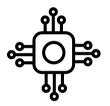
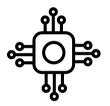


Jumping Abstraction Layers: Microarchitectural Attacks in JavaScript

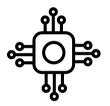
Daniel Gruss

September 18, 2019

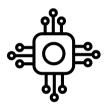

Graz University of Technology


National Geographic

side channel = obtaining meta-data and deriving secrets from it


CHANGE MY MIND

• not architectural state



- not architectural state
- not visible to software

- not architectural state
- not visible to software
- hardware specific

- not architectural state
- not visible to software
- hardware specific
- changes with generations

1337 4242

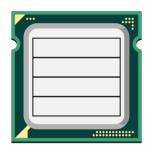
FOOD CACHE

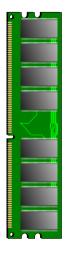
Revolutionary concept!

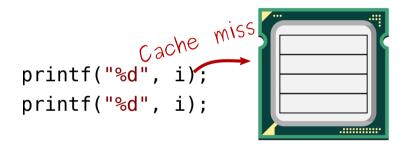
Store your food at home, never go to the grocery store during cooking.

Can store **ALL** kinds of food.

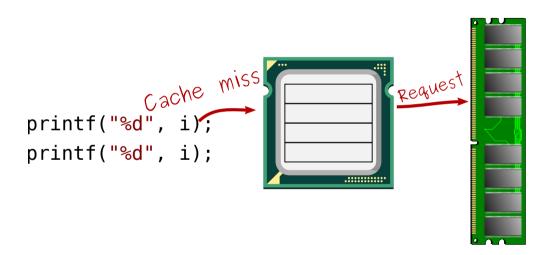
ONLY TODAY INSTEAD OF \$1,300

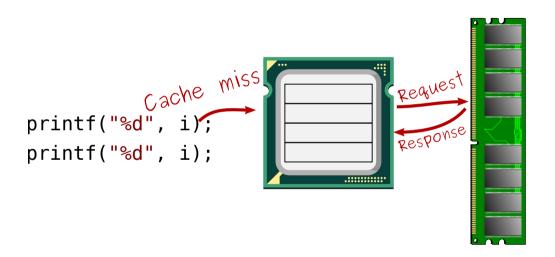


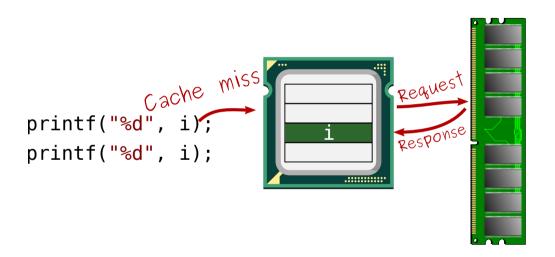

ORDER VIA PHONE: +555 12345

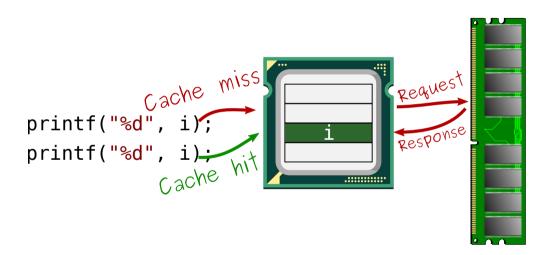


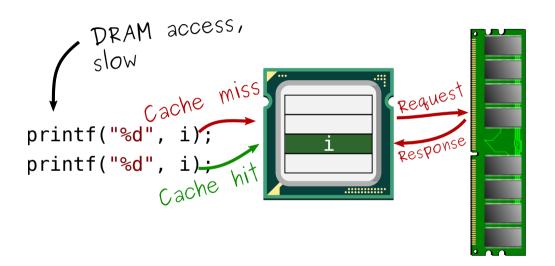
printf("%d", i); printf("%d", i);

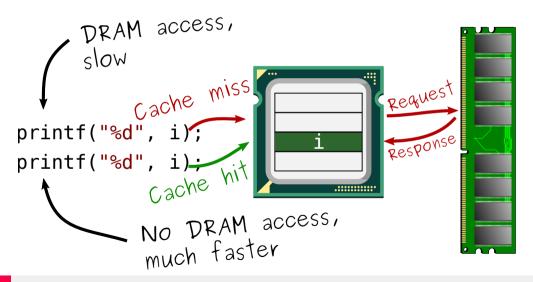


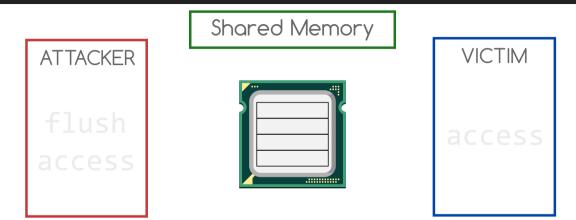


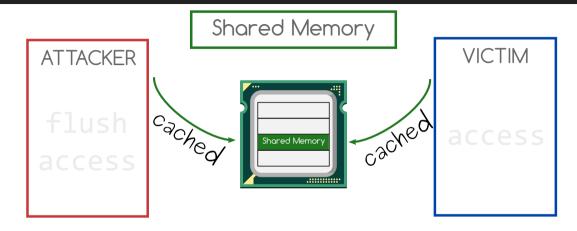


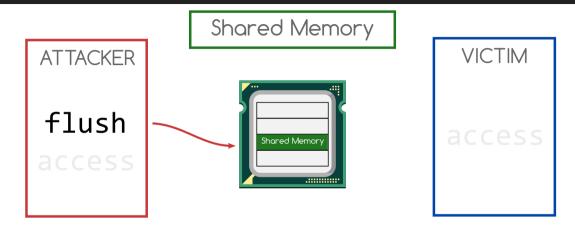


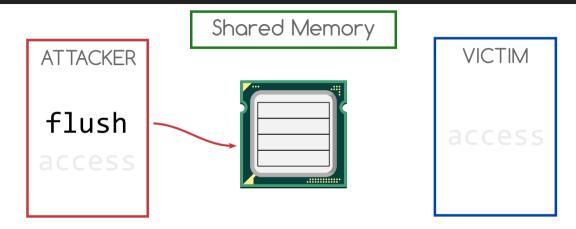


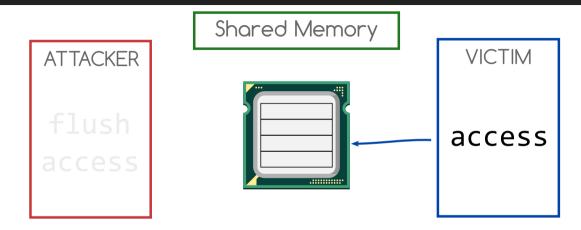


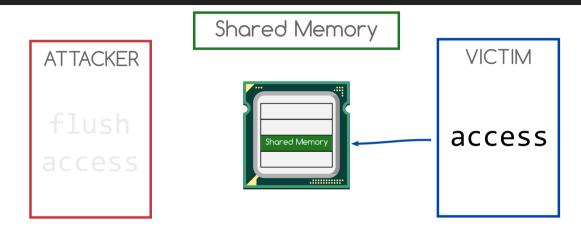

www.tugraz.at

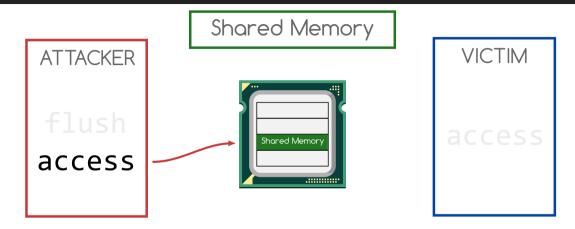


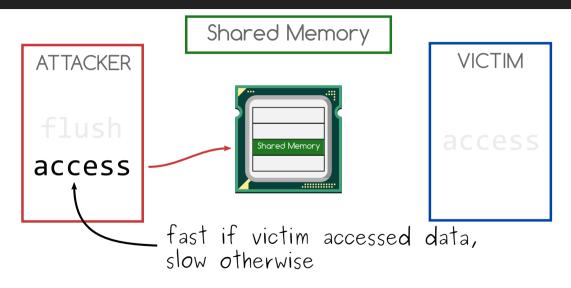












• Stone et al. (2013): HTML5 pixel perfect attacks

- Stone et al. (2013): HTML5 pixel perfect attacks
- Use high-resolution timer

- Stone et al. (2013): HTML5 pixel perfect attacks
- Use high-resolution timer
- Timing redraw events (visited, ...)

- Stone et al. (2013): HTML5 pixel perfect attacks
- Use high-resolution timer
- Timing redraw events (visited, ...)
- SVG filter timing for pixels (known since 2011)

First microarchitectural attack in JavaScript

• Oren et al. (2015): The Spy in the Sandbox

First microarchitectural attack in JavaScript

- Oren et al. (2015): The Spy in the Sandbox
- Timing of memory accesses

First microarchitectural attack in JavaScript

- Oren et al. (2015): The Spy in the Sandbox
- Timing of memory accesses
- Data cached or not

HIGH-RESOLUTION MICROARCHITECTURAL ATTACKS IN JAVASCRIPT

• We need a high-resolution timer

- We need a high-resolution timer
- Native: rdtsc

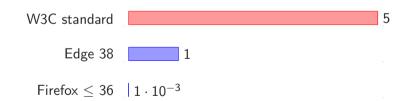
- We need a high-resolution timer
- Native: rdtsc
- JavaScript: performance.now()

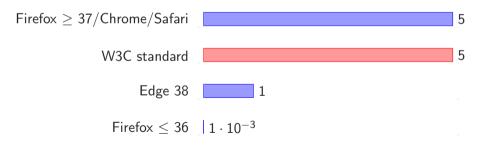
- We need a high-resolution timer
- Native: rdtsc
- JavaScript: performance.now()

performance.now()

[...] represent times as floating-point numbers with up to microsecond precision.

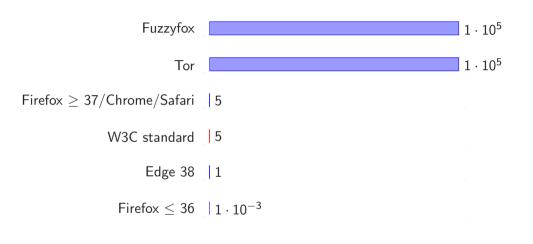
- Mozilla Developer Network


...up to microsecond precision?


Firefox ≤ 36 | $1 \cdot 10^{-3}$

...up to microsecond precision?

Firefox \leq 36 $|1 \cdot 10^{-3}$



Firefox \geq 37/Chrome/Safari | 5

W3C standard 5

Edge 38 1

Firefox ≤ 36 | $1 \cdot 10^{-3}$

• Current precision can't measure cycle differences

- Current precision can't measure cycle differences
- Two options

- Current precision can't measure cycle differences
- Two options
- Recover a higher resolution

- Current precision can't measure cycle differences
- Two options
- Recover a higher resolution
- Build our own high-resolution timer

• Measure how often we can increment a variable between two timer ticks

- Measure how often we can increment a variable between two timer ticks
- Average number of increments is the interpolation step

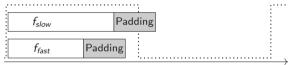
- Average number of increments is the interpolation step
- To measure with high resolution:

- Average number of increments is the interpolation step
- To measure with high resolution:
 - Start measurement at clock edge

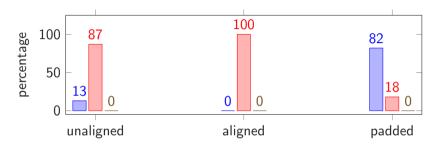
- Measure how often we can increment a variable between two timer ticks
- Average number of increments is the interpolation step
- To measure with high resolution:
 - Start measurement at clock edge
 - Increment a variable until next clock edge

- Measure how often we can increment a variable between two timer ticks
- Average number of increments is the interpolation step
- To measure with high resolution:
 - Start measurement at clock edge
 - Increment a variable until next clock edge
- Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)

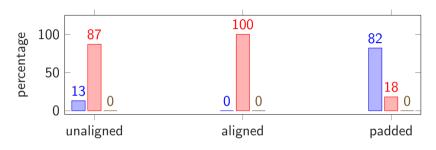
• We can get a higher resolution for a classifier only


- We can get a higher resolution for a classifier only
- Often sufficient to see which of two functions takes longer

- We can get a higher resolution for a classifier only
- Often sufficient to see which of two functions takes longer

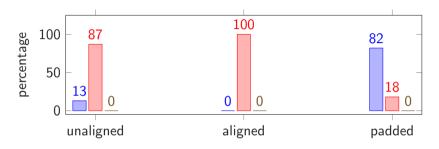


- We can get a higher resolution for a classifier only
- Often sufficient to see which of two functions takes longer


• Edge thresholding: apply padding such that the slow function crosses one more clock edge than the fast function.

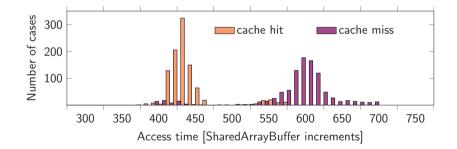
Recovering resolution - Edge thresholding

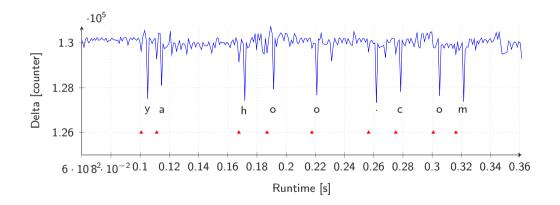
both correct f_{slow} misclassified f_{fast} misclassified


Recovering resolution - Edge thresholding

both correct f_{slow} misclassified f_{fast} misclassified

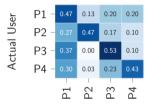
• Yields nanosecond resolution


Recovering resolution - Edge thresholding



both correct f_{slow} misclassified f_{fast} misclassified

- Yields nanosecond resolution
- Firefox/Tor (2 ns), Edge (10 ns), Chrome (15 ns)


URL Classification

amazon.com –	0.81	0.04	0.01	0.04	0.02	0.03	0.03	0.02	0.00	0.00
baidu.com -	0.00	0.84	0.03	0.05	0.02	0.00	0.03	0.01	0.00	0.02
facebook.com -	0.04	0.02	0.72	0.02	0.00	0.05	0.01	0.10	0.04	0.00
google.co.in –	0.03	0.04	0.02	0.67	0.06	0.03	0.02	0.07	0.02	0.04
google.co.jp –	0.00	0.01	0.00	0.09	0.73	0.08	0.00	0.06	0.02	0.01
google.com –	0.00	0.00	0.03	0.00	0.01	0.86	0.06	0.00	0.02	0.02
qq.com –	0.00	0.00	0.00	0.00	0.00	0.02	0.96	0.00	0.01	0.01
wikipedia.org –	0.02	0.04	0.10	0.06	0.05	0.02	0.02	0.69	0.00	0.00
yahoo.com –	0.00	0.01	0.00	0.00	0.00	0.03	0.01	0.00	0.92	0.03
youtube.com –	0.00	0.03	0.00	0.00	0.02	0.08	0.05	0.00	0.09	0.73
youtube.com - 000 0.03 0.00 0.00 0.03 0.01 0.00 0.02 0.03 youtube.com - 000 0.03 0.00 0.00 0.02 0.00 0.05 0.00 0.09 0.73 com com com com com com com com com com										
	Predicted URL									

Figure 1: Confusion matrix for URL input.

Daniel Gruss — Graz University of Technology

Actual URL

Predicted User

Figure 2: Confusion matrix for input by different users.

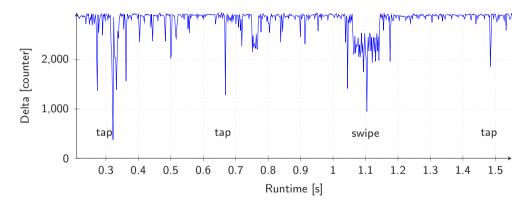


Figure 3: Keystroke timing on Google Nexus 5.

Touchscreen Interactions

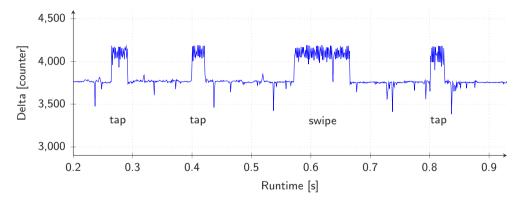


Figure 4: Keystroke timing on Xiaomi Redmi Note 3.

Cross tab attack

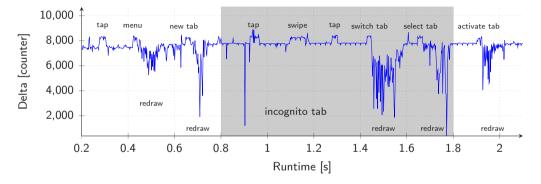


Figure 5: Chrome on Xiaomi Redmi Note 3.

PIN input

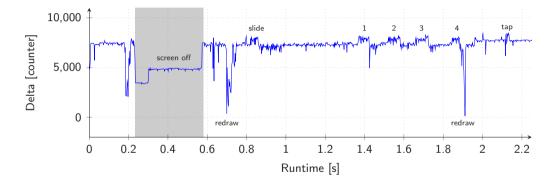


Figure 6: Firefox on Xiaomi Redmi Note 3.

Daniel Gruss — Graz University of Technology

www.tugraz.at

23

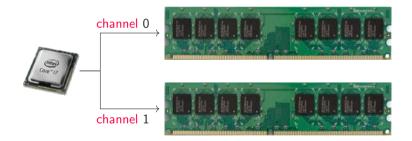
• Timers were always the main focus

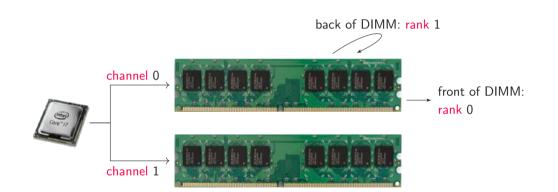
- Timers were always the main focus
- Reducing timer resolution is not sufficient

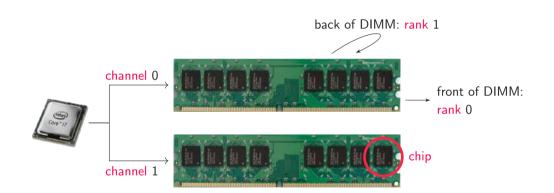
- Timers were always the main focus
- Reducing timer resolution is not sufficient
- Timers can (always) be built

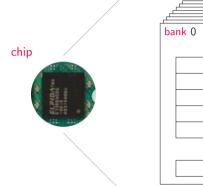
- Timers were always the main focus
- Reducing timer resolution is not sufficient
- Timers can (always) be built
- Some attacks do not require timers at all

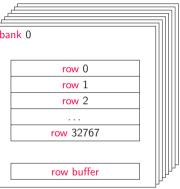
- Timers were always the main focus
- Reducing timer resolution is not sufficient
- Timers can (always) be built
- Some attacks do not require timers at all
- Important to understand requirements before designing countermeasures


SIDE CHANNELS?

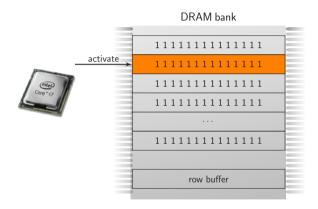

I WOULD NEED TO BREAK SOME ISOLATION

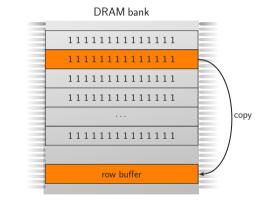


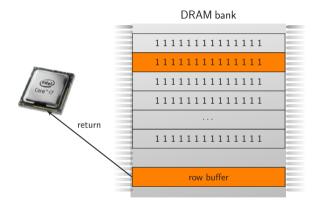



www.tugraz.at

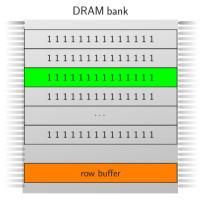
www.tugraz.at

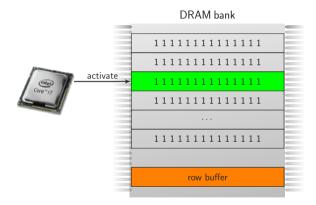


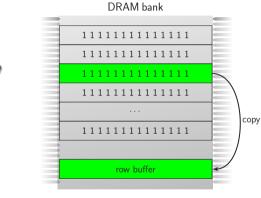

- bits in cells in rows
- access: activate row, copy to row buffer

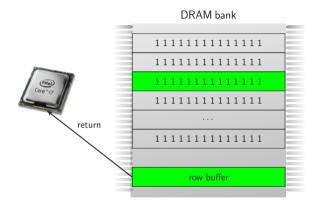

DRAW bank
11111111111111
11111111111111
11111111111111
11111111111111
1111111111111
row buffer
-

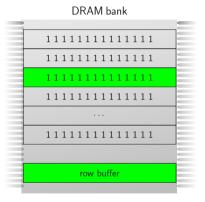
.

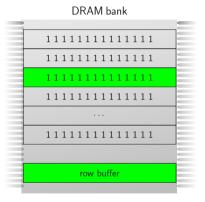


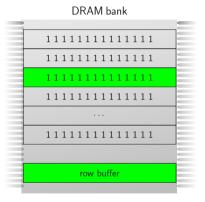


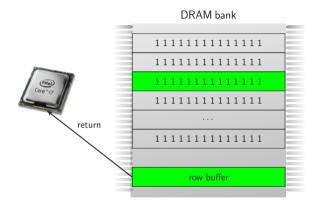


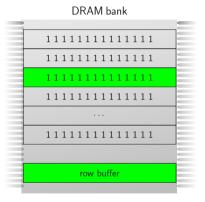


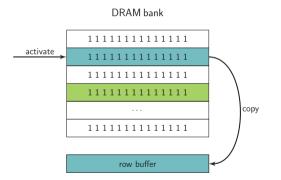


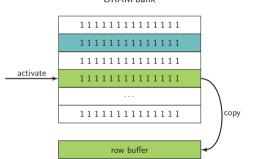


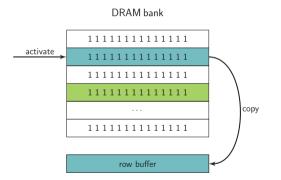


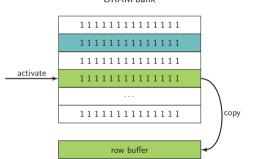


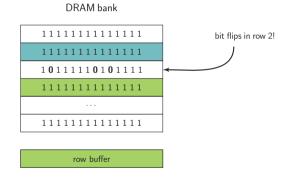




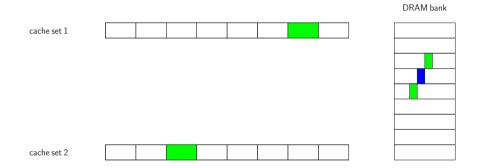


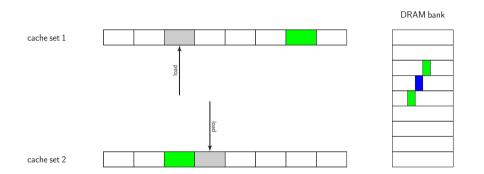



DRAM bank

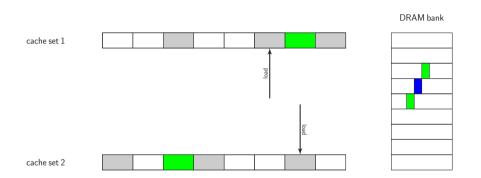


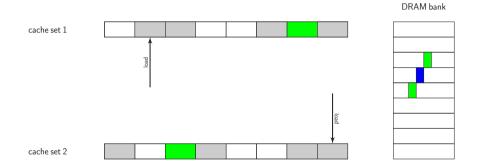
DRAM bank

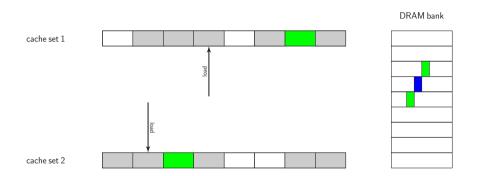


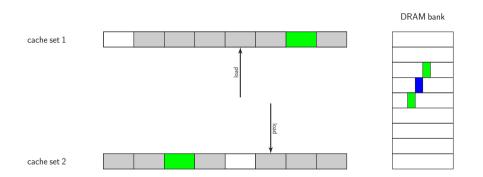


DRAM bank

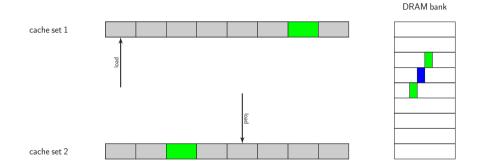


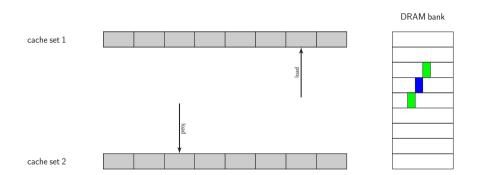


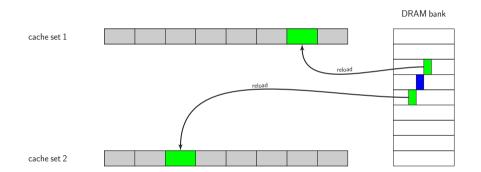

www.tugraz.at

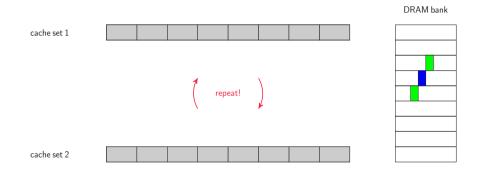


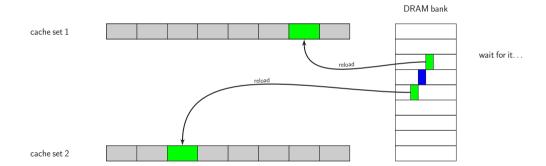
www.tugraz.at

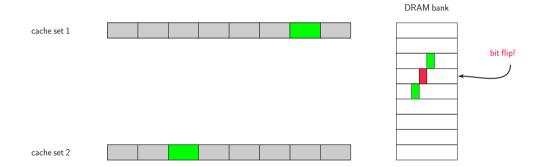


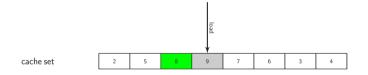


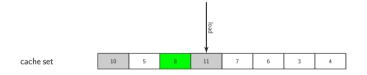











• no LRU replacement

• no LRU replacement

• no LRU replacement

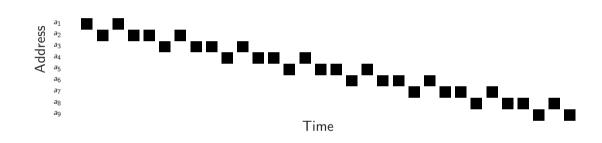
• no LRU replacement

• no LRU replacement

• no LRU replacement

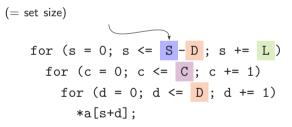

• no LRU replacement

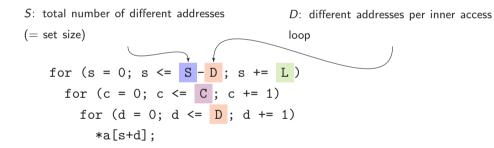
• no LRU replacement

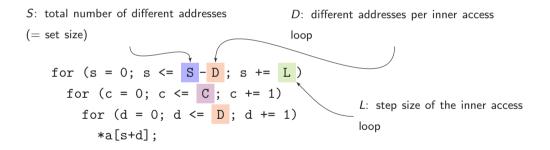

• no LRU replacement

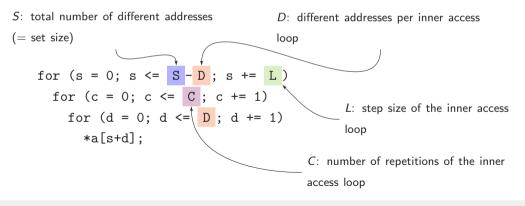
- no LRU replacement
- only 75% success rate on Haswell

- no LRU replacement
- only 75% success rate on Haswell
- $\bullet\,$ more accesses $\rightarrow\,$ higher success rate, but too slow


 \rightarrow fast and effective on Haswell: eviction rate ${>}99.97\%$


Daniel Gruss — Graz University of Technology


- represent accesses as a sequence: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- what can improve eviction rates?


- represent accesses as a sequence: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...
- what can improve eviction rates?
- \rightarrow adding more *unique* addresses
- ightarrow more accesses to the same addresses
- $\bullet\,$ indistinguishable $\rightarrow\,$ balanced number of accesses

S: total number of different addresses

• P-2-2-1-4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

•
$$P-2-2-1-4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

•
$$P - 2 - 2 - 1 - 4 \rightarrow (1, 2, (1, 2, 2, 3, 2, 3, 3, 4, 3, 4))$$

•
$$P - 2 - 2 - 1 - 4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

 $D = 2$

•
$$P - 2 - 2 - 1 - 4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

 $D = 2$
 $C = 2$

•
$$P - 2 - 2 - 1 - 4 \rightarrow 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4$$

 $L = 1$
 $D = 2$
 $C = 2$

•
$$P-2-2-1-4 \rightarrow (1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4)$$

 $L=1$
 $D=2$
 $C=2$

• $\textit{P-1-1-1-4} \rightarrow$ 1, 2, 3, 4 \rightarrow LRU eviction with set size 4

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17		
P-1-1-20	20		

¹Executed in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	
P-1-1-20	20	99.82% 🗸	

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34		

¹Executed in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
P-1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	

¹Executed in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸

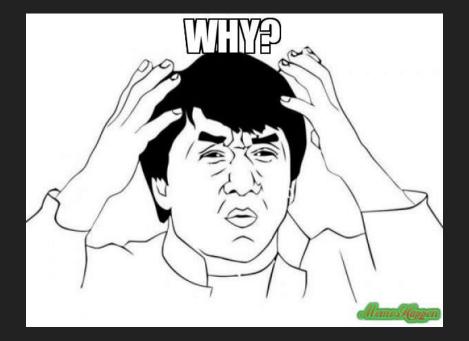
 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64		

¹Executed in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64	99.98% 🗸	

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache


strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64	99.98% 🗸	180 ns 🗸

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

strategy	# accesses	eviction rate	loop time
<i>P</i> -1-1-17	17	74.46% 🗡	307 ns 🗸
P-1-1-20	20	99.82% 🗸	934 ns 🗡
P-2-1-1-17	34	99.86% 🗸	191 ns 🗸
P-2-2-1-17	64	99.98% 🗸	180 ns 🗸

 \rightarrow more accesses, smaller execution time?

 $^{^1\}mathsf{Executed}$ in a loop, on a Haswell with a 16-way last-level cache

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss	Miss
(intended)	(intended)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss (intended)	Miss (intended)	н
--------------------	--------------------	---

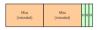
P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н		Miss
--------------------	--------------------	---	--	------

P-2-1-1-17 (34 accesses, 191ns)

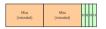


Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н		Miss	
--------------------	--------------------	---	--	------	--

P-2-1-1-17 (34 accesses, 191ns)



Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н		Miss
--------------------	--------------------	---	--	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н		Miss	
--------------------	--------------------	---	--	------	--

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	4	Miss
--------------------	--------------------	---	---	------

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	4	Miss
--------------------	--------------------	---	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	н	н	н
--------------------	--------------------	---	---	---	---	---	---	---

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	4	Miss
--------------------	--------------------	---	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	н	н	н	н	
--------------------	--------------------	---	---	---	---	---	---	---	---	--

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	H	н	ŀ	н	4 Miss
--------------------	--------------------	---	---	---	---	---	---	---	---	--------

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	I		41	н	н	н	н	н	Miss	н	
--------------------	--------------------	---	---	--	----	---	---	---	---	---	------	---	--

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss M (intended) (inter	s led)	нн	н	нн	н	н	н	Miss	н	н	нн
-----------------------------	-----------	----	---	----	---	---	---	------	---	---	----

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss
------------------------------------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	н	н	н	н	н	ŀ	-	н	н	Miss	н	•	4	н	
--------------------	--------------------	---	---	---	---	---	---	---	---	---	------	---	---	---	---	--

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	нынынын	Miss HHHH
------------------------------------	---------	-----------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	н		1	н	н	ľ	4	н	H	•	4	Miss	,	н	н	H	•	н	H	
------------------------------------	---	--	---	---	---	---	---	---	---	---	---	------	---	---	---	---	---	---	---	--

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ннннн	н Miss ННННН
------------------------------------	-------	--------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	HHHHHHH Miss	нннннн
------------------------------------	--------------	--------

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss
--------------------	--------------------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	н	•	1	ļ	н	P	н	,	4	н		н	ļ	H		Miss	H	,	I	н	н	ŀ	4	н	ŀ	4	-	
------------------------------------	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	------	---	---	---	---	---	---	---	---	---	---	---	--

Time in ns

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н
--------------------	--------------------	---	------	------	------	---

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннинини	Miss	нынынын	Miss
--------------------	--------------------	---------	------	---------	------

Time in ns

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннинини	Miss	нынынын	Miss
--------------------	--------------------	---------	------	---------	------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нининии	Miss	нннынны	Miss
--------------------	--------------------	---------	------	---------	------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	HHHHHH Miss	нининии	Miss H H
--------------------	--------------------	-------------	---------	----------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Mis (intended) (intend	d) НИНИНИНИ	Miss H H H F	HHHH Miss	ннн
--------------------------------	-------------	--------------	-----------	-----

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ныныны	Miss	нынынын	Miss HHHH
--------------------	--------------------	--------	------	---------	-----------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	нынынын	Miss H H	нинини	Miss HHHHH
------------------------------------	---------	----------	--------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss
------------------------------------	---	------	------	------	---	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) (intended)	ныныны	Miss HHHHHHH	Miss HHHHHH
------------------------------------	--------	--------------	-------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss	Miss
------------------------------------	---	------	------	------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннынынын	Miss H	нннннн	Miss НИНИН	н
--------------------	--------------------	----------	--------	--------	------------	---

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	H Miss	Miss	Miss	н	Miss	Miss	
------------------------------------	--------	------	------	---	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нннннн	4 Miss	нннннн	Miss НИНИНИ
--------------------	--------------------	--------	--------	--------	-------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	
--------------------	--------------------	---	------	------	------	---	------	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нн	чнн	ннн	Miss	н	ннн	н	4 14	н	Miss	н	нн	нн	н	н	4	Miss
--------------------	--------------------	----	-----	-----	------	---	-----	---	------	---	------	---	----	----	---	---	---	------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	
--------------------	--------------------	---	------	------	------	---	------	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) H H H H H H H	Miss HHHHHHHH Miss	ИННИНИИ Miss P
------------------------------------	--------------------	----------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	l Miss	Miss	Miss	н	Miss	Miss	Miss
------------------------------------	--------	------	------	---	------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннннннн	Міза НИНИНИ	Miss ННННННН	Miss H H
--------------------	--------------------	---------	-------------	--------------	----------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	
--------------------	--------------------	---	------	------	------	---	------	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нннннн	Miss HHHHHHHHH	Miss ННННННН	Miss H H H
--------------------	--------------------	--------	----------------	--------------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	
--------------------	--------------------	---	------	------	------	---	------	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	нинини	Miss	ннинини	Miss ННННННН	Miss HHHH
--------------------	--------------------	--------	------	---------	--------------	-----------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	
--------------------	--------------------	---	------	------	------	---	------	------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннннинн	Miss	ныныны	Miss	ныныны	Miss НИНИИ
--------------------	--------------------	---------	------	--------	------	--------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss Miss (intended) (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	н
------------------------------------	---	------	------	------	---	------	------	------	---

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) H H H H H H H	Miss HHHHHHHHH Miss	нининин Mis	s нинин
------------------------------------	---------------------	-------------	---------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	Miss	Miss	Miss	H Miss	Miss	Miss F	ł Miss
--------------------	--------------------	------	------	------	--------	------	--------	--------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended) Miss (intended) H(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)	Mass Hild Hild Hild Mass	нннннн Miss	нннн
--	--------------------------	-------------	------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	н	Miss	Miss	Miss	н	Miss	Miss	Miss	н	Miss	Miss
--------------------	--------------------	---	------	------	------	---	------	------	------	---	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss Miss (intended) H H H H H H H	Miss HHHHHHHHH Miss	нининин Mis	s нинин
------------------------------------	---------------------	-------------	---------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss
--------------------	--------------------	--------	------	------	--------	------	------	--------	------	------

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	Miss НННННННН	Miss HHHHHHHH	Miss HHHHH
--------------------	--------------------	---------------	---------------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss	н
--------------------	--------------------	--------	------	------	--------	------	------	--------	------	------	---

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	Miss НННННННН	Miss HHHHHHHH	Miss HHHHH
--------------------	--------------------	---------------	---------------	------------

Time in ns

Daniel Gruss — Graz University of Technology

Miss (intended)	Miss (intended)	Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	Miss	Miss	H Miss	
--------------------	--------------------	------	------	------	--------	------	------	--------	------	------	--------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	Miss НННННННН	Miss HHHHHHHH	Miss HHHHH
--------------------	--------------------	---------------	---------------	------------

Time in ns

Miss (intended)	Miss (intended) H Miss	Miss Miss	H Miss	Miss Miss	H Miss	Miss	Miss	H Miss	Miss	
--------------------	---------------------------	-----------	--------	-----------	--------	------	------	--------	------	--

P-2-1-1-17 (34 accesses, 191ns)

Miss (intended)	Miss (intended)	ннинини	Miss	нынымы	Miss	ныныны	Miss HHHHH
--------------------	--------------------	---------	------	--------	------	--------	------------

Time in ns

www.tugraz.at

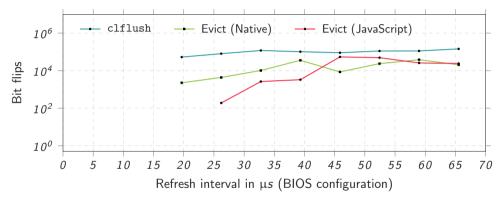


Figure 7: Number of bit flips within 15 minutes.

Test - Mozilla Firefox (on lab02)						- 0		
Test 🗙 🖨								
S file:///home/dgruss/rowhammerjs/rowhammer.html	▼ C Q Search	🛉 🚖	+	⋒	ø	111		
20: 12								
30: 9								
40: 1								
50: 0								
50: 1								
70: 2								
30: 199								
90: 76								
00: 72								
10: 231								
20: 572								
250 1	- h	04	1504	10				
Found flip (254 != 255) at array index 340021386 whe	en hammering indices 3398819	84 and 340	1564	10				
Found flip (239 != 255) at array index 340022176 whe	en hammering indices 3398819	84 and 340	1564	16				
Found flip (191 != 255) at array index 340023138 whe	en hammering indices 3398819	84 and 340	1564	16				
Found flip (254 != 255) at array index 340025146 whe	en hammering indices 3398819	84 and 340	1564	16				

OWHAMMERJS

ROOT privileges for web apps!

• Currently 11 microarchitectural and side-channel attacks in JavaScript

- Currently 11 microarchitectural and side-channel attacks in JavaScript
- Analyse requirements for every attack

- Currently 11 microarchitectural and side-channel attacks in JavaScript
- Analyse requirements for every attack
- Results in 5 categories

- Currently 11 microarchitectural and side-channel attacks in JavaScript
- Analyse requirements for every attack
- Results in 5 categories
 - Memory addresses
 - Accurate timing
 - Multithreading
 - Shared data
 - Sensor API

- Currently 11 microarchitectural and side-channel attacks in JavaScript
- Analyse requirements for every attack
- Results in 5 categories
 - Memory addresses
 - Accurate timing
 - Multithreading
 - Shared data
 - Sensor API
- Every attack is in at least one category

	Mem. addrs.	Accurate timing	Multithreading	Shared data	Sensor API
Rowhammer.js	•	•	0	0	0
Practical Memory Deduplication Attacks in Sandboxed Javascript	lacksquare		\circ	\circ	\circ
Fantastic Timers and Where to Find Them	•	•†	\bullet	\bullet	\circ
ASLR on the Line	•	•†	\bullet	\bullet	\circ
The spy in the sandbox	\bullet	•	\circ	\circ	0
Loophole	\circ	•	•	\circ	0
Pixel perfect timing attacks with HTML5	\circ	•†	\bullet	\bullet	0
The clock is still ticking	\circ	•	\bullet	\circ	0
Practical Keystroke Timing Attacks in Sandboxed JavaScript	\circ	\mathbf{O}^{\dagger}	•	\bullet	0
TouchSignatures	\circ	\circ	\circ	\circ	•
Stealing sensitive browser data with the W3C Ambient Light Sensor API	0	0	0	0	•

[†] If accurate timing is not available, it can be approximated using a combination of multithreading and shared

Prevents	Rowham-	Page Dedu-	DRAM Covert		Cache	Keystroke	Browser
Defense	mer.js	plication	Channel	ASLR	Eviction	Timing	
Buffer ASLR	0	lacksquare	0	•	•	0	0
Array preloading	•	0	•	\circ	\circ	\circ	0
Non-deterministic array	•	\bullet	lacksquare	•	•	\circ	0
Array index randomization	0	•	\circ	•	\circ	\circ	0
Low-resolution timestamp	\circ	\bullet	\circ	\circ	\circ	\bullet	lacksquare
Fuzzy time	\circ	●*	\circ	○*	\circ	•*	•*
WebWorker polyfill	\circ	0	•	•	•	•	0
Message delay	\circ	0	\circ	\circ	\circ	\bullet	lacksquare
Slow SharedArrayBuffer	0	0	•	\bullet	•	\circ	0
No SharedArrayBuffer	0	0*	•	•*	•	○*	○*
Summary	•	•	•	•	•	•	•

Prevented (●), partly prevented / more difficult (€), not prevented (○). A star (*) means the combination is necessary.

• Ideally \rightarrow browser core

- Ideally \rightarrow browser core
- Maintaining a fork is hard

- Ideally \rightarrow browser core
- Maintaining a fork is hard
- Generic solution for multiple browsers

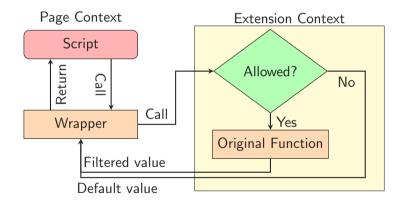
- Ideally \rightarrow browser core
- Maintaining a fork is hard
- Generic solution for multiple browsers
- Parsing JavaScript is hard

- Ideally \rightarrow browser core
- Maintaining a fork is hard
- Generic solution for multiple browsers
- Parsing JavaScript is hard
- Implementation in JavaScript \rightarrow Virtual machine layering

- Ideally \rightarrow browser core
- Maintaining a fork is hard
- Generic solution for multiple browsers
- Parsing JavaScript is hard
- Implementation in JavaScript \rightarrow Virtual machine layering
- Proof-of-concept \rightarrow browser extension

• Affects user experience? E.g., disable multithreading

- Affects user experience? E.g., disable multithreading
- Select pre-defined protection level


- Affects user experience? E.g., disable multithreading
- Select pre-defined protection level
- \bullet Protection levels \rightarrow combinations of defenses

- Affects user experience? E.g., disable multithreading
- Select pre-defined protection level
- Protection levels \rightarrow combinations of defenses
- Each defense is disabled, enabled, or prompts

www.tugraz.at

• Functions and properties are replaced by wrappers

• Functions can be re-defined in JavaScript

```
1 var original_reference = window.performance.now;
2 window.performance.now = function() { return 0; };
3
```

```
\bigotimes
```

Virtual Machine Layering

• Functions can be re-defined in JavaScript

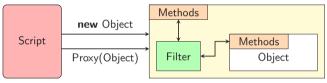
```
1 var original_reference = window.performance.now;
2 window.performance.now = function() { return 0; };
3
4 // call the new function (via function name)
5 alert(window.performance.now()); // == alert(0)
6
```


Virtual Machine Layering

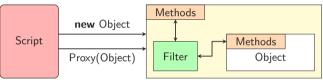
• Functions can be re-defined in JavaScript

```
1 var original_reference = window.performance.now;
2 window.performance.now = function() { return 0; };
3
4 // call the new function (via function name)
5 alert(window.performance.now()); // == alert(0)
6
7 // call the original function (only via reference)
8 alert(original_reference.call(window.performance));
```


Virtual Machine Layering


• Functions can be re-defined in JavaScript

```
1 var original_reference = window.performance.now;
2 window.performance.now = function() { return 0; };
3
4 // call the new function (via function name)
5 alert(window.performance.now()); // == alert(0)
6
7 // call the original function (only via reference)
8 alert(original_reference.call(window.performance));
```


• Properties can be replaced by accessor properties

• Objects are proxied

• Objects are proxied

• All properties and functions are handled by the original object

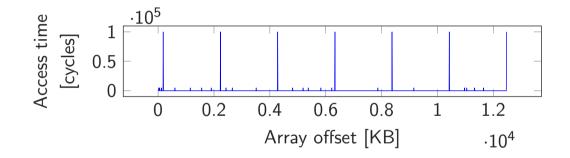
• Objects are proxied

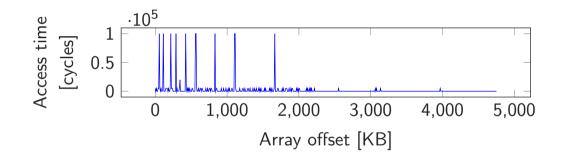
- All properties and functions are handled by the original object
- Functions and properties can be overwritten in the proxy object

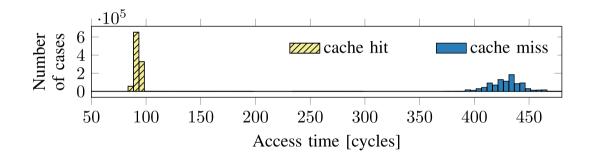
• Attacker tries to circumvent JavaScript Zero

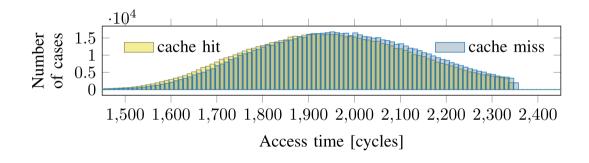
- Attacker tries to circumvent JavaScript Zero
- Self protection is necessary if implemented in JavaScript

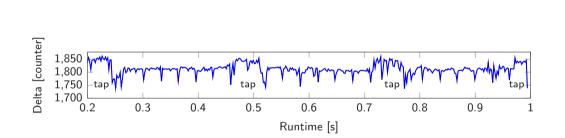
Self Protection

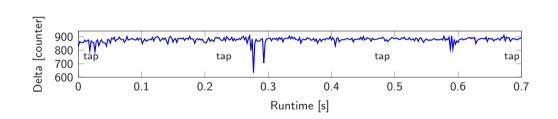


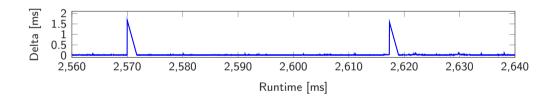

- Attacker tries to circumvent JavaScript Zero
- Self protection is necessary if implemented in JavaScript
- Use closures to hide all references to original functions
- 1 (function() {
- $_{\rm 2}$ // original is only accessible in this scope
- 3 **var** original = window.performance.now;
- 4 window.performance.now = ...
- 5 })();

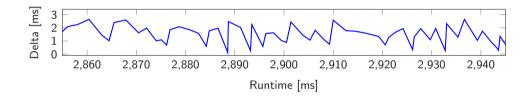

Self Protection

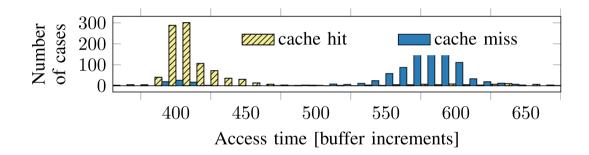


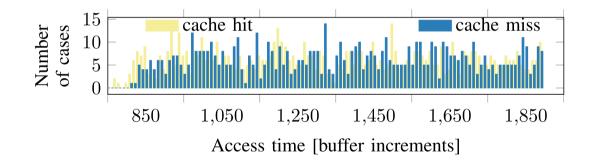

- Attacker tries to circumvent JavaScript Zero
- Self protection is necessary if implemented in JavaScript
- Use closures to hide all references to original functions
- 1 (function() {
- $_{\rm 2}$ // original is only accessible in this scope
- 3 **var** original = window.performance.now;
- 4 window.performance.now = \dots
- 5 })();
- Prevent objects from being modified: Object.freeze

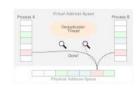


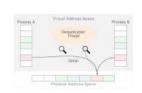


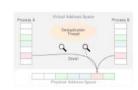


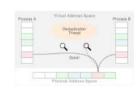


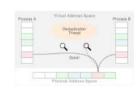


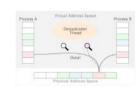



User Experience









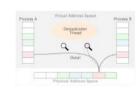


Fig. 2: Building blocks of an integrated GPU

• Jumping Abstraction Layers becomes easier

- Jumping Abstraction Layers becomes easier
- New attacks often also in JavaScript

- Jumping Abstraction Layers becomes easier
- New attacks often also in JavaScript
- We need cross-layer solutions

Jumping Abstraction Layers: Microarchitectural Attacks in JavaScript

Daniel Gruss

September 18, 2019

Graz University of Technology