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e traditional cache attacks (crypto, keys, etc)

e actual misspeculation (e.g., branch
misprediction)

e Meltdown, Foreshadow, ZombielLoad, etc

e Let’s avoid the term Speculative
Side-Channel Attacks

e Let's be more precise

— then we can think about actual mitigations
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CPU Caches are a shared resource

— there's probably a side-channel

Cache side-channels are currently very powerful

At the moment: simple, fast & reliable

They enable a large number of attacks, e.g.:
“direct” cache attacks, Spectre & Meltdown, Zombieload, ...
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Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ 0B Way 2 Tag Way 2 Data

2" cache sets

Cache Index k

Tag =

b bits l

Data

— replacement policy
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instead of this:
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& set[idx-2]
— setidx-1]
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3 -
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F—  setfidx+1]
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= set[idx+2]
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if cache attacks are simple because the mapping to sets is simple ..

instead of this:

let's do this:

way 0
way 1
way 2
way 3

set[idx-2]

setfidx-1]

-

| index I offset I

set[idx-+1]

tag

set[idx+2]

cache line addr.
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e |ndex Derivation Function
(IDF) takes an address and
returns a cache set

way 1

Depends on hardware key K

and optional Security
Domain ID (SDID)

D e — unique combination of
i(]x_( .
cache lines for each address

T T~

‘ tag ‘ index | offset ‘ SDID

cache line addr
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AUN T T TTTTTTTRTTITITT
Set 0 Set 1 Set 2 Set 3
1 1 I [NNNNNNY NNNAANNTS
Addr. A
Domain X
Addr. A
Domain Y
Addr. B \ \\\F\ ANNAN
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ScatterCache requires no software support, default SDID = 0

But - OS support enables security domains
— shared read-only pages can be private in the cache!

OS can define SDID per process and separate user space and kernel
space

Process can request distinct SDIDs for memory ranges
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e Unshared memory has no shared cache lines

n — Flush—+Reload, Flush+Flush and Evict+Reload are not possible
e Shared, read-only memory is like unshared memory, given OS
support. Without OS support, eviction-based attacks are hindered

e Shared, writable memory can’t be separated, eviction-based attacks

are hindered
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e Specialized Prime+Probe variants are still possible

e But, overlap in more than 1 cache line is very unlikely

n — Eviction is now probabilistic, p = —L to evict
ways

e Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ~ 8 for standard Prime+Probe

e Constructing this set requires ~ 22> profiled victim accesses,
compared to less than 100 accesses for standard, noise-free
Prime+-Probe

Lukas Giner, Daniel Gruss — Graz University of Technology
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e Micro benchmarks GAP, MiBench, Imbench, scimark2 on gemb full

system simulator
e Macro benchmarks from SPEC CPU 2017 on custom cache

f\ simulator

> 4 e Cache hit rate always at or above levels of set-associative cache
with random replacement
e Typically 2% — 4% below LRU on micro benchmarks, 0% — 2% for
SPEC
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l core 0 l l core 1 l l core 2 l l core 3 l
l Registers l l Registers l l Registers l l Registers l
l Buffers l l Buffers l l Buffers l l Buffers l
BOE B B B
[ [
e e | e | e ]
I I I I I
l l l l
s\l?lc-ec 0 5:-i(|:_ecl shéf 2 s\l?lc-ec 3
DRAM
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e Mark secrets in source code
e Propagate taint through memory hierarchy:

e Pages
e Cache Lines (in caches and buffers)

e Registers
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Unprotected

cmp rdi, .array_len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov O,rax

retq

mov rax, (rsp + 8)
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Unprotected

cmp rdi, .array_len

cmp rdi, .array_len

cmp rdi, .array_len

cmp rdi, .array_len

jbe .else

jbe .else

jbe .else

jbe .else

1fence

mov (rax + rdi),al

mov (rax + rdi),al

mov (rax + rdi),al

stalk AR

. mov (rax + rdi),al
shl 12,rax % shl 12,rax shl 12,rax shl 12,rax
and 0xff000,eax % and 0xff000,eax and 0xff000,eax and 0xff000,eax
mov (rdx + rax),al 2 mov (rdx + rax),al mov (rdx + rax),al mov (rdx + rax),al
mov O,rax mov O,rax mov O,rax mov O,rax
retq retq retq retq

mov rax, (rsp + 8)

mov rax, (rsp + 8)

mov rax, (rsp + 8)

mov rax, (rsp + 8)
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Avoiding Taint Explosion www.tugraz.at

e Writing to unprotected memory exposes value to attackers
— Untaint register

e Split stack into protected and unprotected half

e Stack spills of unprotected data — stay unprotected as long as
they stay in the cache

Lukas Giner, Daniel Gruss — Graz University of Technology
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Benchmark SPEC Score Overhead
Baseline  ConTExT [%]
600.perlbench_s 7.03 6.86 +2.42
602.gcc_s 11.90 11.80 +0.84
605.mcf_s 9.06 9.16 —1.10
620.omnetpp_s 5.07 4.81 +5.13
623.xalancbmk_s 6.06 5.95 +1.82
625.x264 s 9.25 9.25 0.00
631.deepsjeng_s 5.26 5.22 +0.76
641.leela_s 4.71 4.64 +1.48
648.exchange2_s would require Fortran runtime
657.xz_s 12.10 12.10 0.00
Average +1.26

Table 1: Performance of the ConTEXT split stack using the SPECspeed 2017 integer
benchmark.
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