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Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise
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Memory Access Latency www.tugraz.at
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Cache Template www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680

0x7c6c0

0x7c700

0x7c740

0x7c780

0x7c7c0

0x7c800

0x7c840

0x7c880

0x7c8c0

0x7c900

0x7c940

0x7c980

0x7c9c0

0x7ca00

0x7cb80

0x7cc40

0x7cc80

0x7ccc0

0x7cd00
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Wait for an hour
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Wait for an hour

LATENCY
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Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);
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Building Meltdown www.tugraz.at

1 char data = *(char*)0xffffffff81a000e0;

2 printf("%c\n", data);

1 segfault at ffffffff81a000e0 ip 0000000000400535

2 sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are not accessible

• Are privilege checks also done when executing instructions out of order?
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Let’s see whether this works... www.tugraz.at

• Adapted code

1 *( volatile char*)0;

2 array [84 * 4096] = 0; // unreachable

• Static code analyzer is not happy

1 warn ing : De r e f e r e n c e o f n u l l p o i n t e r

2 ∗( v o l a t i l e char ∗) 0 ;
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Let’s see whether this works... www.tugraz.at

• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Let’s hope this does not work... www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Indirection through microarchitectural traces:

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Check whether any part of array is cached
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It does work... www.tugraz.at

• Flush+Reload over all pages of the array
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• Index of cache hit reveals data

• Permission check is in some cases not fast enough
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Spying on passwords



Leaking a picture like in CSI Cyber



Leaking Passwords from your Password Manager www.tugraz.at
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DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip
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DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells

1 capacitor,

1 transitor each
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Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon proximate

accesses → Rowhammer
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#3 - One-location hammering www.tugraz.at
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How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a (kernel) data structure that you can place at arbitrary memory locations

2. Scan for “good” flips

3. Place (kernel) data structure there

4. Trigger bit flip again

24 Daniel Gruss — Graz University of Technology



What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0
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JE
0 1 1 1 0 1 0 0

JNE
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What do we learn from it? www.tugraz.at

We have ignored microarchitectural attacks for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer attacks → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance
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When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications
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What do we learn from it? www.tugraz.at

Motor Vehicle Deaths in U.S. by Year
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Attacks vs. Defenses www.tugraz.at

• moral obligation to invest more time on defenses than on attacks

• dangerous: we overlooked Meltdown and Spectre for decades

• we don’t know all problems. do we know at least the most important subset?

• are we hammering on a small subset of problems and forgot about the bigger picture?
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What do we learn from it? www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

• dedicate more time into identifying problems and not solely in

mitigating known problems
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