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Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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• Use high-resolution timer
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• SVG filter timing for pixels (known since 2011)
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• Current precision can’t measure cycle differences

• Two options

• Recover a higher resolution

• Build our own high-resolution timer
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• Measure how often we can increment a variable between two

timer ticks

• Average number of increments is the interpolation step

• To measure with high resolution:

• Start measurement at clock edge

• Increment a variable until next clock edge

• Highly accurate: 500 ns (Firefox/Chrome), 15 µs (Tor)
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• We can get a higher resolution for a classifier only

• Often sufficient to see which of two functions takes longer

• Edge thresholding: apply padding such that the slow function crosses one more

clock edge than the fast function.
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Figure 1: Confusion matrix for URL input.
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Figure 3: Keystroke timing on Google Nexus 5.
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Figure 4: Keystroke timing on Xiaomi Redmi Note 3.
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Figure 5: Chrome on Xiaomi Redmi Note 3.
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• Important to understand requirements before designing

countermeasures
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Rowhammer www.tugraz.at

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until

the vibrations open the door you were after” – Motherboard Vice

DRAM bank
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. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer
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Hammering with cache eviction www.tugraz.at
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cache set 2

cache set 1
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Hammering with cache eviction www.tugraz.at

DRAM bank
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Replacement policy since Ivy Bridge www.tugraz.at

“LRU eviction” memory accesses: n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow
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Cache eviction strategies www.tugraz.at

A
d

d
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time

→ fast and effective on Haswell: eviction rate >99.97%
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Cache eviction strategy: New representation www.tugraz.at

• represent accesses as a sequence: 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, ...

• what can improve eviction rates?

→ adding more unique addresses

→ more accesses to the same addresses

• indistinguishable → balanced number of accesses

34 Daniel Gruss — Graz University of Technology
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Cache eviction strategy: Notation (1) www.tugraz.at

Write eviction strategies as: P-C -D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];
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Cache eviction strategy: Notation (2) www.tugraz.at

for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

• P- 2 - 2 - 1 - 4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

• P-1-1-1-4 → 1, 2, 3, 4 → LRU eviction with set size 4

L = 1

36 Daniel Gruss — Graz University of Technology
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Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17

74.46% 7 307 ns 3

P-1-1-1-20 20

99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7

307 ns 3

P-1-1-1-20 20 99.82% 3

934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34

99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3

191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64

99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3

180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology



Cache eviction strategies: Evaluation www.tugraz.at

We evaluated more than 10000 strategies...1

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

1Executed in a loop, on a Haswell with a 16-way last-level cache

37 Daniel Gruss — Graz University of Technology





Cache eviction strategies: Illustration www.tugraz.at

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
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H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss
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Evaluation on Haswell www.tugraz.at
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Figure 7: Number of bit flips within 15 minutes.
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Identify requirements www.tugraz.at

• Currently 11 microarchitectural and side-channel attacks in

JavaScript

• Analyse requirements for every attack

• Results in 5 categories

• Memory addresses

• Accurate timing

• Multithreading

• Shared data

• Sensor API

• Every attack is in at least one category
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Attacks and Categories www.tugraz.at
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Rowhammer.js

Practical Memory Deduplication Attacks in Sandboxed Javascript

Fantastic Timers and Where to Find Them †

ASLR on the Line †

The spy in the sandbox

Loophole

Pixel perfect timing attacks with HTML5 †

The clock is still ticking

Practical Keystroke Timing Attacks in Sandboxed JavaScript †

TouchSignatures

Stealing sensitive browser data with the W3C Ambient Light Sensor API

† If accurate timing is not available, it can be approximated using a combination of multithreading and shared

data.
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Defense

Prevents Rowham- Page Dedu- DRAM Covert Anti- Cache Keystroke Browser

mer.js plication Channel ASLR Eviction Timing

Buffer ASLR

Array preloading

Non-deterministic array

Array index randomization

Low-resolution timestamp

Fuzzy time * * * *

WebWorker polyfill

Message delay

Slow SharedArrayBuffer

No SharedArrayBuffer * * * *

Summary

Prevented ( ), partly prevented / more difficult ( ), not prevented ( ). A star (*)

means the combination is necessary.
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Designing the Countermeasure www.tugraz.at

• Ideally → browser core

• Maintaining a fork is hard

• Generic solution for multiple browsers

• Parsing JavaScript is hard

• Implementation in JavaScript → Virtual machine layering

• Proof-of-concept → browser extension
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User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology



User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology



User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology



User Experience www.tugraz.at

• Affects user experience? E.g., disable multithreading

• Select pre-defined protection level

• Protection levels → combinations of defenses

• Each defense is disabled, enabled, or prompts

46 Daniel Gruss — Graz University of Technology



Virtual Machine Layering www.tugraz.at

• Functions and properties are replaced by wrappers

Script

Wrapper

Extension ContextPage Context

C
all

R
et

u
rn

Call

Allowed?

Original Function

Yes

No

Default value

Filtered value
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Virtual Machine Layering www.tugraz.at

• Functions can be re-defined in JavaScript

1 var o r i g i n a l r e f e r e n c e = window . p e r f o r m a n c e . now ;

2 window . p e r f o r m a n c e . now = f u n c t i o n ( ) { r e t u r n 0 ; } ;

3

4 // call the new function (via function name)

5 a l e r t ( window . p e r f o r m a n c e . now ( ) ) ; // == alert(0)

6

7 // call the original function (only via reference)

8 a l e r t ( o r i g i n a l r e f e r e n c e . c a l l ( window . p e r f o r m a n c e ) ) ;

• Properties can be replaced by accessor properties
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• Objects are proxied

Script

Methods

Object

Methods

Filter

new Object

Proxy(Object)

• All properties and functions are handled by the original object

• Functions and properties can be overwritten in the proxy object
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Self Protection www.tugraz.at

• Attacker tries to circumvent JavaScript Zero

• Self protection is necessary if implemented in JavaScript

• Use closures to hide all references to original functions

1 ( f u n c t i o n ( ) {
2 // original is only accessible in this scope

3 var o r i g i n a l = window . p e r f o r m a n c e . now ;

4 window . p e r f o r m a n c e . now = . . .

5 }) ( ) ;

• Prevent objects from being modified: Object.freeze
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Page Border Detection with Random Access www.tugraz.at
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Prime+Probe with Random Access www.tugraz.at
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Interrupt Detection with Fuzzy Time www.tugraz.at
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Event Queue Spying www.tugraz.at
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Event Queue Spying with Message Delay www.tugraz.at
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SharedArrayBuffer www.tugraz.at
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SharedArrayBuffer with Random Delay www.tugraz.at
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User Experience www.tugraz.at
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Conclusion www.tugraz.at

• Jumping Abstraction Layers becomes easier

• New attacks often also in JavaScript

• We need cross-layer solutions
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