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Side Channel or not? www.tugraz.at

• Profiling cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes
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Speculative Side-Channel Attacks? www.tugraz.at

sid
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• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative

Side-Channel Attacks

• Let’s be more precise

• → then we can think about actual mitigations
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Meltdown

But what about these two?
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The Problem with Cache Side Channels www.tugraz.at

• CPU Caches are a shared resource

→ there’s probably a side-channel

• Cache side-channels are currently very powerful

• At the moment: simple, fast & reliable

• They enable a large number of attacks, e.g.:

“direct” cache attacks, Spectre & Meltdown, Zombieload, ...
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How do caches work?
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printf("%d", i);

printf("%d", i);
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CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

No DRAM acces
s,

much faster

DRAM access,
slow
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2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf
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2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy

9 Lukas Giner, Daniel Gruss — Graz University of Technology



Prime+Probe www.tugraz.at

Attacker
address space Cache

Victim
address space
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if cache attacks are simple because the mapping to sets is simple ..
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ScatterCache - Hardware www.tugraz.at
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 0 • Index Derivation Function

(IDF) takes an address and

returns a cache set

• Depends on hardware key K

and optional Security

Domain ID (SDID)

• → unique combination of

cache lines for each address
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ScatterCache - Hardware www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B
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ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges

14 Lukas Giner, Daniel Gruss — Graz University of Technology



ScatterCache - Security Improvements www.tugraz.at

• Unshared memory has no shared cache lines

→ Flush+Reload, Flush+Flush and Evict+Reload are not possible

• Shared, read-only memory is like unshared memory, given OS

support. Without OS support, eviction-based attacks are hindered

• Shared, writable memory can’t be separated, eviction-based attacks

are hindered
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ScatterCache - Prime+Probe www.tugraz.at

• Specialized Prime+Probe variants are still possible

• But, overlap in more than 1 cache line is very unlikely

→ Eviction is now probabilistic, p = 1
nways 2

to evict

• Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ≈ 8 for standard Prime+Probe

• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe
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• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe
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ScatterCache - Performance www.tugraz.at

• Micro benchmarks GAP, MiBench, Imbench, scimark2 on gem5 full

system simulator

• Macro benchmarks from SPEC CPU 2017 on custom cache

simulator

• Cache hit rate always at or above levels of set-associative cache

with random replacement

• Typically 2%− 4% below LRU on micro benchmarks, 0%− 2% for

SPEC
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ConTExT



Where can data be? www.tugraz.at

core 0

L2

Registers

Buffers

L1

core 1

L2

Registers

Buffers

L1

core 2

L2

Registers

Buffers

L1

core 3

L2

Registers

Buffers

L1

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

DRAM
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ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers
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ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence

st
al

lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



ConTExT Comparison www.tugraz.at

Serializing Barrier

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

lfence
st

al
lmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t
ex
ec
u
te
d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

20 Lukas Giner, Daniel Gruss — Graz University of Technology



Avoiding Taint Explosion www.tugraz.at

• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache
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Conclusions www.tugraz.at

• many attacks out there

• thorough defenses can defeat entire classes of attacks

• important to distinguish between different attacks
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Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)
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Performance www.tugraz.at

Benchmark
SPEC Score Overhead

Baseline ConTExT [%]

600.perlbench s 7.03 6.86 +2.42

602.gcc s 11.90 11.80 +0.84

605.mcf s 9.06 9.16 −1.10

620.omnetpp s 5.07 4.81 +5.13

623.xalancbmk s 6.06 5.95 +1.82

625.x264 s 9.25 9.25 0.00

631.deepsjeng s 5.26 5.22 +0.76

641.leela s 4.71 4.64 +1.48

648.exchange2 s would require Fortran runtime

657.xz s 12.10 12.10 0.00

Average +1.26

Table 1: Performance of the ConTExT split stack using the SPECspeed 2017 integer

benchmark.
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