategy: New representation www.tugraz.at

• represent accesses as a sequence: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

• what can improve eviction rates?

→ adding more unique addresses

→ more accesses to the same addresses

• indistinguishable → balanced number of accesses

34 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

35 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

35 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

D: different addresses per inner access

loop

35 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

D: different addresses per inner access

loop

L: step size of the inner access

loop

35 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L)

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S : total number of different addresses

(= set size)

D: different addresses per inner access

loop

L: step size of the inner access

loop

C : number of repetitions of the inner

access loop

35 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

L = 1

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

L = 1

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

L = 1

S = 4

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

L = 1

S = 4

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

L = 1

S = 4

D = 2

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

C = 2

L = 1

S = 4

D = 2

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

C = 2
L = 1

S = 4

D = 2

36 Daniel Gruss — Graz University of Technology

Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L)

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

C = 2
L = 1

S = 4

D = 2

36 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17

74.46% 7 307 ns 3

P-1-1-1-20 20

99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7

307 ns 3

P-1-1-1-20 20 99.82% 3

934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34

99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3

191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64

99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3

180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)

H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H

Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H

H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H

H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H

H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H

H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H

H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H

H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H

H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss

Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H

Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss

H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H

H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H

H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss

Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H

H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H

H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H

H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H

H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H

H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss

H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H

Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H

Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss

H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss

H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H

H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H

H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H

H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H

H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H

H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss

Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H

H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss

Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H

H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss

Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H

Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss

H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H

H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H

H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H

H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H

H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss

H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H

Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss

Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss

H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H

Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss

Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss

(intended)

Miss

(intended)
H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss

(intended)

Miss

(intended)
H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

38 Daniel Gruss — Graz University of Technology

Evaluation on Haswell www.tugraz.at

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

100

102

104

106

Refresh interval in µs (BIOS configuration)

B
it

fl
ip

s

clflush Evict (Native) Evict (JavaScript)

Figure 7: Number of bit flips within 15 minutes.

39 Daniel Gruss — Graz University of Technology

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in

JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

42 Daniel Gruss — Graz University of Technology

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in

JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

42 Daniel Gruss — Graz University of Technology

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in

JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

42 Daniel Gruss — Graz University of Technology

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in

JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

42 Daniel Gruss — Graz University of Technology

Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in

JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category

42 Daniel Gruss — Graz University of Technology

Attacks and Categories www.tugraz.at

M
em

.
a

d
d

rs
.

A
cc

u
ra

te
ti

m
in

g

M
u

lt
it

h
re

a
d

in
g

S
h

ar
ed

d
a

ta

S
en

so
r

A
P

I

Rowhammer.js

Practical Memory Deduplication Attacks in Sandboxed Javascript

Fantastic Timers and Where to Find Them †

ASLR on the Line †

The spy in the sandbox

Loophole

Pixel perfect timing attacks with HTML5 †

The clock is still ticking

Practical Keystroke Timing Attacks in Sandboxed JavaScript †

TouchSignatures

Stealing sensitive browser data with the W3C Ambient Light Sensor API

† If accurate timing is not available, it can be approximated using a combination of multithreading and shared

data.
43 Daniel Gruss — Graz University of Technology

Defense

Prevents Rowham- Page Dedu- DRAM Covert Anti- Cache Keystroke Browser

mer.js plication Channel ASLR Eviction Timing

Buffer ASLR

Array preloading

Non-deterministic array

Array index randomization

Low-resolution timestamp

Fuzzy time * * * *

WebWorker polyfill

Message delay

Slow SharedArrayBuffer

No SharedArrayBuffer * * * *

Summary

Prevented (), partly prevented / more difficult (), not prevented (). A star (*)

means the combination is necessary.

44 Daniel Gruss — Graz University of Technology

Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension

45 Daniel Gruss — Graz University of Technology

Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension

45 Daniel Gruss — Graz University of Technology

Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension

45 Daniel Gruss — Graz University of Technology

Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension

45 Daniel Gruss — Graz University of Technology

Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension

45 Daniel Gruss — Graz University of Technology

Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension

45 Daniel Gruss — Graz University of Technology

User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology

User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology

User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology

User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology

Virtual Machine Layering www.tugraz.at

• Functions and properties are replaced by wrappers

Script

Wrapper

Extension ContextPage Context

C
all

R
et

u
rn

Call

Allowed?

Original Function

Yes

No

Default value

Filtered value

47 Daniel Gruss — Graz University of Technology

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

1 var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

2 window . p e r f o r m a n c e . now = f u n c t i o n () { r e t u r n 0 ; } ;

3

4 // call the new function (via function name)

5 a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

6

7 // call the original function (only via reference)

8 a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

48 Daniel Gruss — Graz University of Technology

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

1 var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

2 window . p e r f o r m a n c e . now = f u n c t i o n () { r e t u r n 0 ; } ;

3

4 // call the new function (via function name)

5 a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

6

7 // call the original function (only via reference)

8 a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

48 Daniel Gruss — Graz University of Technology

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

1 var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

2 window . p e r f o r m a n c e . now = f u n c t i o n () { r e t u r n 0 ; } ;

3

4 // call the new function (via function name)

5 a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

6

7 // call the original function (only via reference)

8 a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

48 Daniel Gruss — Graz University of Technology

Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

1 var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

2 window . p e r f o r m a n c e . now = f u n c t i o n () { r e t u r n 0 ; } ;

3

4 // call the new function (via function name)

5 a l e r t (window . p e r f o r m a n c e . now ()) ; // == alert(0)

6

7 // call the original function (only via reference)

8 a l e r t (o r i g i n a l r e f e r e n c e . c a l l (window . p e r f o r m a n c e)) ;

• Properties can be replaced by accessor properties

48 Daniel Gruss — Graz University of Technology

Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object

49 Daniel Gruss — Graz University of Technology

Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object

49 Daniel Gruss — Graz University of Technology

Virtual Machine Layering for Objects www.tugraz.at

• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object

49 Daniel Gruss — Graz University of Technology

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

1 (f u n c t i o n () {
2 // original is only accessible in this scope

3 var o r i g i n a l = window . p e r f o r m a n c e . now ;

4 window . p e r f o r m a n c e . now = . . .

5 }) () ;

• Prevent objects from being modified: Object.freeze

50 Daniel Gruss — Graz University of Technology

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

1 (f u n c t i o n () {
2 // original is only accessible in this scope

3 var o r i g i n a l = window . p e r f o r m a n c e . now ;

4 window . p e r f o r m a n c e . now = . . .

5 }) () ;

• Prevent objects from being modified: Object.freeze

50 Daniel Gruss — Graz University of Technology

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

1 (f u n c t i o n () {
2 // original is only accessible in this scope

3 var o r i g i n a l = window . p e r f o r m a n c e . now ;

4 window . p e r f o r m a n c e . now = . . .

5 }) () ;

• Prevent objects from being modified: Object.freeze

50 Daniel Gruss — Graz University of Technology

Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

1 (f u n c t i o n () {
2 // original is only accessible in this scope

3 var o r i g i n a l = window . p e r f o r m a n c e . now ;

4 window . p e r f o r m a n c e . now = . . .

5 }) () ;

• Prevent objects from being modified: Object.freeze

50 Daniel Gruss — Graz University of Technology

Page Border Detection www.tugraz.at

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

0.5

1
·105

Array offset [KB]

A
cc

es
s

ti
m

e

[c
yc

le
s]

51 Daniel Gruss — Graz University of Technology

Page Border Detection with Random Access www.tugraz.at

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1
·105

Array offset [KB]

A
cc

es
s

ti
m

e

[c
yc

le
s]

52 Daniel Gruss — Graz University of Technology

Prime+Probe www.tugraz.at

53 Daniel Gruss — Graz University of Technology

Prime+Probe with Random Access www.tugraz.at

54 Daniel Gruss — Graz University of Technology

Interrupt Detection www.tugraz.at

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1,700
1,750
1,800
1,850

tap tap tap tap

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

55 Daniel Gruss — Graz University of Technology

Interrupt Detection with Fuzzy Time www.tugraz.at

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
600
700
800
900

tap tap tap tap

Runtime [s]

D
el

ta
[c

o
u

n
te

r]

56 Daniel Gruss — Graz University of Technology

Event Queue Spying www.tugraz.at

2,560 2,570 2,580 2,590 2,600 2,610 2,620 2,630 2,640
0

0.5
1

1.5
2

Runtime [ms]

D
el

ta
[m

s]

57 Daniel Gruss — Graz University of Technology

Event Queue Spying with Message Delay www.tugraz.at

2,860 2,870 2,880 2,890 2,900 2,910 2,920 2,930 2,940
0
1
2
3

Runtime [ms]

D
el

ta
[m

s]

58 Daniel Gruss — Graz University of Technology

SharedArrayBuffer www.tugraz.at

59 Daniel Gruss — Graz University of Technology

SharedArrayBuffer with Random Delay www.tugraz.at

60 Daniel Gruss — Graz University of Technology

User Experience www.tugraz.at

61 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks in JavaScript www.tugraz.at

62 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• Jumping Abstraction Layers becomes easier

• New attacks often also in JavaScript

• We need cross-layer solutions

63 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• Jumping Abstraction Layers becomes easier

• New attacks often also in JavaScript

• We need cross-layer solutions

63 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• Jumping Abstraction Layers becomes easier

• New attacks often also in JavaScript

• We need cross-layer solutions

63 Daniel Gruss — Graz University of Technology

Jumping Abstraction Layers:

Microarchitectural Attacks in JavaScript

Daniel Gruss

September 18, 2019

Graz University of Technology

64 Daniel Gruss — Graz University of Technology

