
Hardware-Software Co-Design to Eliminate

Cache Leakage

Lukas Giner, Daniel Gruss

June 11, 2019

Graz University of Technology



Who am I? www.tugraz.at

Lukas Giner

PhD student @ Graz University of Technology

7 @redrabbyte

R lukas.giner@iaik.tugraz.at

1 Lukas Giner, Daniel Gruss — Graz University of Technology



Who am I? www.tugraz.at

Daniel Gruss

Asst. Prof. @ Graz University of Technology

7 @lavados

R daniel.gruss@iaik.tugraz.at

2 Lukas Giner, Daniel Gruss — Graz University of Technology





Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters?

→ No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key?

→ Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload?

→ No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings?

→ Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes

4 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels

lazy exception handling

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels
m

isspeculation

lazy exception handling

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels
m

isspeculation

lazy exception handling

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

Meltdown

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

Bug fixing

5 Lukas Giner, Daniel Gruss — Graz University of Technology



Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels Spectre

Meltdown

But what about these two?

5 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks,

Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown,

Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

6 Lukas Giner, Daniel Gruss — Graz University of Technology



How do caches work?



CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss

printf("%d", i);

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

printf("%d", i);

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
se

printf("%d", i);

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

DRAM access,
slow

7 Lukas Giner, Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

No DRAM acces
s,

much faster

DRAM access,
slow

7 Lukas Giner, Daniel Gruss — Graz University of Technology



Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Latency [Cycles]

N
u

m
b

er
of

A
cc

es
se

s
Cache Hits

8 Lukas Giner, Daniel Gruss — Graz University of Technology



Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Latency [Cycles]

N
u

m
b

er
of

A
cc

es
se

s
Cache Hits Cache Misses

8 Lukas Giner, Daniel Gruss — Graz University of Technology



2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

9 Lukas Giner, Daniel Gruss — Graz University of Technology



2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

9 Lukas Giner, Daniel Gruss — Graz University of Technology



2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

9 Lukas Giner, Daniel Gruss — Graz University of Technology



2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

9 Lukas Giner, Daniel Gruss — Graz University of Technology



2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy

9 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

loads data

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

fast
access

10 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space

slow
access

10 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache



ScatterCache www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..

instead of this:

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

w
ay

 0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

let’s do this:

off
se

t

idx0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

ID
F

ca
ch

e 
lin

e 
ad

dr
.

SD
ID

K
idx1

idx2

idx3

w
ay

 0

11 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..

instead of this:

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

w
ay

 0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

let’s do this:

off
se

t

idx0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

ID
F

ca
ch

e 
lin

e 
ad

dr
.

SD
ID

K
idx1

idx2

idx3

w
ay

 0

11 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..

instead of this:

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

w
ay

 0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

let’s do this:

off
se

t

idx0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

ID
F

ca
ch

e 
lin

e 
ad

dr
.

SD
ID

K
idx1

idx2

idx3

w
ay

 0

11 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Hardware www.tugraz.at

off
se

t

idx0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

ID
F

ca
ch

e 
lin

e 
ad

dr
.

SD
ID

K
idx1

idx2

idx3

w
ay

 0 • Index Derivation Function

(IDF) takes an address and

returns a cache set

• Depends on hardware key K

and optional Security

Domain ID (SDID)

• → unique combination of

cache lines for each address

12 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Hardware www.tugraz.at

off
se

t

idx0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

ID
F

ca
ch

e 
lin

e 
ad

dr
.

SD
ID

K
idx1

idx2

idx3

w
ay

 0 • Index Derivation Function

(IDF) takes an address and

returns a cache set

• Depends on hardware key K

and optional Security

Domain ID (SDID)

• → unique combination of

cache lines for each address

12 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Hardware www.tugraz.at

off
se

t

idx0

w
ay

 1

w
ay

 2

w
ay

 3

...

in
de

x
ta

g

ID
F

ca
ch

e 
lin

e 
ad

dr
.

SD
ID

K
idx1

idx2

idx3

w
ay

 0 • Index Derivation Function

(IDF) takes an address and

returns a cache set

• Depends on hardware key K

and optional Security

Domain ID (SDID)

• → unique combination of

cache lines for each address

12 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Hardware www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B

13 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Security Improvements www.tugraz.at

• Unshared memory has no shared cache lines

→ Flush+Reload, Flush+Flush and Evict+Reload are not possible

• Shared, read-only memory is like unshared memory, given OS

support. Without OS support, eviction-based attacks are hindered

• Shared, writable memory can’t be separated, eviction-based attacks

are hindered

15 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Security Improvements www.tugraz.at

• Unshared memory has no shared cache lines

→ Flush+Reload, Flush+Flush and Evict+Reload are not possible

• Shared, read-only memory is like unshared memory, given OS

support. Without OS support, eviction-based attacks are hindered

• Shared, writable memory can’t be separated, eviction-based attacks

are hindered

15 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Security Improvements www.tugraz.at

• Unshared memory has no shared cache lines

→ Flush+Reload, Flush+Flush and Evict+Reload are not possible

• Shared, read-only memory is like unshared memory, given OS

support. Without OS support, eviction-based attacks are hindered

• Shared, writable memory can’t be separated, eviction-based attacks

are hindered

15 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Security Improvements www.tugraz.at

• Unshared memory has no shared cache lines

→ Flush+Reload, Flush+Flush and Evict+Reload are not possible

• Shared, read-only memory is like unshared memory, given OS

support. Without OS support, eviction-based attacks are hindered

• Shared, writable memory can’t be separated, eviction-based attacks

are hindered

15 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Prime+Probe www.tugraz.at

• Specialized Prime+Probe variants are still possible

• But, overlap in more than 1 cache line is very unlikely

→ Eviction is now probabilistic, p = 1
nways 2

to evict

• Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ≈ 8 for standard Prime+Probe

• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe

16 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Prime+Probe www.tugraz.at

• Specialized Prime+Probe variants are still possible

• But, overlap in more than 1 cache line is very unlikely

→ Eviction is now probabilistic, p = 1
nways 2

to evict

• Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ≈ 8 for standard Prime+Probe

• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe

16 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Prime+Probe www.tugraz.at

• Specialized Prime+Probe variants are still possible

• But, overlap in more than 1 cache line is very unlikely

→ Eviction is now probabilistic, p = 1
nways 2

to evict

• Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ≈ 8 for standard Prime+Probe

• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe

16 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Prime+Probe www.tugraz.at

• Specialized Prime+Probe variants are still possible

• But, overlap in more than 1 cache line is very unlikely

→ Eviction is now probabilistic, p = 1
nways 2

to evict

• Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ≈ 8 for standard Prime+Probe

• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe

16 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Performance www.tugraz.at

• Micro benchmarks GAP, MiBench, Imbench, scimark2 on gem5 full

system simulator

• Macro benchmarks from SPEC CPU 2017 on custom cache

simulator

• Cache hit rate always at or above levels of set-associative cache

with random replacement

• Typically 2%− 4% below LRU on micro benchmarks, 0%− 2% for

SPEC

17 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Performance www.tugraz.at

• Micro benchmarks GAP, MiBench, Imbench, scimark2 on gem5 full

system simulator

• Macro benchmarks from SPEC CPU 2017 on custom cache

simulator

• Cache hit rate always at or above levels of set-associative cache

with random replacement

• Typically 2%− 4% below LRU on micro benchmarks, 0%− 2% for

SPEC

17 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Performance www.tugraz.at

• Micro benchmarks GAP, MiBench, Imbench, scimark2 on gem5 full

system simulator

• Macro benchmarks from SPEC CPU 2017 on custom cache

simulator

• Cache hit rate always at or above levels of set-associative cache

with random replacement

• Typically 2%− 4% below LRU on micro benchmarks, 0%− 2% for

SPEC

17 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Performance www.tugraz.at

• Micro benchmarks GAP, MiBench, Imbench, scimark2 on gem5 full

system simulator

• Macro benchmarks from SPEC CPU 2017 on custom cache

simulator

• Cache hit rate always at or above levels of set-associative cache

with random replacement

• Typically 2%− 4% below LRU on micro benchmarks, 0%− 2% for

SPEC

17 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT



Where can data be? www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM

18 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers

19 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence

st
al

lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache

21 Lukas Giner, Daniel Gruss — Graz University of Technology



Papers co-funded by Intel SCAP www.tugraz.at

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens,

D. Evtyushkin, and D. Gruss. A Systematic Evaluation of Transient Execution Attacks and

Defenses. In: USENIX Security Symposium. 2019.

D. Gruss, E. Kraft, T. Tiwari, M. Schwarz, A. Trachtenberg, J. Hennessey, A. Ionescu, and

A. Fogh. Page Cache Attacks. In: CCS. 2019.

M. Schwarz, C. Canella, L. Giner, and D. Gruss. Store-to-Leak Forwarding: Leaking Data on

Meltdown-resistant CPUs. In: arXiv:1905.05725 (2019).

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and D. Gruss.

ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: arXiv:1905.05726 (2019).

M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella, and D. Gruss. ConTExT: Leakage-Free

Transient Execution. In: arXiv:1905.09100 (2019).

M. Schwarz, S. Weiser, and D. Gruss. Practical Enclave Malware with Intel SGX. In: DIMVA.

2019.

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard. ScatterCache:

Thwarting Cache Attacks via Cache Set Randomization. In: USENIX Security Symposium. 2019.



Conclusions www.tugraz.at

• many attacks out there

• thorough defenses can defeat entire classes of attacks

• important to distinguish between different attacks

23 Lukas Giner, Daniel Gruss — Graz University of Technology



Conclusions www.tugraz.at

• many attacks out there

• thorough defenses can defeat entire classes of attacks

• important to distinguish between different attacks

23 Lukas Giner, Daniel Gruss — Graz University of Technology



Conclusions www.tugraz.at

• many attacks out there

• thorough defenses can defeat entire classes of attacks

• important to distinguish between different attacks

23 Lukas Giner, Daniel Gruss — Graz University of Technology



Hardware-Software Co-Design to Eliminate

Cache Leakage

Lukas Giner, Daniel Gruss

June 11, 2019

Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)

24 Lukas Giner, Daniel Gruss — Graz University of Technology



Performance www.tugraz.at

Benchmark
SPEC Score Overhead

Baseline ConTExT [%]

600.perlbench s 7.03 6.86 +2.42

602.gcc s 11.90 11.80 +0.84

605.mcf s 9.06 9.16 −1.10

620.omnetpp s 5.07 4.81 +5.13

623.xalancbmk s 6.06 5.95 +1.82

625.x264 s 9.25 9.25 0.00

631.deepsjeng s 5.26 5.22 +0.76

641.leela s 4.71 4.64 +1.48

648.exchange2 s would require Fortran runtime

657.xz s 12.10 12.10 0.00

Average +1.26

Table 1: Performance of the ConTExT split stack using the SPECspeed 2017 integer

benchmark.

25 Lukas Giner, Daniel Gruss — Graz University of Technology


