
SCIENCE PASSION TECHNOLOGY

Microarchitectural Attacks: From the Basics to Arbitrary Read and

Write Primitives without any Software Bugs

Daniel Gruss

April 11, 2018

Graz University of Technology

1 Daniel Gruss — Graz University of Technology

Whoami www.tugraz.at

• Daniel Gruss

• Post-Doc @ Graz University of Technology

• Twitter: @lavados

• Email: daniel.gruss@iaik.tugraz.at

2 Daniel Gruss — Graz University of Technology

National Geographic

CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
se

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

DRAM access,
slow

4 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

No DRAM acces
s,

much faster

DRAM access,
slow

4 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

5 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

5 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

6 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

6 Daniel Gruss — Graz University of Technology

Cache Template Attack Demo

Cache Template www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680

0x7c6c0

0x7c700

0x7c740

0x7c780

0x7c7c0

0x7c800

0x7c840

0x7c880

0x7c8c0

0x7c900

0x7c940

0x7c980

0x7c9c0

0x7ca00

0x7cb80

0x7cc40

0x7cc80

0x7ccc0

0x7cd00

8 Daniel Gruss — Graz University of Technology

8 Daniel Gruss — Graz University of Technology

8 Daniel Gruss — Graz University of Technology

8 Daniel Gruss — Graz University of Technology

Wait for an hour

8 Daniel Gruss — Graz University of Technology

Wait for an hour

LATENCY

8 Daniel Gruss — Graz University of Technology

8 Daniel Gruss — Graz University of Technology

Parallelize
D

ep
en

de
nc

y

8 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);

9 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);

Parallelize
D

ep
en

de
nc

y

9 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?

10 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?

10 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?

10 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?

10 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Adapted code

1 *(volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : De r e f e r e n c e o f n u l l p o i n t e r

2 ∗(v o l a t i l e char ∗) 0 ;

11 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Adapted code

1 *(volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : De r e f e r e n c e o f n u l l p o i n t e r

2 ∗(v o l a t i l e char ∗) 0 ;

11 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

12 Daniel Gruss — Graz University of Technology

Let’s see whether this works... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

12 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology

Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology

It does work... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

14 Daniel Gruss — Graz University of Technology

It does work... www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

14 Daniel Gruss — Graz University of Technology

Spying on passwords

Leaking a picture like in CSI Cyber

Leaking Passwords from your Password Manager www.tugraz.at

17 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

18 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

18 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

18 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

18 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells

1 capacitor,

1 transitor each

19 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells

1 capacitor,

1 transitor each

19 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

20 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

20 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

20 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

20 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

20 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2! • Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer

20 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

21 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

21 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

21 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
activate

21 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

21 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

21 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

22 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

22 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

22 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

22 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

22 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

22 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

23 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

23 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

23 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

23 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a (kernel) data structure that you can place at arbitrary memory locations

2. Scan for “good” flips

3. Place (kernel) data structure there

4. Trigger bit flip again

24 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

25 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

25 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

25 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JL
0 1 1 1 1 1 0 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JO
0 1 1 1 0 0 0 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JBE
0 1 1 1 0 1 1 0

26 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

26 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto

→ “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

→ “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

→ “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks

→ “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

27 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

28 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

28 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

28 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

Motor Vehicle Deaths in U.S. by Year

29 Daniel Gruss — Graz University of Technology

Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?

30 Daniel Gruss — Graz University of Technology

Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?

30 Daniel Gruss — Graz University of Technology

Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?

30 Daniel Gruss — Graz University of Technology

Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?

30 Daniel Gruss — Graz University of Technology

Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?

30 Daniel Gruss — Graz University of Technology

Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?

30 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

• dedicate more time into identifying problems and not solely in

mitigating known problems

31 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

• dedicate more time into identifying problems and not solely in

mitigating known problems

31 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

• dedicate more time into identifying problems and not solely in

mitigating known problems

31 Daniel Gruss — Graz University of Technology

What do we learn from it? www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

• dedicate more time into identifying problems and not solely in

mitigating known problems

31 Daniel Gruss — Graz University of Technology

SCIENCE PASSION TECHNOLOGY

Microarchitectural Attacks: From the Basics to Arbitrary Read and

Write Primitives without any Software Bugs

Daniel Gruss

April 11, 2018

Graz University of Technology

32 Daniel Gruss — Graz University of Technology

