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• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology



SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold

and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology



SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE.

Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology



SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology



Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...1

1M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...processed with a simple moving average...2

2M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent3

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

3M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard. Malware Guard Extension: Using

SGX to Conceal Cache Attacks. In: DIMVA. 2017.
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• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system
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1337 4242

Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower
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Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect
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Microarchitectural Observer Effect www.tugraz.at

device under test = measurement device

• measuring time takes some time

• limits the resolution

• measuring cache hits/misses manipulates the cache state

• virtually all measurements are destructive

14 Daniel Gruss — Graz University of Technology



Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall
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Measuring Processor Operations



Timing Measurements www.tugraz.at

• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]
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What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

17 Daniel Gruss — Graz University of Technology





Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.
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Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!
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Timer www.tugraz.at

• We can build our own timer [Lip+16; Sch+17]

• Start a thread that continuously increments a global variable

• The global variable is our timestamp
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Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3 1 t imestamp = r d t s c ( ) ;
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CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3 1 whi le (1 ) {
2 t imestamp++;

3 }
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CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

1 mov &timestamp , %rcx

2 1 : i n c l (% rcx )

3 jmp 1b
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Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

1 mov &timestamp , %rcx

2 1 : i n c %rax

3 mov %rax , (% rcx )

4 jmp 1b
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Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret
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Cache Template Attack Demo



Cache Template4 www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

4D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks: Automating Attacks on Inclusive

Last-Level Caches. In: USENIX Security Symposium. 2015.
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• Managed by operating system

• Buffers pages in RAM for faster accesses

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems
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Observe Page Cache State www.tugraz.at

1010 1

mincore (2.04µs)

• Takes virtual memory range, returns vector

• Indicates presence of queried pages in page cache

QueryWorkingSetEx (465.91 ns)

• Takes process handle + virtual memory address, returns struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page (ShareCount)
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Reset Page Cache State www.tugraz.at

• Necessary for detecting multiple accesses

• Bottleneck of side channel

• Linux: eviction (takes 149 ms)

• Windows: VirtualUnlock if possible (takes 17.69µs)

• Windows: SetProcessWorkingSetSize + eviction (takes

4.48 ms)
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Countermeasures are Difficult www.tugraz.at

• We want the performance optimizations

• Many side-channel attacks exploit intended behavior

• Often a trade-off between security and performance

• Every optimization is potentially a side channel
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The Future www.tugraz.at

• We won’t get rid of side channels

• More optimizations → more side channels

• But: low hanging fruits will disappear
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