Ty,

Hardware-Software Co-Design to Eliminate
Cache Leakage

Lukas Giner, Daniel Gruss
June 11, 2019

Graz University of Technology

Who am 1?7 www.tugraz.at

Lukas Giner

PhD student @ Graz University of Technology
¥ Qredrabbyte

& lukas.giner@iaik.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

Who am 1? www.tugraz.at

Daniel Gruss
Asst. Prof. @ Graz University of Technology
¥ Qlavados

& daniel.gruss@iaik.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters?

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

e Observing cache utilization with performance counters and

’ using it to infer a crypto key?

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

e Observing cache utilization with performance counters and

’ using it to infer a crypto key? — Yes

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

e Observing cache utilization with performance counters and
using it to infer a crypto key? — Yes

’ e Measuring memory access latency with Flush-+Reload?

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

e Observing cache utilization with performance counters and
using it to infer a crypto key? — Yes

’ e Measuring memory access latency with Flush+Reload? — No

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

e Observing cache utilization with performance counters and
using it to infer a crypto key? — Yes

’ e Measuring memory access latency with Flush+Reload? — No

e Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings?

n Lukas Giner, Daniel Gruss — Graz University of Technology

Side Channel or not? www.tugraz.at

e Profiling cache utilization with performance counters? — No

e Observing cache utilization with performance counters and
using it to infer a crypto key? — Yes

’ e Measuring memory access latency with Flush+Reload? — No

e Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? — Yes

n Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

e traditional cache attacks (crypto, keys, etc)

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

e traditional cache attacks (crypto, keys, etc)

e actual misspeculation (e.g., branch
misprediction)

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks?

www.tugraz.at

lazy exception handling

e traditional cache attacks (crypto, keys, etc)

e actual misspeculation (e.g., branch
misprediction)

e Meltdown, Foreshadow, ZombielLoad, etc

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

e traditional cache attacks (crypto, keys, etc)

e actual misspeculation (e.g., branch
misprediction)

e Meltdown, Foreshadow, ZombielLoad, etc

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

traditional cache attacks (crypto, keys, etc)

actual misspeculation (e.g., branch
misprediction)

Meltdown, Foreshadow, Zombieload, etc

Let’s avoid the term Speculative
Side-Channel Attacks

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

e traditional cache attacks (crypto, keys, etc)

e actual misspeculation (e.g., branch
misprediction)

e Meltdown, Foreshadow, ZombielLoad, etc

e Let’s avoid the term Speculative
Side-Channel Attacks

e Let's be more precise

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

e traditional cache attacks (crypto, keys, etc)

e actual misspeculation (e.g., branch
misprediction)

e Meltdown, Foreshadow, ZombielLoad, etc

e Let’s avoid the term Speculative
Side-Channel Attacks

e Let's be more precise

— then we can think about actual mitigations

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

Bug fixing

Lukas Giner, Daniel Gruss — Graz University of Technology

Speculative Side-Channel Attacks? s

But what about these two?

Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

e CPU Caches are a shared resource

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

e CPU Caches are a shared resource
— there's probably a side-channel

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

e CPU Caches are a shared resource
— there's probably a side-channel

e Cache side-channels are currently very powerful

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

e CPU Caches are a shared resource
— there's probably a side-channel

e Cache side-channels are currently very powerful

e At the moment: simple, fast & reliable

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

CPU Caches are a shared resource

— there's probably a side-channel

Cache side-channels are currently very powerful

At the moment: simple, fast & reliable

They enable a large number of attacks, e.g.:

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

CPU Caches are a shared resource

— there's probably a side-channel

Cache side-channels are currently very powerful

At the moment: simple, fast & reliable

They enable a large number of attacks, e.g.:
“direct” cache attacks,

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

CPU Caches are a shared resource

— there's probably a side-channel

Cache side-channels are currently very powerful

At the moment: simple, fast & reliable

They enable a large number of attacks, e.g.:
“direct” cache attacks, Spectre & Meltdown,

n Lukas Giner, Daniel Gruss — Graz University of Technology

The Problem with Cache Side Channels www.tugraz.at

CPU Caches are a shared resource

— there's probably a side-channel

Cache side-channels are currently very powerful

At the moment: simple, fast & reliable

They enable a large number of attacks, e.g.:
“direct” cache attacks, Spectre & Meltdown, Zombieload, ...

n Lukas Giner, Daniel Gruss — Graz University of Technology

How do caches work?

CPU Cache www.tugraz.at

printf("%d", 1i);
printf("%d", i);

[T

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

N“SS

(200
printf("%d", 1i);
printf("%d", i);

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

N“SS

(200
printf("%d", 1i);
printf("%d", i);

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

N“SS

(200
printf("%d", 1i);
printf("%d", i);

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

W“SS

(200
printf("%d", 1i);
printf("%d", i);

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

W“SS

Cac®
printf("%d", 1i);
printf("%d", i);

(a0n®

W

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

v'\z/\M 2CCeSSy
s\ow

Lukas Giner, Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

v'\z/\M 2CCeSSy
s\ow
N“SS

(200
printf("%d", 1i);

printf("%d", i); Y“x

Cach®
NO 'DRAM 2CCEeSSy

muc\(\ WCaS)Y@Y

Lukas Giner, Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

00 Cache Hits

—

o
=
T

Number of Accesses
=
(e}
>
T

=

o
—
T

N H HHHHHHH HﬂnﬂnHHHﬂHHﬂﬂﬂ ol 000 aplfolle 1 o 000 |

50 100 150 200 250 300 350 400
Latency [Cycles]

n Lukas Giner, Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

n bits b bits Tag Data

L 2" cache sets

Cache Index k

n Lukas Giner, Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Way 1 Tag Way 1 Data
Way 2 Tag Way 2 Data

n bits b bits

| |

Cache Index k

n Lukas Giner, Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Way 1 Tag Way 1 Data
Way 2 Tag Way 2 Data

[

b bits l

2" cache sets

Cache Index k

n Lukas Giner, Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ 0B Way 2 Tag Way 2 Data

2" cache sets

Cache Index k

Tag =

b bits l

Data

n Lukas Giner, Daniel Gruss — Graz University of Technology

2-way set associativity www.tugraz.at

Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ 0B Way 2 Tag Way 2 Data

2" cache sets

Cache Index k

Tag =

b bits l

Data

— replacement policy

n Lukas Giner, Daniel Gruss — Graz University of Technology

Prime+ Probe www.tugraz.at

Attacker Cach Victim
address space SCHE address space

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

loads data

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

loads data

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

loads data

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

loads data

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

Lukas Giner, Daniel Gruss — Graz University of Technology

Prime-|- Probe www.tugraz.at

Attacker Cach Victim
address space clsuls address space

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache

ScatterCache www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache

www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..

instead of this:

o - & ®
& set[idx-2]
— setidx-1]
»
3 -
151 Ll
F— setfidx+1]
&0
= set[idx+2]

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..

instead of this:

let's do this:

way 0
way 1
way 2
way 3

set[idx-2]

setfidx-1]

-

| index I offset I

set[idx-+1]

tag

set[idx+2]

cache line addr.

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Hardware www.tugraz.at

e |ndex Derivation Function
(IDF) takes an address and
returns a cache set

way 1

‘ tag ‘ index | offset ‘ SDID
T~

cache line addr

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Hardware www.tugraz.at

e |ndex Derivation Function
(IDF) takes an address and
returns a cache set

way 1

e Depends on hardware key K

and optional Security
Domain ID (SDID)

T T~

‘ tag ‘ index | offset ‘ SDID

cache line addr

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Hardware www.tugraz.at

e |ndex Derivation Function
(IDF) takes an address and
returns a cache set

way 1

Depends on hardware key K

and optional Security
Domain ID (SDID)

D e — unique combination of
i(]x_(.
cache lines for each address

T T~

‘ tag ‘ index | offset ‘ SDID

cache line addr

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Hardware www.tugraz.at

AUN T T TTTTTTTRTTITITT
Set 0 Set 1 Set 2 Set 3
1 1 I [NNNNNNY NNNAANNTS
Addr. A
Domain X
Addr. A
Domain Y
Addr. B \ \\\F\ ANNAN
" I NORN X

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

e ScatterCache requires no software support, default SDID = 0

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

e ScatterCache requires no software support, default SDID = 0

e But - OS support enables security domains

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Software Support www.tugraz.at

e ScatterCache requires no software support, default SDID = 0

e But - OS support enables security domains
— shared read-only pages can be private in the cache!

Lukas Giner, Daniel Gruss — Graz University of Technology

www.tugraz.at

ScatterCache - Software Support

e ScatterCache requires no software support, default SDID = 0

e But - OS support enables security domains
— shared read-only pages can be private in the cache!

e OS can define SDID per process and separate user space and kernel

space

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Software Support s

ScatterCache requires no software support, default SDID = 0

But - OS support enables security domains
— shared read-only pages can be private in the cache!

OS can define SDID per process and separate user space and kernel
space

Process can request distinct SDIDs for memory ranges

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Security Improvements s

e Unshared memory has no shared cache lines

N

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Security Improvements s

e Unshared memory has no shared cache lines
n — Flush—+Reload, Flush+Flush and Evict+Reload are not possible

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Security Improvements s

e Unshared memory has no shared cache lines

n — Flush—+Reload, Flush+Flush and Evict+Reload are not possible
e Shared, read-only memory is like unshared memory, given OS
support. Without OS support, eviction-based attacks are hindered

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Security Improvements s

e Unshared memory has no shared cache lines

n — Flush—+Reload, Flush+Flush and Evict+Reload are not possible
e Shared, read-only memory is like unshared memory, given OS
support. Without OS support, eviction-based attacks are hindered

e Shared, writable memory can’t be separated, eviction-based attacks

are hindered

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

e Specialized Prime+Probe variants are still possible

'8

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

e Specialized Prime+Probe variants are still possible

e But, overlap in more than 1 cache line is very unlikely

n — Eviction is now probabilistic, p = —L to evict
ways

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

e Specialized Prime+Probe variants are still possible

e But, overlap in more than 1 cache line is very unlikely

n — Eviction is now probabilistic, p = —L to evict
ways

e Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of = 8 for standard Prime+Probe

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Prime+Probe www.tugraz.at

e Specialized Prime+Probe variants are still possible

e But, overlap in more than 1 cache line is very unlikely

n — Eviction is now probabilistic, p = —L to evict
ways

e Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ~ 8 for standard Prime+Probe

e Constructing this set requires ~ 22> profiled victim accesses,
compared to less than 100 accesses for standard, noise-free
Prime+-Probe

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Performance www.tugraz.at

e Micro benchmarks GAP, MiBench, Imbench, scimark2 on gemb full
system simulator

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Performance www.tugraz.at

e Micro benchmarks GAP, MiBench, Imbench, scimark2 on gemb full
system simulator

e Macro benchmarks from SPEC CPU 2017 on custom cache

f\ simulator

-

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Performance www.tugraz.at

e Micro benchmarks GAP, MiBench, Imbench, scimark2 on gemb full
system simulator
e Macro benchmarks from SPEC CPU 2017 on custom cache

f\ simulator

4 e Cache hit rate always at or above levels of set-associative cache

with random replacement

Lukas Giner, Daniel Gruss — Graz University of Technology

ScatterCache - Performance www.tugraz.at

e Micro benchmarks GAP, MiBench, Imbench, scimark2 on gemb full

system simulator
e Macro benchmarks from SPEC CPU 2017 on custom cache

f\ simulator

> 4 e Cache hit rate always at or above levels of set-associative cache
with random replacement
e Typically 2% — 4% below LRU on micro benchmarks, 0% — 2% for
SPEC

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTExT

Where can data be? www.tugraz.at

l core 0 l l core 1 l l core 2 l l core 3 l
l Registers l l Registers l l Registers l l Registers l
l Buffers l l Buffers l l Buffers l l Buffers l
BOE B B B
[[
e e | e | e]
I I I I I
l l l l
s\l?lc-ec 0 5:-i(|:_ecl shéf 2 s\l?lc-ec 3
DRAM

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

e Mark secrets in source code

Lukas Giner, Daniel Gruss — Graz University of Technology

nTExT |dea www.tugraz.at

e Mark secrets in source code

e Propagate taint through memory hierarchy:

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

e Mark secrets in source code
e Propagate taint through memory hierarchy:

e Pages

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

e Mark secrets in source code
e Propagate taint through memory hierarchy:

e Pages
e Cache Lines (in caches and buffers)

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTEXT Idea www.tugraz.at

e Mark secrets in source code
e Propagate taint through memory hierarchy:

e Pages
e Cache Lines (in caches and buffers)

e Registers

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTExT Comparison

www.tugraz.at

Unprotected

cmp rdi, .array_len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov O,rax

retq

mov rax, (rsp + 8)

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTExT Comparison

not executed

Serializing Barrier

cmp rdi, .array_len

jbe .else

1fence

mov (rax + rdi),al

shl 12,rax

stalk AR

and 0xff000,eax

mov (rdx + rax),al

mov O,rax

retq

mov rax, (rsp + 8)

www.tugraz.at

Unprotected

cmp rdi, .array_len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov O,rax

retq

mov rax, (rsp + 8)

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTExT Comparison

not executed

Serializing Barrier

ConTExT-light

cmp rdi, .array_len

cmp rdi, .array_len

www.tugraz.at

Unprotected

jbe .else

jbe .else

cmp rdi, .array_len

1fence

jbe .else

mov (rax + rdi),al

mov (rax + rdi),al

shl 12,rax

stalk AR

shl 12,rax

mov (rax + rdi),al

and 0xff000,eax

not executed

and 0xff000,eax

shl 12,rax

mov (rdx + rax),al

mov (rdx + rax),al

and 0xff000,eax

mov O,rax

mov O,rax

mov (rdx + rax),al

retq

retq

mov O,rax

mov rax, (rsp + 8)

mov rax, (rsp + 8)

retq

mov rax, (rsp + 8)

Lukas Giner, Daniel Gruss — Graz University of Technology

ConTExT Comparison

not executed

Serializing Barrier

ConTExT-light

ConTEXT

www.tugraz.at

Unprotected

cmp rdi, .array_len

cmp rdi, .array_len

cmp rdi, .array_len

cmp rdi, .array_len

jbe .else

jbe .else

jbe .else

jbe .else

1fence

mov (rax + rdi),al

mov (rax + rdi),al

mov (rax + rdi),al

stalk AR

. mov (rax + rdi),al
shl 12,rax % shl 12,rax shl 12,rax shl 12,rax
and 0xff000,eax % and 0xff000,eax and 0xff000,eax and 0xff000,eax
mov (rdx + rax),al 2 mov (rdx + rax),al mov (rdx + rax),al mov (rdx + rax),al
mov O,rax mov O,rax mov O,rax mov O,rax
retq retq retq retq

mov rax, (rsp + 8)

mov rax, (rsp + 8)

mov rax, (rsp + 8)

mov rax, (rsp + 8)

Lukas Giner, Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

ing Taint Explosion www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

ing Taint Explosion www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

e Writing to unprotected memory exposes value to attackers

Lukas Giner, Daniel Gruss — Graz University of Technology

ing Taint Explosion www.tugraz.at

e Writing to unprotected memory exposes value to attackers

— Untaint register

Lukas Giner, Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

e Writing to unprotected memory exposes value to attackers

— Untaint register

e Split stack into protected and unprotected half

Lukas Giner, Daniel Gruss — Graz University of Technology

Avoiding Taint Explosion www.tugraz.at

e Writing to unprotected memory exposes value to attackers
— Untaint register

e Split stack into protected and unprotected half

e Stack spills of unprotected data — stay unprotected as long as
they stay in the cache

Lukas Giner, Daniel Gruss — Graz University of Technology

Papers co-funded by Intel SCAP www.tugraz.at

@ C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens,
D. Evtyushkin, and D. Gruss. A Systematic Evaluation of Transient Execution Attacks and
Defenses. In: USENIX Security Symposium. 2019.

D. Gruss, E. Kraft, T. Tiwari, M. Schwarz, A. Trachtenberg, J. Hennessey, A. lonescu, and
A. Fogh. Page Cache Attacks. In: CCS. 2019.

M. Schwarz, C. Canella, L. Giner, and D. Gruss. Store-to-Leak Forwarding: Leaking Data on
Meltdown-resistant CPUs. In: arXiv:1905.05725 (2019).

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and D. Gruss.
Zombieload: Cross-Privilege-Boundary Data Sampling. In: arXiv:1905.05726 (2019).

M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella, and D. Gruss. ConTExT: Leakage-Free
Transient Execution. In: arXiv:1905.09100 (2019).

M. Schwarz, S. Weiser, and D. Gruss. Practical Enclave Malware with Intel SGX. In: DIMVA.
2019.

) & W &

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard. ScatterCache:
Thwarting Cache Attacks via Cache Set Randomization. In: USENIX Security Symposium. 2019.

Conclusions

www.tugraz.at

e many attacks out there

Lukas Giner, Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

|
— e many attacks out there
v e thorough defenses can defeat entire classes of attacks
v—

Lukas Giner, Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

|
— e many attacks out there
v e thorough defenses can defeat entire classes of attacks
v—

e important to distinguish between different attacks

Lukas Giner, Daniel Gruss — Graz University of Technology

Ty,

Hardware-Software Co-Design to Eliminate
Cache Leakage

Lukas Giner, Daniel Gruss
June 11, 2019

Graz University of Technology

Implementation www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

Implementation www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

Implementation www.tugraz.at

Lukas Giner, Daniel Gruss — Graz University of Technology

Implementation www.tugraz.at

e Compiler Extension

Lukas Giner, Daniel Gruss — Graz University of Technology

Implementation www.tugraz.at

e Compiler Extension

e Linux Patch

Lukas Giner, Daniel Gruss — Graz University of Technology

Implementation www.tugraz.at

e Compiler Extension

e Linux Patch

e CPU Emulation in Bochs

Lukas Giner, Daniel Gruss — Graz University of Technology

Implementation www.tugraz.at

Compiler Extension
Linux Patch
CPU Emulation in Bochs

e Native via uncacheable memory (ConTExT-light)

Lukas Giner, Daniel Gruss — Graz University of Technology

Performance www.tugraz.at

Benchmark SPEC Score Overhead
Baseline ConTExT [%]
600.perlbench_s 7.03 6.86 +2.42
602.gcc_s 11.90 11.80 +0.84
605.mcf_s 9.06 9.16 —1.10
620.omnetpp_s 5.07 4.81 +5.13
623.xalancbmk_s 6.06 5.95 +1.82
625.x264 s 9.25 9.25 0.00
631.deepsjeng_s 5.26 5.22 +0.76
641.leela_s 4.71 4.64 +1.48
648.exchange2_s would require Fortran runtime
657.xz_s 12.10 12.10 0.00
Average +1.26

Table 1: Performance of the ConTEXT split stack using the SPECspeed 2017 integer
benchmark.

Lukas Giner, Daniel Gruss — Graz University of Technology

