
Practical Keystroke Timing Attacks in
Sandboxed JavaScript (updated)

Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner,
Clémentine Maurice, and Stefan Mangard

Graz University of Technology, Austria

Abstract. Keystrokes trigger interrupts which can be detected through
software side channels to reconstruct keystroke timings. Keystroke timing
attacks use these side channels to infer typed words, passphrases, or
create user fingerprints. While keystroke timing attacks are considered
harmful, they typically require native code execution to exploit the side
channels and, thus, may not be practical in many scenarios.
In this paper, we present the first generic keystroke timing attack in
sandboxed JavaScript, targeting arbitrary other tabs, processes and pro-
grams. This violates same-origin policy, HTTPS security model, and pro-
cess isolation. Our attack is based on the interrupt-timing side channel
which has previously only been exploited using native code. In contrast
to previous attacks, we do not require the victim to run a malicious bi-
nary or interact with the malicious website. Instead, our attack runs in
a background tab, possibly in a minimized browser window, displaying a
malicious online advertisement. We show that we can observe the exact
inter-keystroke timings for a user’s PIN or password, infer URLs entered
by the user, and distinguish different users time-sharing a computer. Our
attack works on personal computers, laptops and smartphones, with dif-
ferent operating systems and browsers. As a solution against all known
JavaScript timing attacks, we propose a fine-grained permission model.

Keywords: JavaScript, side channel, interrupt, keystroke, fingerprint

1 Introduction

Keystroke timing attacks are side-channel attacks where an adversary tries to de-
termine the exact timestamps of user key presses. Keystroke timings convey sen-
sitive information that has been exploited in previous work to recover words and
sentences [39, 49]. More recently, microarchitectural attacks have been demon-
strated to obtain keystroke timings [15, 25, 32, 36] in native code. In particular,
the interrupt-timing side channel leaks highly accurate keystroke timings if an
adversary has access to a cycle-accurate timing source [36].

JavaScript is the most widely used scripting language and supported by vir-
tually any browser today. It is commonly used to create interactive website
elements and enrich the user interface. However, it does not provide access to
native instructions, files, or system services. Still, the ability to execute arbitrary



2 Moritz Lipp et al.

code in the JavaScript sandbox inside a website can also be exploited to perform
attacks on website visitors, e.g., timing attacks [12].

JavaScript-based timing attacks were first presented by Felten et al. [12],
showing that access times to website elements are lower if a website has recently
been visited. Besides attacks on the browser history [12, 21, 46], there have also
been more fine-grained attacks recovering information on the user or other web-
sites visited by the user [8,16,22,40,41]. Vila and Köpf [43] showed that shared
event loops in Google Chrome leak timing information on other browser tabs
that share worker processes responsible for rendering or I/O.

Previous work has shown that timing side channels which are introduced
on the hardware level or the operating system level, can be exploited from
JavaScript. Gruss et al. [14] demonstrated page deduplication attacks, Oren et al.
[30] demonstrated cache attacks to infer mouse movements and network activity,
and Booth [6] fingerprinted websites based on CPU utilization. Gras et al. [13]
showed that accurate timing information in JavaScript can be exploited to de-
feat address-space layout randomization. Schwarz et al. [37] presented a DRAM
timing covert channel in JavaScript.

In this paper, we present the first generic keystroke timing attack in sand-
boxed JavaScript. Our attack is based on the interrupt-timing side channel which
has previously only been exploited using native code. We show that this side
channel can be exploited from JavaScript without access to native instructions.
Based on instruction throughput variations within equally-sized time windows,
we can detect hardware interrupts, such as keyboard inputs. In contrast to pre-
vious side-channel attacks in JavaScript, our channel provides a more accurate
signal for keystrokes, allowing us to observe exact inter-keystroke timings. We
demonstrate how this information can be used to infer URLs entered by the
user, and distinguish different users time-sharing a computer.

Our attack is generic and can be applied to any system which uses interrupts
for user input. We show that our attack code works both on personal comput-
ers and laptops, as well as modern smartphones. An adversary can target other
browser tabs and browser processes, as well as arbitrary other programs, circum-
venting same-origin policy, HTTPS security model, and both operating system
and browser-level process isolation. With a low impact on the overall system
and browser performance, and a code footprint of less than 256 bytes of code,
the attack can easily be hidden in modern JavaScript frameworks and malicious
online advertisements. Our attack code utilizes new JavaScript features to run
in the background, in a background tab, or on a locked phone. Hence, we can
spy on the PIN entry used to unlock the phone.

To verify our results, we implemented our attack also in Java without ac-
cess to native instructions and only low-accuracy timers. We demonstrate that
the same timing measurements as in JavaScript can be observed in our Java
implementation with a lower noise level. Furthermore, we demonstrate that in
a cross-browser covert channel two websites can communicate through network
interrupts. These observations clearly show that the source of the throughput
differences is caused by the hardware and not specific software implementations.



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 3

Our attack works in two phases, an online phase running in JavaScript,
and an offline phase running on the adversary’s machine. In the offline phase,
we employ machine learning techniques to build accurate classifiers trained on
keystroke traces gathered in the online phase. These classifiers enable an ad-
versary to infer which website a victim opens and to fingerprint different users
time-sharing the same physical machine (e.g., a family sharing a computer).

Our results show that side-channel attacks are a fundamental problem that is
not restricted to local adversaries. We propose a fine-grained permission model
as a solution against all known JavaScript timing attacks. The browser restricts
access to specific features and prompts the user to grant permissions per domain.

Our key contributions are:
– We show the first generic keystroke timing attack in JavaScript, embedded

in a website, targeting arbitrary other tabs, processes and programs.
– We demonstrate our attack on personal computers, laptops and smartphones,

with different browsers and operating systems.
– We demonstrate that our attack can obtain the exact inter-keystroke timings

for a user’s PIN or password, infer URLs entered by the user, and distinguish
different users time-sharing a computer based on their input.

Outline The remaining paper is organized as follows. In Section 2, we provide
background. We describe our attack in Section 3. In Section 4, we present the
performance of our attack on personal computers and smartphones. We discuss
countermeasures in Section 5. Finally, we conclude in Section 6.

2 Background

2.1 Keystroke Timing Attacks

Keystroke timing attacks acquire accurate timestamps of keystrokes for input se-
quences. These keystroke timestamps depend on several factors such as bigrams,
syllables, words, keyboard layout, and typing experience [33]. An adversary can
exploit these timing characteristics to learn information about the user or the
user input. Existing attacks use machine learning to infer typed sentences or
recover passphrases [38, 39, 49]. Idrus et al. [19] showed that key press and key
release events can be used to fingerprint users.

The Linux operating system exposes information that allows compiling ac-
curate traces of keystroke timings [39, 49]. Zhang et al. [49] demonstrated that
instruction and stack pointer, interrupt statistics, and network packet statistics
can be used as side channels for keystroke timings. While Song et al. [39] demon-
strated that SSH leaks inter-keystroke timings in interactive mode, Hogye et al.
[17] showed that network latency in networks with significant traffic conceals
these inter-keystroke timings in practice. Kamran et al. [3] showed that it is
possible to detect keystrokes and classify the typed keys using Wi-Fi Signals.
Jana and Shmatikov [20] showed that CPU usage is a much more reliable side
channel for keystroke timings than the instruction pointer, or the stack pointer.
Diao et al. [11] demonstrated high-precision keystroke timing attacks based on



4 Moritz Lipp et al.

Algorithm 1: Online phase of an interrupt-timing attack

input : threshold
now ← get timestamp();
while true do

last ← now ;
now ← get timestamp();
if now − last > threshold then

report(now , diff );

0.2 0.4 0.6 0.8 1 1.2 1.4

·1010

0

1

2
·105

p a s s w o r d

Runtime [cycles]

D
el
ta

[c
y
cl
es
]

Fig. 1: Native interrupt-timing attack: The difference between consecutive times-
tamps is measured while a sentence is typed. Every keystroke leads to a signifi-
cant deviation as the measuring program is interrupted by the keyboard.

/proc/interrupts. Mehrnezhad et al. [27] used the JavaScript sensor API to
detect touch, hold, scroll, and zoom actions on mobile devices using built-in
sensors such as accelerometer and gyroscope.

Cache attacks have also been used to obtain keystroke timings. In a cache
attack, the adversary observes effects of the victim’s operation on the cache and
can then deduce what operations the victim performed. Ristenpart et al. [34]
demonstrated a keystroke timing attack using a Prime+Probe cache attack.
Gruss et al. [15] demonstrated that Flush+Reload cache attacks can be used for
keystroke timing attacks.Similarly, Pessl et al. [32] showed a keystroke timing
attack on the Firefox address bar using the DRAM as a side channel.

Recently, it was shown that keystroke interrupt timings can be obtained in
a timing attack which continuously measures differences between consecutive
rdtsc calls [36]. However, this is not possible if the adversary only controls a
website that is visited by the victim. Sandboxed JavaScript running on a website
cannot utilize any native instructions such as rdtsc.

2.2 Interrupt-timing Attacks

Interrupt-timing attacks have recently been demonstrated in native code to re-
cover keystroke timings [36]. The basic idea of interrupt-timing attacks is to
continuously acquire a high-resolution timestamp and to monitor differences be-
tween subsequent timestamps, i.e., how much time has passed since the last
measurement, as outlined in Algorithm 1. Significant differences occur when-



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 5

ever the measuring process is interrupted. The more time the operating system
consumes to handle the interrupt, the higher the measured differences are. Es-
pecially interrupts triggered by I/O devices—such as keyboards—lead to clearly
visible peaks in the measured trace. Figure 1 shows a trace from a native attack
implementation while a user typed in a sentence. The exact timestamp where the
user pressed a key is clearly visible and can be distinguished from other events.
However, the trace does not only contain keyboard interrupts and, thus, allows
spying on user input but also on every other event that causes one or more in-
terrupts, e.g., network traffic or redraw events. An adversary can filter relevant
peaks by means of post-processing algorithms to monitor entered keystrokes.

2.3 Timing Attacks in Sandboxed JavaScript

JavaScript has evolved to be the most widely supported scripting language, no-
tably because it is supported by virtually every modern browser. With highly-
optimized just-in-time compilation, modern JavaScript engines deliver a per-
formance that can compete with native code implementations. The timestamp
counter provides a cycle-accurate timestamp to user programs in native code,
but it is not accessible from JavaScript. Instead, JavaScript provides the High
Resolution Time API [45] (performance.now) for sub-millisecond timestamps.

Based on this timing interface, various attacks have been demonstrated. Van
Goethem et al. [41] were able to extract private data from users by measuring the
differences in the execution time from cross-origin resources. Stone [40] showed
that the optimization in SVG filters introduced timing side channels. He showed
that this side channel can be used to extract pixel information from iframes.
Booth [6] fingerprinted websites based on CPU utilization—interfering with the
execution time of a benchmark function—when loading and rendering the page.

Gruss et al. [14] showed that page deduplication timing attacks can be per-
formed in JavaScript to determine which websites the user has currently opened.
Oren et al. [30] showed that it is possible to mount cache attacks in JavaScript.
They demonstrated how to perform Prime+Probe attacks in the browser to
build cache covert channels but also to spy on the user’s mouse movements and
network activity through the cache. This attack caused all major browsers to
decrease the resolution of the performance.now method [1, 7, 10]. The W3C
standard now recommends a resolution of 5 µs while the Tor project reduced
the resolution in the Tor browser to a more conservative value of 100 ms [28].
Gras et al. [13] showed that accurate timing information in JavaScript can be ex-
ploited to defeat address-space layout randomization. Vila and Köpf [43] showed
that shared event loops in Google Chrome leak timing information about other
browser tabs sharing worker processes for rendering and I/O operations. They
exploit this side channel to identify web pages, to build a covert communication
channel, and to infer inter-keystroke timings.

Recently, several works investigated timing primitives in JavaScript that al-
low recovering highly accurate timestamps [13,24,37]. We use these timing prim-
itives to build highly accurate keystroke timing attacks in sandboxed JavaScript.



6 Moritz Lipp et al.

3 Sandboxed Keystroke Timing Attacks without
High-resolution Timers

Our attack follows the same idea as interrupt-timing attacks in native code [36].
It consists of an online phase where timing traces are acquired on a victim
machine and an offline phase for post-processing and evaluation.

Online phase. In the online phase of our attack, we run an interrupt-timing
attack in sandboxed JavaScript. Interrupt-timing attacks have only minimal re-
quirements, most importantly access to the x86 rdtsc instruction [36]. Con-
sequently, keystroke interrupt-timing attacks have only been demonstrated in
native code. We face several challenges to perform keystroke interrupt-timing
attacks from remote websites, as JavaScript can neither execute this instruction
nor run endless loops on websites.

There is no high-resolution timestamp available in JavaScript, as the resolu-
tion of performance.now is limited to 5 µs to mitigate side-channel attacks [45].
Therefore, we implement a counter to simulate a monotonic clock by constantly
incrementing a value [13,24,37,47]. The number of increments, i.e., the instruc-
tion throughput, is proportional to the time the counter function is scheduled.
Thus, any interrupt reduces the instruction throughput and, therefore, leads to
a lower number of increments within a fixed time frame. Consequently, we can
read the counter value at fixed time intervals and deduce from the number of
increments since the last interval whether the counter function was interrupted.

As JavaScript is based on a single-threaded event loop, browsers usually do
not allow websites to use endless loops and inform the user when detecting such
a construct. The usual solution is to either use setTimeout or setInterval

to constantly trigger execution of the loop body after a specified number of
milliseconds have passed. However, these functions enforce a minimum pause
of 4 ms before scheduling the same code again, yielding a resolution that is
significantly lower than the resolution of performance.now.

To work around this limitation, we introduce a new variant of previously
published timing primitives [13, 24, 37] called cooperative endless-loop slicing.
The idea is to slice the endless loop into smaller finite loops where every loop
slice has an execution time of approximately 4 ms. Before running this loop, we
schedule the next loop slice using setTimeout with a timeout of 4 ms. Thus,
in the optimal case, the next slice of the endless loop is executed immediately
after the current slice, giving the impression of an actual endless loop. However,
as higher priority events, such as user inputs, can still be processed between
the loop slices, the browser is responsive and will not stop the endless loop.
Algorithm 2 illustrates how we use this construct to continuously schedule our
counter to obtain continuous timing traces.

The instruction throughput per loop slice, i.e., the counter increments, varies
depending on how often and how long the thread was interrupted during this
loop slice. Within one loop slice, we achieve on average 72 764 increments of the
counter, resulting in a resolution of approximately 69 ns (σ = 3 ns, n = 4000) on
an Intel i5-6200U. This resolution is three orders of magnitude higher than the



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 7

Algorithm 2: Interrupt-timing attack implemented in JavaScript

Function measure time(id):
setTimeout(measure time, 0, id + 1);
counter ← 0;
begin ← window.performance.now();
while (window.performance.now() - begin) < 5 do

counter ← counter + 1;
publish(id, counter);

0.1 0.15 0.2 0.25 0.3 0.35

1.26

1.28

1.3

·105

y a h o o . c o m

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 2: Interrupt-timing attack in JavaScript: The lower peaks indicate that the
measured script has been interrupted, allowing to infer single keystrokes.

result of Vila and Köpf [43] who achieved a resolution of only 25 µs to 100 µs.
On ARM, we achieve on average 5038 increments on the Google Nexus 5 and
17 454 increments on the OnePlus 3T, yielding a resolution of 994 ns (σ = 55 ns,
n = 4000) and 287 ns (σ = 4 ns, n = 4000) respectively.

A further limitation of JavaScript is that once the user switches the tab or
minimizes the browser, the default minimum timeout value of 4 ms is reduced to
1000 ms. Increasing the loop slices to 1000 ms is not practical since it would make
the browser unresponsive again. In order to circumvent this issue, we utilize the
Web Worker API which explicitly allows JavaScript code to be executed in the
background [44]. We discovered that the minimum timeout is not reduced for
web workers and we can still measure interrupt timings with a high frequency.
This allows us to monitor keystrokes when the victim is visiting a different page
or even a different application.

Figure 2 shows a measured trace while a user typed the URL yahoo.com into
the browser bar. If no interrupt occurs, the counter variable has been incremented
for the full time window of 4 ms, defining the baseline. If an interrupt disrupts
the measuring JavaScript, the counter variable is not incremented as often in the
same time window, yielding to downward-facing peaks. Thus, the typed letters
leave clear marks in the measured trace, which allows inferring single keystrokes.

Offline phase. In the offline phase of the attack, the measurements gathered from
the online phase are processed and analyzed. Over time, an adversary can gather
thousands of traces in order to learn about the individual typing behavior of the
victim or to derive an entered passphrase or PIN code. Depending on the goal of



8 Moritz Lipp et al.

the adversary, different methods to evaluate the gathered data can be applied.
In order to detect single keystrokes in a measured trace, we filter the measured
trace in order to reduce noise and to deduce threshold values for keystrokes by
manually inspecting one recorded trace of the target device. Using this threshold,
we can further reduce the number of points in recorded traces to a minimum and,
thus, increase the performance of further computations. We build a classifier by
calculating the correlation between our training set and the queried trace. In
order to classify entered words, we need to take into account that the points in
time where a character has been entered can vary in time in our trace. Therefore,
we use k-nearest neighbors (k-NN) classification [4] and calculate the correlation
of the trace with every other trace in the training set using different alignments.
We chose the alignment that yields the highest correlation and decide on the class
giving the best match. While more computational expensive methods working
with time series [5, 35] to build classifiers exist [9, 23, 48], we show that the
features of the recorded measurements are strong enough such that also simpler
techniques allow to build an efficient and accurate classifier.

4 Practical Attacks and Evaluation

In this section, we demonstrate the significant attack potential of our JavaScript
interrupt-timing attack. Our attack does not depend on any specific browser or
operating system and can therefore be performed on personal computers, laptops
and smartphones. We show that it is possible to infer which website a user has
entered into the browser’s address bar and to profile different users sharing the
same computer. Furthermore, we show that the attack can be utilized to obtain
the exact timings of every digit of the PIN that is used to unlock the phone while
the attack code is executed in the web browser running in the background.

4.1 URL Classification

In our first experiment, we demonstrate that using our JavaScript keystroke
timing attack on a personal computer in combination with machine learning
techniques, we can infer URLs that a user has entered into the address bar of
the browser. We train a classifier to successfully label measurement traces of user
input sequences for the URLs of the top 10 most visited websites [2]. For this
experiment we used an Intel i7-6700K CPU and Firefox 52.0 running on Linux.

Every single trace consists of timestamps with a corresponding counter value
(cf. Section 3) and the corresponding URL. As there are small timing variations
when the user starts typing the URL and whenever the user pressed a key, the
length of the trace as well as the position of the features, i.e., the characteristics
in the measured values describing a key stroke, within the trace varies. Thus, we
need to build our classifier in a way that overcomes those difficulties. In a prepa-
ration step, we determine the maximum trace length as well as the timestamp
resolution. The resolution can be obtained from the greatest common divisor of



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 9

am
az
on
.c
om

ba
id
u.
co
m

fa
ce
bo
ok
.c
om

go
og
le
.c
o.
in

go
og
le
.c
o.
jp

go
og
le
.c
om

qq
.c
om

w
ik
ip
ed
ia
.o
rg

ya
ho
o.
co
m

yo
ut
ub
e.
co
m

youtube.com

yahoo.com

wikipedia.org

qq.com

google.com

google.co.jp

google.co.in

facebook.com

baidu.com

amazon.com

0.00 0.03 0.00 0.00 0.02 0.08 0.05 0.00 0.09 0.73

0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.92 0.03

0.02 0.04 0.10 0.06 0.05 0.02 0.02 0.69 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.02 0.96 0.00 0.01 0.01

0.00 0.00 0.03 0.00 0.01 0.86 0.06 0.00 0.02 0.02

0.00 0.01 0.00 0.09 0.73 0.08 0.00 0.06 0.02 0.01

0.03 0.04 0.02 0.67 0.06 0.03 0.02 0.07 0.02 0.04

0.04 0.02 0.72 0.02 0.00 0.05 0.01 0.10 0.04 0.00

0.00 0.84 0.03 0.05 0.02 0.00 0.03 0.01 0.00 0.02

0.81 0.04 0.01 0.04 0.02 0.03 0.03 0.02 0.00 0.00

Predicted URL

A
ct
u
a
l
U
R
L

Fig. 3: Confusion matrix for URL input. The user input can be correctly pre-
dicted with a probability of 67 % in the worst case and 96 % in the best case.
The probability of random guessing is 10 %.

all measured timestamps of all samples. Finally, we create a linear interpolation
of every sample based on the actual resolution.

The classifier assigns a class label to an unlabeled trace where each class
corresponds to one URL that we train our classifier with. In order to classify
a new trace, we compute the correlation of the new trace with a fixed number
of randomly chosen samples for every class. As the timestamps where the user
started entering the URL vary, we need to compute the correlation of two traces
for different alignments. Thus, we shift one trace within a fixed time window
back and forth in order to find an alignment where the correlation reaches its
maximum. The average of the five highest correlations for each class decides
which class the trace belongs to, i.e., we choose the highest average correlation.

We evaluate our classifier by using k-fold cross-validation. We first randomly
draw 20 samples as training set from our collected 100 measurements from every
class. We then test the classifier on a randomly drawn set of the remaining 800
samples (80 per class), the test set. We cross-validate our classifier by performing
this evaluation multiple times with randomly selected training sets.

Figure 3 shows the confusion matrix. Every cell shows the probability that
the classifier labels a sample of a class specified by the row into a certain class
specified by the column. We can clearly see that for every domain the classifier
proposes the correct class with a higher probability than an incorrect one, and a
significantly higher probability than random guessing (10 %). The identification



10 Moritz Lipp et al.

P
1

P
2

P
3

P
4

P4

P3

P2

P1

0.30 0.03 0.23 0.43

0.37 0.00 0.53 0.10

0.27 0.47 0.17 0.10

0.47 0.13 0.20 0.20

Predicted User

A
ct
u
a
l
U
se
r

Fig. 4: Confusion matrix for input by different users. The user can be correctly
predicted with a probability of 43 % in the worst case and 53 % in the best case.
The probability of random guessing is 25 %.

Table 1: Mobile test devices.

Device SoC Keystrokes Screen lock
Google Nexus 5 Qualcomm MSM8974 Snapdragon 800 3 -
Xiaomi Redmi Note 3 Mediatek MT6795 Helio X10 3 3
Homtom HT3 MediaTek MTK6580 3 3
Samsung Galaxy S6 Samsung Exynos 7420 - 3
OnePlus One Qualcomm MSM8974AC Snapdragon 801 3 3
OnePlus 3T Qualcomm MSM8996 Snapdragon 821 - -

rate of qq.com in comparison with other domains is also very high as the domain
contains only a small number of characters to be typed. The overall identification
rate of our classifier is 81.75 %.

4.2 User Classification

As a second experiment, we evaluate whether it is possible to distinguish differ-
ent users in order to determine who is actually sitting in front of the personal
computer. In order to do so, we have collected only 5 traces of the input of the
top 10 most visited websites [2] of 4 different persons to train the classifier. The
results with 2 training set and 3 test set traces for each user are illustrated as
a confusion matrix in Figure 4. While it is much harder to determine the user
responsible for the given trace, our classifier is with an overall identification rate
of 47.5 % still better than random guessing.

4.3 Touchscreen Interactions

In our third experiment we show that interrupt-timing attacks also work on
modern smartphones and on different web browsers. Although battery saving
techniques should make attacks harder, the attack can still be applied if the
measuring program is executed in a different tab or if the browser app is running
in background. Furthermore, we show that the attack can be used to detect when
the screen is locked and unlocked.



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 11

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

2,000

3,000

4,000

tap tap swipe tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 5: Keystroke timing attack running in a native app on the Google Nexus 5.

Mobile phones usually use a soft-keyboard that is displayed on the screen.
Every tap on the screen causes a redraw event that is clearly visible in the
measured trace, making it easier to detect when a user touches the screen. While
the redraw event is sufficient to monitor taps on the keyboard, we want to be
able to identify any tap on the device, whether it causes a redraw event or
not. Therefore, our test website implemented a custom touch area imitating a
PIN pad.This touch area does neither register any events nor does it change its
appearance. Thus, a touch onto this PIN pad should not issue any event at all,
eliminating all events from the trace that are not caused by the touch interrupt
itself. We provide the code for this experiment online.1

To cross-check whether we actually observe hardware events and not some
browser-internal events, we implemented the same interrupt-detection algorithm
in a native Android app. To achieve comparable results for the recorded traces,
we reduced the timer resolution to 5 µs in the same way as Firefox and Chrome.

For our experiments, we used a Google Nexus 5 with a Qualcomm MSM8974
Snapdragon 800 SoC running Android 6.0.1 with Chrome 44.0.2403.133 and
Firefox 54.0a1. Our second testing device is a Xiaomi Redmi Note 3 with a
Mediatek MT6795 Helio X10 running Android 5.0.2 with Chrome 57.0.2987.132
and Firefox 52.0.2. In addition, we used all the device listed in Table 1 to record
traces using the JavaScript implementation for visual inspection. Table 1 also
shows whether we could detect keystrokes and screen locks without machine
learning just by visual inspection.

Keystroke detection. Figure 5 shows the keystroke timing attack in a native
Android app on a Google Nexus 5 where a user tapped the screen twice, before
swiping once and tapping it again. The individual interrupts, caused by tapping
on the phone, can easily be identified by the two following peaks representing
the touch and release event. If the user swipes over the screen, many interrupts
are triggered, one for every coordinate change. This results in many visible peaks
and, thus, swipes and taps can be distinguished.

Our JavaScript implementation of the keystroke timing attack runs success-
fully in Chrome and allows distinguishing taps from swipes as illustrated in Fig-
ure 6. While in contrast to the native implementation, the measurements in

1 https://github.com/IAIK/interruptjs



12 Moritz Lipp et al.

0.4 0.6 0.8 1 1.2 1.4
0

1,000

2,000

3,000

tap tap swipe tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 6: Keystroke timing attack running in Chrome on the Google Nexus 5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
6,500

7,000

7,500

8,000

8,500

tap tap swipe tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 7: Keystroke timing attack running in Chrome on the Xiaomi Redmi Note
3. The peaks face upwards instead of downwards as with other devices.

JavaScript contain much more noise, the exact tap timings can easily be ex-
tracted and allow further, more sophisticated attacks.

Figure 7 shows the same trace of two taps, one swipe and one additional
tap on the Xiaomi Redmi Note 3. Surprisingly, the peaks caused by the inter-
rupts face upwards instead of downwards as one might expect. We observed that
the Xiaomi Redmi Note 3 increases the CPU frequency whenever the screen is
touched. Consequently, although the interrupt will consume some CPU time,
the counter as described in Section 3 can be incremented more often due to the
significantly higher CPU frequency. We have verified this behavior by running a
benchmark suite on the Xiaomi Redmi Note 3. The benchmark suite has been up
to 30 % faster, when swiping over the screen while the benchmark is executed.
While this feature may be useful to handle touch interrupts more efficiently and
to appear more responsive, it also opens a new side channel and allows detecting
tap and screen events easily. We also verify the same behavior in our native Java
implementation with higher peaks which allows detecting tap and swipe events
even more reliably. On the OnePlus 3T we were not able to detect keystrokes
at all. We suspect that this is due to the big.LITTLE architecture, which moves
the CPU-intensive browser task to a high-performance ARM core, while the in-
terrupts are handled by smaller cores. Thus, the browser is not interrupted if a
hardware interrupt occurs.

Spying on other applications and PIN unlock. While the attack of Vila and
Köpf [43] is limited to spy on tabs or pop-ups opened by the adversary, our at-
tack is not restricted and can be used to monitor any other application running



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 13

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5,000

10,000
tap menu

redraw

new tab

redraw

tap swipe tap switch tab

redraw

select tab

redraw

activate tab

redraw
incognito tab

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 8: Keystroke timing attack running while switching to a different tab in the
Chrome browser on the Xiaomi Redmi Note 3.

on the system. Indeed, the attack of Vila and Köpf relies on the timing differ-
ence caused by the event loop of the render process, thus only tabs or windows
sharing the same rendering process can be attacked. In contrast, our interrupt-
timing attack is not restricted to the browser and its child processes as it allows
monitoring every other event triggering interrupts on the target device. More-
over, our attack also provides a much higher resolution, which allows detecting
interrupts triggered by user input more reliably.

Figure 8 shows a trace of a victim opening a website running the measurement
code in Chrome on the Xiaomi Redmi Note 3. In addition, the victim opens a tab
in incognito mode and taps the screen multiple times. We can even detect these
user interactions in different tabs as the attack takes advantage of web workers
which are not throttled when running in the background. Thus, the incognito
mode offers no protection against our attack.

In the next scenario, we show that our attack is not restricted to processes of
the browser application but can be used to spy on every other application as well.
The victim visits the website running the measuring application in the Firefox
app on the Xiaomi Redmi Note 3 and continues using the phone, switching to
other tabs or applications, and later locks the screen. After some time the victim
turns on the screen again, where the lock screen prompts the victim for the PIN
code. Finally, the victim enters the PIN code, unlocking the phone. Figure 9
shows a trace of this scenario. We can clearly observe when the screen is turned
off as the CPU frequency is lowered to save battery, as well as when the screen
is turned on again. Furthermore, we can extract the exact timestamps where the
victim entered the 4-digit PIN and the subsequent redraw event.

4.4 Covert Channel

In our fourth experiment, we implement a covert communication channel based
on our attack. This allows us to estimate the maximum number of interrupts we
can detect. We establish a unidirectional communication with one sender and
one receiver. The receiver simply mounts the interrupt-timing attack to sense
any interrupts. The sender has to issue interrupts to send a ‘1’-bit or idle to send
a ‘0’-bit. There is no JavaScript API which allows to explicitly issue interrupts,
thus we require an API that implicitly issues an interrupt.



14 Moritz Lipp et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5,000

10,000

screen off

redraw

slide 1 2 3 4

redraw

tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 9: Keystroke timing attack running in the Firefox browser on the Xiaomi
Redmi Note 3. While the user locked the screen, the application still detects
keystrokes as long as it is executed on the last used tab. The application extracts
the exact inter-keystroke timings for the PIN input used to unlock the device.

We use XMLHttpRequests to fetch a network resource from an invalid URL.
Every XMLHttpRequest which cannot be served from the cache will create a
network connection and therefore issue I/O interrupts. Even if the URL cannot
be resolved, either because there is no Internet connection, or the URL is invalid,
we are able to see the I/O interrupts. Such a covert channel based on hardware
interrupts circumvents several protection mechanisms found in modern browsers.

Cross-tab channel. Using the covert channel across tabs breaks two security
mechanisms. First, the same origin policy—which prevents any communication
between scripts from different domains—does not apply anymore. Thus, scripts
can communication across domain borders. Second, due to the security model
of browsers, there is no way a HTTPS page is able to load HTTP content. For
the covert channel, this security model does not hold anymore.

Cross-browser channel. As the interrupt-timing is not limited to a process, the
covert channel circumvents policies such as proccess-per-site or process-per-tab
which prevent sites or tabs from sharing process resources. The covert channel
can even be used as a cross-browser communication channel. We tested a trans-
mission from Firefox to Chrome and achieved the same transmission rate as in
the cross-tab scenario. The communication channel can also be established with
a browser instance running in incognito mode.

In all scenarios, the receiver uses a constant sampling interval of 40 ms per
bit, resulting in a raw transmission rate of 25 bps. Thus, we are also able to spy
on 25 interrupts per second in all those scenarios which is sufficient to monitor
keystrokes of even the fastest typists [33]. To reliably transmit data over the
covert channel, we can apply the techniques proposed by Maurice et al. [26].

5 Countermeasures

5.1 A Fine-grained Permission Model for JavaScript

In order to impede and mitigate our interrupt-timing attack and other similar
side-channel attacks in JavaScript, we propose a more fine-grained permission



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 15

model for JavaScript running in web browsers. For instance, the existing per-
mission system of Firefox only allows managing the access control to a limited
number of APIs. However, as many websites do not require functionality such
as web workers. The user should be capable to allow on a per-page level such
features. If an online advertisement running potential malicious code requests
for permissions to uncommon APIs, the fine-grained permission system prevents
its further execution.

5.2 Generic Countermeasures

Myers [29] evaluated how various user-mode keylogging techniques in malware
on Windows are implemented and suggested to generate random keyboard ac-
tivity by injecting phantom keystrokes that will be intercepted by the malware.
Furthermore, Ortolani [31] analyzed the statistical properties of noise necessary
to impede the detection of real keystrokes in a noisy channel. While both do
not protect against the interrupt-timing attack, Schwarz et al. [36] published a
proof-of-concept countermeasure that aims to protect against this type of at-
tacks. The countermeasure injects a large number of fake keystrokes that propa-
gate through the kernel driver up to the user space application. We have verified
that the countermeasure successfully injects fake keystrokes that cannot be dis-
tinguished from real interrupts by our implementation. Figure 10 shows a trace
measured on the Google Nexus 5 with the countermeasure enabled. While this
countermeasure appears to prevent this attack on personal computers as well, it
remains unclear whether it closes the side channel on the Xiaomi Redmi Note 3
where the CPU gets overclocked for every touchscreen input. As the implemen-
tation of the countermeasure only supports the touchscreen of the Google Nexus
5 and the OnePlus 3T, we could not evaluate it against our attack on the Xiaomi
Redmi Note 3. Therefore, we were unable to verify whether the fake keystrokes
injected by the countermeasure also trigger the CPU overclocking and, thus, if
the countermeasure protects against this attack on devices with such a behavior.

Kohlbrenner and Shacham [24] implemented the fuzzy time concept [18,42] in
order to eliminate high-resolution timers. While this would prevent our attack in
its current implementation, we could use the experimental SharedArrayBuffers
as suggested by Schwarz et al. [37] and Gras et al. [13] in order to obtain a
resolution of up to 2 ns and, thus, to re-enable our attack.

6 Conclusion

In this paper, we presented the first JavaScript-based keystroke timing attack
which is independent of the browser and the operating system. Our attack is
based on capturing interrupt timings and can be mounted on desktop machines,
laptops as well as on smartphones. Because of its low code size of less than 256
bytes, it can be easily hidden within modern JavaScript frameworks or within
an online advertisement, remaining undetected by the victim. We demonstrated
the potential of this attack by inferring accurate timestamps of keystrokes as



16 Moritz Lipp et al.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

3,000

4,000

5,000

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Fig. 10: Measurement of the keystroke timing attack running in the Chrome
Browser on the Google Nexus 5. The red rectangles show when the user tapped
the screen. In the gray area, we enabled the countermeasure [36], making it
infeasible to distinguish real keystrokes from fake keystrokes.

well as taps and swipes on mobile devices. Based on these keystroke traces,
we built classifiers to detect which websites a user has visited and to identify
different users time-sharing a computer. Our attack is highly practical, as it
works while the browser is running in the background, allowing to spy on other
tabs and applications. As the attack is also executed when the phone is locked,
we demonstrated that we can monitor the PIN entry that is used to unlock the
phone. Finally, as a solution against our attack and other similar side-channel
attacks in JavaScript, we proposed a fine-grained permission model for browsers.

Acknowledgments

We would like to thank our anonymous reviewers for their valuable feedback.
This project has been supported by the COMET K-Project DeSSnet (grant No
862235) conducted by the Austrian Research Promotion Agency (FFG) and the
European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 681402).

References

1. Alex Christensen: Reduce resolution of performance.now. (2015), https://bugs.
webkit.org/show_bug.cgi?id=146531

2. Alexa Internet, Inc.: The top 500 sites on the web (Dec 2016), http://www.alexa.
com/topsites

3. Ali, K., Liu, A.X., Wang, W., Shahzad, M.: Keystroke recognition using wifi signals.
In: Proceedings of the 21st Annual International Conference on Mobile Computing
and Networking. MobiCom’15 (2015)

4. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician 46(3), 175–185 (1992)

5. Berndt, D.J., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time
Series. In: Proceedings of the 3rd International Conference on Knowledge Discovery
and Data Mining (1994)



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 17

6. Booth, J.M.: Not So Incognito: Exploiting Resource-Based Side Channels in
JavaScript Engines. Bachelor Thesis, Harvard School of Engineering and Applied
Sciences (2015)

7. Boris Zbarsky: Reduce resolution of performance.now. (2015), https://hg.

mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab

8. Bortz, A., Boneh, D.: Exposing private information by timing web applications.
In: WWW’07 (2007)

9. Chen, W., Chang, W.: Applying hidden Markov models to keystroke pattern anal-
ysis for password verification. In: Proceedings of the 2004 IEEE International Con-
ference on Information Reuse and Integration (2004)

10. Chromium: window.performance.now does not support sub-millisecond precision
on Windows (2015), https://bugs.chromium.org/p/chromium/issues/detail?

id=158234#c110

11. Diao, W., Liu, X., Li, Z., Zhang, K.: No Pardon for the Interruption: New Inference
Attacks on Android Through Interrupt Timing Analysis. In: S&P’16 (2016)

12. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: CCS’00 (2000)
13. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the Line: Prac-

tical Cache Attacks on the MMU. In: NDSS’17 (2017)
14. Gruss, D., Bidner, D., Mangard, S.: Practical memory deduplication attacks in

sandboxed javascript. In: ESORICS’15 (2015)
15. Gruss, D., Spreitzer, R., Mangard, S.: Cache Template Attacks: Automating At-

tacks on Inclusive Last-Level Caches. In: USENIX Security Symposium (2015)
16. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:

stealing the pie without touching the sill. In: CCS’12 (2012)
17. Hogye, M.A., Hughes, C.T., Sarfaty, J.M., Wolf, J.D.: Analysis of the Feasibility of

Keystroke Timing Attacks over SSH Connections. Tech. rep., School of Engineering
and Applied Science University of Virginia (2001)

18. Hu, W.M.: Reducing timing channels with fuzzy time. Journal of Computer Secu-
rity (1992)

19. Idrus, S., Cherrier, E., Rosenberger, C., Bours, P.: Soft Biometrics for Keystroke
Dynamics: Profiling Individuals While Typing Passwords. Computers & Security
45, 147–155 (2014)

20. Jana, S., Shmatikov, V.: Memento: Learning Secrets from Process Footprints. In:
S&P’12 (2012)

21. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-
violating information flows in javascript web applications. In: CCS’10 (2010)

22. Jia, Y., Dong, X., Liang, Z., Saxena, P.: I know where you’ve been: Geo-inference
attacks via the browser cache. IEEE Internet Computing 19(1), 44–53 (2015)

23. Kobojek, P., Saeed, K.: Application of Recurrent Neural Networks for User Veri-
fication based on Keystroke Dynamics. Journal of Telecommunications and Infor-
mation Technology (3), 80 (2016)

24. Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium (2016)

25. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: Cache
Attacks on Mobile Devices. In: USENIX Security Symposium (2016)

26. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C.A., Mangard,
S., Römer, K.: Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In: NDSS’17 (2017)

27. Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Touchsignatures: iden-
tification of user touch actions and pins based on mobile sensor data via javascript.
Journal of Information Security and Applications (2016)



18 Moritz Lipp et al.

28. Mike Perry: Bug 1517: Reduce precision of time for Javascript. (2015),
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/

?h=bug1517

29. Myers, M.: Anti-Keylogging with Random Noise. In: PoC|GTFO. vol. 0x14 (2017)
30. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the

Sandbox: Practical Cache Attacks in JavaScript and their Implications. In: CCS’15
(2015)

31. Ortolani, S.: Noisykey: Tolerating keyloggers via keystrokes hiding. In: USENIX
Workshop on Hot Topics in Security – HotSec (2012)

32. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: Exploit-
ing DRAM Addressing for Cross-CPU Attacks. In: USENIX Security Symposium
(2016)

33. Pinet, S., Ziegler, J.C., Alario, F.X.: Typing is writing: Linguistic properties mod-
ulate typing execution. Psychon Bull Rev 23(6), 1898–1906 (Apr 2016)

34. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: CCS’09
(2009)

35. Rumelhart, D.E., McClelland, J.L., PDP Research Group, C. (eds.): Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foun-
dations. MIT Press (1986)

36. Schwarz, M., Lipp, M., Gruss, D., Weiser, S., Maurice, C., Spreitzer, R., Man-
gard, S.: KeyDrown: Eliminating Software-Based Keystroke Timing Side-Channel
Attacks. In: NDSS’18 (2018), (to appear)

37. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic Timers and Where to
Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In: FC’17
(2017)

38. Simon, L., Xu, W., Anderson, R.: Don’t Interrupt Me While I Type: Inferring Text
Entered Through Gesture Typing on Android Keyboards. Proceedings on Privacy
Enhancing Technologies (2016)

39. Song, D.X., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and Timing
Attacks on SSH. In: USENIX Security Symposium (2001)

40. Stone, P.: Pixel perfect timing attacks with html5. Context Information Security
(White Paper) (2013)

41. Van Goethem, T., Joosen, W., Nikiforakis, N.: The clock is still ticking: Timing
attacks in the modern web. In: CCS’15 (2015)

42. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in Xen.
In: CCSW’11 (2011)

43. Vila, P., Köpf, B.: Loophole: Timing attacks on shared event loops in chrome. In:
USENIX Security Symposium (2017)

44. W3C: Web Workers - W3C Working Draft 24 September 2015 (2015), https:

//www.w3.org/TR/workers/

45. W3C: High Resolution Time Level 2 (2016), https://www.w3.org/TR/hr-time/
46. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you

visited last summer: Leaking browsing history via user interaction and side channel
attacks. In: S&P’11 (2011)

47. Wray, J.C.: An analysis of covert timing channels. Journal of Computer Security
1(3-4), 219–232 (1992)

48. Xi, X., Keogh, E., Shelton, C., Wei, L., Ann Ratanamahatana, C.: Fast Time Series
Classification Using Numerosity Reduction. In: Proceedings of the 23rd Interna-
tional Conference on Machine Learning (2006)



Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated) 19

49. Zhang, K., Wang, X.: Peeping Tom in the Neighborhood: Keystroke Eavesdropping
on Multi-User Systems. In: USENIX Security Symposium (2009)


	Practical Keystroke Timing Attacks in Sandboxed JavaScript (updated)

