
IdleLeak: Exploiting Idle State Side Effects for
Information Leakage

Fabian Rauscher
Graz University of Technology
fabian.rauscher@iaik.tugraz.at

Andreas Kogler
Graz University of Technology
andreas.kogler@iaik.tugraz.at

Jonas Juffinger
Graz University of Technology
jonas.juffinger@iaik.tugraz.at

Daniel Gruss
Graz University of Technology

daniel.gruss@iaik.tugraz.at

Abstract—Modern processors are equipped with numerous
features to regulate energy consumption according to the work-
load. For this purpose, software brings processor cores into
idle states via dedicated instructions such as hlt. Recently,
Intel introduced the C0.1 and C0.2 idle states. While idle states
previously could only be reached via privileged operations, these
new idle states can also be reached by an unprivileged attacker.
However, the attack surface these idle states open is still unclear.

In this paper, we present IdleLeak, a novel side-channel attack
exploiting the new C0.1 and C0.2 idle states in two distinct ways.
Specifically, we exploit the processor idle state C0.2 to monitor
system activity and for novel means of data exfiltration, and the
idle state C0.1 to monitor system activity on logical sibling cores.
IdleLeak still works regardless of where the victim workload
is scheduled, i.e., cross-core, due to the low-level x86 design.
We demonstrate that IdleLeak leaks significant information in a
native keystroke-timing attack, achieving an F1 score of 90.5%
and a standard error on the timing prediction of only 12µs.
We also demonstrate website- and video-fingerprinting attacks
using IdleLeak traces, pre-processed with short-time Fourier
transforms, and classified with convolutional neural networks.
These attacks are highly practical with F1 scores of 85.2%
(open-world website fingerprinting) and 81.5% (open-world
video fingerprinting). We evaluate the throughput of IdleLeak
side channels in both directions in covert channel scenarios, i.e.,
using interrupts and performance-increasing effects. With the
performance-increasing effect, IdleLeak achieves a true capacity
of 7.1Mbit/s in a native and 46.3kbit/s in a cross-VM scenario.
With interrupts, IdleLeak achieves 656.37kbit/s in a native
scenario. We conclude that mitigations against IdleLeak are
necessary in both personal and cloud environments when running
untrusted code.

I. INTRODUCTION

Modern CPUs have various features to meet the energy
consumption, and performance demands, of users and work-
loads. One of the most significant performance increases came
with out-of-order execution. While out-of-order execution en-
ables parallel use of multiple execution units for different
instruction, most workloads do not fully utilize this paral-
lelism. Hence, vendors introduced simultaneous multithreading
(SMT), giving the software level the illusion of having more
CPU cores, so-called logical cores. The CPU interleaves the
instructions from multiple logical cores on one physical core.

Consequently, CPUs achieve substantially higher utilization of
execution units, improving performance by roughly 30% [58].
The reason for this performance gain is that many on-core and
off-core resources are competitively shared (e.g., caches and
TLB), and others are inexpensive to split statically (e.g., load
and store buffer) [54]. Thus, SMT can still negatively impact
the performance of workloads if resources are statically split
or partially occupied by other workloads.

Over the past three decades, researchers investigated the
security implications of these optimizations and found nu-
merous side channels in various microarchitectural elements.
A particularly long line of research focused on caches and
buffers [66], [3], [34], both in scenarios where attacker and
victim share a physical core [49], [10], as well as cross-
core attacks [66], [31]. Other works investigated contention on
execution ports [1], [43] and scheduler queues [9]. All these
works focused on contention and interference on specific mi-
croarchitectural elements. However, the increased necessity for
energy and performance improvements led to more advanced
efficiency features in recent CPUs. These go beyond single
microarchitectural elements and operate on the level of entire
logical cores, physical cores, or entire packages. In particular
idle states can introduce substantial efficiency gains. However,
until recently, idle state management was only possible from
kernel space. Still, prior work showed that these optimizations
may still have security implications [68], in particular when
attacking Trusted Execution Environments (TEEs).

With the efficiency and performance goals for new mi-
croarchitecture designs, Intel recently introduced the user space
sleep primitives tpause, a timed pause, and umwait, a timed
pause with a memory trigger. These instructions allow efficient
waiting for timeouts and memory accesses while the processor
is idle to save energy. Prior work showed that umwait can be
exploited for Spectre-type attacks without a timing-based side
channel and interrupt monitoring in native code [68], similar
to prior works showed for other side channels [42], [27], [48].
While the work [68] did show that the interrupt monitoring
can be used for website fingerprinting in native code, they
did not further investigate other undocumented interrupt wake-
up triggers, the possible security implications of unprivileged
modification of idle states, the behaviour of the idle states in
VMs, or the related tpause instruction.

In this paper, we present IdleLeak, a novel attack exploiting
control over the C0.1 and C0.2 idle states from user space
and their undocumented behaviors. Our first attack technique,
ActiveIdleLeak, shows that the performance-increasing effects
of the C0.2 idle state yield unforeseen security implications

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24078
www.ndss-symposium.org

on workloads co-located on a sibling logical core. Our second
attack technique, PassiveIdleLeak, shows that both the C0.1
and C0.2 idle state are woken up by some processor operations,
including events from workloads running on different physical
cores, and, in general, different activity on the same core or a
sibling logical core. That is, instead of attempting co-location
with the victim, PassiveIdleLeak can run on an arbitrary
physical core where either of the logical cores is influenced by
the victim workload due to the way x86 implements interrupts.

In our first attack, ActiveIdleLeak, the attacker uses the
unprivileged tpause instruction to put a logical core into
the C0.2 idle state. The C0.2 idle state relinquishes some on-
core resources (e.g., load buffer, store buffer, and reorder-
buffer entries) to the other logical core. Consequently, the
single-threaded performance of the other logical sibling core
increases. The attacker uses this performance side effect to
construct a covert communication channel between separate
security domains. We evaluate the capacity of the ActiveIdle-
Leak channel in native and cross-VM covert channels, yielding
7.1Mbit/s (σx̄ = 0.004Mbit/s, n = 512) and 46.3 kbit/s
(σx̄ = 0.15 kbit/s, n = 370) respectively.

For our second attack, PassiveIdleLeak, we exploit both
idle states to spy on activities on the same core and the sibling
logical core. Both idle states are left, e.g., on interrupts, special
instructions, user input, and scheduling behavior, on the same
core. C0.1 is also influenced by such activity on sibling logical
cores. Surprisingly, both idle states are also influenced by such
activity in the host and co-located virtual machines (VMs).
This unexpected behavior opens up attack vectors for leaking
user activity information from host to guest.

We present an unprivileged keystroke-timing attack using
PassiveIdleLeak, with an F1 score of 90.5% and a standard
error on the timing prediction of only 12 µs. Our keystroke-
timing attack works across cores, regardless of where the
victim is scheduled. This is possible since the attacker can
occupy multiple cores, including logical cores that belong to
the physical core receiving the key-down and key-up interrupts.

We demonstrate that PassiveIdleLeak running inside a VM
can also be used to fingerprint website and video accesses
by the host. We show that we can target either the interrupt
handling of a victim workload running on another physical
core, or the victim workload itself if it is co-located on a
logical sibling core. In an open- and closed-world evaluation
with 100 websites, we achieve F1 scores of 85.2% and 93.1%
respectively on an independent test set. We then demonstrate
that we can distinguish videos accessed by a user in a video-
fingerprinting attack on popular video streaming platforms,
with F1 scores of 90.2% (closed-world) and 81.5% (open-
world) for YouTube, and 75% (closed-world) and 70.5%
(open-world) for Pornhub using only the first 10 s of a video.
Our attack is the first to demonstrate video fingerprinting based
on interrupt detection via a side channel. The information
gained by this attack could be used for extortion campaigns,
illustrating the severe and previously unknown privacy implica-
tions of the novel idle states. We evaluate the PassiveIdleLeak
channel in a native covert-channel scenario, yielding a true
capacity of 656.37 kbit/s (σx̄ = 0.63 kbit/s, n = 1 024).

Since interrupt scheduling does not adhere to side-channel
aware scheduling policies like gang scheduling [21], systems

are unprotected against our attack. Contrary to prior works,
we focus on the undocumented behavior of the novel idle
states and the new instructions unexpected behavior inside
VMs compared to existing instructions. We discuss possible
mitigations against IdleLeak and find that efficient mitigations
are not trivial due to the nature of external interrupts and the
ambiguity of the interrupt receiver.

To summarize, we make the following contributions:

• We analyze the security properties of the C0.1 and C0.2
idle states that can be manipulated by an unprivileged
attacker, resulting in our novel attack IdleLeak.

• We show that IdleLeak is fast and robust, leaking up to
7.1Mbit/s (σx̄ = 0.004Mbit/s, n = 512) in a native covert
channel and 46.3 kbit/s (σx̄ = 0.15 kbit/s, n = 370) in a
cross-VM covert channel respectively.

• We demonstrate that IdleLeak can be used to monitor
inter-keystroke timings with an F1 score of 90.5% and
a standard error on the timing prediction of only 12 µs.

• We demonstrate website fingerprinting IdleLeak attacks,
with F1 scores of 93.1% (closed world) and 85.2% (open
world) over the top 100 websites.

• We demonstrate video fingerprinting IdleLeak attacks on
two video streaming platforms, with F1 scores of 90.2%
(YouTube) and 75% (PornHub) over the top 20 videos
using only the first 10 s of a video.

Outline: Section II provides background on SMT, side
channels and power states. Section III presents the idea behind
IdleLeak. Section IV evaluates native and cross-VM IdleLeak
covert channels. Section V presents our keystroke timing
attacks and Section VI our website- and video-fingerprinting
attacks. Section VII discusses implications and mitigations.
Section VIII discusses related work. Section IX concludes.

II. BACKGROUND

In this section, we provide background on SMT and side-
channel attacks. Finally, we discuss processor idle states,
how the running software can influence them, and how they
influence the performance and energy consumption.

A. Simultaneous Multithreading (SMT)

Modern CPUs have multiple execution units that execute
different instructions simultaneously and out of order. While
this speeds up the instruction throughput and can improve
the wall-clock performance of workloads, for many work-
loads, the execution units are idling. Thus, to maximize
performance and efficiency, modern CPUs have multiple ex-
ecution threads (logical cores) that run separate instruction
streams from different execution contexts on the same physical
core. Intel calls this technique hyperthreading, more generally
known as simultaneous multithreading (SMT). With SMT,
many microarchitectural elements within the same physical
CPU core can be shared (e.g., reorder buffer, load and store
buffer, caches, the TLB) [54]. Similarly, processors achieve
substantially higher utilization of execution units, improving
performance by roughly 30% [58], since, even on personal
computers, many execution threads are constantly running in
parallel. However, for single-threaded workloads, SMT can
have a negative performance impact, as on-core resources are

2

statically split or competitively shared, reducing the throughput
for the single-threaded workload.

B. Side-Channel Attacks

Side-channel attacks on computer systems were first re-
ported in the 1990s [22] and have since significantly influenced
the system security area. These attacks obtain meta-data about
a secret processed through a (possibly unintentional) channel
and derive the secret fully or partially from this meta-data.
Historically side-channel research focused on cryptographic
primitives [35], [3] as they have a very well-defined threat
model with a valuable secret, the secret key, and meta-data
that obtainable by an attacker, such as execution time [22],
[37], power consumption [24], [23], and EM radiation [39].

One line of side-channel research focused on user input,
mainly obtaining inter-keystroke timings but in some cases
even precise key press timings for a small set of keys or even
single keys [42], [11], [27], [57], [32], [50]. Inter-keystroke
timings already contain a significant amount of information
as the finger movements across the physical layout of a
keyboard influence the inter-keystroke timings in unique ways.
While any such timing differences depend on the specific user,
previous work showed that written text can still be recovered
from them, possibly with an initial learning phase [51], [52],
[67], [48], using e.g., machine learning [27], [51], [52].

Another important direction of side-channel research inves-
tigates using side channels to establish covert communication
channels. In this scenario, the victim and attacker collaborate
and form a sender-receiver pair of a communication chan-
nel [64], [31], [45]. Covert channels have since been demon-
strated on various microarchitectural elements [60], [62], [7],
across VMs in the cloud [31], and in browsers [33], [44].

Side-channel research typically evaluates these basic at-
tack targets in various attack scenarios, such as native code
attacks [66], browser- or VM-based attacks [33], [38], or even
attacks on and from TEEs such as Intel SGX [47], [63], [56],
[59]. Each of these scenarios comes with different security
properties and, hence, influences the applicability and impact
of a potential side-channel attack. Another important aspect
of these scenarios is the relative location of the attacker and
victim. In many attacks, the attacker and victim run on the
same core or two sibling logical cores [10], [1], [49], [46]. This
is not surprising, as many of the targeted microarchitectural
elements are not shared across cores, and thus, influences
are only visible on the same core or sibling logical cores.
Cross-core attacks are possible only for microarchitectural
elements shared across the core [66], [30]. Consequently,
research in the 2010s focused more on cross-core shared
microarchitectural elements [38], [59] and less on private per-
core microarchitectural elements. More recently, studies have
focused more on these elements again [1], [28], [9].

C. Processor Power States (C-States)

C-States are processor power states defined in the Ad-
vanced Configuration, and Power Interface (ACPI) [55]. The
ACPI defines power states C0 to Cn, where C0 is the running
state in which the CPU executes instructions and C1 through
Cn are idle states where the processor consumes less power.
The time to enter and exit a C-State depends on the depth of

the power state (with C1 being light sleep), where deeper idle
save more power but have a higher cost to enter and exit.

Older Intel x86 processors only had the privileged hlt
instruction to put the processor into the C1 idle state. To
avoid the expensive system calls to briefly move the processor
into an idle state, Intel subsequently introduced the pause
instruction. The pause instruction for several processor gen-
erations was the most efficient way for user space programs
to implement a busy wait while staying in C0. The MON-
ITOR x86 ISA extension introduced the mwait instruction
which allows waiting for a write to a memory location and
provides a simple way to switch to deeper C-states than C1.
Recently Intel introduced the WAITPKG x86 ISA extension
with the Tremont and Alder Lake microarchitectures adding
the umwait and tpause instructions on all privilege levels.
While the privileged mwait instructions allows entering all
C-States, tpause and umwait are restricted to two sub-
states of the C0 running state (C0.1 and C0.2). The umwait
instruction can be used to monitor a write accesses to a specific
memory range. The tpause instruction allows to generically
wait for a deadline specified in the EDX:EAX registers to
optimize busy waits. Thus, tpause provides an efficient
and fast way for user programs to switch to C0.1 and C0.2
and is now the most efficient option for short waits [17].
Thereby it reduces the energy consumption and, in the case
of C0.2, increases the performance of sibling logical cores.
Both of these idle states offer small power savings (5-13%
compared to a busy wait) and a fast wake-up time (about 22%
increase compared to a busy wait) [4]. Bityutskiy [4] found
no significant latency advantage of C0.1 over C0.2, justifying
the use of only the C0.2 in recent Linux kernel patches. For
longer waiting times, the user can still rely on operating system
support. Intel recommends the use of the tpause instruction
for user-level busy polling, synchronization, and asynchronous
I/O, to reduce energy consumption while maintaining a much
lower wake-up latency than previously available methods [16].

The operating system can prevent user programs from set-
ting excessively high deadlines by setting the maximum sleep
time through the IA32_UMWAIT_CONTROL model-specific
register. However, besides the time limit, tpause is also
woken up by non-maskable interrupts, system management
interrupts, machine check exceptions, and external interrupts,
regardless if interrupts are enabled (RFLAGS.IF) [16], [18].

III. IDLE STATE SIDE EFFECT INFORMATION LEAKAGE

In this section, we present the attack primitives of IdleLeak.
We first analyze the side effects of the C0.1 and C0.2 idle
states and how they can be exploited. As these new idle states
C0.1 and C0.2 are reachable from userspace, their behavior
and effects can be observed by an unprivileged attacker. We
then build two attack primitives, ActiveIdleLeak and PassiveI-
dleLeak. With ActiveIdleLeak, we use side effects of the C0.2
idle state to leak information from a restricted environment
to an attacker-controlled environment. With PassiveIdleLeak,
we use side effects of the C0.1 and C0.2 idle state to spy on
co-located workloads, network activity, user input, and system
activity. We also demonstrate both attack primitives in virtual
machines and show how they can even be used for information
leakage across a VM-host boundary. Our attacks demonstrate
the negative security implications of adding user-controlled

3

m
m

ap
nu

m
a

po
ll

zli
b

fu
tex

m
em

fd
m

ut
ex

ato
m

ic
cr

yp
t

m
all

oc fo
rk

io
-u

rin
g

se
nd

fil
e

ca
ch

e
cp

u
se

m
m

atr
ix

ve
cm

ath
fu

nc
ca

ll
rd

ra
nd

m
em

cp
y

so
ck

sw
itc

h str
qs

or
t

m
sg

pe
rlb

en
ch gc
c

m
cf

de
ep

sje
ng

lee
la

ge
om

ea
n

0%

50%

100%
Pe

rf
or

m
an

ce
In

cr
ea

se

Fig. 1. Performance increase in the Phoronix Test Suite and SPEC CPU 2017 on a logical core while the sibling logical core is in the C0.2 idle state. We observe
an average increase of 31%.

idle states, as they allow observing various system-level events
with a high accuracy, even in practical open-world attacks.

A. Performance Side Effects of the C0.2 Idle State

For ActiveIdleLeak, we investigate the side effects of
the C0.2 idle state on the system performance, in particular
the performance of co-located workloads. While performance
gains are documented [4], their security implications are not.
Therefore, we analyze the performance effects in more detail
using micro-benchmarks and macro-benchmarks to infer how
they can be used in side-channel and covert-channel scenarios.

As macro-benchmarks, we use SPEC CPU 20171 and
Stress-NG from the Phoronix Test Suite. We run the bench-
marks on an Intel i7-13900K on one core while the sibling
logical core enters idle state C0.2 using tpause. We compare
the benchmark results to a run with a busy wait on the sibling
logical core. All benchmarks except for two show a significant
performance increase of 31% on average when the sibling
logical core is in the C0.2 idle state (cf. Figure 1). Only two
benchmarks from the Phoronix Test Suite show no significant
change: rdrand and io-uring. The reason for these two
outliers is that the performance limitations lie outside of the
core: For rdrand, the corresponding random-number genera-
tor module is located outside of the processor core and shared
across all cores [7]. For io-uring, testing the performance
of the io-uring asynchronous I/O framework on Linux,
the default setting is an interrupt-driven mode [25], i.e., the
performance of the test is largely not limited by core-internal
resources. The benchmarks with the highest performance gains
are primarily single-core compute-bound, e.g., memcpy at
+100%, futex at +89%, and crypt at +70%.

The performance is also influenced by the frequency of
accesses to potentially uncached data, which induces pipeline
bubbles and stalls. Hence, benchmarks like memcpy, crypt,
and str show a much higher performance gain than bench-
marks with a higher cache miss frequency, e.g., cache and
qsort. Similarly, besides io-uring, also other benchmarks,
e.g., atomic and sem, may require cross-core operations
or the invocation of coherency protocols, leading to a lower
performance gain than more compute-bound workloads.

These results already indicate that there are workload-
dependent influences that an attacker could exploit. To under-
stand the performance effects of C0.2 on an instruction level,
we perform micro-benchmarks with specific operations we will

1We excluded 648.exchange2, 620.omnetpp, 657.xz, 625.x264, and
648.xalancbmk as they did not compile on our test systems.

no
p

pa
us

e
m

ul le
a

ad
d

xo
r

m
ov di
v

rd
tsc

0%

50%

100%

Pe
rf

or
m

an
ce

in
cr

ea
se

Fig. 2. Performance increase of a set of x86 instructions on an Intel i7-1260P,
when the sibling logical core is in idle state C0.2 compared to a busy wait.
We can see that for some instructions an increase of almost 100% is possible,
whereas other instructions see no performance gains.

subsequently use in our attacks. To determine the optimal
instruction to construct a channel, we select nine candidate x86
instructions that we expect to be mainly influenced by core
performance rather than external device or memory latency.
Since we focus on the core performance influence, we test all
instructions with register operands with randomized inputs.

We measure their change in execution speed when the sib-
ling core is in C0.2 compared to a busy wait. Each instruction
is measured 10 000 times with a busy wait on the sibling core
and 10 000 times while the sibling core is in idle state C0.2.
We repeat the target instruction 8 192 times to ensure that the
CPU can take full advantage of the increased space of internal
buffers and pipeline elements released by the idle sibling core.
For each measurement, the target instruction executions are
surrounded by serialize instructions, to avoid reordering
of the measurement code.

The results of our measurements are shown in Figure 2.
For fast instructions that take a single cycle to execute, such
as add, xor, and mov, we observe a median speedup of
roughly 80%. We observe a speedup of less than 10% for
pause, div, and mul, even though they have no memory
operands. This indicates that the throughput limitation for these
instructions is not in any pipeline element or buffer shared
between the sibling logical cores. The lea instruction receives
a speedup of ≈40% and rdtsc receives a speedup of ≈20%.
The nop instruction receives the most significant performance
boost of 90%. This is not surprising, as nop should only be
limited by the throughput of the core’s frontend and reorder
buffer but no execution unit. Consequently, having the full
reorder buffer available doubles the throughput. We use nop in
combination with C0.2 to build a covert channel in Section IV.

B. Interrupt Detection

Zhang et al. [68] recently proposed the use of umwait
for interrupt detection in native code as it is woken up on

4

0 1 2 3 4
0

2,000

4,000

Time [s]

L
at

en
cy

[µ
s]

Fig. 3. Interrupts detected by a native attacker. The block with lower latencies
in the middle, corresponds to a high number of interrupts caused by a touch
pad.

0 0.5 1
0

500

1,000

Time [s]

L
at

en
cy

[µ
s]

(a) Recorded trace.

0 0.5 1
0

500

1,000

Time [s]

L
at

en
cy

[µ
s]

(b) Timer interrupts filtered.

Fig. 4. Touch-pad interrupts recorded by a VM-based attacker are clearly
visible (indicated by the low latencies in the middle) when monitoring
interruptions with tpause and filtering the timer interrupts.

external interrupts [17]. Furthermore, umwait also wakes up
when the specified memory is written to. Since we do not
require the memory monitoring for any of our attacks, we use
tpause, as a less noisy alternative to umwait. We further
show undocumented behavior that allows us to use tpause
and umwait inside a virtual machine to detect interrupts of
co-located virtual machines and the host system.

There are three reasons for tpause to wake up: First,
the instruction continues if the specified deadline is reached.
Second, it continues if the the operating system’s deadline is
exceeded. Finally, it wakes up if an interrupt occurs.

For PassiveIdleLeak interrupt monitoring, we set the
tpause deadline to the maximum value. This high deadline
ensures that we never wake-up due to reaching the deadline.2

The operating system’s deadline, setting the real maximum
deadline, cannot be influenced by the user. However, a wake-
up caused by the operating system’s deadline sets the carry
flag. A wake-up due to an interrupt does not set the carry flag.
Thus, we can reliably detect interrupts using tpause.

To build our PassiveIdleLeak interrupt detection attack
primitive, we repeatedly run tpause with the maximum sleep
time until a wake-up occurs with the carry flag cleared. This is
different to umwait which can also spuriously wake up due to
memory activity, without revealing this wake-up reason to the
user program, i.e., effectively inducing noise into the channel.

Figure 3 shows an example of a PassiveIdleLeak interrupt
trace recorded with the tpause instruction on an i7-1260P
running a default-configured Ubuntu 22.04 (Linux 6.1.0). The
y-axis represents the observed sleep time. Effectively, this
is the time the logical core spent in the idle state. The x-
axis shows the wall-clock time. One constant element the
interrupt traces contains, is a continuous line, in this case
at 4 000 µs, representing regular timer interrupts generated by
the operating system for context switches. Any deviation from
this line indicates the occurrence of a different interrupt. The

2A spurious wake-up is possible when the time-stamp counter (TSC)
overflows, which will not happen within 10 years of the last reset according
to Intel [15].

interrupt trace in Figure 3 consists mainly of timer interrupts at
4 000 µs and touchpad interrupts between 1.6 s and 3.3 s. This
trace already shows the possibility to use PassiveIdleLeak to
spy on user input activity. A similar trace recorded in a VM
environment is shown in Figure 4a. The VM runs a default-
configured Debian 11 (Linux 6.2.0), on a default-configured
KVM Ubuntu 22.04 host, with guest timer interrupts every
1 000 µs. We observe wake-ups every 4 000 µs indicated by
a drop in sleep time, despite the lack of received interrupts
inside the guest. We find that these wake-ups are caused by the
host’s timer interrupts. The interrupts wake up the logical core
from the idle state and let the execution return from tpause
even though these interrupts are intended for the host. The
interrupts cause an immediate VM exit and transfer control to
the host. However, this still allows guests running in a VM
to spy on interrupts intended for the host. We filtered the
host timer interrupts by removing the regular interrupts every
4 000 µs shown in Figure 4b to highlight the other interrupts.
This filtering results in a significantly clearer interrupt trace
showing touchpad interrupts intended for the host between
0.4 s and 0.7 s.

For C0.1, we further observe that the CPU not only wakes
up on interrupts intended for the waiting core but also on
interrupts intended for sibling logical cores even while running
inside a VM. On our Ubuntu 22.04 (Linux 6.2.0) we further ob-
served that exceptions, e.g., divide-by-zero, page fault, general
protection fault, on a sibling logical core result in a wake up for
C0.1. This allows an attacker to use C0.1 to spy on interrupts
and exceptions intended for the sibling logical core and, in
the case of a cloud environment, on interrupts and exceptions
intended for different VMs. Importantly, this behavior does not
induce a VM exit on the attacker’s logical core but still allows
observing the interrupt. This has a significant advantage over
the scenario where the interrupt arrives on the attacker core.
Since the attacker core does not execute the interrupt service
routine, it does not execute a VM exit. Instead, it can re-
enter C0.1 immediately after detecting an interrupt and, thus, is
immediately ready to detect the next interrupt. Since interrupts
do not adhere to security-aware scheduling policies [21] and
the x86 architecture implies the assignment of interrupts to a
specific cores, it is not trivial to mitigate this issue without
significant performance cost, as we discuss in Section VII.

We did not observe the idle-state-interrupting behavior
upon sibling-logical-core interrupts in idle state C0.2. Since
the C0.1 and C0.2 idle states were both introduced for the user-
mode instructions tpause and umwait, disabling access to
C0.1 is not possible without fully disabling access to tpause
and umwait. In Section V, we evaluate the PassiveIdleLeak
attack primitive in attacks on user input. In Section VI, we
show that PassiveIdleLeak can also be used for website and
video fingerprinting, with high accuracies despite the victim
running on a separate physical core.

IV. COVERT CHANNEL

We present two high-speed covert channels based on
ActiveIdleLeak and on PassiveIdleLeak. The ActiveIdleLeak
covert channel is based on the performance effects of the idle
state C0.2 on different instructions. The PassiveIdleLeak covert
channel is based on the wake-up of sibling logical cores from
the idle state C0.1 when an interrupt or exception occurs.

5

Fig. 5. Overview of a ActiveIdleLeak covert-channel transmission where t is
the length of a time slice. For each time slice, the sender enters C0.2, which
speeds up the receiver to send a ‘0’-bit or busy waits to send a ‘1’-bit.

50 60 70 80 90 100
0

0.5

1
⋅106

Execution time [CPU cycles]

Fr
eq

ue
nc

y

1
0

Fig. 6. The sender idling in C0.2 via tpause is used to encode a ‘0’-bit,
busy-waiting is used to encode a ‘1’-bit.

A. Covert Channel Design

In this section, we explain the design of our two covert
channels. For both the ActiveIdleLeak and the PassiveIdleLeak
we use time slicing in combination with a primitive based on
the corresponding attack to transmit data.

1) ActiveIdleLeak Transmission Primitive: In this scenario,
we transmit a data stream bit-wise through the ActiveIdleLeak
channel. The receiver repeatedly measures the execution time
of a series of nop instructions as it showed the highest
performance change in our micro-benchmark (cf. Section III).
When the sender enters idle state C0.2, the execution time of
the nop series will go down substantially. When the sender
does not enter an idle state, the execution time of the nop
series will not be affected. Thus, we build the covert channel
on top of this timing difference, transmitting ‘0’ and ‘1’ bits.

Figure 5 presents the high-level overview of our covert
channel. We use one receiver thread and one sender thread,
each running on one logical core of the same physical core.
In this example, the sender transmits a sequence of ‘0110’.
For a ‘1’-bit, the sender performs a busy wait. Consequently,
the receiver sees a low performance, i.e., a higher execution
time. For the next bit, a ‘0’-bit, the sender enters the C0.2 idle
state via tpause, increasing the performance of the victim,
i.e., lowering the execution time of the nop series. The same
operation follows for the next bit, another ‘0’-bit. For the fourth
bit to transmit, a ‘1’-bit, the sender performs a busy wait,
reducing the performance of the victim’s nop series again.
The receiver can now infer the full sequence ‘1001’.

Figure 6 shows the histograms for the two corner cases
we use for transmission. Executing 512 nop instructions in
the receiver takes 82 cycles (σx̄ = 0.01 cycles, n = 2 151 841)
when the sender performs a busy wait. In contrast, execut-
ing 512 nop instructions the receiver only takes 60.3 cycles
(σx̄ = 0.01 cycles, n = 2 151 841) cycles when the sender is in

0
2,
00
0

4,
00
0

6,
00
0

8,
00
0

10
,0
00

60
80

100 1 0 1 0 1 0 0 1 1 1

Cycle

L
at

en
cy

[C
yc

le
s]

Fig. 7. The native ActiveIdleLeak covert channel transmission has a clearly
visible difference in the latency between transmitting ‘0’ and ‘1’ bits.

state C0.2. While the timings of the two cases are very clearly
separated, a small number of outliers can be observed in the
‘0’-bit case in Figure 6, at 80 to 90 cycles. These outliers result
from the regular wake-ups from C0.2, caused by the operating
system’s deadline. Thus, for a short time, the sibling core is
active before executing the next tpause to re-enter idle state
C0.2. Since the observed execution time is then in the range
of a busy wait, this effect introduces a small amount of noise
into our side channel and our covert channel transmission.

2) PassiveIdleLeak Transmission Primitive: In this sce-
nario, we transmit data bit-wise through the covert channel. We
use one receiver and one sender thread, running on the logical
cores of one physical core. The receiver measures the interrupt
frequency of the sibling logical core with PassiveIdleLeak.
The sender causes a wake-up of the receiver by generating
exceptions. We use the divide-by-zero exception, as it can be
triggered without a memory access. When the sender does
not trigger exceptions, the receiver thread will detect fewer
interrupts. Thus, we build the covert channel on top of this
behavioral difference, transmitting ‘0’ and ‘1’ bits.

3) Synchronization: We synchronize our covert channels
via the TSC. The transmission starts on a previously agreed-
on TSC value and sends the bits in time slices of predefined
length. For each time slice with our ActiveIdleLeak covert
channel, the sender repeatedly executes tpause to stay in
C0.2 until the end of the time slice to transmit a ‘0’ or runs a
busy wait to send a ‘1’. To compensate for noise, the receiver
averages the execution times of all nop instruction sequences
within a time slice at the end and determines the bit through a
threshold. An example transmission with a time slice length of
1 000 cycles is shown in Figure 7. The time slices are indicated
with vertical red lines. The ground truth is printed at the top
of each time slice. The receiver’s latency when receiving a ‘1’
is around 80 cycles and for a ‘0’ at 60 cycles. We can observe
latency spikes of 100 cycles at the beginning of each time
slice. These spikes are due to the sender determining which
bit value should be sent in the upcoming time slice.

For each time slice with our PassiveIdleLeak covert chan-
nel, the sender generates exceptions until the end of the
time slice to transmit a ‘1’ or runs a busy wait to send a
‘0’. The transmission starts with 16 ‘1’-bits for initialization.
The receiver counts the number of interrupts detected with
PassiveIdleLeak for the first 16 time slices, averages them,
and divides them by 2 to compute a threshold value. For the
following time slices, the sender transmits the data. For each
time slice after initialization, the receiver counts the number of
interrupts and compares them with the threshold value. If the
number of interrupts is above or equal to the threshold value,
a ‘1’-bit was transmitted. If the number of interrupts is lower
than the threshold, a ‘0’-bit was transmitted.

6

0

0.2

0.4

B
it-

E
rr

or
R

at
io

5 10
0
2
4
6
8

(a) Alder Lake Core i7-1260P

0

0.2

0.4

5 10 15
0
2
4
6
8

Tr
ue

C
ap

ac
ity

[M
bp

s]

(b) Raptor Lake Core i9-13900K

Fig. 8. The raw capacity of our native ActiveIdleLeak channel, and the
corresponding bit-error ratio and true capacity. We can see that the optimal
true capacity is reached between 5 and 10Mbit/s of raw capacity.

Relying on the TSC for synchronization has additional ben-
efits for our IdleLeak covert channels. The wake-up deadline
of tpause is specified by a TSC value at which the processor
should leave the idle state again. Consequently, we inherently
re-synchronize our covert channel through the used instruction
and eliminate the need for additional synchronization logic.

B. Evaluation

We evaluate both covert channels by sending data from
/dev/urandom on an i9-13900K. We additionally evaluate
our ActiveIdleLeak covert channel on an i7-1260P. We assume
attacker and victim run in separate processes and that they can
be scheduled on sibling logical cores of the same physical core.
We assume they run native userspace code. Furthermore, there
is no legitimate communication channel between the processes
and no bugs could be exploited for communication.

For our initial tests, to obtain the optimal configuration
parameters, we run the system idle without interfering work-
loads. Later on we evaluate the influence of different types
of noise for the native ActiveIdleLeak channel. We evaluate
different time slice lengths and record the raw capacity and
bit-error ratio of the channel. Since our channels are based
on time slices, the raw capacity is inversely linear in the
time slice length. Thus, shorter time slices result in a higher
transmission rate but due to the shorter time slices, more bit
errors may occur. Consequently, while the raw bitrate increases
with a time slice reduction, the actual channel capacity might
decrease due to a higher bit-error ratio. To find the optimal
transmission rate, we compute the true capacity based on the
raw bitrate and the bit-error ratio.3

1) Native ActiveIdleLeak Covert Channel: Figure 8 shows
the true channel capacity and bit-error ratio as a function
of the raw capacity on our test systems. On the i9-13900K,
shown in Figure 8b, the bit-error ratio stays below 1% up to
a raw capacity of 7.2Mbit/s. The true capacity then peaks at
a raw capacity of 8.9Mbit/s with a bit-error ratio of 3.2%
(σx̄ = 0.01%, n = 512), corresponding to a true capacity of
7.1Mbit/s (σx̄ = 0.004Mbit/s, n = 512). On the i7-1260P,
shown in Figure 8a, the bit-error ratio is slightly higher. The
true capacity here peaks at a raw capacity of 7.8Mbit/s with a
bit-error ratio of 4.4% (σx̄ = 0.18%, n = 512), corresponding
to a true capacity of 5.9Mbit/s (σx̄ = 0.05Mbit/s, n = 512).

To determine the effect of system noise on the covert
channel transmission rate, we run our channel while other
workloads run on the CPU. We use the optimal parameters

3We use the binary symmetric channel model to compute the true channel
capacity T as T = C ⋅ (1 + ((1 − p) ⋅ log2(1 − p) + p ⋅ log2(p))) where C
is the raw bit-rate and p the bit-error probability.

0 8 16 24 32
0

2

4

6

Tr
ue

C
ap

ac
ity

[M
bp

s]

CPU

I/O

(a) Stress threads on i7-1260P

0 16 32 48 64
0

2

4

6

8

Tr
ue

C
ap

ac
ity

[M
bp

s]

CPU

I/O

(b) Stress threads on i9-13900K

Fig. 9. Effect of I/O and CPU-related workloads simulated with the stress
utility on the covert channel’s true capacity. On the i9-13900K, the capacity
reaches ∼0 bit/s with more than 30 stress threads. I/O heavy workloads do not
have a significant influence on the capacity. On the i7-1260P, capacity drops
to ∼0 bit/s with 4 CPU stress threads. I/O workloads decrease to 2Mbit/s with
4 stress threads decreasing slowly with more threads.

0.
2

0.
4

0.
6

0.
8 1

1.
2

⋅107
60
80

100
120
140 1 0 1 1 0 0 1 0 1 0

Cycle

L
at

en
cy

[C
yc

le
s]

Fig. 10. The cross-VM covert channel transmission is more noisy but still has
a clear difference in the latency between ‘0’ and ‘1’ bits.

for each CPU according to Figure 8. To simulate the system
noise, we use the stress tool to run I/O and CPU workloads
with different numbers of threads. For both of our tested CPUs
(i7-1260P and i9-13900K), we run up to double the number of
stress threads as there are logical cores for both I/O and CPU
workloads. The results of our evaluation are shown in Figure 9.
On the i9-13900K, I/O workloads do not significantly impact
the covert channel, with the true capacity staying at 7.1Mbit/s
for all scenarios. With CPU workloads, the capacity decreases
to 6 bit/s with 8 stress threads and to almost 0Mbit/s with
more than 30 stress threads. Together with our 2 threads taking
part in the transmission, this results in 32 threads before the
transmission breaks down, exactly the number of logical CPU
cores. On the i7-1260P, I/O workloads have a significant effect
on the transmission rate, dropping it from 6Mbit/s to 2Mbit/s
with only 4 stress threads, decreasing slowly to ∼1.8Mbit/s
with 32 threads after that. For CPU workloads, the covert
channel drops to almost 0 bit/s with only 4 stress threads
which are significantly less than the 16 logical cores the CPU
has. During testing, we observed that the i7-1260P reached its
thermal limits of 100 °C, causing it to thermal throttle. When
fixing the fan speed to its maximum to avoid thermal throttling,
we still observed high core frequency fluctuations throughout
the experiment with an increasing number of stress threads.
We presume these fluctuations to be the result of lower power
limits and the stricter efficiency requirements of laptop CPUs.

2) Cross-VM ActiveIdleLeak Covert Channel: Our cross-
VM covert channel evaluation is similar to our native code
evaluation. Additionally to the separate processes for attacker
and victim, we assume attacker and victim run in separate
VMs on the same physical machine. Both VMs run a recent
Debian 11 with Linux kernel 6.2.0 and can be scheduled on
sibling logical cores. Attacker and victim have no means of
communication besides the covert channel.

Figure 10 shows an example transmission of our cross-
VM channel. As we are running in VMs, there is no shared

7

5 10 15

0

2

4

⋅10−2
B

it-
E

rr
or

R
at

io

0

20

40

(a) Alder Lake i7-1260P (Laptop)

0

2

4

⋅10−2

20 40

0

20

40

Tr
ue

C
ap

ac
ity

[k
bp

s]

(b) Raptor Lake i9-13900K (Desktop)

Fig. 11. The raw capacity (x-axis in kbps) of our cross-VM channel, and the
corresponding bit-error ratio and true capacity. The optimal true capacity is
reached at 46.9 kbit/s of raw capacity for the i9-13900K and at 15.5 kbit/s of
raw capacity for the i7-1260P. At a higher raw capacity the synchronization
mechanism fails leading to no data transmitted, marked by the gray area.

50
0

1,
00
0

1,
50
0

2,
00
0

2,
50
0

3,
00
0

0

0.2

0.4

Raw Capacity [kbps]

B
it-

E
rr

or
R

at
io

0

200

400

600

Tr
ue

C
ap

ac
ity

[k
bp

s]
Fig. 12. The raw capacity of PassiveIdleLeak, and the corresponding bit-
error ratio and true capacity on an i9-13900K. The optimal true capacity of
656.37 kbit/s (σx̄ = 0.63 kbit/s, n = 1 024) is reached with a bit-error ratio
of 9.22% (σx̄ = 0.02%, n = 1 024) at 1 179 kbit/s of raw capacity.

time-stamp counter (TSC). We resolved this challenge with an
initialization sequence of 5 alternations between ‘1’ and ‘0’,
unlikely to be received through random noise. Random data
follows after this sequence similar to Section IV-B1.

Figure 11 shows the true channel capacity and bit-error
ratio as a function of the raw capacity on our test systems.
On the i9-13900K, shown in Figure 11b, the bit-error ratio
stays below 0.3% up to a raw capacity of 46.9 kbit/s. The true
capacity then peaks at a raw capacity of 46.9 kbit/s with a bit-
error ratio of 0.22% (σx̄ = 0.07%, n = 370), corresponding
to a true capacity of 46.32 kbit/s (σx̄ = 0.15 kbit/s, n = 370).
On the i7-1260P, shown in Figure 11a, the bit-error ratio is
slightly higher. The true capacity here peaks at a raw capacity
of 15.5 kbit/s with a bit-error ratio of 2.1% (σx̄ = 0.39%,
n = 60), corresponding to a true capacity of 13.57 kbit/s (σx̄ =

0.27 kbit/s, n = 60). We have no data for higher raw capacities
for either CPU as the synchronization mechanism fails.

3) Native PassiveIdleLeak Covert Channel: Figure 12
shows transmission rate and bit-error ratio compared to the
raw capacity of the PassiveIdleLeak channel. The true capacity
peaks at 656.37 kbit/s (σx̄ = 0.63 kbit/s, n = 1 024) with a bit-
error ratio of 9.22% (σx̄ = 0.02%, n = 1 024) at 1 179 kbit/s
of raw capacity. After the true capacity peak, the time slice
length is smaller than the time to trigger an exception and
recover from it. We conclude that PassiveIdleLeak can be used
to leak data at a high transfer rate from sibling logical cores.

4) Previous Work: Both our ActiveIdleLeak (7.1Mbit/s)
and PassiveIdleLeak (656 kbit/s) covert channels achieve com-
parable or faster transmission rates than previous work.
Zhang et al. [68] built a covert channel based on detecting
speculative writes with umwait and achieved a transmission
rate of 200 kbit/s. Gast et al. [9] exploit scheduler contention to
leak and transmit 2.7Mbit/s. Saileshwar et al. [45] use cache
contention and achieve a transmission rate of 14.4Mbit/s.

0
20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

1,
60
0

0

2

4

Relative Time [ms]

Sl
ee

p
Ti

m
e

[m
s]

Fig. 13. Keystroke detection using PassiveIdleLeak on an i7-1360P. The
downward spikes show the interrupts caused by key-down and key-up events,
i.e., where keystrokes are detected. The red arrows show the ground-truth.

V. KEYSTROKE DETECTION

In this section, we present our inter-keystroke timing at-
tack. We exploit that keystrokes of USB keyboards generate
interrupts and detect them with PassiveIdleLeak.

A. Threat Model

We assume the attacker has access to millisecond-accurate
timers, e.g., clock_gettime or C++ standard clocks. We
make no assumptions on the availability of high-resolution
timers such as the TSC, as they can be manipulated. Linux
assigns each external interrupt to one of the available cores.
Interrupt-core assignments rarely switch between cores at
runtime, as can be observed via /proc/interrupts. We
assume the attacker can start multiple threads on different
cores. Thus, we can assume that the attacker is eventually
scheduled on the core that receives the keyboard device
interrupts. We make no assumption on the core the victim code
receiving the keystrokes is running on, as this is independent
of the core that receives the keyboard device interrupts.

B. Attack Implementation

For our inter-keystroke timing attack, the attacker first
records an interrupt trace using PassiveIdleLeak on the core
that receives the USB interrupts. USB devices generate inter-
rupts when sending data to the host system. A USB keyboard
sends two types of interrupts for a single keypress: one for the
key press (key down) and one for the key release (key up).
Once recorded, the attacker analyzes the data and infers the
precise inter-keystroke timings.

Figure 13 shows an interrupt trace recorded with PassiveI-
dleLeak. The key-down interrupts are marked with red arrows
and result in a significant dip in sleep time. After each key-
down interrupt, a key-up interrupt occurs. The time between
two interrupts depends on the writing speed but is usually in
the tens of milliseconds [20]. We use the key-up interrupt
to distinguish keystroke interrupts from other interrupts that
occur on the same core. We exclude unlikely interrupt pairs
that are too low (<10ms) or too high (>100ms). Thus, for
every interrupt in our trace, we search for a possible key-up
interrupt that is at least 10ms and at most 100ms after the
possible keystroke. We make no assumptions on overlapping
key presses. If such an interrupt exists, we log the first interrupt
as the key down event, remove the interrupt pair from the trace
and continue with the next interrupt.

C. Evaluation

To evaluate PassiveIdleLeak, we use an ARM Mbed LPC-
1768 µ-controller board. This controller board acts as a USB

8

100 200 300 400 500
0

200
400
600
800

Inter-Keystroke Timing [ms]

Fr
eq

ue
nc

y

(a) Distribution of inter-keystroke timings in the ground-truth.

100 200 300 400 500
0

200
400
600
800

Inter-Keystroke Timing [ms]

Fr
eq

ue
nc

y

(b) Distribution of inter-keystroke timings recovered by PassiveIdleLeak on
an i7-1260P.

Fig. 14. The distributions of inter-keystroke timings and of the ground-truth.
The recovered and ground-truth inter-keystroke timings are very similar.

keyboard device that we plug into our test machines to
inject hardware keyboard interrupts. We use pre-recorded inter-
keystroke timing data [29] covering a hundred participants
typing an eight-letter word ten times. We use these 7 000 inter-
keystroke timings and replay them using the µ-controller with
a high-precision clock. Thus, we have highly accurate ground-
truth data for the actual keystroke interrupts.

We evaluate our native-code inter-keystroke timing attack
on an i7-1260P on Ubuntu 22.04 (Linux 6.1.0). We schedule
the attacker on one of the two logical cores of the physical
core that receives the keyboard interrupts. Our keystroke
detection has a precision of 87.1%, a recall of 94.1%, and
an F1 score of 90.5%. For the timing, we measured and
statically subtracted the average deviation, which was 15.2 µs,
effectively minimizing the average deviation to 0. The detected
and reference inter-keystroke timings of the correctly detected
keystrokes are shown in Figure 14. The reference distribution
(Figure 14a) and the detected distribution (Figure 14b) are
almost identical. We achieve a standard deviation of 950 µs and
a standard error of 12 µs for our correctly detected keystrokes.
Therefore, we conclude that PassiveIdleLeak can accurately
monitor interrupt-based singular events like keystrokes.

VI. WEBSITE AND VIDEO FINGERPRINTING

In this section, we present our website and video finger-
printing attacks using PassiveIdleLeak. We show that it is
possible to determine the website a user accesses in a closed-
world setting over the top 100 websites from the Alexa top
1 million list [2] and an open-world setting with the top
100 websites and an other-class for websites not in the
top 100. Furthermore, we demonstrate an open-world and a
closed-world video-fingerprinting attack on two popular video-
streaming websites, YouTube and PornHub, to distinguish
between the top 20 trending videos in the US at the time of
writing for YouTube and between the most viewed videos of
the 20 most popular categories on PornHub. In this scenario,
we assume an attacker runs code in a VM on the same machine
as the victim.

Network devices generate interrupts when sending or re-
ceiving data. When accessing a website or video streams, the

0
4,
09
6

8,
19
2

12
,2
88

0

0.2

0.4

Sample

Fr
eq

ue
nc

y

(a) google.com

0
4,
09
6

8,
19
2

12
,2
88

16
,3
84

0

0.2

0.4

Sample

Fr
eq

ue
nc

y

(b) youtube.com

Fig. 15. The STFTs of the interrupt traces of different websites show distinct
patterns, here with the examples (a) google.com and (b) youtube.com. Both
traces were acquired in a VM-based attack, attacking a browser running on
the host machine. (ploted values are amplified for readability)

computer sends and receives numerous network packages. The
number of packages depends on the content, while the time
between packages can, among other things, depend on the con-
tent, server location, and server software, resulting in unique
interrupt patterns for most content. We use PassiveIdleLeak to
infer the exact website accessed or video stream watched by
the user, based on a convolutional neural network (CNN) we
train to classify the interrupt patterns.

A. Threat Model and Attack Setup

We run our measurements on an i7-1260P CPU with
Mozilla Firefox 113.0.2 running Ubuntu 22.04. We assume
that a user wants to run untrusted code in a secure way
and, hence, runs it in a VM. While running the code in
a VM, the user browses the web. We assume the attacker
has access to millisecond-accurate timers in the VM, e.g.,
clock_gettime or C++ standard clocks. We do not use
and do not make assumptions about the availability of high-
resolution timers, such as the timestamp counter, as they
can be manipulated by the host. Linux assigns each exter-
nal interrupt to one of the available cores. Typically, these
assignments do not switch at runtime, as can be observed via
/proc/interrupts. On Linux with KVM, VM threads are
scheduled like other threads, irrespective of interrupt routing.
Thus, it is reasonable to assume that the attacker VM is
eventually scheduled on the core that receives the host’s
network device interrupts or on a sibling logical core. We
do not make any assumption on the core the web browser
is running on, as this is independent of the core that receives
the network device interrupts.

B. Attack

1) Website Fingerprinting: Our attack consists of an online
data-collection phase and an offline phase for processing and
evaluation of the traces. The online phase consists of a user
space program running inside a VM continuously running
PassiveIdleLeak on the CPU core that receives the network
device interrupts of the host as described in Section III-B. To
measure the execution time, we use an accurate millisecond
timer, as we only need to distinguish guest timer interrupts
from other interrupts. In the offline phase of our attack, we
analyze the collected traces. Since we previously determined
that a timer interrupt in our VM setup takes ≥1ms, as shown
in Figure 4b, a sleep time of ≥1ms means only timer interrupts
occurred and an execution time of <1ms means a different
interrupt must have occurred.

9

In the next step, we search for the time frame in which the
website access occurred. When there is no network traffic, the
core rarely receives interrupts except for the regular guest timer
interrupts, and the regular host timer interrupts. This results in
a change in interrupt frequency whenever a website access
occurs. We compute the short-time Fourier transform (STFT)
of the interrupt trace with a window size of 256 to analyze the
frequency change. The STFT of an access to google.com
and an access to youtube.com are shown in Figure 15.
The x-axis of the plots shows the sample number, and the
y-axis shows the change in frequency. Since the time between
samples can vary depending on the number of interrupts that
occur in a given time frame and we do not require an exact
sampling frequency for further processing, we do not have
a unit of measurement for our frequency scale. Due to this
lack of a consistent sampling frequency, we directly refer to
the frequency value returned by the STFT without any unit
of measurement. In case of no network traffic and a lack of
other interrupts, the 0.2, 0.4, and 0 frequency components are
high, while all other components are almost 0. An example
of almost no network traffic is shown in Figure 15b in the
last fourth of the trace since most of the website is already
loaded. A website access starts if the 0.2, 0.4, and 0 frequency
components decrease over multiple STFT windows. Following
the detected website access, we use the following 512 STFT
windows and forward them to our classifier. Examples can be
seen between samples 0 and 4 096 in Figure 15a and between
samples 1 024 and 10 240 in Figure 15b. While some of the
tested websites take longer to load than the 512 STFT windows
we use, we determined through manual testing that the used
time frame is enough to uniquely identify a website.

After this pre-filtering step, we forward the 512 STFT
windows to our convolutional neural network (CNN) for
classification. We use the STFT instead of the interrupt trace
since server response times can change slightly with each
website access, shifting interrupt timings. The resulting shift in
features in the time domain results in slightly different traces
on every website access. Applying an STFT to the interrupt
trace allows for efficient convolutions on the input rather than
relying on less efficient, fully connected layers. Additionally,
compared to a Fast Fourier Transform (FFT) over the whole
trace, the STFT preserves part of the time domain by applying
a Fourier transform on separate slices of the trace instead of
the whole trace. This technique is well established in the field
of signal classification [65], [6], [14]. Our CNN consists of 4
convolutional layers followed by 3 fully connected layers and
outputs a match probability for each of the 100 websites.

2) Video Fingerprinting: For our video-stream fingerprint-
ing attack, we measure the interrupt trace of the first 10
seconds of a video. Contrary to our website fingerprinting, we
do not apply the STFT directly on the interrupt trace. As the
interrupt trace of a video stream typically consists of a low
number of interrupts, mainly from the timer interrupt, with
short bursts of a high number of interrupts, an STFT directly
on the interrupt trace becomes inefficient. Instead, for each
millisecond, we count the number of interrupts that occurred,
resulting in the number of interrupts per millisecond. We then
perform an STFT on this transformed interrupt trace and feed
the result into a CNN similar to our website fingerprinting
attack. Our CNN for video-stream fingerprinting consists of 4

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Prediction

W
eb

si
te

Fig. 16. The confusion matrix for our website-fingerprinting attack, with
network interrupts arriving on the attacker’s core. For the classification, 10
out of 50 samples serve as the test set, with the remainder as the training set,
for each of the websites.

convolutional layers followed by 3 fully connected layers and
outputs a match probability for each of the 20 videos.

C. Evaluation

We evaluate our open-world website fingerprinting, closed-
world website fingerprinting, and video fingerprinting attacks
with the attacker VM on the sibling logical core of the core
that receives the network interrupts. We additionally evaluate
our closed-world website fingerprinting attack with the attacker
VM on the core that receives the network interrupts. For each
closed-world website fingerprinting scenario, we collected
5 000 traces (50 per website). For our open-world scenario,
we collected 20 000 traces (200 per website) for each of the
top 100 websites and 7 000 traces from 7 000 further websites
from the Alexa 1 million list [2] (1 trace per website). For
our closed-world video fingerprinting scenario on YouTube,
we collected 2 900 10 s traces (145 per video) of the top 20
trending videos in the US at the time of writing; for PornHub,
we collected 3 300 10 s traces (165 per video) of the most
viewed videos in the top 10 default and gay categories. For
our open-world video fingerprinting scenario on YouTube, we
collected 1 500 10 s traces (75 per video) of the top 20 trending
videos in the US at the time of writing; for PornHub, we
collected 1 500 10 s traces (75 per video) of the most viewed
videos in the top 10 default and gay categories. To represent
the other-class we collected 1 000 traces of 1 000 random
videos (1 trace per video) for both YouTube and PornHub.

For all attacks, we split the collected traces randomly into a
test set (20%) and a training set (80%). Our CNN was trained
with a validation split of 10% of the training set.

1) Closed-World Same-Core Interrupt Website Fingerprint-
ing: In this scenario, the attacker runs on the core that receives
the network device interrupts. We tested our classifier on the
test set which is not used for training and achieved an F1 score
of 88.2%. The full confusion matrix is shown in Figure 16.
Each cell indicates the probability that our classifier labels
the access to a website indicated by the row as a particular
website indicated by the column. The high probabilities along
the diagonal indicate that our classifier has a high accuracy

10

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Prediction

W
eb

si
te

Fig. 17. The confusion matrix for our website-fingerprinting attack, with
network interrupts arriving on a sibling logical core. For the classification, 10
out of 50 samples serving as the test set, with the remainder as the training
set, for each of the websites.

with no website being labeled correctly for less than 30% of
the time, which is significantly higher than random guessing at
1%. The websites with the worst accuracies are twimg.com
(10%), google.com (40%), google.co.in (40%), and
google.com.hk (40%). The twimg.com domain is used
by twitter for images and videos and only serves a page on
subdomains but not under the direct URL twimg.com, at the
time of testing, resulting in the low score. All other websites
have accuracies of at least 50%. Websites that our classifier
frequently confuses with each other include google.com,
google.com.hk, and google.co.in since all three do-
mains forward the browser to the same server. Grouping all
Google domains into one class results in an overall F1 score
increase from 88.2% to 90% for our model.

2) Closed-World Sibling-Logical-Core Interrupt Website
Fingerprinting: In this scenario, the attacker runs on a sibling
logical core of the core that receives the network device
interrupts. We tested our classifier on a test set which is
not used for training and achieved an F1 score of 92.4%.
The full confusion matrix is shown in Figure 17. Each cell
indicates the probability that our classifier labels the access
to a website indicated by the row as a particular website
indicated by the column. The high probabilities along the
diagonal indicate that our classifier has a high accuracy with
no website labeled correctly for less than 20% of the time,
which is significantly higher than random guessing at 1%. The
websites with the worst accuracies are twimg.com (20%, we
described this issue in Section VI-C1), dzen.ru (40%), and
tencent.com (60%). All other websites have accuracies
≥70%. Grouping all Google domains into one class results in
an F1 score increase from 92.4% to 93.1% for our model.

Since PassiveIdleLeak has to use C0.1 to detect interrupts
of the sibling logical core, the attacker detects all interrupts
from both logical cores that are part of the physical core
the attacker is running on. Despite the added noise from the
higher interrupt frequency compared to Section VI-C1, this
scenario performs significantly better, with an F1 score of
93.1%. The increase in F1 score is the result of the higher
accuracy PassiveIdleLeak has for detecting interrupts of sibling
logical cores as they do not require the attacker logical core

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Prediction

W
eb

si
te

Fig. 18. The confusion matrix for our open-world website-fingerprinting
attack, with network interrupts arriving on a sibling logical core.

to execute interrupt service routines and do not result in VM
exits for the attacker. Thus, the attacker is immediately ready
to detect the next interrupt, decreasing the number of missed
interrupts significantly. Despite the significant advantage of
this approach, the added noise from the interrupts on the
attacker core can negate this advantage if a device generates a
high frequency and number of interrupts, resulting in a lot of
noise. In such a high noise scenario, PassiveIdleLeak on the
same core as the target interrupts using C0.2 (as evaluated in
Section VI-C1) performs significantly better.

3) Open-World Website Fingerprinting: In this scenario,
we add an other-class for websites not part of the top
100 from the Alexa top 1 million list [2] with the attacker
running on a sibling logical core of the core that receives the
network interrupts. For the training of the other-class, we
use accesses to 5 600 websites from the top 1 million list. For
testing of the other-class, we use accesses to 1 400 websites
from the top 1 million list that are not in the training set.
As the other-class test set websites have never been seen by
our classifier during training, they result in a realistic accuracy
measurement of our classifier on unknown websites.

Our classifier achieved a macro-averaged F1 score of
85.2% on the test set. The other-class, in particular, has an
accuracy of 87.4% on the 1 400 test traces. The full confusion
matrix is shown in Figure 18. Each cell indicates the probabil-
ity that our classifier labels the access to a website indicated
by the row as a particular website indicated by the column.
The last column and row correspond to the other-class. The
high probabilities along the diagonal indicate that our classifier
has a high accuracy with no website being labeled correctly
for less than 37.5% of the time, which is significantly higher
than random guessing at 1%. The websites with the worst
accuracies are microsoftonline.com (37.5%), as direct
access to this domain does not resolve to an IP address, t.co
(50%), twimg.com (50%) and jianshu.com (50%). All
other websites have accuracies of over 50%.

4) Video-Stream Fingerprinting: In this scenario, the at-
tacker fingerprints video streams using PassiveIdleLeak. The
attacker runs on a sibling logical core of the core that receives
the network device interrupts.

11

4 8 12 16 20

4

8

12

16

20

V
id

eo

(a) Prediction (on youtube.com)
4 8 12 16 20

4

8

12

16

20

V
id

eo

(b) Prediction (on pornhub.com)

Fig. 19. The confusion matrices for our video-stream fingerprinting attack with
20 videos, with network interrupts arriving on a sibling logical core performed
on youtube.com and pornhub.com. For the classification, we use a 20% test
split, with the remainder as the training set, for each video.

4 8 12 16 20

4

8

12

16

20

V
id

eo

(a) Prediction (on youtube.com)
4 8 12 16 20

4

8

12

16

20

V
id

eo

(b) Prediction (on pornhub.com)

Fig. 20. The confusion matrices for our open-world video-stream fingerprinting
attack with 20 videos and a seperate class for other videos, with network
interrupts arriving on a sibling logical core performed on youtube.com and
pornhub.com. For the classification, we use a 20% test split, with the
remainder as the training set, for each video.

For YouTube, our classifiers achieved macro-averaged F1
scores of 90.2% (closed-world) and 81.5% (open-world) on
test sets which are not used for training. The full confusion
matrix for the closed-world scenario is shown in Figure 19a.
Each cell indicates the probability that our classifier labels
streaming a video indicated by the row as a particular video
indicated by the column. The high probabilities along the
diagonal indicate that our classifier has a high accuracy with no
video being labeled correctly for less than 41.4% of the time,
which is significantly higher than random guessing at 5%. The
videos with the worst accuracies are Video 6 (41.4%), and
Video 19 (79.3%). All other videos have accuracies of over
80%. The full confusion matrix for the open-world scenario is
shown in Figure 20a. The high probabilities along the diagonal
indicate that our classifier has a high accuracy with no video
being labeled correctly for less than 60% of the time, which is
significantly higher than random guessing at 4.8%. The videos
with the worst accuracies are Video 4 (60%), and Video
20 (66.7%). All other videos have accuracies of over 70%.
The other-class in particular has a test accuracy of 83% on
videos never seen during the training phase.

For PornHub, our classifiers achieved macro-averaged F1
score of 75% (closed-world) and 70.5% (open-world) on test
sets which are not used for training. The full confusion matrix
for the closed-world scenario is shown in Figure 19b. Each cell
indicates the probability that our classifier labels streaming a
video indicated by the row as a particular video indicated by
the column. The high probabilities along the diagonal indicate
that our classifier has a high accuracy with no video being
labeled correctly for less than 33.3% of the time, which is
significantly higher than random guessing at 5%. The videos
with the worst accuracies are Video 5 (33.3%), Video 3
(51.5%), Video 19 (54.5%), and Video 16 (57.8%). All

other videos have accuracies of over 60%. The full confusion
matrix for the open-world scenario is shown in Figure 20b.
The high probabilities along the diagonal indicate that our
classifier has a high accuracy with no video being labeled
correctly for less than 33.3% of the time, which is significantly
higher than random guessing at 4.8%. The videos with the
worst accuracies are Video 3 (33.3%), Video 14 (40%),
and Video 20 (46.7%). All other videos have accuracies of
over 53%. The other-class in particular has a test accuracy
of 82% on videos never seen during the training phase.

The F1 scores for PornHub (75% closed world, 70.5%
open world) are significantly lower than for YouTube (90.2%
closed world, 81.5% open world), mainly for two reasons:
First, Pornhub has a lower default video resolution of 720p
(in some cases even 480p) on our system, whereas YouTube
has 1080p resulting in fewer network packages within the same
time frame. Second, platform- or company-specific intros at the
beginning interfere with our fingerprinting. Both issues can be
addressed by using more than the first 10 s for classification.

D. Previous Work

Our website fingerprinting attack achieves an F1 score
of 93.1% in a closed-world and 85.2% in an open-world
fingerprinting scenario, over the top 100 websites, which is
on par and in most cases even better than previous work.
Spreitzer et al. [53] achieved an accuracy of 89% on 100
websites using the data-usage statistics on Android. Jana et al.
[19] exploited the memory usage statistics of browsers and
reported an accuracy between 30% and 50% for the top
100 000 websites. Gulmezoglu et al. [13] used hardware perfor-
mance events and achieved accuracy of 86.3% on 40 websites.
Zhang et al. [68] performed website fingerprinting on the top
100 pages of the Alexa Top 1M list by monitoring interrupts
using mwait and reported an F1 score of 70% on an Intel
CPU. Based on our F1 score of 93.1%, we can conclude that
our attack has a much higher accuracy.

Our video fingerprinting attack achieves an F1 score of
90.2% in a closed-world fingerprinting scenario over the top
20 videos. Reed et al. [40] exploit the change in throughput of
Dynamic Adaptive Streaming over HTTP (DASH) throughout
a video to fingerprint videos streamed from Netflix through a
wireless network with an accuracy greater than 90% in less
than 5min. Gu et al. [12] built a bitrate-independent video
fingerprinting attack on DASH by monitoring network traffic
throughput and matching video fingerprints and achieved an
accuracy of 90% after 3min on custom videos. Reed et al. [41]
use passive network traffic analysis to fingerprint 20min long
Netflix videos transmitted through HTTPS with an accuracy
of 99.5%. Based on our F1 score of 90.2% on YouTube
videos, our results are in line with existing attacks, with
significantly shorter measurement times using only package
frequency information through network interrupts.

VII. DISCUSSION AND MITIGATIONS

Our work shows previously unknown security implications
of idle states, in particular on the cross-process and cross-
VM confidentiality of highly sensitive privacy-related infor-
mation. The tpause instruction offers a fast and energy-
efficient alternative to unprivileged busy waits. While prior

12

TABLE I. LIST OF PROPOSED MITIGATIONS, THEIR PERFORMANCE
IMPACT MEASURED WITH THE STRESS-NG BENCHMARK SUITE, AND IF

THE MITIGATION PARTIALLY () OR FULLY () MITIGATES OUR ATTACKS.

Mitigation Perf. Change Security

Isolated IRQ Core −4.8%
IRQ Randomization ∼0%

Disable WAITPKG (VMX) −2%
Hardware Change unknown

work already used mwait to detect interrupts [68], our work
shows that the underlying root cause is the idle state, revealing
a more generic problem, including the performance-related
information leakage of C0.2, as shown in Section III-A.

Our work shows that the potential security risks of idle
states have previously not been fully understood. Conse-
quently, apart from disabling the instruction set extension,
the mitigations discussed by Zhang et al. [68] do not re-
solve the root cause of the security issue. Moreover, secure
scheduling policies, e.g., core scheduling [21], [26], [8], do
not protect against our attacks as the core assignment for
interrupt handling is independent of these policies for threads,
processes, and VMs. In Table I, we provide an overview
of possible mitigations, their performance impact measured
through the Stress-NG benchmark suite, and their effectiveness
in mitigating the attacks proposed in this paper. We propose
the following mitigations:

a) Disabling WAITPKG: Currently, there is no option
to disable only the WAITPKG instruction set extension com-
pletely. It is possible to disable WAITPKG for the user space,
but only together with all other TSC related instructions, in-
cluding rdtsc by setting the TSD bit in the CR4 register [17].
This is not feasible as numerous user space applications rely on
the availability of the rdtsc instruction. It is only possible to
disable the C0.2 through the IA32_UMWAIT_CONTROL MSR
forcing umwait and tpause to fall back to C0.1 if C0.2 is
requested [17], which does not mitigate the security issues
present in C0.1. Contrary to the native case, it is possible to
disable WAITPKG for virtual machines. While most user space
applications do not use umwait or tpause, as they are new
instructions, the Linux kernel uses tpause with C0.2 for short
delays and falls back to a busy wait if the instruction is not
supported. Disabling the instruction set extension for security
would mean sacrificing its potentially substantial performance
gains, as shown in Section II-C, which is not a practical
solution for most systems. For disabling WAITPKG in virtual
machines, we measured a performance degradation of 2% on
our i7-1260P with the Stress-NG benchmark.

b) Isolated IRQ Core: To avoid a possible detection
of external interrupts, the operating system can isolate at
least one physical core for handling external interrupts. This
interrupt isolation would make it no longer possible to detect
external interrupts through umwait or tpause with C0.2 on
the same core or with C0.1 on the sibling logical core, as
the attacker can not be scheduled on the physical core that
receives the interrupts. While this mitigates attacks targeting
external interrupts, the undocumented wake-ups of C0.1 on
exceptions and in/out-port instructions of sibling logical cores
are still exploitable. Furthermore, isolating physical cores
for interrupt handling comes with a significant performance
impact, especially on multithreaded workloads. Specifically for

larger server systems, multiple cores are needed to handle the
interrupt load fully. On our test system with an i7-1260P, the
performance in the Stress-NG benchmark decreased by 4.8%
when dedicating one physical core for interrupt handling.

c) IRQ Randomization: By regularly randomizing the
core assignments of external interrupts in short periods of
time, the operating system can introduce a significant amount
of noise to fingerprinting attacks. A higher reassignment
frequency causes more noise for the attacker but also a
higher performance and energy overhead. While this mitigation
makes attacks monitoring external interrupts significantly more
challenging, it does not entirely mitigate them, as an attacker
can still monitor interrupts. Furthermore, exception monitoring
by the attacker through the C0.1 idle state is still possible. On
our i7-1260P, we did not observe a significant performance
overhead in the Stress-NG benchmark with random interrupt
affinity reassignment every 0.5 s.

d) Hardware Changes: Completely removing wake-up
on interrupts is not viable as software, such as the Linux
kernel, relies on this functionality. We propose removing the
undocumented wake-ups of C0.1 on exceptions and external
interrupts of sibling logical cores. Furthermore, to completely
mitigate interrupt monitoring from VMs, a solution would be
to adopt the behavior of the hlt instruction, which does not
wake up in case of a VM exit. These changes would completely
resolve the interrupt-related security issue of umwait and
tpause for the scenario of a virtual-machine-based attacker
and limit the attack surface in a native scenario.

e) Other Potential Mitigations: We conclude that this
issue requires a hardware mitigation, as in software we can
only fully disable umwait and tpause for virtual machines
and other mitigation techniques are not sufficient and impose
a possible negative performance impact. Removing wake-up
reasons may be a viable approach for the cases where the
sibling logical core is woken up. However, e.g., in our attack
in Section VI-C1, we exploited interrupt handling on the same
core, which is a wake-up reason that cannot be eliminated.
The older privileged mwait instruction, which is similar to the
unprivileged umwait, allows the CPU to switch into deeper
sleep states, and wakes up when a VM exit occurs [18]. It is,
therefore, reasonable to assume that this is also the intended
behavior for umwait and tpause. However, currently, this
behavior is not documented in the Intel instruction manual and
can be the source of security issues regarding virtual-machine-
based software isolation.

Besides the interrupt-related issues of idle states, we also
show how the performance gain results in security problems.
As we can expect more applications start to incorporate
umwait and tpause in the near future, the attack surface
will further increase where attackers can also infer, e.g.,
control-flow information on other applications.

Generic solutions include trapping idle-state instructions
in virtual machines, and injecting fake keystrokes for noise
against our inter-keystroke timing attacks [48]. However, these
approaches come with performance and energy costs that
might not be justified compared to just removing the idle state
control. Moreover, for other attacks, e.g., our covert channel
and the website and video fingerprinting, noise reduces the
performance but does not fully mitigate the leakage.

13

Finally, prior work discussed the detection of side channels
using performance counters [36]. However, as Zhang et al.
[68] already noted, there are no performance counters tracking
the use of idle-state controlling instructions so far. In contrast
to many prior microarchitectural attacks, IdleLeak does not
induce a negative performance impact in the victim, that could
be detected by the victim. Instead, IdleLeak rather improves
the performance of the victim workload. However, the victim
cannot detect this irregularity as malicious behavior, as this
legitimately happens, with identical idle state choices, when
the corresponding processor core is legitimately idling.

In conclusion, our work highlights the necessity for future
work on effective mitigation of idle-state side channels.

VIII. RELATED AND FUTURE WORK

a) Interrupt Detection & Keystroke Attacks: Interrupt
detection has been used in several previous works. Risten-
part et al. [42] used interrupt detection to synchronize at-
tacker and victim. Schwarz et al. [48] presented an interrupt-
detection-based attack in native code using high-resolution
timers such as the x86 instruction rdtsc. They observed that
rdtsc values have larger jumps when an interrupt occurs, as
the attacker is not scheduled in this time frame. They further
proposed a countermeasure to keystroke timing attacks which
injects uniform high-frequency stream of fake keyboard inter-
rupts. Lipp et al. [27] demonstrated a keystroke timing attack
from JavaScript using a counting thread instead of a high-
resolution timer. Prior to these works, keystroke timing attacks
have been performed based on cache attacks [42], [11], smart
phone sensors [5], and remote timing measurements [52].

Closely related to IdleLeak is the recent work by
Zhang et al. [68], exploring the umonitor and umwait
for side-channel attacks, primarily to translate microarchi-
tectural states into architectural states in transient-execution
attacks. They evaluate their side channel, continuously execut-
ing umonitor and umwait, in interrupt detection scenarios
counting the number of wake-ups in fixed time periods and
making deductions on system activity, similar to prior works.
Clearly, interrupt detection attacks are not new but they are
important for comparability with prior work. Thus, we follow
their best practice and also evaluate our idle-state side channel
in interrupt detection scenarios for comparability. Furthermore,
we demonstrate the first video fingerprinting attack based
on interrupt detection with the IdleLeak side channel. This
attack illustrates the severe and previously unknown privacy
implications of the novel idle states that IdleLeak uncovered:
Information about sensitive online video consumption may be
used for instance for extortion campaigns [61].

One further difference to Zhang et al. [68] is our attack
technique: Zhang et al. [68] use a documented feature of
an instruction to wake up on interrupts and can only be
used in a native non-VM scenario. While they focused on
the behavior of these instructions, they did not explore the
behavior of the idle states nor the problem around the interrupt
core affinity. In contrast, we discovered the undocumented
effect that the tpause instruction wakes up upon several
events, including interrupts but also other system-level events
(hardware exceptions, e.g., page faults, divide by zero, VM
exits, inport and outport operations), which is orthogonal to

the findings of Zhang et al. [68] compared to prior works [42],
[27], [48]. Our findings are surprising as the spurious wake-up
behavior of tpause on VM exits due to, e.g., host interrupts is
inconsistent with other sleep instructions such as hlt, which
does not wake up on VM exits. While not the main focus
of their work, they also briefly evaluated their approach in a
website-fingerprinting scenario. In contrast to their work, we
focused on the broader security implications of idle states in
general and demonstrated different attack scenarios (same core,
sibling core) and new attacks (e.g., the first interrupt-detection-
based video fingerprinting). We investigated the performance-
enhancing effects and discovered further wake-up causes, in-
cluding interrupts of unrelated workloads even in other virtual
machines and the host, and exceptions and interrupts of sibling
logical cores. Therefore, with our discoveries, the mitigations
proposed by Zhang et al. [68] are not sufficient anymore and
future work needs to find mitigations that are effective but
maintain an acceptable efficiency.

IX. CONCLUSION

The new idle states, C0.1 and C0.2, introduce novel leakage
that can be used to monitor system activity, in particular inter-
rupts, in the case of C0.1 even interrupts arriving on logical
sibling cores. Since interrupts on x86 are scheduled regardless
of the corresponding workload, the attacker can spy on victims
running on separate physical cores, by focusing on interrupt
activity instead. We evaluated both our techniques ActiveI-
dleLeak and PassiveIdleLeak with covert channels, achieving
true capacities of 7.1Mbit/s (σx̄ = 0.004Mbit/s, n = 512)
and 656.37 kbit/s (σx̄ = 0.63 kbit/s, n = 1 024) in native
code. In a cross-VM scenario, we still achieves 46.3 kbit/s
with ActiveIdleLeak. We demonstrated native keystroke-timing
attacks, website- and video-fingerprinting attacks, all with high
F-Scores, and a low standard error on the timing. The highly
sensitive information that an attacker can acquire through these
attacks, potentially exposing even sexual preferences to an
attacker, can be used in different ways such as extortion cam-
paigns. While mitigations against IdleLeak may be expensive
due to the way interrupts are implemented on x86, we conclude
that further research on efficient and effective mitigations is
necessary to thwart the exploitation of this side channel.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our anonymous
shepherd, for their guidance, comments, and suggestions. This
research is supported in part by the European Research Council
(ERC project FSSec 101076409), and the Austrian Science
Fund (FWF project NeRAM I-6054-N and FWF SFB project
SPyCoDe F8504). Additional funding was provided by gener-
ous gifts from AWS, Google, Intel and Red Hat. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect
the views of the funding parties.

REFERENCES

[1] Aldaya, A.C., Brumley, B.B., ul Hassan, S., Garcı́a, C.P., Tuveri, N.:
Port Contention for Fun and Profit. In: S&P (2019)

[2] Alexa Internet, Inc.: The top 1 million sites on the web (5 2023), https:
//www.alexa.com/topsites

[3] Bernstein, D.J.: Cache-Timing Attacks on AES (2005), http://cr.yp.to/a
ntiforgery/cachetiming-20050414.pdf

14

https://www.alexa.com/topsites
https://www.alexa.com/topsites
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[4] Bityutskiy, A.: Sapphire Rapids C0.x idle states support (2023), https:
//lwn.net/Articles/925863/

[5] Cai, L., Chen, H.: TouchLogger: Inferring Keystrokes on Touch Screen
from Smartphone Motion. In: USENIX HotSec (2011)

[6] Chen, Z., Xu, Y.Q., Wang, H., Guo, D.: Deep STFT-CNN for spectrum
sensing in cognitive radio. IEEE Communications Letters (2020)

[7] Evtyushkin, D., Ponomarev, D.: Covert Channels Through Random
Number Generator: Mechanisms, Capacity Estimation and Mitigations.
In: CCS (2016)

[8] Faggioli, D.: Re: [RFC PATCH v3 00/16] Core scheduling v3 (2019),
https://lore.kernel.org/lkml/277737d6034b3da072d3b0b808d2fa6e110
038b0.camel@suse.com/

[9] Gast, S., Juffinger, J., Schwarzl, M., Saileshwar, G., Kogler, A., Franza,
S., Köstl, M., Gruss, D.: SQUIP: Exploiting the Scheduler Queue
Contention Side Channel. In: S&P (2023)

[10] Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In: USENIX Security (2018)

[11] Gruss, D., Spreitzer, R., Mangard, S.: Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches. In: USENIX Security
(2015)

[12] Gu, J., Wang, J., Yu, Z., Shen, K.: Walls have ears: Traffic-based side-
channel attack in video streaming. In: INFOCOM (2018)

[13] Gulmezoglu, B., Zankl, A., Eisenbarth, T., Sunar, B.: Perfweb: How to
violate web privacy with hardware performance events. In: ESORICS
(2017)

[14] Huang, J., Chen, B., Yao, B., He, W.: ECG arrhythmia classification
using STFT-based spectrogram and convolutional neural network. IEEE
access (2019)

[15] Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide (2019)

[16] Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual
(2023)

[17] Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z (2023)

[18] Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide (2023)

[19] Jana, S., Shmatikov, V.: Memento: Learning Secrets from Process
Footprints. In: S&P (2012)

[20] Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algo-
rithms for keystroke dynamics. In: IEEE/IFIP International Conference
on Dependable Systems & Networks. IEEE (2009)

[21] Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level
protection against cache-based side channel attacks in the cloud. In:
USENIX Security (2012)

[22] Kocher, P.: Timing Attacks on Implementations of Diffe-Hellman, RSA,
DSS, and Other Systems. In: CRYPTO (1996)

[23] Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to Differential
Power Analysis. Journal of Cryptographic Engineering (2011)

[24] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In:
CRYPTO (1999)

[25] Lerner, A., Bonnet, P.: Not your Grandpa’s SSD: The Era of Co-
Designed Storage Devices. In: International Conference on Management
of Data (2021)

[26] Linux Kernel Documentation: Core Scheduling (2022), https://www.ke
rnel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html

[27] Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C.m.t.n., Man-
gard, S.: Practical Keystroke Timing Attacks in Sandboxed JavaScript.
In: ESORICS (2017)

[28] Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss, D.:
Take a Way: Exploring the Security Implications of AMD’s Cache Way
Predictors. In: AsiaCCS (2020)

[29] Loy, C.C.: Keystroke100 Dataset (2021), http://personal.ie.cuhk.edu.h
k/∼ccloy/downloads keystroke100.html

[30] Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: Cross-Cores
Cache Covert Channel. In: DIMVA (2015)

[31] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Al-
berto Boano, C., Mangard, S., Römer, K.: Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud. In: NDSS (2017)

[32] Monaco, J.: SoK: Keylogging Side Channels. In: S&P (2018)

[33] Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications. In: CCS (2015)

[34] Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermea-
sures: the Case of AES. In: CT-RSA (2006)

[35] Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. Cryptology ePrint Archive, Report 2002/169 (2002)

[36] Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: ESSoS
(2016)

[37] Percival, C.: Cache Missing for Fun and Profit. In: BSDCan (2005)

[38] Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks. In: USENIX
Security (2016)

[39] Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Mea-
sures and Counter-Measures for Smart Cards. In: E-smart (2001)

[40] Reed, A., Klimkowski, B.: Leaky streams: Identifying variable bitrate
dash videos streamed over encrypted 802.11 n connections. In: CCNC
(2016)

[41] Reed, A., Kranch, M.: Identifying https-protected netflix videos in real-
time. In: CODASPY (2017)

[42] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In: CCS (2009)

[43] Rokicki, T., Maurice, C., Botvinnik, M., Oren, Y.: Port Contention Goes
Portable: Port Contention Side Channels in Web Browsers. In: AsiaCCS
(2022)

[44] Rushanan, M., Russel, D., Rubin, A.D.: MalloryWorker: Stealthy Com-
putation and Covert Channels Using Web Workers. In: International
Workshop on Security and Trust Management (2016)

[45] Saileshwar, G., Fletcher, C.W., Qureshi, M.: Streamline: a fast, flushless
cache covert-channel attack by enabling asynchronous collusion. In:
ASPLOS (2021)

[46] van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G.,
Razavi, K., Bos, H., Giuffrida, C.: RIDL: Rogue In-flight Data Load.
In: S&P (2019)

[47] Schwarz, M., Gruss, D., Weiser, S., Maurice, C., Mangard, S.: Malware
Guard Extension: Using SGX to Conceal Cache Attacks. In: DIMVA
(2017)

[48] Schwarz, M., Lipp, M., Gruss, D., Weiser, S., Maurice, C., Spreitzer,
R., Mangard, S.: KeyDrown: Eliminating Software-Based Keystroke
Timing Side-Channel Attacks. In: NDSS (2018)

[49] Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J.,
Prescher, T., Gruss, D.: ZombieLoad: Cross-Privilege-Boundary Data
Sampling. In: CCS (2019)

[50] Schwarzl, M., Kraft, E., Gruss, D.: Layered Binary Templating. In:
ACNS (2023)

[51] Simon, L., Xu, W., Anderson, R.: Don’t Interrupt Me While I Type:
Inferring Text Entered Through Gesture Typing on Android Keyboards.
PETS (2016)

[52] Song, D.X., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and
Timing Attacks on SSH. In: USENIX Security (2001)

[53] Spreitzer, R., Griesmayr, S., Korak, T., Mangard, S.: Exploiting data-
usage statistics for website fingerprinting attacks on Android. In: ACM
Conference on Security & Privacy in Wireless and Mobile Networks
(2016)

[54] Taram, M., Ren, X., Venkat, A., Tullsen, D.: SecSMT: Securing SMT
Processors against Contention-Based Covert Channels. In: USENIX
Security (8 2022)

[55] UEFI Forum, Inc.: Advanced Configuration and Power Interface (ACPI)
Specification Release 6.5 (2022)

[56] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.:
Telling Your Secrets Without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In: USENIX Security (2017)

15

https://lwn.net/Articles/925863/
https://lwn.net/Articles/925863/
https://lore.kernel.org/lkml/277737d6034b3da072d3b0b808d2fa6e110038b0.camel@suse.com/
https://lore.kernel.org/lkml/277737d6034b3da072d3b0b808d2fa6e110038b0.camel@suse.com/
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
http://personal.ie.cuhk.edu.hk/~ccloy/downloads_keystroke100.html
http://personal.ie.cuhk.edu.hk/~ccloy/downloads_keystroke100.html

[57] Vila, P., Köpf, B.: Loophole: Timing Attacks on Shared Event Loops
in Chrome. In: USENIX Security (2017)

[58] Walton, S.: How Screwed is Intel without Hyper-Threading? (2019),
https://www.techspot.com/article/1850-how-screwed-is-intel-no-hyper-
threading/

[59] Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V.,
Tang, H., Gunter, C.A.: Leaky Cauldron on the Dark Land: Understand-
ing Memory Side-Channel Hazards in SGX. In: CCS (2017)

[60] Wang, Z., Lee, R.B.: Covert and Side Channels due to Processor
Architecture. In: ACSAC (2006)

[61] Winder, D.: Has A ‘Hacker’ With Your Password Really Recorded You
Watching Porn? (2022), https://www.forbes.com/sites/daveywinder/2
022/11/28/has-a-hacker-with-your-password-really-recorded-you-
watching-porn/

[62] Wu, Z., Xu, Z., Wang, H.: Whispers in the Hyper-space: High-
bandwidth and Reliable Covert Channel Attacks inside the Cloud. ACM
Transactions on Networking (2014)

[63] Xu, Y., Cui, W., Peinado, M.: Controlled-Channel Attacks: Determin-
istic Side Channels for Untrusted Operating Systems. In: S&P (2015)

[64] Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.:
An exploration of L2 cache covert channels in virtualized environments.
In: CCSW (2011)

[65] Yao, S., Piao, A., Jiang, W., Zhao, Y., Shao, H., Liu, S., Liu, D., Li,
J., Wang, T., Hu, S., et al.: Stfnets: Learning sensing signals from the
time-frequency perspective with short-time fourier neural networks. In:
The World Wide Web Conference (2019)

[66] Yarom, Y., Falkner, K.: Flush+Reload: a High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In: USENIX Security (2014)

[67] Zhang, K., Wang, X.: Peeping Tom in the Neighborhood: Keystroke
Eavesdropping on Multi-User Systems. In: USENIX Security (2009)

[68] Zhang, R., Kim, T., Weber, D., Schwarz, M.: (M)WAIT for It: Bridging
the Gap between Microarchitectural and Architectural Side Channels.
In: USENIX Security (2023)

16

https://www.techspot.com/article/1850-how-screwed-is-intel-no-hyper-threading/
https://www.techspot.com/article/1850-how-screwed-is-intel-no-hyper-threading/
https://www.forbes.com/sites/daveywinder/2022/11/28/has-a-hacker-with-your-password-really-recorded-you-watching-porn/
https://www.forbes.com/sites/daveywinder/2022/11/28/has-a-hacker-with-your-password-really-recorded-you-watching-porn/
https://www.forbes.com/sites/daveywinder/2022/11/28/has-a-hacker-with-your-password-really-recorded-you-watching-porn/

	Introduction
	Background
	Simultaneous Multithreading (SMT)
	Side-Channel Attacks
	Processor Power States (C-States)

	Idle State Side Effect Information Leakage
	Performance Side Effects of the C0.2 Idle State
	Interrupt Detection

	Covert Channel
	Covert Channel Design
	ActiveIdleLeak Transmission Primitive
	PassiveIdleLeak Transmission Primitive
	Synchronization

	Evaluation
	Native ActiveIdleLeak Covert Channel
	Cross-VM ActiveIdleLeak Covert Channel
	Native PassiveIdleLeak Covert Channel
	Previous Work

	Keystroke Detection
	Threat Model
	Attack Implementation
	Evaluation

	Website and Video Fingerprinting
	Threat Model and Attack Setup
	Attack
	Website Fingerprinting
	Video Fingerprinting

	Evaluation
	Closed-World Same-Core Interrupt Website Fingerprinting
	Closed-World Sibling-Logical-Core Interrupt Website Fingerprinting
	Open-World Website Fingerprinting
	Video-Stream Fingerprinting

	Previous Work

	Discussion and Mitigations
	Related and Future Work
	Conclusion
	References

