
Transient-Execution Attacks
and Defenses

Habilitation by Daniel Gruss

June 2020

S C I E N C E P A S S I O N T E C H N O L O G Y

Institute for Applied Information Processing and Communications

Graz University of Technology

Daniel Gruss

Transient-Execution Attacks and Defenses
(Part I only)

Habilitation

June 2020

Abstract

The complexity of modern computer systems has dramatically increased
over the past decades and continues to increase. The common solution
to construct such complex systems is the divide-and-conquer strategy,
dividing a complex system into smaller and less complex systems or system
components. For a small system component, the complexity of the full
system is hidden behind abstraction layers, allowing to develop, improve,
and reason about it.

As computers have become ubiquitous, so has computer security, which is
now present in all aspects of our lives. One fundamental problem of security
stems from the strategy that allowed building and maintaining complex
systems: the isolated view of system components. Security problems often
arise when abstractions are imperfect or incomplete, which they inherently
need to be to hide complexity.

In this habilitation, we focus on a very specific type of computer security
problem, where an imperfect abstraction of the hardware can be observed
from the software layer. The abstraction of the hardware, i.e., the defined
hardware interface, is often called the “architecture”. In contrast, the
concrete implementation of the hardware interface, is called the “microar-
chitecture”. Architecture and microarchitecture often deviate enough to
introduce software-exploitable behavior. This entirely new field of research,
called “Transient-Execution Attacks”, has not existed before our seminal
works in 2018. Transient-execution attacks exploit that the hardware
transiently performs operations it should not perform, in one of two cases:
In one case deliberately (non-speculatively), as the operations will be
architecturally discarded anyway. In the other case speculatively, as the
processor would have needed to wait for a decision outcome to advance in
the instruction stream but it made an educated guess instead, increasing
performance if the guess was correct. After some time, the hardware will
revert these transient operations (if they were executed but should not)
and architectural effects do not remain. However, during this “transient
window” the attacker can, after obtaining a secret value, perform virtually
any attacker-chosen operation on the secret data, including operations
that change the state of the microarchitecture. Microarchitectural state
is generally too manifold and difficult to fully revert and so they survive

the reverting, leaving the attacker with the ability to leak secrets via the
microarchitectural state.

This habilitation consists of two parts. The first part provides an overview
of the research field “Transient-Execution Attacks” and puts it into con-
text with other fields in computer security and applied computer science
in general. We walk the reader through the detailed history of microar-
chitectural attacks. During this journey, we will also discuss processor
architectures. We then introduce transient-execution attacks and show
how they build on top of previously known microarchitectural attacks.
This introduction builds on the knowledge gained over the past four years
and puts older works also in the context of more recent insights. We draw
a picture that is complete as of today, well aware that the field is rapidly
evolving but with the aim to allow new insights to extend the picture
seamlessly. Finally, we discuss mitigation proposals and mitigations that
have been deployed in practice.

In the second part, a selection of our papers is provided without modifi-
cation from their original publications.

1
I have co-authored these papers

in my role as a team leader at the Institute for Applied Information
Processing and Communications of Graz University of Technology.

1
Several of the original publications were in a two-column layout and updated to fit
the layout and formatting of this habilitation, such as resizing figures and tables,
and changing the citation format, but without changing content.

iv

Abstract (German)

Die Komplexität moderner Computersysteme hat in den letzten Jahrzehn-
ten dramatisch zugenommen und nimmt noch weiter zu. Der Entwurf
komplexer Systeme folgt oft einer Divide-and-Conquer-Herangehensweise,
bei der ein System in kleinere Systeme oder Komponenten unterteilt
wird. Für eine Systemkomponente bleibt die Komplexität des Gesamt-
systems hinter Abstraktionsschichten verborgen, sodass die Komponente
unabhängig vom Gesamtsystem entwickelt, verbessert und über ihre kor-
rekte Funktionweise diskutiert und erörtert werden kann.

So wie Computer allgegenwärtig geworden sind, ist auch die Comput-
ersicherheit allgegenwärtig geworden, und ist heute in allen Aspekten
unseres Lebens vorhanden. Ein grundlegendes Sicherheitsproblem ergibt
sich aus der Herangehensweise, die den Aufbau und die Wartung komplexer
Systeme eben erst ermöglichte: die isolierte Sicht auf Systemkomponenten.
Sicherheitsprobleme treten häufig auf, wenn Abstraktionen unpräzise oder
unvollständig sind, was von Natur aus erforderlich ist, um die Komplexität
zu verbergen.

In dieser Habilitation konzentrieren wir uns auf Computersicherheitsprob-
leme die durch unpräzise Abstraktion der Hardware entstehen. Die Ab-
straktion der Hardware, der definierten Hardwareschnittstelle, wird oft als
“Architektur” bezeichnet. Im Gegensatz dazu wird die konkrete Implemen-
tierung der Schnittstelle als “Mikroarchitektur” bezeichnet. Architektur
und Mikroarchitektur weichen oft stark voneinander ab, was zu Sicher-
heitsproblemen führen kann. Dieses völlig neue Forschungsfeld, das als
“Transient-Execution Angriffe” bezeichnet wird, hat es vor unseren weg-
weisenden Arbeiten im Jahr 2018 nicht gegeben. Diese Angriffe nutzen aus,
dass die Hardware vorübergehend (transient) Anweisungen ausführt, die
sie gar nicht ausführen sollte: In einem Fall absichtlich (nicht spekulativ),
da die Ergebnisse ohnehin architekturell sofort wieder verworfen werden.
Im anderen Fall spekulativ, wenn ein Entscheidungsergebnis aussteht.
Anstatt auf dieses zu warten stellt der Prozessor eine begründete Vermu-
tung aufgestellt wie es weiter geht, was Wartezeit einspart falls sich die Ver-
mutung später als korrekt herausstellt. Später setzt die Hardware unnötige
vorübergehende Vorgänge zurück, und auf der Architekturebene bleiben
keine Effekte erhalten. Während dieses “vorübergehenden Zeitfensters”
kann der Angreifer jedoch beliebige Anweisungen auf den geheimen Daten

ausführen, einschließlich Anweisungen, die den Zustand der Mikroarchitek-
tur ändern. Der Mikroarchitekturzustand ist im Allgemeinen zu vielfältig
und zu komplex um Änderungen vollständig rückgängig zu machen. Daher
bleiben Änderungen über das Zurücksetzen des Architekturzustands erhal-
ten, sodass der Angreifer über den Mikroarchitekturzustand Geheimnisse
herausschleusen kann.

Diese Habilitation besteht aus zwei Teilen. Der erste Teil bietet einen
Überblick über “Transient-Execution Angriffe” und stellt es in den Kon-
text der Computersicherheit und der angewandten Informatik im Allge-
meinen. Wir gehen durch die Geschichte der Mikroarchitekturangriffe und
diskutieren Prozessorarchitekturen. Anschließend führen wir Transient-
Execution-Angriffe ein und zeigen, wie sie zuvor bekannte Angriffen als
Baustein nutzen. Diese Einführung baut auf den Erkenntnissen der let-
zten vier Jahre auf und stellt ältere Werke auch in den Kontext neuerer
Erkenntnisse. Wir zeichnen ein Bild, das bis heute vollständig ist, wobei
klar ist, dass sich das Feld schnell entwickelt und sich das Bild ständig
erweitert. Abschließend diskutieren wir Vorschläge und Maßnahmen zur
Schadensbegrenzung, die in der Praxis umgesetzt wurden.

Im zweiten Teil wird eine Auswahl unserer Artikel ohne Änderung ge-
genüber ihren Originalveröffentlichungen bereitgestellt.

2
Ich habe diese

Artikel in meiner Rolle als Teamleiter am Institut für Angewandte Infor-
mationsverarbeitung und Kommunikation der Technischen Universität
Graz mitverfasst.

2
Einige der Originalveröffentlichungen waren zweispaltig und wurden modifiziert, um
sie an das Layout und die Formatierung dieser Habilitation anzupassen, z. B. die
Größenänderung von Abbildungen und Tabellen sowie Ändern des Zitierformats,
jedoch ohne Änderung des Inhalts.

vi

Contents

Abstract iii

Abstract (German) v

Contents viii

I Overview of Transient-Execution Attacks and De-
fenses 1

1. Introduction 3

1.1 Contributions of this Habilitation 6

1.2 Habilitation Outline . 11

2. Background 13

2.1 Processor Architectures and Microarchitectures 13

2.2 Virtual Memory . 19

2.3 Caches . 23

2.4 Hardware Transactional Memory 31

2.5 Trusted Execution Environments 32

2.6 Microarchitectural Attacks 33

3. State of the Art in Transient-Execution Attacks and
Defenses 43

3.1 Basic Idea of Transient-Execution Attacks 43

3.2 The Discovery of Transient-Execution Attacks 48

3.3 Spectre Attacks and Defenses 52

3.4 Meltdown and LVI Attacks and Defenses 72

4. Future Work and Conclusions 93

References 97

vii

Contents

II Publications 133

List of Publications 135

5. Spectre 141

6. NetSpectre 191

7. Meltdown 223

8. KASLR is Dead: Long Live KASLR 269

9. Kernel Isolation 291

10. It’s not Prefetch 303

11. Systematization 353

12. ZombieLoad 405

13. Fallout 457

14. LVI 509

15. ConTExT 565

Appendix 623

viii

Part I.

An Overview of
Transient-Execution

Attacks and Defenses

1

1
Introduction

While there might be some printed copies of this habilitation, it is much
more likely that you, dear reader, are reading this on a computer. The
computer is running a PDF reader, which opened this very PDF, to
generate a glyph-based, and then a pixel-based representation of what
the author wrote. These are all complex tasks, and using a divide-and-
conquer approach allows splitting these into simpler tasks that are solved
independently. The idea is that, when writing the code to parse the PDF,
you do not have to worry about how pixels are generated or which exact
instructions the processor executes. All these parts of the processes are
hidden behind layers of abstraction.

Abstraction is crucial when building software or hardware today as the
complexity of modern computer systems has dramatically increased, both
on the hardware and the software side. There is no trend in the other
direction as we add more and more abstraction layers to provide more
convenience when implementing various tasks on modern systems. Also,
the user does not have to think about what the system does behind the
abstraction layers when opening untrusted files like this PDF.

Computer security is about third parties influencing the behavior of a
system in a way that the user would not approve of. Such activities can
be as simple as destroying the system or its data, exfiltrating data, or
subverting the system to control its behavior fully. Each system component
must be built with security in mind, i.e., defining interfaces, making
assumptions on inputs explicit, and reflecting these assumptions by securely
handling them in the implementation. However, the implicit assumption
made here is that isolation boundaries between components work fully
and correctly and those other components also behave correctly. Security
problems often arise when abstractions are imperfect or incomplete, which
they inherently need to be to hide complexity. While each component for

3

1. Introduction

itself works correctly, their composition into a full system leads to security
problems.

During my research for this habilitation, I focused on security problems
where the attacker mounts an attack on crossing multiple abstraction
layers. One example, which I have worked on in the past and in parallel to
my habilitation, is Rowhammer. Rowhammer is an effect that leads to bit
flips in DRAM memory, that can be triggered from software. Rowhammer
attacks in JavaScript illustrate how many abstraction layers an attack may
cross: The attacker runs in JavaScript, embedded in a website, inside a
browser sandbox, inside a process, on top of an operating system, possibly
running inside a hypervisor, executing on a real processor and working
with the abstraction that DRAM stores digital binary values of ‘1’s and
‘0’s. Like most abstractions, also this one is imperfect and the analogous
charge of capacitors in modern DRAM chips is susceptible to various
parasitic effects. The attacker here exploits that capacitors in modern
DRAM discharge more quickly when accessing other capacitors nearby.
This leads to changes in the digital representation of these values, i.e., so-
called bit flips, which the attacker can provoke in privileged memory [112]
to gain kernel privileges from an untrusted website.

Mounting attacks crossing multiple abstractions layers makes it harder to
reason about defenses, e.g., on which layer a defense should be implemented.
The JavaScript code by itself already makes it challenging to write exploits,
as it has no notion of pointers or addresses. It also runs in a sandbox,
forming generic protection against a wide range of attacks and providing
isolation from the engine and other tasks. However, the sandbox only
has an effect if the exploit targets the system or other processes, not if
the exploit attempts to utilize a functionally incorrect behavior of the
hardware.

We distinguish architecture, the functional definition of a system, and
microarchitecture, the specific implementation of a system. Rowhammer
is an attack on the microarchitectural level, as it exploits the specific
hardware implementation, not the functional definition of the hardware
(interface). Besides Rowhammer, we also have seen various information
disclosure attacks, e.g., so-called side-channel attacks. These attacks can
steal cryptographic keys or, more broadly, obtain various types of informa-
tion and user data. Some of these attacks take hours or days to complete,
others only a few seconds. Microarchitectural side-channel attacks usually
run carefully crafted code on a victim system and measure how the system
responds to the code, e.g., in terms of latency, throughput, execution time,

4

success rate, temperature, EM radiation, and various other observable
effects. Side-channel attacks are generally no bugs, but the consequence of
optimizations that are based on distinguishing different situations. If the
attacker measures whether the optimization was successful, e.g., a cache
hit instead of a DRAM access, the attacker can distinguish the different
situations based on the optimization.

Readers without a security background might ask, why this is relevant if
one strictly never runs software from untrusted sources and never visits
fishy websites that embed JavaScript attack code (which is extremely
difficult to do, since advertisements often may embed JavaScript). Now,
PDF allows embedding JavaScript code, and some PDF readers use very
powerful and well-tested JavaScript engines. In fact, this very document has
JavaScript code embedded, and, if the document were from an untrusted
source, it could already have successfully mounted an attack on the system
it is being opened on as the reader reaches this sentence. I do encourage
looking at the embedded JavaScript code in this PDF to confirm that it
does not do anything malicious.

Information disclosure can be the goal of an adversary or a building block
to reach another goal. In different leakage scenarios, adversaries can either
leak data directly or only leak meta-data. We consider meta-data any data
that could be expressed as a one-way function of data, i.e., meta-data
is derived from the data. Data generally cannot be derived from meta-
data precisely. In a side-channel attack, an attacker obtains meta-data
from a channel, e.g., a power trace, or timing information, and infers the
corresponding data with some probability p < 1.

1

As much as side channels are actively researched in computer security
contexts, they accompany us in our daily lives. A simple example is,
seeing light shining through a window of a house at night (meta-data)
and inferring that someone is home (data). However, someone could be
home with all lights turned off, or someone could have forgotten to turn
off the lights before leaving the house. Hence, the 1 bit of information that
we want to obtain, i.e., whether someone is home, can only be predicted
with a probability p < 1 when observing the meta-data (lights being on or
off).

2
The higher the probability, the better the side channel is.

1
Note that if a channel allows to infer data from meta-data with a probability of p = 1,
the meta-data effectively is just a loss-less encoding of the data.

2
Imagine a light-system that, with perfect accuracy, turns on light if and only if a
person is in the house. In that case, it is not a side channel, as the light is a loss-less
encoding of the information whether a person is home.

5

1. Introduction

A similarly simple example is observing a cache hit on an address (meta-
data) in a shared library and inferring that a particular victim process
just accessed it (data). However, there could be various reasons for the
address to be in the cache. Hence, again the probability that our deduction
is correct is p < 1, given that we have observed a cache hit. However,
the more rarely this address in this shared library is used, the higher the
probability that our inference was correct.

In side-channel attacks, adversaries leak meta-data and infer the secret
data. However, not all information disclosure attacks are side-channel
attacks. A software interface that permits out-of-bound accesses may
leak valuable information to an attacker, such as the Heartbleed software
bug [72]. Again, these leakages also exist in our daily lives. Going back to
the example with the house, if one accompanies a person home and sees
this very person enter their house, one knows that at this exact point in
time, a person is in the house. While this is a form of information leakage,
it is not a side channel. It is a direct information channel providing secrets,
and no inference step is necessary. This distinction between information
disclosure attacks in general and side-channel attacks specifically is vital
to understand the relations between different attacks presented in this
habilitation.

1.1. Contributions of this Habilitation

Transient-execution attacks are microarchitectural attacks that emerged
from side-channel attack research but are no side-channel attacks. In
contrast to side-channel attacks, transient-execution attacks leak the actual
target data. The idea of transient execution is that the hardware performs
operations it should not perform, either knowingly for implementation
reasons, or unknowingly because of a misprediction of the future. After
some time, the hardware will revert these operations, and architectural
effects should not remain. However, during this “transient window”, the
attacker can, after obtaining a secret value, perform virtually any attacker-
chosen operation on the secret data, including operations that change
the state of the microarchitecture. The microarchitectural state is very
difficult to revert fully, and so it survives the reverting, leaving the attacker
with the ability to leak secrets via the microarchitectural state, e.g.,
using microarchitectural side channels. Consequently, transient-execution

6

1.1. Contributions of this Habilitation

attacks typically internally use a side-channel attack as a building block
for transmission from the transient domain to the architectural domain.

There are different types of transient-execution attacks. We distinguish
attacks based on whether they cause leakage directly or by injecting
transient state changes into a victim domain on the one hand. On the
other hand, we distinguish between attacks on the control flow and the
data flow. The first transient-execution attacks discovered were Meltdown
and Spectre. While Meltdown leaks secret data directly, Spectre injects
incorrect control flow transitions into a victim process, making the victim
transmit the secret data to the attacker.

In the Spectre paper [174], we take the basic principle of branch prediction
side channels, where the attacker observes correct and incorrect branch
mispredictions and derives secrets from this information, and turn it
around, such that the victim process experiences attacker-induced branch
mispredictions. We pre-published this seminal discovery in early 2018, and
since then, hundreds of papers cited it. It has been formally published at
the IEEE Security and Privacy Symposium 2019 [174]. Spectre attacks
are detailed in Chapter 5.

The Spectre paper presents local attacks in different environments. Hence,
the next question to answer on this front was whether truly remote
Spectre attacks are possible. With NetSpectre [278], we answer this in the
affirmative. In NetSpectre, we assume that there is a Spectre gadget on
the target system in network-reachable code. This gadget does nothing
more but access a variable. We show that even in this scenario, we can
leak the precise data from the remote machine, e.g., in the cloud. The
paper has been formally published at the ESORICS 2019 conference [278].
The NetSpectre attack is detailed in Chapter 6.

Simultaneously to Spectre, we also discovered a second novel attack,
Meltdown [193]. Meltdown [193] was the more dangerous of the two
attacks. However, it is comparably easy to fix in hardware and software.
For us, the research leading to Meltdown started from the prefetch side
channels we have previously published [111]. In Meltdown, we do not
just prefetch kernel addresses, we deliberately access them and continue
computing with the values retrieved from the kernel. Meltdown was pre-
published in early 2018 and has, like Spectre, been cited hundreds of
times. It has been formally published at the USENIX Security Symposium
2018 [193]. We detail Meltdown in Chapter 7.

7

1. Introduction

Luckily, in 2017 we already had a patch for Meltdown ready, the KAISER
patch [109]. Jann Horn, when discovering Meltdown earlier and indepen-
dently of us [127], was aware of our KAISER patch against the prefetch
side channel and proposed to use it to mitigate Meltdown. The correspond-
ing paper was formally published at the ESSoS conference 2018 [109] and
is included as Chapter 8.

We subsequently analyzed the different implementations of the KAISER
patch and their performance. The results were published in a USENIX
;login article [106]. This analysis can be found in Chapter 9.

More recently, we discovered that the prefetching effect observed and
exploited in specific scenarios [111, 193], or observed to not occur in
others [109, 310, 106], was, in fact, misunderstood. We analyzed the root
cause and discovered that it is, in fact, speculative execution of so-called
Spectre prefetch gadgets [278, 50]. This discovery has a close connection
to the previous two chapters, as the KAISER patch was intended and
initially also empirically observed to mitigate all prefetch side-channel
attacks. Fortunately, it does indeed mitigate the original Meltdown attack.
However, the improved understanding has implications for several other
published works, i.e., attacks that are described to be impossible were, in
fact, practical at the time of writing. The corresponding paper is currently
in submission and is included in Chapter 10.

Meltdown is a transient-execution attack, but it does not rely on spec-
ulative execution. The processor at this point does not speculate. It
deliberately performs operations it should not perform under the assump-
tion that no one can see them, and results will be discarded in any case.
However, both academia and industry initially embraced the term spec-
ulative execution as an umbrella term for Meltdown-type and Spectre
attacks, as well as subsequent attacks such as Foreshadow. As the attack
landscape was and is still growing rapidly, the necessity of systematizing
the landscape became apparent. This was the start of our systematiza-
tion paper on transient-execution attacks [50]. We clearly outlined the
differences between different attacks and systematically categorized the
attack landscape. As a direct result, we were able to spot several attack
variations that have not been studied so far. Our systematization has
influenced both academia [27, 178] and industry [256, 254] to be more
precise about terminology and adopt elements of our systematization. The
paper has been formally published at the USENIX Security Symposium
2019 [50]. It can be found in Chapter 11.

8

1.1. Contributions of this Habilitation

Our initial assessment of Spectre and Meltdown was that Meltdown is the
more immediate threat, but Spectre “will haunt us for a long time”. The
expectation was to discover many more variants and that mitigations turn
out to be very difficult to implement as programming languages do not
convey the intention of the programmer as to what should be considered
secret. Hence, the hardware cannot know what should be considered a
secret. Broadly disabling speculation is still deemed not practical due to
the high overheads it would introduce. As we discovered in the USENIX
Security paper outlined above [50] and the works outlined in the following,
there are, in fact, way more variants of Meltdown than Spectre now.

From Meltdown experiments we performed on uncacheable memory, we
knew that there are other storage locations than the L1 cache that we can
leak data from, i.e., the line-fill buffer. Besides the line-fill buffer, there
are also several other buffers, e.g., the load buffer and the store buffer. To
improve our understanding of Meltdown-type attacks, we hypothesized
how load buffer and page walks work. We came up with multiple theories
and developed proof-of-concept attacks for these, which turned out to leak
data successfully. We believe that the underlying vulnerability is, in fact,
a use-after-free problem in the load buffer, where an old entry is partially
reused for a new memory request. In this case, data can be picked up from
various buffers, including the L1 cache, the line-fill buffer, the store buffer,
and possibly also the load buffer depending on the implementation, as
well as more volatile structures, such as the common data bus and the
load port. The paper contributed substantially to our understanding of
Meltdown-type attacks and how they are related. We now understand that
the underlying problem is (similar to zombie threads or zombie processes)
a zombie load; hence, the paper title ZombieLoad. In various situations,
the processor has to issue a new load operation, and the old operation
is aborted. This aborted load continues for a small amount of time as a
zombie load, providing data to dependent operations and thereby leaking
the data to the attacker. The paper has been formally published at the
ACM CCS 2019 conference [276]. It can be found in Chapter 12.

In parallel to our work on the load buffer in the ZombieLoad attack, we also
investigated the store buffer. We discovered that stores transiently succeed
on valid memory mappings, regardless of the actual access permissions, an
attack we presented in our store-to-leak forwarding paper [270]. Another
team invited us to collaborate on a paper where they also exploit the store
buffer, but it turned out that their attack was quite different and orthogonal
to ours, actually leaking values stored there by other security domains.

9

1. Introduction

We still joined the collaboration and submitted the two orthogonal papers
independently to ACM CCS 2019. For reasons that were not transparent
to us, the conference decided to merge the two papers. The merged paper
has then been formally published at the ACM CCS 2019 conference [48]
and can be found in Chapter 13.

During our work on ZombieLoad and Fallout, Jo Van Bulck pitched the
idea that attacks like Fallout or Foreshadow could be turned around. The
idea would be to induce the incorrect Meltdown-type leakage transiently
into a victim domain. The victim would then, similar as in a Spectre
attack, transiently work on wrong data. This attack, now known as Load
Value Injection (LVI), has been formally published at the IEEE Security
and Privacy Symposium 2020 [311]. It can be found in Chapter 14.

Mitigating transient-execution attacks is possible on different layers.
Meltdown-type attacks, as well as LVI attacks that exploit the same
underlying leakage, are usually first patched in software. However, we
observe that the known Meltdown-type attacks are patched with new
hardware generations. Likely we will discover new Meltdown-type attacks,
but the process with temporary software patches and permanent hardware
fixes provides a solution. However, we also found practically deployed
defenses unintentionally introducing new leakage [49], requiring additional
refined hardware fixes.

For Spectre, the situation is different. The way we write software leaves
the processor with uninformed decisions about branches. Naturally, in
this situation, branch prediction increases performance substantially. The
recommended solution against Spectre-PHT attacks is to annotate all
branches in software and recompile it. Aiming for a complete and prin-
cipled defense, we designed ConTExT. ConTExT does not require the
programmer to annotate all branches but only the secret variables itself.
The information is propagated to the microarchitecture, and transient use
of secret variables is prevented. The paper has been formally published at
the NDSS 2020 conference [273]. It can be found in Chapter 15.

Figure 1.1 gives an overview of the papers included in this habilitation.
There are also further relations between the papers and to papers not
included in this overview for the sake of clarity.

10

1.2. Habilitation Outline

Branch Prediction
Side Channels

Spectre [174]
NetSpectre [278]

Prefetch Side
Channel [111]

KAISER
[109, 106]

Meltdown [193]

Foreshadow [310]

Transient
SoK [50]

ZombieLoad [276]
Fallout [48]

LVI [311]

Speculative
Dereferencing of
Registers [281]

ConTExT [273]

invert

mitigate

mitigate

m
itig

a
te

invert

invert

invert

Figure 1.1.: Connection between the papers in this habilitation (high-
lighted in bold) and some related works. In some cases, pre-
vious attacks were inverted such that the victim experiences
the former leakage, and by that becomes a confused deputy.
In other cases, we developed mitigations for other attacks.

1.2. Habilitation Outline

This habilitation consists of two parts. The first part discusses the state
of the art and shows how the contributions included in this habilitation
extended the state of the art. Chapter 2 provides background on architec-
tures and microarchitectures, in particular virtual memory, caches, and
pipelines. It also provides a brief history of related microarchitectural
attacks. Chapter 3 provides a systematic overview of transient-execution
attacks and defenses. Chapter 4 concludes the first part and discusses why
transient-execution attacks have become a predominant class of attacks
in microarchitectural attack research, a central topic in system security
research, created visibility for system security research in general beyond
the security research community, and increased the awareness beyond
the computer science community that computer security must be taken
serious.

11

1. Introduction

The second part provides a list of all publications, together with tran-
scripts for a selection of papers constituting this habilitation. Chapter 5
consists of our IEEE Security and Privacy 2019 conference paper, Spec-
tre [174]. Chapter 6 consists of our ESORICS 2019 conference paper
NetSpectre [278]. Chapter 7 consists of our USENIX Security 2018 con-
ference paper, Meltdown [193]. Chapter 8 consists of our ESSoS 2017
conference paper about the KAISER patch [109]. Chapter 9 consists of
our USENIX ;login article [106] about different implementations of the
KAISER mechanism and their performance. Chapter 10 consists of a paper
in submission analyzing the often misattributed speculative prefetching
effect [281]. Chapter 11 consists of our USENIX Security 2019 conference
paper providing a systematic analysis of transient-execution attacks and
defenses [50]. Chapter 12 consists of our ACM CCS 2019 conference paper,
ZombieLoad [276]. Chapter 13 consists of our ACM CCS 2019 conference
paper, Fallout [48]. Chapter 14 consists of our S&P 2020 conference pa-
per, LVI [311]. Chapter 15 consists of our NDSS 2020 conference paper,
ConTExT [273].

12

2
Background

In this chapter, we provide background on architectures and microarchi-
tectures in Section 2.1. We focus on modern architectures and processors
with out-of-order microarchitectures. We explain how virtual memory
works in Section 2.2. In greater detail, we explain how caches work in
Section 2.3. This background equips us with the necessary knowledge we
need to understand the following chapters, detailing the history of related
microarchitectural attacks up to the first transient-execution attacks, and
a systematic overview of the state of the art in transient-execution attack
research.

2.1. Processor Architectures and
Microarchitectures

There is a wide range of processor architectures for various purposes.
For application processors there are mainly two pre-dominant architec-
ture families: x86 and ARM. There are clear differences between these
architecture families, e.g., x86 architectures have a complex instruction
set (CISC) whereas ARM architectures have a reduced instruction set
(RISC). However, compilers abstract these differences largely away, so that
developers do not have to worry about the specific underlying processor
anymore. Still, system developers usually have to distinguish between
these architectures for low-level interaction with the hardware.

The architecture defines the instruction set, registers, limits for virtual and
physical address space. However, to optimize performance and efficiency,
similar optimizations have been implemented in these architectures. Most
of these optimizations are not on the architectural layer, i.e., they have no
influence on the instruction set or functional behavior of the architecture.

13

2. Background

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

Figure 2.1.: A simple 4-stage pipeline. By interleaving instruction fetch
(IF), instruction decoding (ID), instruction execution (EX),
and write-back (WB), the processor can improve the instruc-
tion throughput substantially.

Essentially, the microarchitecture can be seen as an implementation of
an architecture. While the architecture defines the interfaces with other
components and the software level, the microarchitecture is the concrete
implementation of these interfaces.

A concept found in all modern processors is pipelining. The idea of
pipelining is to split the full execution of one instruction into multiple
pipeline stages. Different pipeline stages can be run in parallel to improve
performance.

The concept of pipelines introduced new ways to increase performance and
efficiency on the microarchitectural level. The architecture does not define
what the pipeline should look like or whether the processor is pipelined
at all. A simple pipelined microarchitecture might have four stages fetch,
decode, execute, and write-back, as illustrated in Figure 2.1. Each pipeline
stage operates in parallel. First, an instruction i is fetched from memory.
While instruction i is decoded, the next instruction i+ 1 is already fetched
from memory. While instruction i is executed, the next instruction i + 1
is decoded. Finally, while the effects of instruction i are written back to
memory or the register file, the next instruction i + 1 is executed.

If the execute stage causes an interrupt or a change in the control-flow,
the fetch and decode stages of subsequent instructions have performed
unnecessary or even incorrect operations. There are various types of
so-called pipeline hazards, upon which the pipeline has to be flushed
and started from scratch with the corrected next instruction. This costs

14

2.1. Processor Architectures and Microarchitectures

performance and efficiency, as the pipeline is not fully utilized at this
point.

Modern microarchitectures employ even more parallelization. Today the
fetch, decode, execute, and write-back stages can each handle multiple
operations in parallel. The operations can then be performed out of order,
allowing to execute instructions while others are still waiting for their
operands. This out-of-order design goes back to Tomasulo [302].

Figure 2.2 provides a schematic view of an Intel Skylake core on the
microarchitectural level. Note that equivalent concepts used in this design
can also be found in other microarchitectures similarly. The frontend
comprises the fetch and decode stages. Instructions are fetched from the
L1 instruction cache and added into an instruction queue. The decoder
can decode multiple instructions from the instruction queue in parallel.

Depending on the microarchitecture design, the processor may internally
not work with the (CISC) instructions exposed on the architectural level
but instead, use a simpler internal (RISC) instruction set. Thus, on many
modern processors, instructions are decoded into one or more so-called
micro-ops that the execution stage of the pipeline understands. After
decoding, the decoded micro-ops are stored in an allocation queue and
handed over to the reorder buffer.

Modern out-of-order microarchitectures have such a reorder buffer to keep
track of the instruction stream. The reorder buffer stores all micro-ops
to be executed in the order of the instruction stream. Typical capacities
today are in the range of several hundred micro-ops. The scheduler picks
micro-ops from the reorder buffer whose dependencies have (presumably)
been resolved already and schedules them on one of many rather spe-
cialized execution units. Thus, a load operation may consume more time
and finish later than a subsequent arithmetic operation on the ALU, or
vice versa. Operations are placed in the reorder buffer, and as soon as
they were successfully executed, they are marked as valid and completed.
Then dependent operations can pick up the results from the completed
instruction. Instructions at the top of the reorder buffer are retired as
soon as they are valid and completed. Hence, one can imagine the top of
the reorder buffer as the actual architectural instruction pointer, whereas
out-of-order, the order in which operations are performed may be more or
less random. The write-back stage also allows for some parallelism, with
multiple load and store data execution units.

15

2. Background

E
x
ec

u
ti

on
E

n
gi

n
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,

A
E

S
,

..
.

A
L

U
,

F
M

A
,

..
.

A
L

U
,

V
ec

t,
..

.

A
L

U
,

B
ra

n
ch

L
oa

d
d
a
ta

L
oa

d
d
at

a

S
to

re
d
at

a

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

S
u

b
sy

st
em

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

F
ro

n
te

n
d

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 2.2.: Simplified illustration of a single core of the Intel’s Skylake
microarchitecture.

16

2.1. Processor Architectures and Microarchitectures

PPN VPN Offset Reg.No.

Figure 2.3.: Possible design for a load-buffer entry.

A crucial part of this design is to decouple the architecture-level register
names from the actual architecture, as they may be used subsequently
by non-dependent parts of the instruction stream. For this purpose, the
microarchitecture implements register renaming. Instead of a few registers,
modern microarchitectures now have register files, with hundreds of regis-
ters. The allocation of actual registers to architecturally named registers
in the instruction stream is dynamic. That is, one can view register names
like %rax and %rbx as variable names rather than actual registers.

To perform a load operation, the load execution unit creates an entry in
the so-called load buffer. The load-buffer entry is allocated together with
the reorder buffer entry to ensure that loads are ordered with respect to
the instruction stream. While it is not publicly documented what the load
buffer stores exactly in specific designs, we can assume that it stores at
least the information, or an equivalent representation, shown in Figure 2.3.
This includes, in particular, a way to refer to the physical address or
physical page number (PPN), a way to refer to the virtual address or
virtual page number (VPN), an offset to read, as well as a register number
to work with. It would also be entirely plausible for the load buffer to
store data to some extent, similar to the store buffer.

The processor fetches memory based on the information in the load-buffer
entry. That is, to resolve the physical address, a lookup in the translation-
lookaside buffer (TLB) and possibly a page-walk are performed. At the
same time, the processor checks multiple other buffers and caches based
on the virtual address to find the requested data. One of these buffers is
the line-fill buffer, which is used to buffer data moved from higher levels
in the memory hierarchy closer to the processor, e.g., into the L1 cache.
Another is the store buffer. If there is a recent store that matches the
load operation, the data from the store is directly forwarded from the
store buffer, i.e., store-to-load forwarding. If the data is not found in the
L1 cache or any buffer, it is requested from higher levels of the memory
hierarchy.

One problem for out-of-order execution but also for processor performance,
in general, is that software is usually not linear but contains a substantial
number of conditional branches. Hence, instead of waiting for the branch

17

2. Background

instruction to be executed and committed, the processor makes a prediction
on where execution will continue, leading to speculative execution. Modern
processors have a branch-prediction unit comprised of several structures to
predict for the different types of conditional and indirect branches [137, 83],
e.g., Branch History Buffer (BHB) [33], Branch Target Buffer (BTB) [182,
78], the Pattern History Table (PHT) [83], and the Return Stack Buffer
(RSB) [83, 200, 177]. There are also other types of speculation, e.g., on
the existence of data dependencies [128]. In the case where the prediction
was correct, the instructions in the reorder buffer are retired in-order.
If the prediction was wrong, the results are squashed, and a rollback is
performed by partially or fully flushing the pipeline, and the reorder buffer,
i.e., at least any entry following the incorrect prediction.

Out-of-order execution and speculative execution have been improving
the performance of single execution cores significantly. However, most
workloads do not produce instruction sequences that fully utilize this
parallelism. Hence, some processors offer the abstraction of virtual cores on
the hardware level. This concept is known as simultaneous multithreading
(SMT) or hyperthreading (HT). With hyperthreading, each physical core
has multiple virtual cores (hyperthreads). The hyperthreads share the
resources of a physical core in a static or dynamic assignment. For instance,
on recent Intel processors with hyperthreading, line-fill buffer, TLB, L1
cache, and branch-prediction unit are typically dynamically shared across
the two virtual cores, meaning that entries in the reorder buffer will be
interleaved from multiple independent instruction streams. The entries are
tagged for identifying to which virtual core they belong. Other resources,
such as the reorder buffer, load buffer, and store buffer, are statically split
between the hyperthreads [338].

The design space allows many variants in between full separate CPUs
and fully shared SMT cores. Modern processors often combine multiple
separate CPU cores to enhance the overall system performance by allowing
multiple workloads to run independently in parallel. These cores are largely
independent, typically with separate private caches, buffers, register files,
and branch-prediction units. Coherency protocols between the caches of
separate cores ensure data coherency.

Although we already mentioned caches above, we first need to discuss
virtual memory, a concept upon which caches build. We will detail how
caches work subsequently.

18

2.2. Virtual Memory

2.2. Virtual Memory

The idea of virtual memory is to introduce virtual addresses that are
transparently translated to physical addresses. One can imagine this like
a map in an object-oriented programming language. This map translates
virtual addresses to physical addresses. The software fills the map, and the
hardware transparently uses it. This simplifies running multiple processes
on the same machine and, at the same time, provides isolation between
the processes, as each process has its own map.

We will now discuss why paging looks as it looks today, showing how
to reach some of the design choices. Pointers, i.e., virtual addresses,
on modern 64-bit processors are 64 bits in size. Physical addresses are
usually a bit smaller. Hence, näıvely mapping byte-by-byte would incur
an immense overhead of 16 bytes per byte mapped. Mapping vast blocks
of memory directly would reduce the utility of virtual memory. A trade-off
is to split both virtual and physical memory into aligned fixed-size blocks,
so-called pages. The mapping then only goes from block to block. The
most common page size today is 4 kB, meaning that 12 address bits are
required to address every possible offset on that page. Conveniently, 12
bits are exactly 3 hexadecimal characters, making it easy to read the page
offset from a pointer while debugging.

The address translation map needs to be stored somewhere, and on modern
systems, this table is stored in the physical memory. However, with the
design outlined so far, the map would still need billions of entries of each
8 bytes to map these virtual 4 kB regions to physical 4 kB regions, which
is still too much memory overhead. To solve this problem and maintain
a comparably simple structure to provide to the hardware, the map is
implemented as a sparse tree of maps, so-called page tables. Each page
table is just a fixed-size array. For system developers, it is convenient to
maintain, e.g., a bitmap over the physical memory to track which physical
page is in use and which is not in use. Thus, for convenience, it makes sense
to define the page table size as precisely one page. With a size of 8 bytes
per entry,

1
we can fit 512 page-table entries in one page table. To index

1
Physical address spaces today are usually 48 bit on AMD and less than that on
Intel. A mapping of virtual 4 kB regions to physical 4 kB regions in a 48-bit physical
address space would only need to store 36 bit to precisely identify the physical 4 kB
region, i.e., 4.5 bytes. However, several further bits are required for meta-data and
compatibility with future larger physical address spaces. Hence, rounding up to the
next power of two, i.e., 8 bytes, is a typical design decision.

19

2. Background

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

Byte 4095

Figure 2.4.: Address translation for 4 KB pages on x86-64 processors. Start-
ing with the PML4 base address from the CR3 register, the
processor determines the physical address by using parts of
the virtual address to index the different levels.

every byte offset in this table with 512 entries, we need a 9-bit index. The
same structure is then recursively repeated in multiple translation-table
levels until the full virtual address space is covered.

The translation-table levels on x86-64 are called page table (PT), page
directory (PD), page-directory pointer table (PDPT), page-map level 4
(PML4), and, if supported, the page-map level 5 (PML5). The translation
starts at the highest translation-table level. On a processor with 57 bits
of virtual address space, this is the PML5. The physical page number of
the PML5 is retrieved from the processor’s CR3 register. At the time of
writing, 48 bits of virtual address space are much more common, and there
the highest translation table is the PML4, as illustrated in Figure 2.4. In
this case, the processor’s CR3 register (control register 3) contains the
physical address of the PML4. Note that the CR3 register is changed upon
context switches between processes, to provide separate virtual address
space and isolation to processes. While the CR3 register exists only on x86
and the presented terminology is also specific to x86-64, other processors

20

2.2. Virtual Memory

have implemented similar concepts, e.g., the translation-table-base register
(TTBR) on ARM fulfills the same purpose as the CR3 register.

The page-map level 5 (PML5) has 512 entries and consumes 9 virtual
address bits (bits 48-56) as the PML5 index. The PML5 divides the 128 PB
virtual address space of a process into 512 areas (one per entry) where
each area is responsible for mapping 256 TB via a PML4. The address
of the PML4 is computed from the physical page number stored in the
PML5 entry.

The page-map level 4 (PML4), either being the top-most or the second
translation-table level, again has 512 entries and consumes 9 virtual address
bits (bits 39-47) as the PML4 index. The PML4 divides a 256 TB memory
region (which may be the full 48-bit virtual address space of a process)
into 512 areas of each 512 GB via a PDPT. The physical page number of
the PDPT is stored in the PML4 entry.

On the next level, the page-directory pointer table (PDPT) consumes the
next 9 virtual address bits (bits 30-38) as the PDPT index. The PDPT
divides a 512 GB memory region into 512 areas of each 1 GB. This 1 GB
may be mapped via a PD, or directly as a 1 GB page if the size bit in the
PDPT entry is set. The physical page number of the PD or the 1 GB page
is stored in the PDPT entry. The remaining 30 bits are used as an offset
within the 1 GB page.

On the next level, the page directory (PD) consumes the next 9 virtual
address bits (bits 21-29) as the PD index. The PD divides a 1 GB memory
region into 512 areas of each 2 MB. This 2 MB may be mapped via a PT,
or directly as a 2 MB page if the size bit in the PD entry is set. The
physical page number of the PT or the 2 MB page is stored in the PT
entry. The remaining 21 bits are used as an offset within the 2 MB page.

On the lowest level, the page table (PT) consumes the next 9 virtual
address bits (bits 12-20) as the PT index. The PT divides a 2 MB memory
region into 512 areas of each 4 kB, i.e., 4 kB pages. The physical page
number of the 4 kB page is stored in the PT entry. The remaining 12 bits
are used as an offset within the 4 kB page. Thus, at this point we have
computed the physical address for the virtual address we started with.

Paging is either disabled or enabled for every memory access from the
software level. Modern systems virtually always have paging enabled. The
translation is performed transparently by the memory management unit

21

2. Background

and cannot be bypassed. The memory management unit is configured via
the translation table tree we defined.

However, that means that the memory management unit has to translate
one or more virtual addresses into physical addresses for any operation the
processor performs. Consequently, the address translation latency must
be minimal. With translation tables being located in the main memory,
this is generally not the case. Thus, address translation caches have been
introduced to hide the DRAM latency, as we will see in Section 2.3.

2.2.1. Address-Space Layout Randomization

Different exploitation techniques are based on architecturally redirecting
the control flow of a victim program. Code-injection attacks inject attacker-
defined code, e.g., into a stack, and redirect control flow to this injected
code. On modern CPUs, code-injection attacks are mitigated by marking
all memory not containing code as non-executable [295]. However, an
attacker could still mount an attack by redirecting control flow to already
existing code in the victim process, e.g., return-to-libc and return-oriented-
programming (ROP) attacks [283]. In ROP attacks, the control flow
is diverted to small code fragments, so-called ROP gadgets, typically
consisting of a few useful instructions and a return instruction. Similarly,
data-only attacks are also still possible [51, 153]. Both types of attacks
require knowledge of addresses of gadgets and target memory locations.

ASLR is a probabilistic countermeasure against a wide range of attacks
with virtually no performance penalties. The basic idea is to randomize
base addresses when the program starts, or a new block of memory with an
independent base address is requested, e.g., a stack. The attacker does not
know the correct target code and data addresses and, thus, cannot inject
them. ASLR can also be implemented for the kernel, similarly randomizing
any base address upon start or allocation. All modern operating systems
implement user space ASLR and kernel space ASLR (KASLR) [75, 157, 24,
75]. However, the real-world implementations are coarse-grained, and only
randomize base addresses on a page-size granularity. More fine-grained
ASLR and KASLR proposals are virtually not used in practice due to
their high performance overheads [288, 244, 94].

22

2.3. Caches

2.3. Caches

As discussed in Section 2.1, the computation speed of processors is con-
stantly increasing due to a constant stream of optimizations being in-
troduced. At the same time, memory needs are constantly growing, in
particular for the system’s main memory, the DRAM (dynamic random
access memory). While DRAM module sizes and bandwidths have in-
creased substantially over the past two decades, the access latency is
almost identical. On a 2006 Intel Conroe processor (running at 1.86 GHz),
an integer multiplication (with two 64-bit registers) has a latency of 2.7 ns
to 3.7 ns whereas the memory latency is more than 50 ns [1]. On a 2019
Intel Coffee Lake-R processor (running at 5 GHz), the latency for the same
multiplication is down to 0.6 ns while the latency for a memory access is
still more than 50 ns.

To alleviate this performance bottleneck, computers employ a hierarchy of
memory layers of decreasing size and increasing speed. The hard disk (or
solid-state disk) is the slowest and largest memory layer in most computers.
The main memory is DRAM, which is substantially faster than the disk
but still too slow for the processor. Therefore, there are multiple layers
below the DRAM that are faster and smaller, the so-called caches. In
modern processors, these faster and smaller caches are integrated into the
processor itself.

Caches build on the principle of locality. The principle of locality is based
on the intuition that two events are more likely to be tied to the same
cause if they happen in proximity. Obviously, this is not always true, it
can also be a random coincidence, but it is a good intuition. In computer
science, there are mainly two variants: the temporal locality and spatial
locality. If two events happen in temporal locality, they are likely tied to
the same cause. Inversely, an event is more likely to occur if the same
event has occured in the recent past. For instance, an access to a memory
location is more likely to occur if an access to the same memory location
has occurred in the recent past. Similarly, for spatial locality, an access to
a memory location is more likely to occur if accesses to memory locations
in close proximity occurred in the recent past. As a result, caches are
designed to store recently accessed memory, and memory around recently
accessed memory.

23

2. Background

Memory Address Cache

Tag Datab bits

2
b

bytes

n bits

Cache Index

2
n

cache linesf

=?

Tag

Hit/Miss

Figure 2.5.: A directly-mapped cache. Based on the middle n bits, the
cache index is computed to choose a cache line. The tag is
used to check whether an address is cached. If it is cached
(cache hit), the 2

b
bytes data are returned to the processor.

When accessing a memory location, the CPU transparently accesses the
cache first. If a layer of the memory hierarchy, i.e., a cache, did not contain
the data, the next layer of the memory hierarchy is considered.

Figure 2.5 shows a very simple cache, a directly-mapped cache. It consists
of 2

n
cache lines. Each cache line has a tag computed from the memory

address to uniquely identify the memory location, and 2
b

bytes of associated
data. The lowest b bits of the address are used as an offset within the
cache line data. Most modern processors have a cache line size of 64 bytes,
i.e., b = 6. The middle n bits of the memory address are used as a cache
index, which is used for the lookup in the cache. The size of the cache
determines how many bits are used, i.e., how many indices there are. In a
directly-mapped cache, addresses with the same middle n bits map to the
same cache line. Addresses mapping to the same storage location in the
cache are called congruent. If software operates on congruent addresses,
the performance of a directly-mapped cache drops significantly, as only
one of the congruent addresses can be cached, and so data has to be
constantly loaded from DRAM and written back to DRAM.

Figure 2.6 illustrates a 2-way set-associative cache. Set-associative caches
reduce the congruency problem, as they have multiple equivalent storage
locations for the same cache index. These caches are widely used in modern
processors for data and instruction caches, but also for the translation-

24

2.3. Caches

Memory Address Cache

b bitsn bits

Cache Index

f 2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.6.: A 2-way set-associative cache. The middle n bits are the cache
index, selecting the cache set. The tag is used to check all
ways simultaneously. The data in the matching cache way is
returned to the execution core.

lookaside buffer. They are usually referred to as m-way set-associative
caches. The cache is divided into 2

n
cache sets. The cache set index is

determined from the middle n bits of the memory address. Each cache set
has m ways, storage locations for m congruent memory locations. Upon a
memory access, the m ways are looked up in parallel. The tag is now not
just used to determine whether the requested address was indeed cached,
but also to determine which of the m ways provides the requested data.

When loading data into the cache, the processor uses a replacement policy
to determine which of the m ways in the corresponding cache set to
replace.

Different cache designs either use virtual addresses or physical addresses
to compute the cache index and tag. Three designs have found their way
into real-world processors.

Virtually-indexed virtually-tagged (VIVT) caches (cf. Figure 2.7) use the
virtual address for both index and tag. This cache design has a low latency
as it does not require any address translation to obtain the requested data.
However, as virtual addresses are not unique system-wide, it is necessary
to either tag them with a process identifier or invalidate their entries upon

25

2. Background

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

f 2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.7.: A virtually-indexed virtually-tagged (VIVT) cache. The vir-
tual address is used to compute both index and tag. The
processor does not have to translate any addresses.

context switches. Today, VIVT caches are used, for instance, for address
translation caches, such as the translation-lookaside buffer (TLB).

On the higher latency end of the design space, there are physically-indexed
physically-tagged (PIPT) caches (cf. Figure 2.8), which use the physical
address for both index and tag. The most important advantage of these
caches is that index and tag are based on the unique physical address.
Thus, there is no need for tagging or invalidation upon context switches,
as the address remains unique. Today, PIPT caches are mostly used for
higher-level data and instruction caches where the address translation
already occurred and thus does not increase to the latency.

Virtually-indexed physically-tagged (VIPT) caches (cf. Figure 2.9) are a
compromise between the previous two designs. The index is computed
based on the virtual address. Thus, it can be used to start the lookup
immediately. At the same time, the lookup in the address translation
caches starts, retrieving the physical tag.

To avoid the disadvantages of VIVT caches, the cache index should,
similarly to PIPT caches, not use address bits that are not part of the
page offset in the virtual address. With a page size of 4 kB, the lowest 12
bits of virtual address and physical address are identical. With a cache
line size of 64 bytes, there are 6 virtual address bits that can be used

26

2.3. Caches

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.8.: A physically-indexed, physically-tagged (PIPT) cache. The
physical address is used to compute both index and tag. The
processor has to translate the virtual address before the cache
set lookup.

as a cache index such that the cache index computed from the physical
address would be identical. Most Intel x86 processors from the past decade
integrate two 8-way set-associative VIPT L1 caches per processor core,
one for instructions and one for data. Consequently, the size of each L1
cache is 2

6 ⋅ 64 ⋅ 8 = 32 kB for most processors from the past decade.

More recently, Intel processors with a 48 kB L1 cache have appeared. This
is made possible by increasing the number of ways to 12. Similarly, Apple
has increased the size of the L1 caches in their recent iPhone processors
substantially to 128 kB. This change is not based on an increased number
of ways or a change in the cache line size but in a change of the page size
from 4 kB to 16 kB. This change leaves 2 more bits for the cache index,
increasing the number of sets to 256. As Apple controls both hardware
and software stack, making changes that are not backward compatible
might be easier than for other vendors.

As said, modern processors have multiple layers of caches which are either
private to one core or shared across all cores. ARM processors often have
two layers, a private L1 cache, and a shared last-level (L2) cache. Intel
processors often have three layers, a private L1 and L2 cache and a shared
last-level (L3) cache. The L1 cache usually is split into an L1 instruction
cache and an L1 data cache, whereas higher-level caches (e.g., L2 and

27

2. Background

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.9.: A virtually-indexed, physically-tagged (VIPT) cache. The
physical address is used to compute both the tag, but the
virtual address is used to compute the index. The cache set
lookup is done in parallel to the address translation and tag
computation.

L3) are unified caches containing both instructions and data. There are
also designs with a victim cache, meaning that it is only filled with cache
evictions from lower levels, as the L4 cache. Size and latency increase with
each cache level.

The last-level cache is usually shared across all CPU cores. On most cache
designs, the last-level cache is also inclusive to lower levels, meaning that
any data in lower level caches (e.g., L1 and L2) is also present in the last-
level cache. Note that such a relation usually does not exist between other
caches. To increase the cache size and maintain a low latency, modern
processors divide the last-level cache into cache slices [206], often with one
slice per core. The slices are interconnected, e.g., by a ring bus or a mesh
network, allowing all cores to access all last-level cache lines. While not
documented, on some processors, we observe timing differences indicating
that there are multiple slices per core.

Beyond the data and instruction caches, there are also smaller buffers
in the cache hierarchy tightly interacting with these. Figure 2.10 illus-
trates the translation-table cache hierarchy on recent Intel x86 processors.
All translation-table caches are virtually indexed and virtually tagged.
Therefore, traditionally, TLBs needed to be flushed upon context switches.

28

2.3. Caches

Core 0 Core 1

ITLB DTLBITLB DTLB

STLBSTLB

PDE cache PDE cache

L
o
ok

u
p

d
irection

PDPTE cache PDPTE cache

PML4E cache PML4E cache

Page table structures cached in
data caches (L1/L2/L3 cache)

Page table structures in
DRAM (physical memory)

Figure 2.10.: The translation table cache hierarchy consists of multiple
TLB levels and caches for each of the page table levels.

Modern operating systems use process context identifiers (PCIDs) to
tag entries to make them unique across context switches additionally.
For the two TLB levels, it is documented that they are implemented as
set-associative caches on recent CPUs.

When the processor tries to access a virtual address, it starts the lookup
in the instruction TLB (ITLB) or data TLB (DTLB) depending on the
access type. This first level is also called the L1 TLB. In case of a cache
miss, the next level is checked. If both L1 and L2 TLB, also referred to as
the STLB, could not provide the physical address for the requested virtual
address, the page miss handler is activated. The page miss handler, in the
worst case, performs a page walk starting from the root (e.g., PML4). The
start address of the root is provided in the CR3 register. However, the
page miss handler also uses the subsequent caches. It first looks up the
PDE cache to obtain a page directory entry, then the PDPTE cache, and

29

2. Background

Core 0 Memory

mov

mov

mov

mov

mov

data

(1) read

data
(4) write

data

(3) read

data
(2) read

data
(5) read

read set

write set

Figure 2.11.: Hardware transactional memory maintains a read set and a
write set to be able to detect conflicts and revert transactions.
Memory in the read set is unmodified; memory in the write
set has been modified during the transaction.

finally the PML4E cache, until one of them can provide a translation-table
entry. If an entry is found, the lower cache levels are refilled. If no entry is
found, the page miss handler sends a request off to the memory hierarchy
for all data. Recall that page tables lie in memory like any other data.
Thus, there is the chance that the page tables are found in the caches. In
the worst case, the page miss handler has to perform multiple memory
accesses to refill all the cache layers, including the TLB. When a TLB
entry is finally present, the physical address is returned to the instruction
that requested it.

2.3.1. Secure Caches

While not found in practice yet, there is a line of research that investigates
more secure cache designs. The basic idea is to replace the predictable
address-to-index mapping with a deterministic but random-looking map-
ping. For this purpose, RPCache [329] uses a permutation table. Random-
fill cache [195] issues random additional cache fill requests in spatial
proximity to the accessed memory locations. However, recent works have
shown that only randomizing the memory address is insufficient to protect
against contention-based cache attacks [318, 252].

30

2.4. Hardware Transactional Memory

Thread 1 Thread 2

Begin transaction

Read 0x20

Write 0x40

Read 0x20

Write 0x40

write conflict

u
n
d
o

End transaction

Figure 2.12.: Hardware transactional memory ensures that no concurrent
modifications influence the transaction, either by preserving
the old value or by aborting and reverting the transaction.

More recent designs (Time-Secure Cache [303], Ceaser-S [251, 252], Scat-
terCache [336]) compute the random-looking mapping on the fly using an
embedded low-latency cryptographic circuit. These are mainly designed for
last-level caches, which have the largest latency budget and are most im-
portant to protect as they are usually shared across cores. As a key insight,
Ceaser-S and ScatterCache partition the cache and use the randomized
mapping to derive a different cache-set index in each of these partitions.
This impedes both finding and using eviction sets in attacks [247, 246].

2.4. Hardware Transactional Memory

Hardware transactional memory is another feature intended for perfor-
mance gains, especially with many-core systems and lock variables [352,
82]. For a CPU core executing a hardware transaction, all other threads
appear to be halted. From the outside, a transaction running on a CPU
core appears as an atomic operation. Transactions can fail if this atomicity
cannot be provided due to resource limitations or conflicting concurrent
memory accesses. In this case, all transactional changes need to be rolled
back. Conveniently, modern out-of-order processors already have roll-back
mechanisms (cf. Section 2.1).

31

2. Background

To detect conflicts and revert transactions, the CPU tracks all transactional
memory accesses. Therefore, as shown in Figure 2.11, transactional memory
is typically divided into a read set and a write set, containing all memory
locations read or written, respectively. Concurrent read accesses do not
pose a synchronization problem and, hence, are allowed. However, as
soon as the write set of one thread overlaps with the write or read set of
another thread, it becomes a synchronization problem, and the transaction
cannot be completed atomically anymore, leading to a transactional abort.
Figure 2.12 visualizes this exemplarily for a simple transaction with one
conflicting concurrent thread.

Hardware transactional memory is nowadays supported by different pro-
cessors [222]. The concrete implementations build on top of out-of-order
execution and caches. The write set is often tracked via the L1 data
cache. Upon a transaction abort, the corresponding L1 data cache lines
are invalidated. On Intel processors, the read set is not tracked via a cache
directly but via a bloom filter. Still, the size usable in practice appears to
be the size of the last-level cache [108].

2.5. Trusted Execution Environments

Trusted Execution Environments (TEEs) aim for scenarios where the entire
system is untrusted, except for the CPU. Various TEEs achieve this goal
to a different extent. The most widely used TEE is likely ARM TrustZone,
which most modern smartphones support. For x86, Intel SGX is supported
on many Intel processors. SGX provides integrity and confidentiality
guarantees for code and data [66]. For this purpose, SGX requires programs
to be split into a trusted part, running as an SGX enclave, and an untrusted
part, a regular user application, cf. Figure 2.13. The CPU fully isolates
the trusted enclave, and neither the application nor the operating system
can access the enclave’s memory. Furthermore, to protect against bus-
probing attacks on the DRAM bus and cold-boot attacks, the memory
range used by SGX is encrypted via transparent memory encryption. The
encrypted memory is a physically contiguous block in DRAM, called the
EPC (enclave page cache). Local or remote attestation ensure the integrity
of the enclave by proving its correct loading. If the operating system or
hypervisor attempt to access it anyway, they read a constant value (usually
all ‘1’) regardless of the memory location read, thwarting any attempt to
read enclave memory.

32

2.6. Microarchitectural Attacks

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

Figure 2.13.: With Intel SGX, applications are split into a trusted (enclave)
and an untrusted (host) part. The hardware prevents any
access to the trusted part. The only communication between
enclave and host uses predefined ecalls and ocalls.

Applications can call into enclaves via well-defined entry points to perform
certain trusted tasks, similar to a user program that could call into the
kernel via a system call. The hardware prevents any other attempt to
access the enclave or the enclave’s memory. However, this isolation is
one-sided, and sandboxing may be necessary to restrict enclave accesses
to the outside [332].

2.6. Microarchitectural Attacks

In this section, we provide a brief history of microarchitectural attacks and
discuss the state of the art. Microarchitectural attacks exploit observable
microarchitectural behavior that is not entirely architecturally defined,
often rooted in optimizations on the microarchitectural level. These ob-
servable microarchitectural behavior differences undermine system security

33

2. Background

and software security by leaking secret information or by illegally manipu-
lating data. When speaking of microarchitectural attacks, we usually mean
software-based microarchitectural attacks that do not require physical
access to the target device. Instead, the typical threat model is a remote
attacker with some degree of code execution on the target device.

Several previous works attempted to systematize the landscape of microar-
chitectural attacks and defenses [7, 92, 32, 294, 290, 357, 105]. However,
new attacks and defenses appear at a rapid pace, extending the state-of-
the-art beyond these systematizations.

We first distinguish microarchitectural attacks based on whether they leak
information from a victim or illegally modify the architectural state of a
victim. While the former are mostly side-channel attacks, the latter are
mostly fault attacks.

Microarchitectural side-channel attacks usually consist of three stages:

1. The attacker brings the microarchitecture into a known state.

2. The victim performs an operation.

3. The attacker observes the microarchitectural state change.

The first microarchitectural attacks were cache attacks [175]. They exploit
the effect that if a memory location is cached, the latency to access it is
lower. The basic idea, the intentional behavior of a cache, is to lower the
access latency for memory locations that are likely to be accessed in the
future, based on what happened in the past, cf. Section 2.3. While this is
already an exploitable behavior, the attack becomes much more powerful
if the attacker can influence whether the memory location is cached or
not, i.e., the first step outlined above. In the early 2000s, cache timing
attacks have been studied in many works [164, 235, 306, 31, 37].

Today, there is a set of standard techniques that are used to attack
various caches and microarchitectural buffers. These techniques are Evict+
Time [31, 234], Prime+Probe [239, 234], and Flush+Reload [117, 351].

Evict+Time. In an Evict+Time side-channel attack [234], the attacker
measures the execution time of a specific victim computation several
times. As a preparation to establish a baseline, the attacker lets the victim
execute as is. The attacker then mounts the attack in two steps:

1. The attacker evicts a certain fraction of the cache, e.g., a cache set.

34

2.6. Microarchitectural Attacks

2. The victim performs a computation. The attacker measures the execu-
tion time.

If the attacker measured a higher execution time, the evicted fraction of
the cache, e.g., the cache set, was likely used in the victim’s computation.
Hence, the attacker learns upon which memory locations the victim’s
execution depends. If memory locations are accessed based on secret data,
this allows deducing the secret data or parts of it. Evict+Time usually
works on a cache-set granularity and is highly susceptible to noise due to
other system activity, unrelated caching and buffering effects, influencing
the execution time. Therefore, attacks usually need a high number of
repetitions to obtain meaningful results, i.e., with statistical significance.
Evict+Time does not require any shared memory between attacker and
victim, but it requires the attacker to be able to measure the exact starting
and end time of a victim computation. On modern processors, eviction on
certain caches may be complicated by complex addressing functions [206]
and replacement policies [112, 318]. However, depending on the cache, e.g.,
the L1 cache or the TLB, the mapping can be simple, and replacement
policies predictable.

Some of the early cache timing side-channel attacks already resembled
Evict+Time. More recently, Evict+Time has been used, for instance,
by Hund et al. [130] to break KASLR, by Lipp et al. [191] on mobile
ARM-based devices, by Jain et al. [155] in a parallelized variant.

The Evict+Time methodology has also been applied to other buffers than
the cache. Moghimi et al. [216] fill the store buffer with false dependencies,
i.e., evicting entries that would lead to lower run times of the victim, and
measure whether the execution time of the victim increases.

Prime+Probe. In a Prime+Probe side-channel attack [234], the attacker
repeatedly measures how long it takes to fill a cache set by accessing a
set of memory locations (cf. Figure 2.14). Whenever the victim replaces
ways in this cache set, the attacker will experience cache misses when
refilling the cache set. Otherwise, the attacker experiences more cache hits
and, thus, observes a lower timing. There is a correlation between higher
timing and a higher number of replaced ways by the victim. However,
most attacks exploit this side channel in a binary fashion, i.e., there was,
or there was no access by the victim to the target cache set.

Both Prime+Probe and Evict+Time are based on the eviction of a cache
set. Thus, they have the same granularity, i.e., a cache set, and similarly

35

2. Background

Attacker
address
space

Cache
Victim
address
space

Step 1+3: prime + measure (=probe)

Step 2: loads data

Figure 2.14.: A Prime+Probe attack illustrated in 3 steps [105]. The at-
tacker continuously primes a cache set using its own memory
locations and measures the execution time of this step (Step
1 and Step 3). In Step 2, the victim possibly accesses (non-
shared) memory locations that map to the same cache set. If
the victim accessed memory locations in the same cache set
in Step 2, the execution time of the priming (i.e., the probe
step) is high as one of the cache ways has been replaced.
Otherwise, the execution time of the priming is low.

need to take complex addressing functions [206] and replacement poli-
cies [112, 318] into account. Prime+Probe does not require the ability
to measure the victim’s execution time. This also enables asynchronous
attacks where the attacker continuously runs Prime+Probe, and the victim
computation is triggered independently. Usually, as both the prime and
probe steps refill the cache set, these two steps can be combined into a
single step that the attacker runs continuously. However, there are also
implementations with separate prime and probe steps, which may yield a
higher accuracy at a loss of temporal resolution.

Depending on the use case, the accuracy of Prime+Probe may be higher
than with Evict+Time as it does not measure the entire victim execution
time, but only an access to its own controlled sequence of memory accesses.
However, it is still susceptible to noise from unrelated cache activity in
the same cache set.

Prime+Probe attacks have a long history in the cryptographic community,
first targeting the L1 data and instruction caches [239, 225, 234, 6, 37, 4, 9,
10, 44, 5, 361]. More recently, Prime+Probe attacks on the last-level cache
have gained more attention in both the cryptographic community but also

36

2.6. Microarchitectural Attacks

in system security research [257, 206, 207, 196, 148, 163, 133, 255, 118,
67, 323], e.g., to detect co-location in the cloud [359], mount attacks from
web browsers [233], on mobile devices [191]. Maurice et al. [208] built an
error-resilient Prime+Probe cache covert channel in the cloud. Gras et al.
and Van Schaik et al. [99, 314] run Prime+Probe on memory locations in
the page table hierarchy. Gras et al. [98] also demonstrated Prime+Probe
on the TLB. We showed that a timing-less variant of Prime+Probe is
possible by using a TSX-based mechanism that leads to TSX aborts or not,
depending on the victim’s memory accesses [108]. Disselkoen et al. [70], in
concurrent work, discovered the same variant. Schwarz et al. [275] mount a
Prime+Probe variant targeting multiple memory locations simultaneously
to improve the attack accuracy significantly.

Several Prime+Probe attacks have focused on attacking Intel SGX en-
claves [97, 42, 272, 217, 280]. The Intel SGX threat model assumes a
fully compromised software system. Thus, the adversary may have the
highest privileges in the system, greatly simplifying the development
of microarchitectural attacks due to the more precise control over the
microarchitecture.

Prime+Probe has also been demonstrated on other buffers than the
instruction and data cache hierarchy. Aciicmez et al. [11, 3] demonstrated
a Prime+Probe attack on the branch-target buffer (BTB), where the
victim’s branches evict the attacker’s predictions from the BTB, leading
to a higher execution time for the probe phase. We demonstrated a
Prime+Probe attack on the DRAM row buffer [240], which exists once
per DRAM bank.

2
Bhattacharya et al. [34] used the same Prime+Probe

attack on DRAM in a cryptographic attack. Evtyushkin et al. [77] built a
covert channel using a Prime+Probe-style attack on the branch predictor,
and Evtyushkin et al. [78] later also presented a KASLR break using
a similar Prime+Probe-style attack on the branch-target buffer (BTB).
Lee et al. [182] presented a similar Prime+Probe-style attack on the BTB
targeting a cryptographic algorithm running in SGX. Evtyushkin et al.
[76] built a covert channel exploiting timing differences of the rdseed

instruction depending on the state of the internal random number buffer.
The methodology is similar to a Prime+Probe attack in that the sender
is either active and consumes a value or remains inactive, to induce a
different behavior on the receiver side. We showed that a Prime+Probe
attack on the DRAM row buffer can even be mounted in JavaScript [277].
Evtyushkin et al. [79] demonstrated Prime+Probe attacks on the pattern

2
There are usually between 32 and 128 DRAM banks.

37

2. Background

Attacker
address
space

Cache
Victim
address
space

Step 1: flush

Step 2: possibly accesses
Step 3: reload

Figure 2.15.: A Flush+Reload attack illustrated in 3 steps [105]. In Step
1, the attacker flushes a shared memory location in the
attacker’s virtual address space. In Step 2, the victim possibly
accesses the same shared memory location in the victim
virtual address space. In Step 3, the attacker reloads the
shared memory location and measures the access latency.
If the victim accessed the memory location in Step 2, the
access latency observed in the reload step is low. Otherwise,
the access latency in the reload step is high.

history table (PHT). On processors with non-inclusive last-level caches,
Yan et al. [349] attacked the cache directory instead of the cache, resulting
in the same effect. Han et al. [123] mounted a Prime+Probe attack on
the SGX MEE cache. Briongos et al. [43] presented the Reload+Refresh
attack, which can be seen as a Prime+Probe attack on one way of a
set (the one which is evicted next) rather than the full set, exploiting
the cache control state in a finer granularity than other side channels
merely checking for cache line presence. Vila et al. [317] showed that this
information even survives cache flushing and cache invalidation operations,
invalidating certain security assumptions. We recently demonstrated a
Prime+Probe-style attack on another caching element, namely the AMD
cache way predictor [192], which is intended to speed up cache lookups.

Flush+Reload. In a Flush+Reload side-channel attack [351], the attacker
repeatedly measures how long it takes to reload a flushed cache line from
memory (cf. Figure 2.15). The idea is that whenever the victim accesses
the cache line, the reloading will take substantially less time as the cache
line is already in the cache then. Flush+Reload, and its variant Evict+
Reload, work in three steps that are run in a loop:

38

2.6. Microarchitectural Attacks

1. The attacker flushes or evicts a target cache line using the clflush

instruction.

2. The victim may or may not access the target cache line depending on
a secret.

3. The attacker then measures the time it takes to reload the cache line.

In Step 3, the attacker can decide, based on the reload time, whether the
victim must have accessed the cache line in the meantime. This general
attack flow is illustrated in Figure 2.15. Flush+Reload is highly accurate,
as it works on virtual addresses. Only if the cache line of this exact virtual
address is cached, the timing is low. Hence, Flush+Reload attacks are very
robust to other system activity and experience very little noise. However,
for this to work, Flush+Reload exploits the availability of shared memory,
e.g., shared libraries, binaries, memory-mapped files, between attacker and
victim. Hence, in scenarios where shared memory is not available, Flush+
Reload cannot be applied, and an attacker has to resort to techniques
that do not require shared memory, such as Prime+Probe.

Some implementations give extra time to the victim or try to act nice to
the operating system kernel in Step 2, e.g., by adding a sched yield call.
However, it is crucial that as little time as possible passes between Step 3
and Step 1, as any victim memory access between these two steps would
be lost.

Flush+Reload attacks have first been demonstrated on cryptographic
implementations [117, 351, 30, 151, 360, 149, 120, 243, 150, 20, 132, 102].
Subsequently, we discovered the more broad applicability of Flush+Reload
in template attacks on arbitrary functionality, leading to another line of
research on non-cryptographic applications [115, 191, 358, 219, 322], e.g.,
user input. We demonstrated that Flush+Reload can also be used as a
trigger signal for double-fetch bugs [271].

There are different variants of Flush+Reload. Evict+Reload [115, 191]
is a variant of Flush+Reload we introduced for scenarios where no flush
instruction is available, e.g., certain ARM-based mobile devices, as the
clflush instruction is replaced by cache eviction. Flush+Flush [113] is a
variant of Flush+Reload that exploits a timing difference in the clflush

instruction to determine whether a memory location is cached. Hence, the
attacker can omit the reload step from Flush+Reload, resulting in a faster
and stealthier cache attack that does not perform a single memory access.

39

2. Background

Irazoqui et al. [147] demonstrated a cross-CPU variant of Flush+Reload,
exploiting cross-CPU coherency.

We demonstrated that prefetch instructions leak timing differences based
on whether memory locations are cached or not and used this to defeat
KASLR [111]. The attack methodology used is basically Evict+Reload:

1. The attacker first evicts a guessed memory location.

2. The victim (the kernel) then accesses some memory location.

3. The attacker measures how long it takes to access the memory location
with a prefetch instruction, yielding low timing if the guess was correct
and the memory location was cached by the victim.

Flush+Reload and its variants have also been demonstrated on other mi-
croarchitectural buffers than the caches. We demonstrated Evict+Reload
attacks on DRAM row buffers [240]. Gras et al. [99] mount Evict+Reload
on page table memory.

3
Yan et al. [349] observe that Flush+Reload also

works on non-inclusive last-level caches as clflush evicts from all caches.
However, they also develop an Evict+Reload attack on cache directories for
processors with non-inclusive last-level caches. We recently demonstrated
an Evict+Reload-style attack on the AMD cache way predictor [192]. Not
targeting the CPU microarchitecture but the operating system microarchi-
tecture, we demonstrated page cache attacks [107] targeting the operating
system page cache, which is mostly transparent to user space.

2.6.1. Other Microarchitectural Side-Channel Attacks

Besides these main categories of software-based microarchitectural side-
channel attacks, some works have investigated more direct and stateless
interference between different operations. This interference originates,
for instance, in throughput limitations of processors. Aciicmez et al. [9]
demonstrated that parallel execution of multiplication instructions can
leak an RSA key used in a square-and-multiply exponentiation. Wu et al.
[341, 340] built covert channels based on memory bus contention.

Interrupts induce another form of contention. If a running thread is
interrupted, it cannot continue with its computations until the interrupt is

3
Note that the attack is labeled Evict+Time in the paper, but in line with other works,
Evict+Time measures the time of a victim execution, whereas here the attacker
performs the reload operation that is timed as is done in an Evict+Reload attack.

40

2.6. Microarchitectural Attacks

handled. This can be exploited in different ways. First, the time consumed
by the interrupt leaks information to unprivileged user space on what
interrupt was executed. We demonstrated interrupt-timing attacks from
JavaScript [190] and in native code [275]. Van Bulck et al. [312] performed
an interrupt-timing attack on SGX. Related attacks target architecturally
exposed information such as page faults [347] or page-table bits [313].

Several attacks probe the state like a Flush+Reload or Evict+Reload
attack but do not require any preparation or resetting of the microarchi-
tectural state. Jang et al. [157] deliberately try to access a kernel address
from user space and measure how long it takes for the TSX transaction
to abort, which is longer for valid addresses. Schwarz et al. [279] similarly
probed whether a transaction aborts, to infer which memory locations are
readable or writable.

2.6.2. Microarchitectural Fault Attacks

Fault attacks also play an essential role in microarchitectural attack
research. The first software-based microarchitectural fault attack was
the so-called Rowhammer bug. The Rowhammer bug exploits parasitic
effects that discharge DRAM cells when accessing other DRAM cells in
proximity. There is no strict mapping of DRAM cells to security domains,
meaning that neighbored cells may belong to different security domains.
Rowhammer attacks access DRAM cells repeatedly at a high frequency
until the cell’s binary value is not correctly sensed anymore but mistaken for
the flipped value. After the initial discovery of its relevance for security [168]
and the first proof-of-concept exploits [282], a line of research investigated
different properties of Rowhammer attacks and scenarios [112, 240, 181,
14, 15, 248, 39, 34, 342, 253, 316, 191, 13, 156, 110, 299, 189, 355, 61, 87,
188, 242, 55, 152, 335, 362, 63, 62, 180, 88].

Karimi et al. [162] demonstrated that software can artificially age circuits
used in specific pipeline stages. However, so far, follow up works have not
demonstrated realistic attacks based on their observations.

In another line of research, manipulations of voltage and frequency have
been examined to induce faults directly in processors. The attack is
enabled by the Dynamic Voltage Frequency Scaling (DVFS) feature of
the processor. Based on the frequency, the processor will select a different
voltage. To enable optimizations for efficiency and performance, most
devices allow a full-privileged attacker to modify the voltage-frequency

41

2. Background

levels even into unsafe ranges. Tang et al. [296] showed that increasing
the frequency without increasing the voltage on an ARM-based device
can induce bit flips inside the ARM TrustZone that are exploitable from
the outside. Qiu et al. [249] extended on their attack by modifying the
voltage instead of the frequency. Krautter et al. [179] analyzed voltage
drops for fault induction on shared FPGAs. We showed that undervolting
is similarly exploitable on Intel x86 processors and demonstrated multiple
attacks on Intel SGX [220]. In concurrent work, Kenjar et al. [165] and
Qiu et al. [250] obtained similar results.

While fault attacks are less connected to transient-execution attacks, there
is the aspect that both transient-execution attacks, e.g., Spectre [174] and
LVI [311], in fact, induce a transient fault into a victim domain.

42

3
State of the Art in

Transient-Execution Attacks and
Defenses

This chapter provides a summary and discussion of the state-of-the-art
transient-execution attacks and defenses. We first provide a brief expla-
nation of the basic idea of transient-execution attacks in Section 3.1.
In Section 3.2, we discuss the discovery of transient-execution attacks,
which was a collision between multiple research groups discovering these
attacks at the same time. We then dive into the details of Spectre attacks
and defenses in Section 3.3, Meltdown, and LVI attacks and defenses in
Section 3.4.

3.1. Basic Idea of Transient-Execution Attacks

Transient execution describes the execution of instructions that are not
committed to the architectural state but change the microarchitectural
state [174, 193, 50, 345]. Speculative execution (cf. Section 2.1) can lead
to transient execution if the prediction, and thus, the speculation was
incorrect. However, transient execution also occurs in entirely linear con-
trol flows without any prediction. For instance, on most processors, any
operation may trigger an exception, e.g., a page fault because the code or
data referenced by the current instruction was not mapped. Subsequent
instructions may still be executed. In both cases, the misprediction and
the deliberate execution of instructions after an exception, the processor
has to revert the operations and architectural effects. The word “transient”
captures that the executed operations are not permanently part of the
instruction stream, and the effects of these operations are not persistent.

43

3. State of the Art in Transient-Execution Attacks and Defenses

Figure 3.1.: High-level overview of a transient-execution attack in 6 phases.
Note that we added an explicit Phase 3 for accessing the secret,
compared to Canella et al. [50]: (1) prepare microarchitecture,
(2) execute a trigger instruction, (3) transient instructions
access data of interested to the attacker, (4) transient instruc-
tions encode unauthorized data through a microarchitectural
covert channel, (5) CPU retires trigger instruction and flushes
transient instructions, (6) reconstruct secret from microarchi-
tectural state.

The time from the first transient operation to the last transient opera-
tion before the reverting of architectural effects is called the “transient
window”.

A transient-execution attack exploits transient execution by running op-
erations in this transient window that acquire secret information and
transmit it to the architectural state. So far, all attacks used a side chan-
nel as the transmission channel, hence the common misclassification of
transient-execution attacks as side channels. Several works also, when
asking whether this field is new, note that side channels are not novel [126].
However, as outlined before and also as detailed in the remainder of this
habilitation: Transient-execution attacks are no side channels they only
utilize them.

Figure 3.1 illustrates the phases of a transient-execution attack. All at-
tack phases may be performed by the attacker directly or indirectly by
making a victim perform the phases for the attacker, e.g., by providing
the corresponding inputs triggering these phases in the victim.

In Phase 1, the attacker prepares the microarchitecture such that the
transient execution acquires the secret, the transient window is long enough
to leak the secret, and the secret can be extracted from the transmission
channel.

44

3.1. Basic Idea of Transient-Execution Attacks

In Phase 2, the attacker starts the transient execution using a trigger
instruction. This could be a branch in the victim domain in the case of
a Spectre attack. It could be any aborting instruction (e.g., fault, assist,
interrupt) in the case of Meltdown-type and LVI attacks. In Spectre
and LVI attacks, the trigger instruction runs in the victim domain, in
Meltdown-type attacks in the attacker domain.

In Phase 3, the transient instructions are executed but not committed.
Again, in Spectre and LVI attacks, these transient instructions run in
the victim domain, in Meltdown-type attacks in the attacker domain.
In Spectre attacks, the attacker usually prepared the microarchitecture
in Phase 1 such that it controls which code in the victim domain is
executed here. Typically the attacker wants to run code that accesses
data of interest, e.g., a secret, and prepares it for transmission through a
microarchitectural covert channel.

Phase 4 is still transient, i.e., executed but not committed. In this phase,
the attacker transmits the data of interest into the microarchitectural
state. Most transient-execution attacks transmit the secrets by encoding
them into the cache state.

In Phase 5, the transient window ends as the transient instructions are
flushed, and the correct operation following the trigger instruction is
executed instead, e.g., the correct side of a branch in a Spectre attack, a
CPU exception handler in a Meltdown-type attack. However, at this point,
the state of the microarchitecture, e.g., the cache, has already changed.

1

In Phase 6, the attacker uses a mechanism to recover the encoded secret
from the microarchitecture. In most published attacks, the data is encoded
in the cache. In this case, the attacker uses a cache side channel to recover
the secret data that was encoded into the cache in Phase 3.

Mitigation may be attempted at any of the 6 phases. However, some
phases capture the root cause better than others. Mitigating Phase 1, i.e.,
influencing the microarchitectural state, is quite tricky as influencing the
state of various caches and buffers is the foundation for today’s processor
performance. Generically, effectively preventing it means disabling the

1
While all attacks so far encoded secrets into the microarchitecture, effectively using a
microarchitectural side channel for the data transmission, it is very well imaginable
that there are transmission channels that do not build on side channels. The xabort

instruction can return a transiently computed 8-bit value to the architectural state.
Future work has to show whether this could be used to build transient-execution
attacks without relying on side channels for transmission.

45

3. State of the Art in Transient-Execution Attacks and Defenses

corresponding features, e.g., branch prediction. This does not capture
the root cause of Spectre attacks, as it is primarily a useful optimization.
Mitigating Phase 2, i.e., the trigger instructions, would require that
misspeculations are not possible anymore, nor instruction aborts. This is
not feasible with our modern processors that heavily rely on speculation
and out-of-order execution. In Phase 3, the processor accesses data it should
not access. Restricting the transient execution in Phase 3 to operations
that cannot access secrets or cannot influence the microarchitectural state
based on these secret accesses would eliminate Spectre attacks. However,
this is difficult with our modern hardware-software systems as the notion
of secret is usually not precisely captured on the language level and also
not propagated to the hardware level.

Mitigating Phase 4, i.e., preventing the covert channel transmission, is
not possible as long as some shared state remains. In extreme cases,
this can be a shared state like the room temperature [122]. Solving the
problem in Phase 5 by perfectly reverting not only the architectural but
also the microarchitectural state would eliminate leakage after Phase 5.
However, attacks may run Phase 6 and Phase 4 in parallel, in which
case Phase 5 would have no effect. Mitigating Phase 6, i.e., probing the
microarchitectural state, is also quite challenging to prevent. Caches and
buffers are intended to speed up accesses based on the principle of locality.

Later in this chapter, we will categorize defenses based on which phase
they target.

In many cases, the secret is accessed via a load operation. In particular,
for Meltdown-type attacks, the secret is acquired during the transient
execution via a load operation. Similarly, LVI attacks are misdirected by
inducing a wrong value into a transient load operation. In Meltdown and
LVI attacks, these load operations continue, although the processor knows
that they need to be aborted and reverted. Hence, Schwarz et al. [276]
called these operations “zombie loads” in the style of “zombie threads”
which also continue existing although they should be terminated. The root
cause they identify for all Meltdown-type attacks is that the load-buffer
entry is used for zombie loads, and the load is executed, although the data
in the load-buffer entry may be outdated. In particular, the load-buffer
entry may provide the physical address from a previous load whose entry
was already released. This outdated physical address is then used to match
an L1 cache or line-fill buffer entry [276]. Hence, this can be viewed as
one of many instances of use-after-free bugs that we know from various
contexts [12, 346, 184, 194, 293, 45, 204, 205, 114].

46

3.1. Basic Idea of Transient-Execution Attacks

Table 3.1.: First-level characterization of transient-execution attacks and
related side-channel attacks in terms of targeted microarchi-
tectural predictor or data buffer (vertical axis) vs. leakage- or
injection-based methodology (horizontal axis) [311].

µ-Arch Buffer

Methodology
Leakage Injection

P
re

d
ic

ti
on

h
is

to
ry

PHT BranchScope [79], Bluethunder [131] Spectre-PHT [174]

BTB SBPA [8], BranchShadow [182] Spectre-BTB [174]

RSB Hyper-Channel [46] Spectre-RSB [177, 200]

STL — Spectre-STL [128]

P
ro

gr
am

d
at

a

NULL EchoLoad [49] LVI-NULL [311]

L1D Meltdown [193], Foreshadow [310] LVI-L1D [311]

FPU LazyFP [291] LVI-FPU [311]

SB Store-to-Leak [270], Fallout [48] LVI-SB [311]

LFB/LP ZombieLoad [276], RIDL [267] LVI-LFB/LP [311]

Van Bulck et al. [311] observed that on a first level, we can distinguish
transient-execution attacks that leak information and attacks that inject
(false) information, and we can distinguish attacks that target control-flow
and attacks that target data. Putting this observation together, we obtain
Table 3.1. Transient control-flow has been used in side-channel attacks
already more than a decade ago [8]. On more recent processors, reverse-
engineering of the new branch prediction mechanisms was essential to
mount attacks [79]. These attacks let the attacker misspeculate based on
past control-flow decisions (branches) in the victim domain. By measuring
whether or not the processor misspeculated, control-flow information from
the victim domain is leaked. Spectre turns this leakage around into control-
flow injection and lets the victim misspeculate. Meltdown, on the other
hand, directly leaks data from various buffers and caches. LVI again turns
this leakage around into data injection and lets the victim erroneously
run into transient execution with the injected data values, similar to a
Spectre attack. Note that in Meltdown and LVI attacks, the processor
does not actually misspeculate, but after an operation triggered an abort
(e.g., due to a fault or assist), the processor deliberately continues with
subsequent operations for a short amount of time instead of stopping them
immediately.

47

3. State of the Art in Transient-Execution Attacks and Defenses

To facilitate experimentation with transient-execution attacks, there are
ongoing efforts to make these attacks more reproducible and systematize
them. Accompanying our systematic evaluation of transient-execution
attacks and defenses [50], we created a website and a repository with
proof of concepts for various transient-execution attacks, building on the
same set of microarchitectural attack libraries. Efforts to systematize
the transient-execution landscape have also been made by Xiong and
Szefer [345] and by the Google Safeside project [261]. Their focus is on
providing a broad set of proof of concept attacks for defenders to help
them test whether they mitigated all attacks.

3.2. The Discovery of Transient-Execution
Attacks

The discovery of transient-execution attacks, namely with the Spectre
and Meltdown attacks, was a collision between multiple research groups
discovering these attacks at the same time. One of the earliest security
analyses of speculative execution is by Wang and Lee [328]. They noted
that speculative execution could be used to build a covert channel. Probing
the branch predictor, by timing speculative execution [11, 3, 77, 78, 182] or
performance counters [33], has since been studied in side-channel attacks,
mostly on cryptographic implementations.

Besides these works that explicitly target the branch predictors, specula-
tive execution has mostly been reported as an aggravating effect, often
mentioned in combination with prefetching [117, 351, 350, 60, 216]. Sev-
eral plots in these works, e.g., plots presented by Gullasch et al. [117]
and Yarom et al. [351], clearly show how speculative execution changes
the cache state. However, as this speculative execution was not attacker-
controlled, it merely introduced noise into the otherwise controlled side-
channel experiments.

Fogh [84] wrote about Meltdown and Spectre that “the bug was ripe”
since previous works have laid out the path to this discovery, causing
the collision between multiple researchers. Fogh sees this subgenre of
microarchitectural attacks foreshadowed by the 2013 KASLR break by
Hund et al. [130]. In their double page-fault side channel, they deliberately
access a kernel address. This is illegal and will generally cause a program
crash, i.e., the kernel will send the program a kill signal. However, operating

48

3.2. The Discovery of Transient-Execution Attacks

systems typically allow user-space programs to register signal handlers.
Hund et al. [130] measured how the time between access and signal arrival
and distinguished valid and invalid addresses by that. Fogh [84] argues
that already here, it was clear that the processor performs operations on
privileged memory that it should not perform as the access is coming from
unprivileged user space. Jang et al. [157] improved the attack by Hund et al.
[130] by moving the memory access into a TSX transaction and measuring
how long it takes the transaction to abort. In simultaneous independent
research, we analyzed the effects of the prefetch instruction [111].

2
The

paper identifies two ways to obtain privileged information. The first is
that the execution time of the prefetch instruction varies for privileged
memory, based on how many mapping levels are present and whether the
memory location is valid or invalid. The second way is the observation
that by using software prefetching on a virtual address pointing to kernel
memory regions, the kernel address ends up in the cache in some rare
cases.

Disclosure Intel contacted us to discuss the results before the presenta-
tion at BlackHat USA [86] and ACM CCS [111]. Unfortunately, they could
not reproduce all our results, in particular the second effect described
above. Therefore, they decided to not continue investigating the issue.
While the explanation with the software prefetches on kernel addresses
seemed very plausible and minimal at the time, as we know today, it was
not correct. The second effect described above is unrelated to the software
prefetching and, in fact exploiting speculative execution in the kernel, as
we detail in Chapter 5.

3

2
I mentioned the idea to exploit software prefetching first to Clémentine Maurice on
January 14, 2016, when debugging 64-bit paging-related code for one of my student
teams in our operating systems class, the night before the deadline for the operating
systems class project on January 15. The idea was that if the students have to go
through all these steps to translate one virtual address, any CPU instruction would
have to go through the same steps in the worst case. As any virtual address may
or may not be a kernel address, the processor would not have a way to distinguish
beforehand that it is translating a kernel address. Following from this, an attacker
could exploit this in the two ways we later described in the paper [111].

3
When sharing a room with Anders Fogh at BlackHat, we discussed replacing the
software prefetches with actual memory accesses there. I argued that if it would be
possible to leak data with that, it would have long been known as the students in
my operating systems class all the time access kernel memory by accident, and not
just them, programmers around the world. Therefore, it would be improbable for
the effect to exist yet be undiscovered. Hence, we prioritized other research at the
time.

49

3. State of the Art in Transient-Execution Attacks and Defenses

Simultaneous to the work on the prefetch side channel, we also investigated
the use of hardware transactional memory for security [108].

4
The idea

was based on the observation that TSX transactions abort, either when
evicting data that is in the read set from the L3 cache, or, otherwise, when
accessing data that is in the read set but was evicted from the cache since
the last access. Hence, to generically protect code vulnerable to cache side
channels, we would wrap it in a transaction. Within the transaction, we
first load all the memory locations into the cache that might be accessed
in a secret-dependent way. Then we run the code with secret-dependent
accesses, which are entirely served from the cache. If they cannot be
served from the cache, the transaction aborts, preventing any leakage.
However, as we observed and reported in the USENIX Security 2017
paper [108], there was a tiny amount of remaining leakage that we could
not explain. The corresponding plot in the paper shows cache hits caused
by secret-dependent memory accesses during a small transient-execution
time window while the transaction aborts.

The discovery of Meltdown and Spectre then culminated in 2017. Fogh [84]
later reported that he had the first speculative execution proof-of-concept
working on March 20, 2017. Paul Kocher started experimenting with
speculative execution in the same time frame. Horn [127] discovered
Spectre in May 2017 and Meltdown shortly after that in June 2017. Horn
also initiated the responsible disclosure with Intel, which became one of
the most complex and largest industry-wide embargos as processors from
various manufacturers turned out to be affected [193, 258, 320, 2, 245].
Fogh published his Meltdown proof-of-concept as a negative result on July
28, 2017 [85]. Today we know that his proof-of-concept code worked out
of the box on certain machines.

To mitigate prefetch side-channel attacks, we developed the KAISER
patch [109], cf. Chapter 8. The KAISER patch follows the idea that if a
range of virtual addresses is not present at all from the first translation
level already, they also cannot expose different timings related to the
translation level. Furthermore, if we try to prefetch a virtual address that
does not map to a physical address, the hardware would not know what
should be fetched. Hence, both attacks should be mitigated if the kernel
address space is simply not mapped as privileged memory in the user
address space anymore. Instead, the process switches to different paging
structures upon context switch. Our experiments indeed confirmed that the

4
During an internship at Microsoft Research Cambridge in 2016, I worked under the
supervision of Felix Schuster and Manuel Costa on this research.

50

3.2. The Discovery of Transient-Execution Attacks

leakage for both cases disappeared for the identical binary, kernel version,
and hardware when booting the kernel with the KAISER patch. Today we
know that this was indeed a correct result for the translation-level leakage,
but the prefetching of kernel addresses was unrelated and not actually
mitigated by the patch.

5
The leakage in the latter case disappeared due to

differences in the kernel binary and, hence, differences in the speculative
execution within the kernel.

Horn was familiar with our work and recommended the use of the KAISER
patch against the Meltdown attack.

6
Indeed, most operating system ven-

dors pursued this strategy and implemented their own variants of the
KAISER patch [106], cf. Chapter 9.

We reported Meltdown to Intel on December 4, 2017.
7

Intel connected us
in December with the other researchers. Kocher had discovered an issue
he called Spectre, focusing on leakage from unprivileged processes to other
unprivileged processes. The issue we discovered, Meltdown, was the same
that Fogh described as a negative result [85] and that researchers from
Cyberus Technology had also found [154] simultaneously to us.

8

The Meltdown paper makes clear that this bug is not speculative exe-
cution [193]. In fact, most, if not all, Meltdown-vulnerable processors
would remain Meltdown-vulnerable when removing all branch prediction
and other prediction facilities. Therefore, we coined the terms transient
execution [174, 193] and transient-execution attacks [50].

5
Concurrent to our work, Gens et al. [93] proposed LAZARUS as a mitigation for
prefetch side-channel attacks and other KASLR breaks. They also observe that the
prefetch-side-channel attack stops working, but it is indicated that this statement
only refers to the case of the translation-level attack.

6
Since we were not part of the embargo, we found it odd that Intel asked us to sign
off the heavily updated KAISER patch for Linux under the pretense of hardening
Linux against KASLR breaks. The KAISER patch was later merged under the name
KPTI into the mainline kernel.

7
We were still not planning to prioritize research on this topic. However, we handed
out a student project on this topic on November 28, 2017, to a competent student.
We started worrying about what would happen if the student discovered a significant
exploitable bug and decided to take a look ourselves just to make sure we are
prepared as supervisors.

8
While the initial plan was to write a single joint paper, we realized that these two
issues, Meltdown and Spectre, are quite different in their properties, implications,
and mitigations. Hence, we decided, for clarity, to not mix together these two
independent attacks.

51

3. State of the Art in Transient-Execution Attacks and Defenses

Spectre-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Figure 3.2.: State of the art Spectre classification tree [50].

The embargo on these first two transient-execution attacks was planned to
end on January 9, 2018, after 222 days of embargo. However, as the activity
on the Linux kernel mailing list around the KAISER patch increased,
speculations on the background started. However, most significant for
the embargo break were probably a mailing list post from an AMD
engineer [183] clearly describing the problem and how it can be exploited,

9

and the leakage of a draft of the Spectre paper to IT journalists, leading
to a news article in “The Register” on January 2, 2018 [337]. This news
article received widespread attention from throughout the IT community
and contained enough information for several researchers to reproduce the
attacks just hours later on January 3, 2017 [161, 160, 159, 38]. At this
point, it was clear that the embargo is fundamentally already broken, and
it was decided a few hours later that the embargo ends the same day.

3.3. Spectre Attacks and Defenses

In this section, we discuss Spectre attacks. The original Spectre paper is
included in this habilitation in Chapter 5. The state-of-the-art overview
in this section is based on our systematization in Chapter 11. Modern

9
“AMD microarchitecture does not allow memory references, including speculative
references, that access higher privileged data when running in a lesser privileged
mode”

52

3.3. Spectre Attacks and Defenses

processors have many microarchitectural elements to provide branch pre-
dictions (cf. Section 2.1). Spectre attacks exploit these branch predictors
by priming them with attacker-controlled values, i.e., branch decisions
and branch targets. Besides branches, there may also be other predictors,
e.g., value predictors. Consequently, Canella et al. [50] selected the mi-
croarchitectural element as the first level of the Spectre classification tree,
as illustrated in Figure 3.2.

There are currently four known variants of Spectre on the first level:

• Spectre-PHT [174, 171] exploits the Pattern History Table (PHT).
The PHT is filled with conditional branch decisions and predicts the
outcome of conditional branches.

• Spectre-BTB [174] exploits the Branch Target Buffer (BTB). The
BTB is filled upon indirect branches with the branch target and then
predicts branch targets for indirect branches.

• Spectre-RSB [200, 177] exploits the Return Stack Buffer (RSB). The
RSB is filled upon function calls with return addresses and, when
returning from a function, uses the RSB to predict the return address.

• Spectre-STL [128] exploits the memory disambiguation predictor in-
volved in store-to-load forwarding. This predictor allows load operations
to be scheduled despite uncertainty whether previous store operations
overlap with it [152]. Note that store-to-load forwarding additionally
is also responsible for Meltdown-type effects (cf. Section 3.4.4).

While PHT, BTB, RSB, and STL is terminology specific to Intel proces-
sors, other processors supporting the same kind of prediction of conditional
branches, indirect branches, and returns have equivalent microarchitec-
tural structures providing the predictions for these three cases. Thus, the
classification is still generic, despite the choice of terminology.

Spectre-STL has a close connection to Meltdown-type effects as it consists
of two parts, first, a memory disambiguation prediction, and second, a data
forwarding mechanism [152]. The former is exploited in Spectre-STL [128],
whereas the latter is exploited in different ways in Meltdown-RW [171],
Fallout [48], and Store-to-Leak Forwarding [270].

On the second level, Canella et al. [50] propose a classification for all
Spectre-type attacks based on the mistraining strategy. In these Spectre
variants, the attacker first prepares (“poisons”) the branch predictor
(cf. Figure 3.1) to cause misspeculation of a particular branch in the
victim. Branch prediction usually works on virtual addresses, and branch
predictors are often shared across domains. Hence, mistraining can be

53

3. State of the Art in Transient-Execution Attacks and Defenses

in-place/

same-domain

out-of-place/

same-domain

Victim

Victim branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

in-place/

cross-domain

out-of-place/

cross-domain

Attacker

Shadow branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

Shared Branch Prediction State

Figure 3.3.: A branch can be mistrained either within the victim domain
(same-domain), or in an attacker-controlled domain (cross-
domain); using the vulnerable branch itself (in-place), or a
branch at a congruent virtual address (out-of-place).

implemented either within the victim domain or in an attacker domain
with a fully matching (in-place) or partially matching virtual addresses
(out-of-place), as illustrated in Figure 3.3. Out-of-place Spectre is possible
since only a hash of some or all virtual address bits is used for the branch
prediction unit [174], allowing far apart branches to share the same entries
in the various buffers in the branch prediction unit, as well as branches in
close proximity [356].

3.3.1. Spectre Variants

Spectre-PHT was one of the first two Spectre variants discovered and
initially labeled Spectre v1 [174]. As illustrated in Figure 3.4, the attack
poisons the Pattern History Table (PHT) to mispredict whether a branch
is taken or not. The attack also implicitly uses the Branch History Buffer
(BHB) that influences the prediction based on previous branch decisions
on the same core [83, 79, 174, 50].

The simple example described by Kocher et al. [174] is a bounds check, as
shown in Listing 3.3.1. The code performs a bounds check for array1 to
ensure that x is not out of bounds for array1. After repeatedly providing
in-bound values for x, the PHT reliably predicts to branch into the if-
block. The attacker then uses an invalid index x, and the CPU continues
transiently into the if-block despite an architecturally failing bounds. The

54

3.3. Spectre Attacks and Defenses

Memory

D

A

T

A

K

E

Y
⋯

data[0]

data[1]

data[2]

data[3]

Misspeculate
Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

index = 4 if (index < 4)

glyph[data[index]] {}

th
en else

K

Figure 3.4.: A Spectre-PHT attack works by poisoning the PHT such that
the victim misspeculates into a branch. In that branch, the
victim accesses a secret and leaks it via a microarchitectural
covert channel, e.g., a cache covert channel, as shown in this
example. The secret value is encoded into an array offset, and
the array offset is then loaded into the cache. The attacker
can then probe the cache e.g., using Flush+Reload [269].

1 if (x < len(array1))

2 {

3 y = array2[array1[x] * 4096];

4 }

Listing 3.3.1: Simple Spectre-PHT example (Spectre-PHT index gadget)
from Kocher et al. [174].

value read is used for a further array lookup, leading to a distinct and
different cache state depending on the value read.

Some works compared Spectre gadgets with return-oriented-programming
(ROP [283]) gadgets [174, 50]. Indeed, Kiriansky and Waldspurger [171]
showed that transient writes are also possible by following the same prin-
ciple, showing that ROP-like chaining of gadgets is possible by transiently
overwriting return addresses.

55

3. State of the Art in Transient-Execution Attacks and Defenses

Another set of publications analyzed which architectures are affected and
in which scenarios they are vulnerable. Canella et al. [50] provided a more
systematic analysis of variants and mistraining strategies of Spectre-PHT.
Gonzalez et al. [96] demonstrated that besides Intel, AMD, ARM, and
IBM processors, also more sophisticated RISC-V cores are susceptible to
Spectre attacks, including Spectre-PHT. SGXSpectre [226] mounts an
in-place same-domain Spectre-PHT attack on an example SGX enclave.
Schwarz et al. [278] mount an in-place same-domain Spectre-PHT attack
on a remote machine without attacker code execution on that system.

The properties of Spectre attacks with different covert channels have also
been analyzed in several works. Trippel et al. [305, 304] and Amos et al.
[23] demonstrated a Spectre attack with Prime+Probe instead of Flush+
Reload. Wang et al. [326] demonstrated a Spectre attack with Evict+
Reload instead of Flush+Reload. Xiong et al. [344] combine Spectre-PHT
with an LRU state timing side channel exploiting the state of the cache
replacement policy rather than the cache state itself. Fustos and Yun [90]
use Spectre-PHT in conjunction with a port contention covert channel that
works on a single hardware thread. Weisse et al. [333] combine Spectre-
PHT with a BTB covert channel as a replacement for the cache covert
channel used in previous works.

Spectre-PHT can also be utilized to assist other attacks. Spectre-PHT
is a viable option to suppress exceptions from privileged operations and
accesses [270, 48, 198, 202, 192, 49]. Zhang et al. [363] mount Rowhammer
attacks from within speculative execution.

Spectre-BTB was the other of the first two Spectre variants discovered
and initially labeled Spectre v2 [174]. As illustrated in Figure 3.5, the
attack poisons the Branch Target Buffer (BTB) to induce a misprediction
of the branch target, i.e., the address of an indirect branch in a victim.
The attack also implicitly uses the Branch History Buffer (BHB) that
influences the prediction based on previous branch decisions on the same
core [83, 79, 174, 50]. The CPU indexes the BTB using parts of the
virtual address and the BHB [127]. Spectre-BTB allows to redirect the
control-flow in the victim domain to virtually any address. Spectre-BTB
was also compared to return-oriented programming (ROP) attacks [283],
as Spectre-BTB gadgets may be chained together to obtain arbitrary
transient execution. Chen et al. [58] extracted secrets from Intel SGX
enclaves using Spectre-BTB. An important variant of Spectre-BTB is the
in-place same-domain variant, which enables speculative type confusion
in a victim domain. Zhang et al. [356] show that in cases where the

56

3.3. Spectre Attacks and Defenses

Misspeculate

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()

swim()

Figure 3.5.: A Spectre-BTB attack works by poisoning the BTB such that
a wrong code address is predicted instead of the correct one.
At that code location, the victim accesses a secret and leaks
it via a microarchitectural covert channel, e.g., a cache covert
channel, as shown in this example. The secret value is encoded
into an array offset and can again be leaked by probing the
cache subsequently.

BTB cannot provide a prediction for an unconditional indirect jump, the
processor may also just skip the indirect branch instruction and continue
with the subsequent instruction instead.

Spectre-BTB allows more direct chaining of Spectre gadgets [174, 50],
more similar to ROP gadgets [283]. Canella et al. [50] provided a more
systematic analysis of variants and mistraining strategies of Spectre-BTB.
Gonzalez et al. [96] demonstrated that besides Intel, AMD, ARM, and
IBM processors, more sophisticated RISC-V cores are also susceptible
to Spectre-BTB attacks. Mambretti et al. [202] combine Spectre-BTB
with a BTB covert channel to replace the cache covert channel used in
previous works. Bhattacharyya et al. [35] show that Spectre-BTB can be
combined with port contention as an alternative covert channel to the
cache covert channel used in previous works. Lutas and Lutas [198] poison
the BTB to make sure it cannot predict the control flow and thus enables
their SWAPGS attack. Mambretti et al. [203] use Spectre-BTB to bypass
architectural memory safety mechanisms transiently. Zhang et al. [356]
use Spectre-BTB to hide the finite-state machine of a trojan in transient
execution.

57

3. State of the Art in Transient-Execution Attacks and Defenses

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

ca
ll

in
ject

m
issp

eculate
return

Figure 3.6.: A Spectre-RSB attack works by poisoning the RSB such that
a wrong return address is predicted in a victim context. In
this example, the attacker performs function calls while the
victim is in a function. The victim then mispredicts the return
to an attacker-chosen address. There the victim accesses a
secret and leaks it via a microarchitectural covert channel,
e.g., a cache covert channel, as shown in this example. The
secret value is encoded into an array offset and can again be
leaked by probing the cache subsequently.

Spectre-RSB was first mentioned by Horn [127] and Kocher et al. [174].
Maisuradze and Rossow [200] and Koruyeh et al. [177] were the first
to implement and scientifically evaluate the attack. As illustrated in
Figure 3.6, Spectre-RSB poisons the Return Stack Buffer (RSB) to make a
victim mispredict a return. The RSB is a small per-core microarchitectural
buffer that, for instance, stores the virtual addresses following the N most
recent call instructions. When encountering a ret instruction, the CPU
pops the topmost element from the RSB to predict the return flow. As
the capacity of the RSB is quite limited, misspeculation naturally occurs
when returning from a deep chain of function calls or when switching
the execution context [177, 200]. Koruyeh et al. [177] also observed that
transiently executed calls influence the RSB. On some CPUs, the RSB
can fall back to the BTB [83, 177], thus allowing Spectre-BTB attacks
through ret instructions.

58

3.3. Spectre Attacks and Defenses

1 if (x < len(array1))

2 {

3 array1[x];

4 }

Listing 3.3.2: A Spectre-PHT prefetch gadget.

Stecklina and Prescher [291] showed that Spectre-RSB is very efficient
for exception suppression in their Lazy-FP attack. Kim and Shin [167]
confirm that the performance for Meltdown-type attacks can be improved
using Spectre-RSB for exception suppression.

Spectre-STL was discovered by Horn [128] while investigating a set of
“weird observations” around Spectre and Meltdown with Michael Schwarz.
They observed that loads transiently receive outdated values if a preceding
store has a different virtual address but the same physical address. The
reason is that the memory disambiguation predictor involved in store-
to-load forwarding predicts that the load does not depend on any prior
store. Hence, the load operation is scheduled before the preceding store,
and Spectre-STL reads an old value from the cache as the store buffer
entry is not found. Note that store-to-load forwarding additionally is also
responsible for Meltdown-type effects (cf. Section 3.4.4).

In his initial report, Horn [128] injected Spectre-STL gadgets into the Linux
kernel using eBPF filters to leak kernel data. It is unclear whether there
are other practical scenarios where Spectre-STL is a security problem.

3.3.2. Spectre Gadgets

Most Spectre-type attacks have only been demonstrated in artificial envi-
ronments. The reason is that Spectre-type attacks require very specific
code patterns in the victim domain, so-called gadgets. Each of the Spectre
variants requires its own type of gadget. Mounting a Spectre attack on
real-world software, thus, requires locating real-world gadgets. While a
number of gadgets have been discovered and patched, it is unclear how
many more exploitable gadgets there are. Answering this question for
reasonably sophisticated software is an open problem.

Canella et al. [50] divided the gadget space into four categories:

59

3. State of the Art in Transient-Execution Attacks and Defenses

1 if (x < len(array1))

2 {

3 if (array1[x] == k)

4 {

5 // ...

6 }

7 }

Listing 3.3.3: A Spectre-PHT compare gadget.

1. Prefetch gadgets (cf. Listing 3.3.2) simply dereference a target ad-
dress. In Spectre-PHT, this can be a simple bounds check with a
single array access that is not used any further. Spectre-BTB and
Spectre-RSB gadgets are inherently also prefetch gadgets. While this
is broadly not recognized as an exploitable Spectre gadget itself, it can
be of vital assistance for other attacks or even be directly used to leak
values, as we describe in Chapter 10.
Canella et al. [50] found 172 Spectre-PHT prefetch gadgets in the
Linux 5.0 kernel.

2. Compare gadgets (cf. Listing 3.3.3) access a target address and use
the read value in a comparison. As compare gadgets also access the
target address, they also inherently are prefetch gadgets. If the attacker
controls the comparison value, it is possible to repeat the attack with
different values until the secret value is found, in particular, if the
comparison enables a binary search. If the attacker does not control
the comparison value, the attacker still obtains some information about
the secret, which can be valuable enough. Also, these gadgets types
are broadly not recognized as exploitable Spectre gadgets.
Canella et al. [50] found 127 Spectre-PHT compare gadgets in the
Linux 5.0 kernel.

3. Index gadgets (cf. Listing 3.3.1) access a target address and use the
retrieved (secret) value to access another array, ideally multiplied by
a spreading factor (a constant or an attacker-provided value). This
category of Spectre gadgets is the most prominent one, also used in the
original Spectre paper (cf. Listing 3.3.1) and used in almost all works
on Spectre attacks. As index gadgets also access the target address,
they also inherently are prefetch gadgets. If the spreading factor is large
enough, the attacker can obtain the exact secret value from the cache

60

3.3. Spectre Attacks and Defenses

1 if (x < len(array1))

2 {

3 array1[x]();

4 }

Listing 3.3.4: A Spectre-PHT execute gadget.

access. For most theoretical and practical approaches to mitigation,
this gadget type is the prototypical Spectre gadget example.
Canella et al. [50] found no Spectre-PHT index gadgets in the Linux
5.0 kernel, as they have been eliminated to mitigate Spectre-PHT
attacks.

4. Execute gadgets (cf. Listing 3.3.4) perform a function call to an
address read from a target address. As execute gadgets also access the
target address, they also inherently are prefetch gadgets. This gadget
type often comes in combination with Spectre-BTB, i.e., an indirect
call. Thus, the attacker may then have to take care of both the PHT,
for in-place same-domain mistraining, and the BTB, to branch to an
attacker-chosen address.
Canella et al. [50] found 16 Spectre-PHT execute gadgets in the Linux
5.0 kernel. However, they may already be mitigated through other
countermeasures, e.g., against Spectre-BTB in case they would involve
an indirect branch.

Locating real-world Spectre gadgets is an essential building block for
mounting real-world attacks. On the other hand, it is equally important
to locate all Spectre gadgets to patch each of them for certain counter-
measures. Since the discovery of Spectre gadgets has been identified as an
open problem already since the original Spectre paper, there are many
proposals on how to find Spectre gadgets.

Several real-world Spectre gadgets were found in manual analysis by a
human expert. Kocher et al. [174] discovered a Spectre-BTB gadget in the
Windows ntdll library that allows leaking arbitrary memory from a victim
process. They also showed that an attacker can inject its own Spectre-
BTB and Spectre-PHT gadgets into the victim domain via JIT engines,
e.g., in Chrome via JavaScript, and in the Linux kernel via eBPF filters.
Chen et al. [58] discovered several Spectre-BTB gadgets in SGX runtime
environments. Bhattacharyya et al. [35] discovered Spectre-BTB gadgets
in common software libraries and showed that, e.g., one in OpenSSL was

61

3. State of the Art in Transient-Execution Attacks and Defenses

powerful enough to leak secret information. Maisuradze et al. [200] injected
a Spectre-RSB gadget via WebAssembly on Firefox.

Another line of works investigated the automated discovery of Spectre
gadgets. Intel proposed to use static analysis [139] to find which branches
to protect, in order to minimize the number of serializing instructions they
introduce in their mitigation. Similarly, Microsoft uses the static analyzer
of their C Compiler MSVC [237] to detect known-bad code patterns and
insert lfence instructions automatically. Open Source Security Inc. [232]
use a similar approach using static analysis. Kocher [172] showed that this
approach misses many gadgets that can be exploited.

oo7 [325] uses taint tracking to detect Spectre-PHT gadgets. The tool
propagates taint from untrusted sources and reports a potential gadget if
a tainted branch is followed by a memory access depending on the tainted
variable. Guarnieri et al. [116] use symbolic execution to formally prove
the absence of Spectre-PHT gadgets. Their tool Spectector tracks all
memory accesses and jump targets along correct paths and, for a certain
number of operations, also for mispredicted paths. Mismatches between
memory accesses during normal execution and misspeculation are reported
as potential Spectre-PHT leakage.

Related to Spectector are further works formally modeling speculative
execution [80, 69, 324, 339, 121, 56, 64]. Bloem et al. [36] combine taint
analysis and model checking to identify Spectre gadgets. Balliu et al.
[27] focus on the discovery of overlooked attack variants and proving
the insufficiency of certain countermeasures. Disselkoen et al. [69] derive
vulnerabilities in compiler optimizations from their model of speculative
execution.

Scalability hinders the broad application of formal approaches like Spec-
tector. Hence, the Linux kernel developers used the Smatch static analysis
tool to discover Spectre-PHT gadgets [52]. However, their approach suffers
from a large number of false positives. More recently, Oleksenko et al.
[229] published the SpecFuzz tool that aims at being a more scalable
solution to locate Spectre-PHT gadgets using fuzzing. For this purpose,
they architecturally run into the misspeculation paths and report any
out-of-bounds accesses, i.e., potential Spectre-PHT gadgets.

62

3.3. Spectre Attacks and Defenses

3.3.3. Spectre Countermeasures

A countermeasure can try to break any phase (cf. Figure 3.1) of a Spectre
attack. However, in particular Phase 5 does not contribute to the leakage
but only stops the transient execution. While security measures may be
taken in this phase there is no leakage to mitigate caused by this phase
itself. Practically mitigating all Spectre attacks likely will remain an open
problem in the foreseeable future [209].

Preventing a Prepared Microarchitecture (Phase 1)

Preparing the microarchitecture may involve the priming of caches and
poisoning of branches. Approaches tackling Phase 1 do not prevent mis-
speculation or exploitable cache states but only restrict the attacker’s
capabilities in making these preparations for a victim context. However,
some Spectre variants don’t need any preparation of the microarchitecture
or perform the preparation of the microarchitecture in-place, such that it
is not feasible to distinguish benign branch training from malicious branch
mistraining. These Spectre variants are unaffected by this approach.

To prevent mistraining, both Intel and AMD extended the instruction set
architecture (ISA) with a mechanism for controlling indirect branches [289,
146]. Indirect Branch Restricted Speculation (IBRS) prevents indirect
branches executed in privileged code from being influenced by those in less
privileged code. To enforce this, the CPU enters the IBRS mode, which
cannot be influenced by any operations outside of it. Single Thread Indirect
Branch Prediction (STIBP) restricts the sharing of branch prediction
mechanisms among code executing across hyperthreads. The Indirect
Branch Predictor Barrier (IBPB) prevents code that executes before it
from affecting the prediction of code following it by flushing the BTB.

Vougioukas et al. [319] propose to add a buffer to keep a per-context
branch predictor state to improve performance after branch predictor
flushes. Instead of flushing, Zhao et al. [364] propose to add lightweight
randomization to the prediction based on the currently running context.
Both proposals maintain performance within a process across context
switches. However, this also means that in-place same-domain attacks are
unaffected by design. Furthermore, the approach by Zhao et al. [364] also
may allow cross-domain and out-of-place attacks by reverse-engineering
or bypassing the randomization.

63

3. State of the Art in Transient-Execution Attacks and Defenses

Some ARM CPUs implement specific controls that allow invalidating the
branch predictor which should be used during context switches [26]. On
Linux, those mechanisms are enabled by default [169].

While these mitigations can prevent cross-domain mistraining, same-
domain mistraining, e.g., in-place, are entirely unaffected.

Preventing Misspeculation (Phase 2)

The most natural and most radical solution would be to entirely (or
selectively) disable speculation at the cost of a massive decrease in per-
formance [174]. Since Spectre-type attacks exploit different prediction
mechanisms used for speculative execution, an effective approach would be
to disable speculative execution entirely [174, 292]. However, more realistic
solutions in this phase selectively disable or stop speculative execution.

The large processor manufacturers designed solutions using serializing
or fencing instructions. These solutions do not prevent misspeculation
entirely but stop speculation at security-critical branches right after the
speculation started. More precisely, these solutions require the careful
annotation of any security-critical branch on all software layers.

Intel and AMD proposed solutions using lfence [289, 145]. ARM intro-
duced a full data synchronization barrier (DSB SY) and an instruction
synchronization barrier (ISB) that can be used to prevent speculation [26].
ARM also introduced a new barrier (CSDB) that, in combination with
conditional selects or moves, controls speculative execution [26]. Fur-
thermore, new system registers allow restricting speculative execution,
and new prediction control instructions prevent control flow predictions
(cfp), data value prediction (dvp), or cache prefetch prediction (cpp) [25].
More recently, Intel introduced a new serialize instruction, whereas
ARMv8.5-A [25] introduced a new barrier (sb), both to restrict speculative
execution.

Evtyushkin et al. [79] proposed to allow a developer to annotate branches
that could leak sensitive data, which are then not predicted. While lfence
instructions stop speculative execution, Schwarz et al. [278] showed they
only stop execution units from running subsequent operations. Thus, fetch
and decode still work and allow, e.g., powering up the AVX functional
units, manipulating the instruction cache, or manipulating the TLB, all
of which can be used to leak data.

64

3.3. Spectre Attacks and Defenses

Serializing every branch would be worse than disabling branch prediction,
severely reducing performance [139]. For this solution to be practical, it is
important to find all exploitable branches, i.e., gadgets, in a program (cf.
Section 3.3.2).

Instead of using lfence instructions, Oleksenko et al. [228] propose the
introduction of data dependencies from the branch condition operands
to operations following the branch. This ensures that operations after
branches only start when the comparison is either in registers or the L1
cache, reducing the speculation window size. Thus, attacks are less likely
to succeed.

Another direction tries to mitigate Spectre-BTB and Spectre-RSB by
inserting fences. Shen et al. [284, 285] propose to split code into small
blocks and insert fences between the entry point and a potentially leaking
memory access. However, it is not clear that an attacker cannot jump
without alignment into such a code block, i.e., directly to the memory
access.

To reduce the high cost of adding fences for security, Taram et al. [298]
propose a hardware-based technique to dynamically insert fences only
before potentially leaking loads. Vassena et al. [315] propose to annotate
variables instead of branches, and insert lfence instructions only in
code paths where security-critical misspeculation may lead to leakage of
annotated variables.

Google proposes a method called retpoline [307], a code sequence that
replaces indirect branches with return instructions, to prevent branch
poisoning, as an alternative to IBRS, STIBP, and IBPB. With retpoline,
return instructions always misspeculate into an endless loop containing
an lfence to quickly and securely stop speculation. The actual target
destination is pushed on the stack and returned to using the ret instruction.
For retpoline, Intel [144] notes that in future CPUs that have Control-
flow Enforcement Technology (CET) capabilities to defend against ROP
attacks, retpoline might trigger false positives in the CET defenses. To
mitigate this possibility, future CPUs also implement hardware defenses
for Spectre-BTB called enhanced IBRS [144].

Chen et al. [57] observe that retpoline has a significant performance
impact on certain applications, e.g., Perl with more than 40% overhead,
but mostly lower performance overheads. Hence, to speed up retpolines,
Amit et al. [22] designed JumpSwitches, which add a shortcut path for
indirect branches with a direct branch for the most likely target.

65

3. State of the Art in Transient-Execution Attacks and Defenses

Intel proposed randpoline [41] as a more efficient alternative to retpoline.
Since randpoline is probabilistic, it does not fully prevent Spectre-BTB
but reduces the probability of a successful attack and, hence, the leakage
rate, substantially.

Intel [144] provided a microcode update against Spectre-RSB to stop spec-
ulation. However, on Skylake and newer architectures, the RSB may fall
back to the BTB, re-enabling Spectre-BTB attacks via return instructions.
Therefore, Intel [144] proposes RSB stuffing to prevent the fallback to the
BTB. When entering the kernel, the RSB is stuffed with the address of a
benign gadget, e.g., an endless loop containing an lfence. RSB stuffing is
implemented in Linux and Windows as part of the retpoline feature. Both
Linux and Windows enable retpoline on affected machines by default [144,
65].

Koruyeh et al. [178] argue that Spectre-BTB and Spectre-RSB attacks usu-
ally leave the defined control-flow graph. Hence, they repurpose control-flow
integrity (CFI) in their SpecCFI countermeasure to prevent speculative di-
version from the control-flow graph, e.g., by inserting lfence instructions.
More powerful than CFI, the information available in capability-based
systems may be used to mitigate certain Spectre attacks [331].

Bourgeat et al. [40] propose a processor called MI6, which includes state-of-
the-art optimizations but still tries to protect secure enclaves. To achieve
this, they, like Intel SGX, flush certain buffers upon context switches
and avoid sharing of resources. However, as there is no mechanism to
mitigate in-place Spectre attacks, these attacks are still possible, and only
the covert channel becomes more tricky to implement, i.e., effectively
only lowering the leakage rate but not eliminating the leakage. Omar and
Khan [231] partition the hardware spatially rather than temporally to
improve the performance of the MI6 design to the level of Intel SGX
while maintaining the security claims of MI6. Subsequently, Omar et al.
[230] also propose a system to dynamically implement these partitions by
flushing and invalidating buffers upon dynamic re-allocations.

Ferraiuolo et al. [81] proposed a processor, HyperFlow, with timing-channel
protection between security domains. In practice, they achieve that by
flushing caches and buffers upon domain switches. The security argument
for Spectre is then that the processor performs only speculative fetches.
Note that the same security argument was used for the ARM Cortex-A53
to argue why the Raspberry PI 3 were not susceptible to Spectre [308].

66

3.3. Spectre Attacks and Defenses

However, both should be considered potentially susceptible to Spectre
attacks, as speculative fetches can suffice to mount an attack [27].

Preventing Access to Data of Interest (Phase 3)

Preventing access to specific data during speculative execution is a promis-
ing approach to mitigate Spectre attacks fully. All solutions in this phase
have in common that they focus on secrets in memory. None of the
solutions protects against Spectre attacks on data in registers.

Grimsdal et al. [101] show that the stronger isolation in microkernels does
not inherently protect against Spectre attacks and showcase this with a
Spectre-PHT attack. Hence, more targeted prevention of access to data of
interest is necessary.

As a probabilistic countermeasure, Sianipar et al. [286] propose to con-
stantly move secret data around in virtual and physical memory to mitigate
Spectre attacks, resulting in a high probability to not access the targeted
secret data. However, as their approach is only probabilistic, it only reduces
the leakage rate.

Many deterministic proposals also target this attack phase. Schwarz et al.
[273] propose multiple defenses against Spectre that all rely on the anno-
tation of secrets in software. The compiler groups secret variables onto
pages and marks these pages as secure. For commodity systems, they then
suggest a technique called ConTExT-light [273], which uses uncacheable
memory for secrets, making them inaccessible during speculative execution.

Similar to ConTExT-light, Palit et al. [236] propose a compiler exten-
sion that keeps annotated secret data encrypted in memory most of the
time. The secret key is stored in a register. Hence, the attack surface is
significantly reduced.

Kiriansky and Waldspurger [171] propose to restrict access to sensitive
data by using protection keys like Intel Memory Protection Key (MPK)
technology [138]. However, as an attacker could use Spectre to disable
MPK using the wrpkru instruction, they propose a microcode update
for this instruction to include an lfence. With this solution, an attacker
cannot access secrets anymore during speculation, unless the system is
susceptible to Meltdown-PK, cf. Section 3.4.1. Jenkins et al. [158] propose
to use ELFbac [28] or MPK to protect against Spectre attacks.

67

3. State of the Art in Transient-Execution Attacks and Defenses

Kiriansky et al. [170] also propose to securely partition the cache across
its ways. With protection domains that isolate on a cache hit, cache miss,
and metadata level, cache-based covert channels are mitigated. This does
not only require changes to the cache and adaptions to the coherence
protocol but also the correct management of these domains in software.

One strategy against Spectre attacks is to use process isolation to separate
security domains into separate processes. This effectively stops Spectre
attacks on private data if the processor is not susceptible to Meltdown-type
attacks in the same attack scenario.

Google presented the first defense using process isolation [256, 301], called
site isolation. They implemented site isolation in the Chrome browser and
run every website in a separate isolated process. Even if the attacker has
arbitrary memory read capabilities, it can still only read arbitrary data
from its own process. Narayan et al. [223, 224] implemented a sandboxing
framework for Firefox that also supports process-based isolation like site
isolation.

An alternative approach is to sanitize values used in speculation. This
can affect both Phase 3 and Phase 4 as either of these memory locations
may be inaccessible. Speculative Load Hardening (SLH) is an approach
used by LLVM and was proposed by Carruth [53]. Using this idea, loads
are checked using branch-less code to ensure that they are executing
along a valid control-flow path. To do this, they transform the code at
the compiler level and introduce a data dependency on the condition.
In the case of misspeculation, the pointer is zeroed out, preventing it
from leaking data through speculative execution. One prerequisite for
this approach is hardware that allows the implementation of a branch-
less and unpredicted conditional update of a register’s value, similar to
modern cryptographic implementations. GCC adopted the idea of SLH
for their implementation. They provide a builtin function to either emit
a speculation barrier or return a safe value if it determines that the
instruction is transient [74]. A similar approach was also investigated by
Ojogbo et al. [227] by arithmetically guaranteeing that any speculatively
computed index is in-bounds using bitmasks. Dong et al. [71] also propose
the use of MPX for this purpose.

WebKit employs two techniques to limit access to secret data [241]. WebKit
first replaces array bound checks with index masking. By applying a
bitmask, WebKit cannot ensure that the access is always in bounds, but
introduces a maximum range for the out-of-bounds violation. In the second

68

3.3. Spectre Attacks and Defenses

strategy, WebKit uses a pseudo-random poison value to protect pointers
from misuse. Using this approach, an attacker would first have to learn
the poison value and then use the poison value to mount the actual attack.
The more significant impact of this approach is that mispredictions on the
branch instruction used for type checks result in the wrong type being
used for the pointer.

Preventing Transmission of Data of Interest (Phase 4)

Kocher et al. [174] proposed to track data loaded during transient execution
and prevents their use in subsequent operations. Several works propose
new processor designs similar to this idea.

NDA [333] identifies potentially leaky instructions and defers the execution
of these if they depend on a previous operation that has not been retired
yet. Yu et al. [353] propose a similar technique which taints data that is not
yet committed and uses light-weight taint tracking to delay instructions
that use such tainted inputs. Cabodi et al. [47] use a similar approach
and verify it using model checking. Barber et al. [29] propose to defer the
wake up of dependent load instructions from when the load instruction it
depends on is retired instead of when it is dispatched. Schwarz et al. [273]
propose to annotate secrets and thus only track and protect secrets in
registers and the cache. A similar solution was also designed by Fustos et al.
[89] and implemented in gem5.

Eliminating Leakage while Flushing the Pipeline (Phase 5)

Several solutions propose to speculate as usual but not store the specula-
tive computation results in the regular buffers and caches or completely
removing their microarchitectural traces. Many of the proposals also only
focus on memory accesses and the cache as a covert channel. While these
solutions can work against simple attackers, more sophisticated attackers
running in parallel are not affected by this type of mitigation [35].

With CleanupSpec, Saileshwar et al. [262] propose to undo modifications
to the microarchitectural state after misspeculation. Lowe-Power et al.
[197] similarly proposed extending the ISA to enable backtracking and
fully undoing effects of misspeculation. Mendelson [210] proposed a design
with a new L0 cache for speculative loads and stores.

69

3. State of the Art in Transient-Execution Attacks and Defenses

SafeSpec [166] introduces shadow hardware structures used during tran-
sient execution. Thereby, any microarchitectural state change can be
squashed if the prediction of the CPU was incorrect. Their current de-
sign only protects caches (and the TLB), other channels, e.g., DRAM
buffers [240], or execution unit congestion [193, 18, 35], remain open.

Yan et al. [348] proposed InvisiSpec, a method to make transient loads
invisible in the cache hierarchy. By using a speculative buffer, all transiently
executed loads are stored in this buffer instead of the cache. Similar to
SafeSpec, the buffer is invalidated if the prediction was incorrect. However,
if the prediction was correct, the content of the buffer is loaded into the
cache. For data coherency, InvisiSpec compares the loaded value during
this process with the most recent, up-to-date value from the cache. If a
mismatch occurs, the transient load and all successive instructions are
reverted. Since InvisSpec only protects the caching hierarchy of the CPU,
an attacker can still exploit other covert channels. Gonzalez et al. [96]
implemented a similar defense mechanism on a RISC-V processor.

Ainsworth and Jones [16] similarly introduce a novel cache that keeps
local cache state changes in a per-thread filter cache. This filter cache is
cleared upon domain switches. Sakalis et al. [263] propose to instead use
the microarchitecture as usual but not perform any updates, e.g., cache
fills.

Li et al. [187] design a solution that targets specifically the Flush+Reload
covert channel used in many Spectre proof-of-concept implementations,
which spreads different values to different pages. During speculation, the
execution of instructions that may lead to accesses to different pages is
blocked. Thus, it can be trivially bypassed with slight modifications of
the covert channel. Rockicki also explores a similar direction [259] for
in-order processors that use dynamic binary translation optimizations for
performance.

Preventing Covert Channel Receivers (Phase 6)

Preventing covert channels is most likely infeasible as long as any shared
resource remains. Still, several works propose to mitigate Spectre attacks
by breaking the covert channel.

Several works propose to detect the cache covert channel Spectre attacks
and subsequently stop the corresponding process. Most solutions proposed

70

3.3. Spectre Attacks and Defenses

so far use hardware performance counters for this purpose [124], often
combined with machine learning [68, 186, 119, 73, 221]. Sabbagh et al.
[260] use memory access traces of programs to detect Spectre attacks
building on Prime+Probe. However, as Li and Gaudiot [185] show, it
is trivial for an attacker to evade detection from performance counters.
It is important to note that these proposals only consider cache covert
channels, and while some of the approaches may work for other covert
channels as well, an attacker can always find a covert channel that remains
undetected.

Most covert channels require an accurate timer, e.g., to measure memory
access latency to distinguish cache hits and cache misses. One mitigation
idea is that a reduced timer accuracy makes it impossible to distinguish
between microarchitectural states. Hence, to mitigate browser-based at-
tacks, many web browsers reduced the accuracy of timers in JavaScript
by adding jitter [211, 241, 300, 321]. However, custom timers can always
be constructed [277] and, thus, further mitigations are required [274]. A
particularly precise custom timer can be built using SharedArrayBuffers.
After initially disabling SharedArrayBuffers in response to Meltdown
and Spectre [300], this timer source has been re-enabled with the intro-
duction of site isolation [287].

Another direction is to manipulate timing observed on the native level,
e.g., randomize or reduce the resolution of timestamps. Depending on
the version and configuration, ARM processors may not provide high-
resolution timers and flush operations to user-space applications. Ge et al.
[91] temporarily reduce the timer resolution whenever the cache flush
interface is used. Wang et al. [327] explore varying the processor frequency
to hinder native cache attacks, e.g., Prime+Probe, in Spectre attacks.
Sakalis et al. [264] propose to delay loads, in particular, L1 misses until
they are certain to be committed. To alleviate the performance and energy
impact, they introduce value prediction. However, value prediction is not
inherently secure against Spectre attacks, and transiently diverting the
control-flow of a victim by inducing a false value via value prediction also
effectively provides the attacker with the same capabilities.

Chen et al. [59] propose to mitigate transient-execution attacks on SGX
by preventing interruption of enclaves. However, an attacker does not
necessarily have to interrupt an enclave to mount an attack.

71

3. State of the Art in Transient-Execution Attacks and Defenses

3.3.4. Outlook on Spectre

Especially the in-place same-domain variants of Spectre exploit the exact
behavior intended to increase performance. This leaves us with a trade-off
where highest security and highest performance cannot be obtained at the
same time. We will see new in-place same-domain Spectre variants as new
predictive elements are added to our processors. However, other questions
will keep the scientific community also busy, e.g., locating gadgets. It
seems that the initial predictions that Spectre “will haunt us for quite
some time” [173] were correct.

3.4. Meltdown and LVI Attacks and Defenses

In this section, we discuss Meltdown and LVI (load value injection) attacks.
Meltdown leaks data, whereas LVI turns this leakage around and injects
data into another security domain. The original Meltdown paper is included
in this habilitation in Chapter 7. The LVI paper is included in this
habilitation in Chapter 14. The state-of-the-art overview in this section
is based on our systematization in Chapter 11 and extended with the
more recent insights from ZombieLoad (cf. Chapter 12) and LVI. We will
first focus more on Meltdown and then go more into detail on LVI in
Section 3.4.5.

Meltdown bypasses hardware-enforced security policies by transiently for-
warding data to operations that should never be forwarded to them. While
Spectre is an unintended side-effect of important speculative performance
optimizations, Meltdown reflects a failure of the CPU to respect hardware-
level protection boundaries for transient instructions. That is, the mere
continuation of the transient execution after a fault itself is required,
but not sufficient for a successful Meltdown-type attack. Meltdown needs
defenses orthogonal to the ones for Spectre. However, Meltdown defenses
are, in principle, more straightforward to design than Spectre defenses
because the hardware should not transiently forward the wrong data.

The common pattern of all Meltdown-type attacks is that the attacker at-
tempts to obtain data it architecturally cannot obtain, i.e., architecturally
wrong data is transiently provided to dependent instruction. Meltdown-
type attacks relying on faults, therefore, require a mechanism that handles
the fault (e.g., using child processes, signal handlers, or exception han-
dlers) or suppresses the fault (e.g., using branch misprediction or TSX).

72

3.4. Meltdown and LVI Attacks and Defenses

Meltdown-type

Meltdown-NM-REG

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-AC-LFB

Meltdown-AC-LP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AVX

Meltdown-AD

Meltdown-TAA

Meltdown-PRM-LFB

Meltdown-UC-LFB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-PK-L1

Meltdown-PK-SB

Meltdown-AVX-SB

Meltdown-AVX-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Meltdown-TAA-LFB

Meltdown-TAA-LP

Meltdown-TAA-SB

Figure 3.7.: State of the art Meltdown classification tree, extended
from [50]. LVI can be viewed as an inverse-Meltdown-type
attack and, hence, in principle, would enable the same at-
tack variants regardless of the relevance of LVI in the specific
attack scenarios.

Meltdown-type attacks relying on assists or other abort reasons do not
require fault handling or suppression but usually substantially benefit
from a mechanism to prevent any architectural state changes, which can
sometimes be realized using branch misprediction or TSX.

There are different leakage sources for Meltdown-type attacks as outlined
by Van Bulck et al. [311]:

• The L1 data cache (L1D) is the primary leakage source in Meltdown
and Foreshadow attacks [193].

73

3. State of the Art in Transient-Execution Attacks and Defenses

• The Line Fill Buffer (LFB) and Load Port (LP) have been the
leakage source in ZombieLoad [276], RIDL [267], and Medusa [218].

• The Store Buffer (SB) is responsible for providing wrong data in
a range of attacks, including Store-to-Leak [270], Fallout [48], and
InSpectre [27].

• Register Files were the leakage source in other attacks, e.g., the
floating-point unit (FPU) registers in LazyFP [291], and other system
registers and privileged registers in Meltdown-GP [50, 143, 26, 139].

• NULL is often leaked as a seemingly innocuous value instead of an
actual data value, e.g., if none of the above data sources can provide
data, or if the hardware has partial countermeasures [311, 49].

While line-fill buffer, load port, and store buffer may, in part, be terminol-
ogy specific to Intel processors, most modern processors have equivalent
buffers. They are hence also covered by this classification.

With many different attack variants being discovered, it is essential to
systematize the attack landscape, as attempted in different works [50, 267,
311, 345]. Canella et al. [50] proposed a classification tree for Meltdown-
type attacks, as illustrated in Figure 3.7. The goal of this classification is
to highlight overlooked variants and provide a canonical naming scheme
for all Meltdown-type attacks. On the first layer, they distinguish the
type of fault or assist. On subsequent layers, different reasons for the
fault or assist are distinguished and from which buffer they have been
demonstrated to leak.

In this habilitation, we want to focus on similarities between different
Meltdown-type attacks. Hence, we divide Meltdown-type attacks into
three strains based on their microarchitectural behavior:

1. Deferred Permission Check. Some Meltdown-type attacks expose
an architecturally correct behavior only with a lack of permission
checks, e.g., Meltdown-US [193]. These Meltdown-type attacks perform
operations that, from the CPU’s perspective, would be valid and
meaningful at a different permission level. For instance, attempting to
access a kernel address is valid and meaningful for kernel code.

2. Incorrect Use of Intermediate Values. Other Meltdown-type at-
tacks use intermediate values to retrieve data, e.g., Foreshadow [310,
334]. The behavior exploited in these attacks is always either not valid
or not meaningful, regardless of the permission level. For instance, the
architecture defines that a non-present page-table entry may contain

74

3.4. Meltdown and LVI Attacks and Defenses

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

forward data
to register

± ¬

load uop

Store Buffer

L1 Data Cache
DTLB

®

LFB

¯
P RW US

raise fault

°

WT UC R D S G Ignored

Physical Page Number

Ignored X

Figure 3.8.: The original Meltdown attack (Meltdown-US) [193] from a
microarchitectural perspective. The illustration shows how
the deferred permission check allows data to be forwarded to
the target register of the load operation.

any data. Interpreting this data e.g., as a physical address is always
incorrect.

3. Use-After-Free. More recent Meltdown-type attacks exploit what
we believe to be a use-after-free vulnerability causing the use of stale
values, e.g., ZombieLoad [276], RIDL [267], and Fallout [48].

These types of bugs are not unique to hardware but known from software
already (e.g., CWE-416 [213], CWE-688 [214], CWE-689 [215]). Note that
some microarchitecturally related attacks, in particular on the store buffer,
fall into different bug classes depending on the specific microarchitec-
tural behavior exploited. Therefore, they are discussed in more detail in
Section 3.4.4. In the following, we discuss these attack variants in more
detail.

3.4.1. Deferred Permission Check

While the root cause in Meltdown-type attacks was not correctly under-
stood for a long time, with ZombieLoad, we gained the understanding

75

3. State of the Art in Transient-Execution Attacks and Defenses

that the root cause for all Meltdown-type attacks are “zombie loads”, i.e.,
loads that continue executing although they should not.

Figure 3.8 illustrates this on the microarchitectural level for the case of
a Meltdown-US attack. In this attack, data is forwarded to the register
despite a concurrently failing permission check.

When a load micro-op is added into the re-order buffer, a load-buffer entry
(or more generally, a memory-order buffer for a load memory operation)
is reserved to ensure correct ordering of memory load visibility.

At some point, the load micro-op is scheduled on the load-data execution
unit. The load-data execution unit accesses the load-buffer entry in Step
¬. At this point in time, the load-buffer entry still contains stale data,
i.e., a stale register number, stale virtual address information, and a stale
physical address.

In Step , the load-buffer entry is updated with register number, as well
as the virtual address information from the load micro-op (e.g., virtual
page number and offset).

In Step ®, the virtual address information is used to perform a lookup in
the store buffer, line-fill buffer, L1 data cache. Data for the matching entry
with the highest precedence is returned, i.e., matching store buffer entries
before matching line-fill buffer and L1 data cache entries. Simultaneously,
a TLB lookup is performed to find the physical address for the virtual
address. If the TLB does not contain an entry for the virtual address, a
microcode assist is issued to perform a page-table walk. Note that the
current hypothesis on Meltdown-type attacks is that no data is forwarded
if there is no physical address match.

In Step ¯, the page-table information is checked. In this example, the
original Meltdown attack [193], the present bit is set, but the user-accessible
bit is not set. Hence, the processor raises a fault but simultaneously still
updates the physical page number (PPN) field in the load buffer. The
reasoning behind this is that, first, the update of the physical page number
is the most likely scenario (a regular benign memory access), and second,
it does not hurt to update the load buffer since the result will anyway
not be architecturally used if the load is aborted. In the meantime, the
data from Step ® is ready to be forwarded to the register. As the physical
address matches the data retrieved, e.g., from the L1 data cache, the data
can be forwarded to the register. Here, the same reasoning applies, namely
that first, the update of the register is the most likely scenario (a regular

76

3.4. Meltdown and LVI Attacks and Defenses

benign memory access), and second, it does not hurt to update the register
since it will anyway not be architecturally used if the load is aborted.

Attack Variants Meltdown-US (the original Meltdown attack [193])
deliberately accesses a kernel address. When the permission check fails,
the load still finishes, and the kernel data is transiently available and
transmitted via a cache covert channel. The attack can leak from store
buffer, line-fill buffer, load port, or L1 data cache. Canella et al. [49]
demonstrate a Meltdown attack in JavaScript on a 32-bit Linux. They
also show that some patched processors, including up to Cascade Lake,
return zeros instead of the actual data, which can also be relevant for
LVI-NULL attacks [311].

Besides the user-space-accessible bit, also other bits can be transiently
bypassed, e.g., the writable bit. Kiriansky and Waldspurger [171] presented
Meltdown-RW (dubbed “Spectre Variant 1.2”), which exploits that writes
to read-only memory transiently succeed, potentially enabling sandbox
escapes. Schwarz et al. [270] show that this effect also exists for kernel
memory but relies on the presence of a TLB entry. This TLB side channel
enables very fast KASLR breaks. Both attacks work as store buffer entries
are created and populated despite a lack of permission, cf. Section 3.4.4.

Memory-protection keys for user space (PKU) [140] enable hardware-
enforced in-process isolation [309, 125]. Canella et al. [50] showed that a
Meltdown-PK attack can bypass both read and write isolation provided
by PKU. Hence, any isolated secrets can still be transiently read from the
L1 data cache, line-fill buffer, store buffer, and load port.

The IA-32 (x86) ISA defines a bound instruction for bounds checking,
raising a bound-range-exceeded exception (#BR) when encountering out-of-
bound array indices. This instruction was replaced in the subsequent IA-32e
(x86-64) ISA by the Memory Protection eXtension (MPX) for efficient
array bounds checking. Dong et al. [71] highlight the need to introduce
a memory lfence after MPX bounds check instructions. Canella et al.
[50] discover that a Meltdown-BR attack can exploit transient execution
following a #BR exception to transiently use out-of-bounds secrets on Intel
and AMD processors using the bound instruction (Meltdown-BND), and
Intel processors using MPX protection (Meltdown-MPX).

Several attacks leak data from registers that are permanently or temporar-
ily not available for user-space access. Meltdown-GP [143, 26, 139] allows

77

3. State of the Art in Transient-Execution Attacks and Defenses

an attacker to read privileged system registers. While this raises a general
protection fault (#GP), the data is still forwarded to the target register
and from there to subsequent operations. Stecklina and Prescher [291]
demonstrated that also registers that can be switched between user and
kernel mode are susceptible to attacks, in particular floating-point unit
(FPU) and SIMD registers. Operating systems used to lazily switch them
between execution contexts by generally marking them as “not available”.
The first FPU instruction then causes a device-not-available (#NM) ex-
ception, which triggers the FPU state switching to the new execution
context. Stecklina and Prescher [291] exploit this by letting a victim use
FPU registers and then switching to the attacker to read the same FPU
registers transiently. The read data can again be exfiltrated using a covert
channel.

Trippel et al. [305, 304] showed that Prime+Probe can also be used as
a covert channel in Meltdown attacks. Fustos and Yun [90] show that
port contention can even be used as a covert channel in Meltdown attacks
on a single hardware thread. Stecklina and Prescher [291] showed that
Spectre-RSB is very efficient for exception suppression in their Lazy-
FP attack. Koruyeh et al. [177] showed that RSB-based misspeculation
can generally be used for fault suppression. Kim and Shin [167] confirm
that the performance for Meltdown-type attacks can be improved using
Spectre-RSB for exception suppression.

Xiao et al. [343] present a framework to study transient-execution attacks
systematically. With their framework, they discover a new Meltdown
variant that only affects AMD processors, namely Meltdown on segment
limits. Here, the processor transiently accesses data that is not within the
segment limit.

3.4.2. Incorrect Use of Intermediate Values.

Figure 3.9 illustrates a Foreshadow-VMM attack on the microarchitectural
level. The basic steps are the same as in the Meltdown-US attack from
the previous section. However, this time the attack does not run natively
on a system but in a hardware virtual machine.

Steps ¬ to ® start identically. In Step ®, the virtual address information
is used to perform a lookup in the store buffer, line-fill buffer, L1 data
cache. Data for the matching entry with the highest precedence is returned,
i.e., matching store buffer entries before matching line-fill buffer and L1

78

3.4. Meltdown and LVI Attacks and Defenses

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

forward data
to register

± ¬

load uop

Store Buffer

L1 Data Cache
DTLB

®

LFB

¯
P RW US

raise fault

°

WT UC R D S G Ignored

Guest Physical Page Number

Ignored X

Figure 3.9.: The Foreshadow-VMM attack [310, 334] from a microarchi-
tectural perspective. The illustration shows the steps that
incorrectly use intermediate values to forward data to the
target register of the load operation.

data cache entries. However, in Step ®, the TLB lookup fails as the
page is not present. Hence, a microcode assist is issued to perform a
page-table walk. In Foreshadow-VMM [310, 334], the attacker runs as
a guest inside a virtual machine. This means that the processor has to
perform one page-table walk to translate the guest virtual address to a
guest physical address, and another page-table walk to translate the guest
physical address into a host physical address.

In Step ¯, the guest page-table information is checked. In this example
(Foreshadow-VMM [310, 334]), the present bit is not set and, therefore,
none of the remaining information in the page-table entry is valid. Hence,
the memory access causes the processor to raise a fault. However, identical
to the Meltdown-US case, the physical address field is still copied into the
load buffer. In a regular benign case, it would later be overwritten with the
host physical address. In the meantime, the data from Step ® is ready to
be forwarded to the register. Now the processor matches the guest physical
address (in the host physical address field in the load buffer) to the cache
line tag of the data retrieved, e.g., from the L1 data cache. Hence, the
attacker can attempt to read arbitrary host physical addresses, by writing
them into a non-present page-table entry and transiently accessing it. The

79

3. State of the Art in Transient-Execution Attacks and Defenses

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

forward data
to register

± ¬

load uop

Store Buffer

L1 Data Cache
DTLB

®

LFB

abort
¯

°

Figure 3.10.: The ZombieLoad v1 attack [276] from a microarchitectural
perspective. The illustration shows the steps that lead to a
use-after-free in the load buffer and thus wrong data being
forwarded to the target register of the load operation.

attack will succeed if the data is in the L1 data cache or can be brought
into the L1 data cache.

Attack Variants The Foreshadow variant outlined above is Foreshadow-
VMM [334]. The original Foreshadow [310] attack similarly attacks SGX by
exploiting that the physical page number of a non-present page is used, as
illustrated in Figure 3.9. This effect leads to transient data forwarding from
SGX-protected cache lines that architecturally would return a constant
value of ‘1’ for all bits read. Intel [134] named Foreshadow L1 Terminal
Fault (L1TF). However, actually, the data can not only leak from the L1
data cache but also from store buffer, line-fill buffer, and load port.

Specific attacks on the store buffer also exploit the incorrect use of inter-
mediate values. In particular, Fallout [48] exploits that an intermediate
value, a partial address, is used for an opportunistic match. Incorrect
matches lead to leaking of recently stored values, cf. Section 3.4.4.

3.4.3. Use After Free

Figure 3.10 illustrates a ZombieLoad v1 attack on the microarchitectural
level. The basic steps are the same as in the two attacks from the previous
sections. However, in this case, we suspect the use of an outdated value

80

3.4. Meltdown and LVI Attacks and Defenses

from the load buffer to be responsible for erroneously matching secret
data.

Steps ¬ to ® start identically. In Step ®, the virtual address information
is used to perform a lookup in the store buffer, line-fill buffer, L1 data
cache. However, the L1 data cache lookup fails due to a cache line conflict.
This leads to an abort in Step ¯ and reissuing of the load operation,
making the currently running load a zombie load. Data for the matching
entry with the highest precedence is returned, i.e., matching store buffer
entries before matching line-fill buffer and L1 data cache entries.

In Step °, the stale physical page number is used (i.e., a use after free)
to match the physical address tag of the data retrieved in Step . If the
physical address matched the tag, the data is forwarded to the target
register and can be picked up by subsequent operations.

Attack Variants The first use-after-free-style Meltdown-type attack
was the Meltdown-US attack on uncached and uncacheable memory.
Lipp et al. [193] reported it to Intel in December 2017. They observed
that leaking from uncacheable memory would only work if there are also
architectural accesses to the memory location [193], e.g., in a different
context legitimately accessing this address. This legitimate access creates
a load-buffer entry and a line-fill buffer entry. Leaking from the line-fill
buffer or L1 cache requires a full physical address match, otherwise, no
data would be returned. Hence, rather than hitting the right line-fill buffer
or L1 cache line, the actual difficulty is to hit a load-buffer entry with the
corresponding physical page number stored, which can then be transiently
used. Lipp et al. [193, 103] reported that the leakage from uncacheable
memory originates in the line-fill buffer. Subsequently, multiple groups
investigated the line-fill buffer as a leakage source [201, 141, 267, 276].

It is important to note that it is not necessary to modify the Meltdown
attack implementation to leak from the line-fill buffer (and load port) as
compared to the L1 cache. Even the first proof-of-concept implementations
sent to Intel in 2017 will leak from the line-fill buffer (and load port) with
a low probability.

Van Schaik et al. [267] discovered that on processors that do not have
the L1 as leakage source anymore, there is remaining leakage. In their
RIDL paper [267], they demonstrate this with a practical attack on an
i9-9900K Coffee Lake R processor and discover that this effect also exists

81

3. State of the Art in Transient-Execution Attacks and Defenses

as remaining leakage on older processors. In line with Intel, they called
their attack a microarchitectural data sampling (MDS) attack, since the
attacker lacks the physical address selection from previous Meltdown-US
and Meltdown-P attacks.

Schwarz et al. [276] discovered different variants to target the line-fill
buffer more directly. The ZombieLoad paper brought the insight that the
core issue of Meltdown-type attacks is that an aborted load continues
to execute, i.e., it becomes a zombie load. They observe that microcode
assists and aborts cause zombie loads without a fault occurring. One
of the variants they describe exploits an effect Intel calls Transactional
Asynchronous Abort (TAA). While all previously known Meltdown and
MDS attacks are mitigated on Cascade Lake CPUs, Schwarz et al. [276]
discover that their ZombieLoad attack using TAA still works on Cascade
Lake CPUs. It is important to note that any Meltdown proof-of-concept
using TSX would implicitly exploit TAA with a low probability, and we
have confirmed that exploits we sent to Intel in 2017 and early 2018
already exploited TAA.

10

Leaking data from the line-fill buffer makes the selection of target data
more difficult, as the attacker cannot provide the physical address. Hence,
Van Schaik et al. [267] and Schwarz et al. [276] independently developed a
sliding-window technique to identify leaked bits of a targeted bitstream,
based on known bits. Note that this form of data selection is independent
of isolation boundaries, such as address spaces. Schwarz et al. [276] also
reported that the initial mitigation strategies do not entirely stop the
leakage, e.g., buffer overwrites using the repurposed verw instruction,

11
or

disabling hyperthreading, even on the most recent Intel microarchitecture
at the time (Cascade Lake). The same observations were later on also
presented by Van Schaik et al. [268].

10
When reporting our TAA attack on Cascade Lake CPUs, which were supposedly
fixed against MDS attacks, Intel quickly enacted a new embargo for this attack
variant. The RIDL paper [267], which did not contain this attack, went public
on May 14, 2019, simultaneously to a heavily redacted ZombieLoad paper. Van
Schaik et al. [266] later published an addendum reporting that they also had sent a
proof-of-concept to Intel that uses TSX and, hence, exploits TAA, in September
2018.

11
Intel initiated an embargo in response to our report of L1DES. The issue was
independently discovered and reported by Van Schaik et al. [265], together with a
variant that leaks from vector registers.

82

3.4. Meltdown and LVI Attacks and Defenses

Intel also described that leakage from buffers can occur when transitioning
from a state where only one hyperthread is active to a situation where
both hyperthreads are active and vice versa [135].

Moghimi et al. [218] present a framework to fuzz for new Meltdown-type
vulnerabilities. They focus in particular on attack variants that do not leak
data from regular memory load operations. A new variant they discover
is Meltdown-type leakage from write combining buffers. Beyond this new
variant, they systematically analyze the differences between different MDS
attacks.

3.4.4. Attacks on Store-to-Load Forwarding

Store-to-load forwarding involves the memory disambiguation predictor
and the store buffer. Hence, an attack on store-to-load forwarding can
either target the predictor (Spectre-style) or the store buffer (Meltdown-
style). Spectre-STL (cf. Section 3.3) exploits the memory disambiguation
predictor such that it predicts no dependency, the load operation proceeds,
the store buffer contains no entry, and an outdated value is picked up from
the L1 cache. The store buffer, however, is the leakage source of several
Meltdown-type attacks. In contrast to line-fill buffer and L1 cache, a full
physical address match is not required to initiate store-to-load forwarding.
However, the transient store-to-load forwarding can only be committed if
a full physical address match was confirmed. Given the physical address
comparison [137, 21, 152], there are exactly four cases to distinguish for a
load operation with a preceding store in the store buffer:

1. True positive match. The store buffer finds a potentially matching
store, and it is a full physical address match. In this case, forwarding the
store to the corresponding load is generally correct behavior. However,
Kiriansky and Waldspurger [171] observed that the writeable bit is
transiently ignored, Schwarz et al. [270, 50, 49] observed that this is
also the case for other checks, e.g., the userspace-accessible bit.

2. True negative match. The store buffer finds no potentially matching
store, and, indeed, there is no store with a full physical address match
for the load. In this case, nothing is forwarded, which is, again correct
behavior. However, Schwarz et al. [270, 50, 49] exploit this as negative
information together with the true positive case to distinguish valid
and invalid addresses.

83

3. State of the Art in Transient-Execution Attacks and Defenses

3. False negative match. The store buffer does not find a matching
store, although there was one with a full physical address match. In
this case, there is no forwarding, and the load works on outdated values,
e.g., from the L1 cache. A likely situation is that the load operation
was scheduled earlier than the store operation it depends on, e.g., as
exploited in Spectre-STL [128]. In this situation, the store buffer
does not contain a matching store, as the store was not executed yet.

Cauligi et al. [54] describe a theoretical variant Spectre-MOB, which
is the inverse Spectre-STL case, where the memory disambiguation
predictor predicts a dependency and the load operation proceeds, but
the store buffer only finds a partial match like in a Fallout attack. It
then returns this incorrectly matched data, i.e., a Spectre-type and a
Meltdown-type effect are combined.

4. False positive match. The store buffer at first finds a matching store,
but it turns out that it was not a full physical address match. Now the
load still continues to execute (as a zombie load) before it is squashed,
transiently forwarding falsely matched data from the store buffer to
dependent operations. Islam et al. [152] exploited this in a timing attack
to obtain physical address information. Balliu et al. [27] suspected that
this case might exist and, concurrently and independently, Canella et al.
[48] confirmed that this effect exists on Intel processors and allows
reading recent writes from the store buffer, e.g., from kernel execution
or SGX enclaves.

Note that the true positive and true negative match, both exploit that
information is leaked because of a deferred permission check, e.g., stores on
read-only memory, stores on kernel memory, stores on invalid memory. The
false negative and false positive match can be seen as instances of incorrect
use of intermediate values. The partial address is an intermediate value
that is used instead of the full address. Only at a later point, when the
full address is used instead, a potential mistake is resolved and reverted.
Intel also described that leakage from buffers can occur when transitioning
from a state where only one hyperthread is active to a situation where
both hyperthreads are active and vice versa [135].

3.4.5. Load Value Injection

LVI (Load Value Injection) exploits Meltdown-type effects to inject false
data values into transient execution in a victim domain. However, while

84

3.4. Meltdown and LVI Attacks and Defenses

LVI-type

LVI-NM-FPU

LVI-PF

LVI-MCA

LVI-US

LVI-PPN

LVI-P

LVI-AD

LVI-US-NULL

LVI-US-LFB

LVI-US-SB

LVI-US-LP

LVI-PPN-NULL

LVI-PPN-L1D

LVI-P-NULL

LVI-P-L1D

LVI-P-LFB

LVI-P-SB

LVI-P-LP

LVI-AD-LFB

LVI-AD-SB

LVI-AD-LP

Figure 3.11.: State of the art LVI classification tree [311].

the attacker in a Meltdown-type attack can control, e.g., whether and
when a fault occurs, an LVI attack cannot identically control these, and
other conditions as the Meltdown-type effect here occurs in the victim
domain. Hence, LVI shares with Spectre that specific gadgets in the victim
domain are required for an attack. While gadgets are necessary and it is
a viable attempt to mitigate LVI by targeting these gadgets, similar to
Spectre defenses, the more promising approach is to eliminate Meltdown-
type effects in hardware, covering both Meltdown and LVI with the same
mitigation. However, some of these gadgets are much simpler and more
prevalent than Spectre gadgets. In particular, a single memory access or a
single indirect call, jump, or return, can be an LVI gadget.

In LVI attacks, the attacker attempts to obtain data from a victim domain
that the victim can architecturally access, same as in a Spectre attack.
Figure 3.11 shows the LVI part of the transient-execution attack tree. All
three types of Meltdown-type effects we identified earlier in this section
can be used for LVI attacks, i.e., deferred permission checks, incorrect use
of intermediate values, and use-after-free. However, LVI attacks exploiting
deferred permission checks appear only realistic in the SGX threat model
as they require repeated illegal behavior of the victim domain:

• For LVI-US, the victim would have to perform an illegal access to a
kernel address,

85

3. State of the Art in Transient-Execution Attacks and Defenses

• for LVI-RW, an illegal write to read-only memory,
• for LVI-PK, an illegal access to a PKU-protected memory location,
• for LVI-MPX or LVI-BND, an illegal out-of-bounds access,
• for LVI-GP, an illegal memory access leading to a general protection

fault,
• for LVI-NM, an FPU register access when the FPU registers are

unavailable, which should never be the case since operating systems
now employ eager FPU switching,

• for LVI on segment limits on AMD processors, an illegal memory access
beyond the segment limit.

Note that these operations would have to be repeated multiple times to
mount a successful attack on multiple bytes of data. Even if in a user-
to-user or user-to-kernel scenario such a fault occurs one time, it would
have to reappear again and again until the attacker successfully leaked
the secret bytes of interest. As we detail below, this is not realistic in a
regular user-to-user or user-to-kernel attack. While they may be possible
in the SGX threat model with a malicious operating system, they are also
not particularly relevant here, as other LVI variants already give equally
or even more generic data injection capabilities.

While Meltdown-type attacks often rely on fault handlers or fault sup-
pression to repeatedly have the same fault, regular software tries to avoid
running into the same fault repeatedly and instead handles it. Naturally,
in an artificial example, we could, of course, construct a victim process to
respawn crashing child processes at a frequency high enough to yield rele-
vant leakage rates. Similarly, we could install signal or exception handlers
in an artificial victim process to silently ignore invalid memory accesses.
TSX could be used in an artificial victim process to suppress faults. How-
ever, these above examples are artificial, and given the lack of reports of
such gadgets, they may only exist in small numbers in real-world software,
also as real-world software should avoid running into the same faults
repeatedly.

A more realistic option is to use branch misprediction to suppress the fault,
i.e., a Spectre attack. However, this would only be relevant if the Spectre
attack alone cannot control the victim domain sufficiently to exfiltrate the
assets, whereas the LVI-injected data could.

Particularly relevant for SGX are LVI attacks exploiting the incorrect use
of intermediate values. In LVI-P (inverse Foreshadow [310]), the attacker
unmaps a page. Following the same mechanism as the Foreshadow attack

86

3.4. Meltdown and LVI Attacks and Defenses

(cf. Figure 3.9), the victim now uses untrusted data from a chosen physical
address before raising a page fault architecturally. The attacker can inject
arbitrary values here via the L1 data cache. Alternatively, the attacker can
also inject NULL for the LVI-NULL case. Van Bulck et al. [311] exploit
both cases on SGX enclaves. For LVI-P-L1D, they inject fake return
addresses to divert enclave control flow to an attacker-chosen address. For
LVI-P-NULL, they inject a null pointer from which the enclave then reads
a pointer to which enclave control flow again is diverted. Note that the
operating system has full control over whether and what is stored at the
null pointer, i.e., on the first page in the virtual address space.

The most promising variants for non-SGX LVI attacks are based on
Meltdown-type effects that exploit a microarchitectural use-after-free
situation. These Meltdown-type effects have been demonstrated with
microarchitectural assists. In the case of a microarchitectural assist, an
outdated load-buffer entry may be used, and data can be picked up from
the line-fill buffer [201, 141, 267, 276]. Van Bulck et al. [311] describe
that a victim might pick up data from an LFB entry of another context
when trying to read from a non-accessed page. They note that Windows
regularly resets page accessed bits.

The store-buffer false-positive match is a particularly powerful case as
it can easily occur in practice, however, at the same time with stronger
gadget requirements than, for instance, the LFB variant. It occurs when
the store buffer finds a matching store without a full physical address
match. The load in the victim domain continues to execute (as a zombie
load) before it is squashed, transiently forwarding falsely matched data
from the store buffer to dependent operations. Thus, to trigger this variant,
all the attacker has to do is to place a matching store in the store buffer.
However, as the store buffer is statically partitioned, this has to be done
on the same thread, e.g., before a context switch, or by the victim itself
in the form of a gadget that first benignly stores to an attacker-tweakable
address and then reads from an unrelated address that partially matches
the attacker-tweaked address.

Future work has to show whether realistic LVI attacks are restricted to the
SGX enclave scenario or whether they are possible on regular non-SGX
software.

87

3. State of the Art in Transient-Execution Attacks and Defenses

3.4.6. Meltdown and LVI Countermeasures

Meltdown and LVI attacks exploit deliberate incorrect behavior of the
hardware during transient execution. While this may have been assumed
secure in the past, it must be considered a hardware bug today. Indeed,
new hardware designs are patched against Meltdown-type attacks as
they become known. Inherently, this means that they are also patched
against LVI attacks that exploit the same Meltdown-type effect. For
instance, Meltdown-US and Meltdown-P (Foreshadow) are patched in
Intel processors starting at Coffee Lake stepping 12, and ZombieLoad v1
and v3 starting with the Cascade Lake microarchitecture [145]. Hence,
these processors are also not vulnerable to the corresponding LVI variants
anymore. However, there are processors that return zero values instead
of the actual data. These processors are still vulnerable to LVI-NULL
attacks. Some hardware designs were not vulnerable to (most) Meltdown
and LVI attacks discovered so far in the first place [289].

Concurrent to Intel implementing fixes for these vulnerabilities, many aca-
demic works discussed how specific bugs could be fixed in hardware [171],
how formal verification could more generically prevent these bugs [80, 47],
and how covert channels in transient-execution attacks can be mitigated
(e.g., by preventing or reverting microarchitectural effects) [197, 166, 348,
264, 35, 262, 96, 124, 16, 263, 187, 259]. However, mitigating the covert
channel is not sufficient to mitigate Meltdown-type attacks.

Some Spectre-focused mitigations could also be used to mitigate Meltdown
with an additional performance cost [333, 353, 47, 29, 89, 273]. For these
proposals, it is essential to not just focus on cache accesses to guarantee
that Meltdown-type attacks are not possible anymore but more broadly
prevent operations from using non-architectural and potentially secret
data. These designs could also mitigate LVI attacks in the same way as
they mitigate the leakage of secrets in Spectre attacks. Ferraiuolo et al.
[81] avoid Meltdown in HyperFlow to not hand out data before checking
permissions. Zagieboylo et al. [354] propose to label secrets to avoid using
them during transient execution.

Besides the hardware bugfixes, some defenses try to mitigate yet unknown
Meltdown-type vulnerabilities or mitigate Meltdown-type vulnerabilities
on commodity hardware. While Spectre defenses exploit that one part of a
Spectre attack runs in a victim context that wants protection, Meltdown
defenses have to be implemented on a system level, e.g., in microcode or the
operating system, to enforce isolation on all domains. These approaches

88

3.4. Meltdown and LVI Attacks and Defenses

aim to keep architecturally inaccessible data also inaccessible at the
microarchitectural level.

Software-based Defenses The first software-based defense for Meltdown-
type attacks was KAISER [109, 111]. It was originally designed to mitigate
side-channel attacks on KASLR, in particular the ones by Hund et al.
[130], Jang et al. [157], and Gruss et al. [111]. Some of the attacks pre-
sented in these works are related to the Meltdown-US attack in that
they deliberately access kernel addresses. Hence, KAISER splits kernel
and user address space and, instead of relying on the user-accessible bit,
removes the kernel address ranges from the user address space as far as
possible. A concurrent proposal, LAZARUS [93] pursues the same idea
but uses unmapping and re-mapping of pages upon a context switch. This
is problematic with multi-threaded applications as the mapping of kernel
pages would be present in all user threads.

KAISER also defends against Meltdown-US attacks, since kernel secrets
are not mapped into user space anymore. However, KAISER comes with
a substantial performance impact [100, 106]. Furthermore, on x86, some
privileged memory locations must always be mapped in user space and can
thus still be attacked. KAISER introduces changes in core components of
operating system kernels, which do not experience frequent changes, e.g.,
basic context switching, and virtual memory management. As a research
prototype, the initial KAISER patch was far from production-ready [104],
and a substantial amount of engineering was necessary to transform into
a robust real-world-applicable patch [95]. KAISER was merged into Linux
as kernel page-table isolation (KPTI) [199]. Other operating systems
have received similar patches [106]. Grimsdal et al. [101] show that the
stronger isolation in microkernels, in some cases, implicitly protects against
Meltdown-type attacks, as no memory of another process is mapped into
the address space.

As a faster alternative, Hua et al. [129] propose EPTI (Extended Page
Table Isolation), a variant of KPTI relying on extended page tables. As
there is hardware support for EPT (extended page table) switching and
TLB entries from different EPTs are tagged, e.g., with VM process IDs
(VPIDs), the performance loss is not as severe as with KPTI. However, as
this approach uses extended page tables, it leaves the system vulnerable to
Foreshadow. MemoryRanger [176] isolates drivers, kernel and user space
into separate address spaces using EPTs.

89

3. State of the Art in Transient-Execution Attacks and Defenses

To mitigate Meltdown-P (Foreshadow) on commodity systems, KAISER
has to be extended. Operating systems now sanitize physical page number
fields of unmapped page-table entries [134, 334] by setting the physical
page number field to values that would refer to non-existent physical
memory. For SGX, Intel proposes to either store secrets in uncacheable
memory (as specified in the PAT or the MTRRs), or, via a microcode patch,
flush the L1 data cache when switching protection domains. Hypervisors
similarly flush L1 upon context switches from and to untrusted virtual
machine threads. On affected cores, untrusted workloads cannot securely
be run as hyperthreads on the same physical core. Hence, hypervisors
were patched to implement variants of gang scheduling [212, 142], and
SGX takes the hyperthreading status into account for attestation. System
Management Mode (SMM) is also protected via logical-core rendezvous,
i.e., one logical core waits for the other in low-level interrupt entry code,
and L1 flushes upon context switches.

Intel released microcode updates against Meltdown-GP, i.e., transient
reads of system registers [139]. ARM fixed this vulnerability in new CPU
designs and proposed a software workaround for older CPUs [26].

Meltdown-NM (Lazy-FP) [291] exploited the lazy switching of FPU reg-
isters, allowing to read the old FPU register content transiently before
the fault is raised. To mitigate this attack, operating systems switched
to eager FPU switching. While transient reads of FPU registers are still
possible, the data that can be obtained is the same as the data that can
architecturally be obtained.

To mitigate Spectre-STL, ARM introduced new barrier instructions and
control registers to prevent the re-ordering of loads and stores [26]. Likewise,
Intel [146] and AMD [21] provide Speculative Store Bypass Disable (SSBD)
microcode updates that mitigate Spectre-STL.

Reis et al. [256] argue that site isolation mitigates specific Meltdown-type
attacks (Meltdown-RW, Meltdown-PK, and Meltdown-BR) by moving
secrets into separate processes. However, other Meltdown-type attacks
are unaffected and can entirely undermine site isolation by mounting
cross-process Meltdown-type attacks.

Shen et al. [284, 285] propose to mitigate Meltdown-RW by introducing
fences around store instructions.

90

3.4. Meltdown and LVI Attacks and Defenses

Sianipar et al. [286] propose to constantly move secret data around in
virtual and physical memory to mitigate Spectre and Meltdown-type
attacks, which effectively only reduces the leakage rate.

Similar to Spectre, detecting the covert channel in Meltdown-type attacks
was also proposed as a solution [68, 186, 124, 73, 19, 17, 238, 119, 330,
365, 297, 221]. However, an attacker can either evade detection by slowing
down the attack [185], or by using a different covert channel that is not
detected.

Mitigating LVI in software incurs substantial performance overheads
as it means eliminating LVI gadgets or protecting them with lfence

instructions. Intel released a compiler extension to protect mainly SGX
enclaves against LVI [136]. The full elimination, i.e., fencing of all LVI
gadgets, requires adding an lfence instruction between each two load
operations that could fault, e.g., a page fault may occur any time. However,
the most concerning gadgets are those that perform a memory access and
a control-flow change at once, i.e., indirect calls, jumps, and returns. The
compiler may not generate these instructions anymore. As a trade-off,
Intel proposed to protect only return instructions as they are the easiest
gadgets to find and to exploit.

91

4
Future Work and Conclusions

With the works presented in this habilitation, a new field emerged:
transient-execution attacks and defenses. This sparked an enormous num-
ber of publications both on attacks and attack variants as well as on
various defense proposals.

Compared to early 2018, our understanding of Meltdown-type effects is
now much better. It is now clear that Meltdown-type effects should be
considered bugs and, indeed, hardware manufacturers consider them bugs.
Newer CPU generations are patched against Meltdown variants. Hence, for
Meltdown-type effects, it is likely that CPUs are generally not susceptible
to the known Meltdown variants anymore. However, new optimizations
will likely re-introduce Meltdown-type leakage. Thus, future work must
continue to investigate whether new CPU architectures are susceptible
to Meltdown-type leakage. This includes automated efforts [218], but the
subtleties of these attacks also make it clear that manual analysis will
remain necessary to address the intricate microarchitectural conditions
required by some variants, potentially yet unknown variants, and variants
on future microarchitectures.

On the Meltdown mitigation side, we will continue to see short-term
software patches against Meltdown-type leakage. KAISER [106] is maybe
the most renowned defense against Meltdown-type leakage, but it is also
already disabled again on more recent CPUs that are not susceptible to
the original Meltdown attack anymore. The security benefits of KAISER
besides its use as a Meltdown mitigation appear to not outweigh its
performance costs.

For the related LVI attacks, it is a similar situation. While the software
patches against LVI are much more expensive in terms of performance
costs, CPUs will be patched against the Meltdown-type leakage anyway,
providing an inherent mitigation for LVI as well for free. Particular care
should be given to partial solutions, such as returning NULL instead of

93

4. Future Work and Conclusions

the actual data, which Van Bulck et al. [311] demonstrated in one scenario
to be insecure as well, and which additionally opens new side channels [49].
The automated search for LVI gadgets will be an interesting direction of
research, as this facilitates both the vulnerability assessment for LVI and
the development of mitigations.

While hardware mitigations are the most effective and efficient, it is
not practical to upgrade all processors. Hence, continuing research for
more efficient software mitigations will remain relevant. Especially as new
Meltdown-type effects are discovered or re-introduced on new hardware,
short-term software-based mitigations against both Meltdown and LVI will
become relevant again. It is likely that rather than reaching a point where
processors are free of these Meltdown-type vulnerabilities, we will have a
constant stream of new processors patched against known Meltdown-type
vulnerabilities, while new attack variants are introduced, requiring new
patches. Hence, it is not a solution to wait for a fully fixed processor and
then upgrade all computers worldwide, besides being entirely impractical.
Instead, we will continue to see software mitigations for new attack variants
and hardware mitigations for older attack variants.

While the initial expectation was that we would find many new Spectre-
type attacks, the set remained comparably small. However, Spectre is far
from being a solved problem [209]. Specific Spectre variants are much
easier to patch than others. In particular, not sharing branch predictor
state across domains will eliminate all cross-domain attacks. While flushing
branch predictor state is a software-based alternative, it is substantially
more expensive in terms of performance. However, the problem of in-
place same-domain attacks, e.g., mistraining and exploiting via gadgets
that can be reached from an API, remains entirely open. This includes
Spectre-PHT, Spectre-BTB, and Spectre-RSB. In these cases, the mi-
croarchitectural optimizations are not crossing process boundaries, and
there is no opportunistic address matching. Essentially, these are the most
basic cases that the hardware optimizations are intended to speed up.
Future work will continue to search for efficient solutions for in-place
same-domain attacks, but we cannot exclude the possibility that, just like
the cache, leakage in these cases may be the consequence of having any
performance benefit. Hardware-software-combined solutions that identify
secret-dependent computations and prevent their transient use shift the
problem to the developer. Similarly, developers already have to take care
not to leak via secret-dependent operations on the cache.

94

With an increasing amount of attack surface uncovered, modern systems
struggle with more and more mitigations. Transient-execution attacks are a
now prominent example studied in this habilitation. The performance and
energy costs of the combined full mitigations for transient-execution attacks
alone is prohibitively high [311]. However, this problem goes well beyond
transient-execution attacks, with a continuous stream of security measures
proposed, each with non-negligible performance overheads. Furthermore,
while specific vulnerabilities caused by optimizations may disappear, the
main driver in performance increases today are optimizations. The constant
stream of new optimizations will keep introducing new information leakage.
More explicit, fine-grained, and adaptive trade-offs between security on
the one side and performance and energy costs on the other side, as well
as efficiency-focused but strong defenses, will become an essential topic in
security research and for security measures deployed in practice.

Impact Before transient-execution attacks were discovered, microar-
chitectural attack and defense research was mainly side-channel attacks
and Rowhammer. Now transient-execution attacks dominate this area
in terms of publications. Even beyond, transient-execution attacks and
defenses are now highly recognized both in the systems and in the system
security community, with best-paper awards and panel discussions at
top-tier systems and top-tier system security venues.

Transient-execution attacks have sparked much attention both in the
scientific community but also in the general public. Meltdown and Spectre
have been covered by mainstream online, print, radio, and TV news. There
are security problems the general public should worry about more than
some transient-execution attacks. However, the coverage created visibility
for the specific issues and the need to patch systems early when patches
are available. The coverage also created visibility and awareness for system
security research and information security topics in the general public.

95

References

[1] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchi-
tectures. In: ASPLOS. 2019 (p. 23).

[2] About speculative execution vulnerabilities in ARM-based and Intel
CPUs. Apple Inc., 2018. url: https://support.apple.com/en-
us/HT208394 (p. 50).

[3] Onur Acıiçmez. Advances in Side-Channel Cryptanalysis: MicroAr-
chitectural Attacks. PhD thesis. Oregon State University, 2007
(pp. 37, 48).

[4] Onur Acıiçmez. Yet Another MicroArchitectural Attack: Exploiting
I-cache. In: CSAW. 2007 (p. 36).

[5] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New
Results on Instruction Cache Attacks. In: CHES. 2010 (p. 36).

[6] Onur Acıiçmez and Çetin Kaya Koç. Trace-Driven Cache Attacks
on AES (Short Paper). In: International Conference on Information
and Communications Security. 2006 (p. 36).

[7] Onur Acıiçmez and Cetin Kaya Koç. Microarchitectural attacks
and countermeasures. In: Cryptographic Engineering. 2009 (p. 34).

[8] Onur Acıiçmez, Çetin Kaya Koç, and Jean-pierre Seifert. On the
Power of Simple Branch Prediction Analysis. In: AsiaCCS. 2007
(p. 47).

[9] Onur Acıiçmez and Werner Schindler. A Vulnerability in RSA Im-
plementations Due to Instruction Cache Analysis and Its Demon-
stration on OpenSSL. In: CT-RSA 2008. 2008 (pp. 36, 40).

[10] Onur Acıiçmez and Jean-Pierre Seifert. Cheap Hardware Paral-
lelism Implies Cheap Security. In: FDTC. 2007 (p. 36).

[11] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya Koç. Predicting
secret keys via branch prediction. In: CT-RSA. 2007 (pp. 37, 48).

[12] Jonathan Afek and Adi Sharabani. Dangling pointer: Smashing the
pointer for fun and profit. In: Black Hat Briefings. 2007 (p. 46).

[13] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.
When good protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks. In: HOST. 2017 (p. 41).

97

https://support.apple.com/en-us/HT208394
https://support.apple.com/en-us/HT208394

References

[14] Barbara Aichinger. DDR memory errors caused by Row Hammer.
In: HPEC. 2015 (p. 41).

[15] Barbara Aichinger. Row Hammer Failures in DDR Memory. In:
memcon. 2015 (p. 41).

[16] Sam Ainsworth and Timothy M Jones. MuonTrap: Preventing
Cross-Domain Spectre-Like Attacks by Capturing Speculative State.
In: arXiv:1911.08384 (2019) (pp. 70, 88).

[17] Taha Atahan Akyildiz, Can Berk Guzgeren, Cemal Yilmaz, and
Erkay Savas. MeltdownDetector: A Runtime Approach for De-
tecting Meltdown Attacks. In: Cryptology ePrint Archive, Report
2019/613 (2019) (p. 91).

[18] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. In: S&P. 2018 (p. 70).

[19] Zirak Allaf, Mo Adda, and Alexander Gegov. TrapMP: malicious
process detection by utilising program phase detection. In: Inter-
national Conference on Cyber Security and Protection of Digital
Services (Cyber Security). 2019 (p. 91).

[20] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van
de Pol, and Yuval Yarom. Amplifying side channels through per-
formance degradation. In: ACSAC. 2016 (p. 39).

[21] AMD64 Technology: Speculative Store Bypass Disable. Revision
5.21.18. Advanced Micro Devices Inc., 2018 (pp. 83, 90).

[22] Nadav Amit, Fred Jacobs, and Michael Wei. Jumpswitches: restor-
ing the performance of indirect branches in the era of spectre. In:
USENIX ATC. 2019 (p. 65).

[23] Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared
memory. In: ACM/SIGAPP Symposium on Applied Computing.
2019 (p. 56).

[24] Apple Inc. OS X Mountain Lion Core Technologies Overview. 2012.
url: http://movies.apple.com/media/us/osx/2012/docs/
OSX_MountainLion_Core_Technologies_Overview.pdf (p. 22).

[25] ARM. ARM Architecture Reference Manual ARMv8. ARM Lim-
ited, 2013 (p. 64).

[26] ARM. Cache Speculation Side-channels. Version 2.4. 2018 (pp. 64,
74, 77, 90).

98

http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf

[27] Musard Balliu, Mads Dam, and Roberto Guanciale. InSpectre:
Breaking and Fixing Microarchitectural Vulnerabilities by Formal
Analysis. In: arXiv:1911.00868 (2019) (pp. 8, 62, 67, 74, 84).

[28] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto,
Jason Reeves, Sean W Smith, and Anna Shubina. ELFbac: using the
loader format for intent-level semantics and fine-grained protection.
Tech. rep. Dartmouth Technical Report TR2013-272, 2013 (p. 67).

[29] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu
Teodorescu. Specshield: Shielding speculative data from microarchi-
tectural covert channels. In: Parallel Architectures and Compilation
Techniques (PACT). 2019 (pp. 69, 88).

[30] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way. In: CHES. 2014 (p. 39).

[31] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep. 2005.
url: http://cr.yp.to/antiforgery/cachetiming-20050414.
pdf (p. 34).

[32] Johann Betz, Dirk Westhoff, and Günter Müller. Survey on covert
channels in virtual machines and cloud computing. In: Transactions
on Emerging Telecommunications Technologies (2016) (p. 34).

[33] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and
Debdeep Mukhopadhyay. Template Attack on Blinded Scalar Multi-
plication with Asynchronous perf-ioctl Calls. In: Cryptology ePrint
Archive, Report 2017/968 (2017) (pp. 18, 48).

[34] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In: CHES. 2016 (pp. 37, 41).

[35] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neug-
schwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer,
and Anil Kurmus. SMoTherSpectre: exploiting speculative execu-
tion through port contention. In: CCS. 2019 (pp. 57, 61, 69, 70,
88).

[36] Roderick Bloem, Swen Jacobs, and Yakir Vizel. Efficient
Information-Flow Verification Under Speculative Execution. In:
Symposium on Automated Technology for Verification and Analy-
sis. 2019 (p. 62).

99

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References

[37] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In: CHES. 2006 (pp. 34, 36).

[38] Erik Bosman. 2018. url: https://twitter.com/brainsmoke/
status/948561799875502080 (p. 52).

[39] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In: S&P. 2016 (p. 41).

[40] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and
Srinivas Devadas. MI6: Secure enclaves in a speculative out-of-order
processor. In: MICRO. 2019 (p. 66).

[41] Rodrigo Branco, Kekai Hu, Ke Sun, and Henrique Kawakami. Effi-
cient mitigation of side-channel based attacks against speculative
execution processing architectures. US Patent App. 16/023,564.
2019 (p. 66).

[42] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 37).

[43] Samira Briongos, Pedro Malagón, José M Moya, and Thomas
Eisenbarth. Reload+Refresh: Abusing cache replacement policies
to perform stealthy cache attacks. In: USENIX Security Symposium.
2020 (p. 38).

[44] Billy Brumley and Risto Hakala. Cache-Timing Template Attacks.
In: AsiaCrypt. 2009 (p. 36).

[45] Matthew Bryant. The .io Error – Taking Control of All .io
Domains With a Targeted Registration. 2017. url: https://

thehackerblog.com/the-io-error-taking-control-of-all-

io-domains-with-a-targeted-registration/ (p. 46).

[46] Yuriy Bulygin. Cpu side-channels vs. virtualization malware: The
good, the bad, or the ugly. In: ToorCon (2008) (p. 47).

[47] Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro, and
Danilo Vendraminetto. Model-Checking Speculation-Dependent
Security Properties: Abstracting and Reducing Processor Models
for Sound and Complete Verification. In: Electronics 8.9 (2019),
p. 1057 (pp. 69, 88).

100

https://twitter.com/brainsmoke/status/948561799875502080
https://twitter.com/brainsmoke/status/948561799875502080
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/

[48] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 10–
12, 47, 53, 56, 74, 75, 80, 84).

[49] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (pp. 10, 47, 56, 74, 77, 83, 94).

[50] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019 (pp. 8, 9, 11, 12, 43, 44, 48, 51–57, 59–61, 73, 74, 77, 83).

[51] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R Gross. Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity. In: USENIX Security Symposium. 2015
(p. 22).

[52] Dan Carpenter. Smatch check for Spectre stuff. 2018 (p. 62).

[53] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant #1 mitigation). 2018 (p. 68).

[54] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Deian
Stefan, Tamara Rezk, and Gilles Barthe. Towards Constant-Time
Foundations for the New Spectre Era. In: arXiv:1910.01755 (2019)
(p. 84).

[55] Anirban Chakraborty, Sarani Bhattacharya, and Debdeep Mu-
khopadhyay. ExplFrame: Exploiting Page Frame Cache for Fault
Analysis of Block Ciphers. In: arXiv:1905.12974 (2019) (p. 41).

[56] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod
Subramanyan. A formal approach to secure speculation. In: CSF.
2019 (p. 62).

[57] Baozi Chen, Qingbo Wu, Yusong Tan, Liu Yang, and Peng Zou.
Exploration for Software Mitigation to Spectre Attacks of Poisoning
Indirect Branches. In: IETE Technical Review 35.sup1 (2018),
pp. 119–127 (p. 65).

101

References

[58] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(pp. 56, 61).

[59] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang.
Defeating Speculative-Execution Attacks on SGX with HyperRace.
In: Dependable and Secure Computing (DSC). 2019 (p. 71).

[60] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian
Zhang. Detecting Privileged Side-Channel Attacks in Shielded
Execution with DéJà Vu. In: AsiaCCS. 2017 (p. 48).

[61] Yueqiang Cheng, Zhi Zhang, and Surya Nepal. Still Hammerable
and Exploitable: on the Effectiveness of Software-only Physical
Kernel Isolation. In: arXiv:1802.07060 (2018) (p. 41).

[62] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan
Saroiu, Alec Wolman, and Onur Mutlu. Are We Susceptible to
Rowhammer? An End-to-End Methodology for Cloud Providers.
In: S&P. 2020 (p. 41).

[63] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. Exploiting correcting codes: On the effectiveness of ecc memory
against rowhammer attacks. In: S&P (2019) (p. 41).

[64] Robert J Colvin and Kirsten Winter. An abstract semantics of
speculative execution for reasoning about security vulnerabilities.
In: arXiv:2004.00577 (2020) (p. 62).

[65] Microsoft Corp. 2019. url: https://support.microsoft.com/en-
us/help/4482887/windows-10-update-kb4482887 (p. 66).

[66] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (p. 32).

[67] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
Cachequote: Efficiently recovering long-term secrets of SGX EPID
via cache attacks. In: CHES. 2018 (p. 37).

[68] Jonas Depoix and Philipp Altmeyer. Detecting Spectre Attacks by
identifying Cache Side-Channel Attacks using Machine Learning.
In: Advanced Microkernel Operating Systems 75 (2018) (pp. 71,
91).

102

https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887

[69] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James
Riely. The code that never ran: Modeling attacks on speculative
evaluation. In: S&P. 2019 (p. 62).

[70] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX. In: USENIX Security Symposium. 2017 (p. 37).

[71] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sand-
hya Dwarkadas. Spectres, virtual ghosts, and hardware support.
In: Workshop on Hardware and Architectural Support for Security
and Privacy. 2018 (pp. 68, 77).

[72] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern
Paxson, Michael Bailey, et al. The Matter of Heartbleed. In: ACM
IMC. 2014 (p. 6).

[73] Swastika Dutta and Sayan Sinha. Performance statistics and learn-
ing based detection of exploitative speculative attacks. In: Interna-
tional Conference on Computing Frontiers. 2019 (pp. 71, 91).

[74] Richard Earnshaw. Mitigation against unsafe data speculation
(CVE-2017-5753). 2018 (p. 68).

[75] Jake Edge. Kernel address space layout randomization. 2013. url:
https://lwn.net/Articles/569635/ (p. 22).

[76] Dmitry Evtyushkin and Dmitry Ponomarev. Covert Channels
Through Random Number Generator: Mechanisms, Capacity Esti-
mation and Mitigations. In: CCS. 2016 (p. 37).

[77] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Covert channels through branch predictors: a feasibility study. In:
HASP. 2015 (pp. 37, 48).

[78] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
In: MICRO. 2016 (pp. 18, 37, 48).

[79] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (pp. 37, 47,
54, 56, 64).

103

https://lwn.net/Articles/569635/

References

[80] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett,
Subhasish Mitra, and Wolfgang Kunz. Processor hardware security
vulnerabilities and their detection by unique program execution
checking. In: DATE. 2019 (pp. 62, 88).

[81] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward
Suh. HyperFlow: A processor architecture for nonmalleable, timing-
safe information flow security. In: CCS. 2018 (pp. 66, 88).

[82] Cesare Ferri, Ruth Iris Bahar, Mirko Loghi, and Massimo Poncino.
Energy-optimal synchronization primitives for single-chip multi-
processors. In: ACM Great Lakes symposium on VLSI. 2009 (p. 31).

[83] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (pp. 18, 54, 56, 58).

[84] Anders Fogh. Behind the scenes of a bug collision. 2018. url:
https://cyber.wtf/2018/01/05/behind-the-scene-of-a-

bug-collision/ (pp. 48–50).

[85] Anders Fogh. Negative Result: Reading Kernel Memory From User
Mode. 2017. url: https://cyber.wtf/2017/07/28/negative-
result- reading- kernel- memory- from- user- mode/ (pp. 50,
51).

[86] Anders Fogh and Daniel Gruss. Using Undocumented CPU Behav-
ior to See Into Kernel Mode and Break KASLR in the Process. In:
BlackHat USA. 2016 (p. 49).

[87] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In: S&P. 2018 (p. 41).

[88] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides of Target Row
Refresh. In: S&P. 2020 (p. 41).

[89] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An
Efficient Data-centric Defense Mechanism against Spectre Attacks.
In: DAC. 2019 (pp. 69, 88).

[90] Jacob Fustos and Heechul Yun. SpectreRewind: A Framework for
Leaking Secrets to Past Instructions. In: arXiv:2003.12208 (2020)
(pp. 56, 78).

104

https://cyber.wtf/2018/01/05/behind-the-scene-of-a-bug-collision/
https://cyber.wtf/2018/01/05/behind-the-scene-of-a-bug-collision/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/

[91] Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, and Zeyi Liu.
AdapTimer: Hardware/Software Collaborative Timer Resistant to
Flush-Based Cache Attacks on ARM-FPGA Embedded SoC. In:
Conference on Computer Design (ICCD). 2019 (p. 71).

[92] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. In: Journal of Cryptographic Engineering
(2016) (p. 34).

[93] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen,
Yier Jin, and Ahmad-Reza Sadeghi. LAZARUS: Practical Side-
Channel Resilient Kernel-Space Randomization. In: RAID. 2017
(pp. 51, 89).

[94] Jason Gionta, William Enck, and Per Larsen. Preventing kernel
code-reuse attacks through disclosure resistant code diversification.
In: Communications and Network Security (CNS). 2016 (p. 22).

[95] Thomas Gleixner. x86/kpti: Kernel Page Table Isolation (was
KAISER). 2017. url: https://lkml.org/lkml/2017/12/4/709
(p. 89).

[96] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and
Krste Asanović. Replicating and Mitigating Spectre Attacks on a
Open Source RISC-V Microarchitecture. In: Third Workshop on
Computer Architecture Research with RISC-V (CARRV). 2019
(pp. 56, 57, 70, 88).

[97] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In: EuroSec. 2017 (p. 37).

[98] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks. In: USENIX Security Symposium. 2018
(p. 37).

[99] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (pp. 37, 40).

[100] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance
Regressions. 2018 (p. 89).

105

https://lkml.org/lkml/2017/12/4/709

References

[101] Gunnar Grimsdal, Patrik Lundgren, Christian Vestlund, Felipe
Boeira, and Mikael Asplund. Can Microkernels Mitigate Microar-
chitectural Attacks? In: Nordic Conference on Secure IT Systems.
2019 (pp. 67, 89).

[102] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, Gauss, and Reload – A Cache Attack on the BLISS
Lattice-Based Signature Scheme. In: CHES. 2016 (p. 39).

[103] D Gruss, M Schwarz, and M Lipp. Meltdown: Basics, Details,
Consequences. In: BlackHat USA. 2018 (p. 81).

[104] Daniel Gruss. [RFC, PATCH] x86 64: KAISER - do not map kernel
in user mode. 2017. url: https://lkml.org/lkml/2017/5/4/220
(p. 89).

[105] Daniel Gruss. Software-based Microarchitectural Attacks. PhD
thesis. Graz University of Technology, 2017 (pp. 34, 36, 38).

[106] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (pp. 8, 11, 12, 51, 89, 93).

[107] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (p. 40).

[108] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:
USENIX Security Symposium. 2017 (pp. 32, 37, 50).

[109] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 8, 11, 12, 50, 89).

[110] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(p. 41).

[111] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 7, 8, 11, 40, 49, 89).

[112] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 4, 35, 36, 41).

106

https://lkml.org/lkml/2017/5/4/220

[113] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 39).

[114] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-after-freemail:
Generalizing the use-after-free problem and applying it to email
services. In: AsiaCCS. 2018 (p. 46).

[115] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (p. 39).

[116] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: Principled Detection of Specula-
tive Information Flows. In: S&P. 2020 (p. 62).

[117] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games – Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P. 2011 (pp. 34, 39, 48).

[118] Berk Gulmezoglu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cross-VM cache attacks on AES. In:
IEEE Transactions on Multi-Scale Computing Systems 2.3 (2016),
pp. 211–222 (p. 37).

[119] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. FortuneTeller: Predicting Microarchitectural Attacks via
Unsupervised Deep Learning. In: arXiv:1907.03651 (2019) (pp. 71,
91).

[120] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. A Faster and More Realistic Flush+Reload Attack on
AES. In: COSADE. 2015 (p. 39).

[121] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang,
Meng Wu, and Zhiqiang Zuo. SpecuSym: Speculative Symbolic
Execution for Cache Timing Leak Detection. In: arXiv:1911.00507
(2019) (p. 62).

[122] Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici.
Bitwhisper: Covert signaling channel between air-gapped computers
using thermal manipulations. In: IEEE CSF. 2015 (p. 46).

[123] Youngkwang Han and John Kim. A Novel Covert Channel Attack
Using Memory Encryption Engine Cache. In: DAC. 2019 (p. 38).

107

References

[124] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd
Austin, and Mohit Tiwari. Cyclone: Detecting Contention-Based
Cache Information Leaks Through Cyclic Interference. In: MICRO.
2019 (pp. 71, 88, 91).

[125] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael Scott, Kai Shen, and Mike Marty. Janus: Intra-
Process Isolation for High-Throughput Data Plane Libraries. 2018
(p. 77).

[126] Mark D Hill, Jon Masters, Parthasarathy Ranganathan, Paul
Turner, and John L Hennessy. On the Spectre and Meltdown
Processor Security Vulnerabilities. In: IEEE Micro 39.2 (2019),
pp. 9–19 (p. 44).

[127] Jann Horn. Reading privileged memory with a side-channel. 2018
(pp. 8, 50, 56, 58).

[128] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 18, 47, 53, 59, 84).

[129] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang.
EPTI: efficient defence against meltdown attack for unpatched
VMs. In: USENIX ATC. 2018 (p. 89).

[130] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(pp. 35, 48, 49, 89).

[131] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. Bluethunder: A 2-level Directional
Predictor Based Side-Channel Attack against SGX. In: CHES. 2020
(p. 47).

[132] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache Attacks Enable Bulk Key
Recovery on the Cloud. In: CHES. 2016 (p. 39).

[133] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud. In: Cryptology ePrint
Archive, Report 2015/898 (2015) (p. 37).

[134] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. 2018 (pp. 80,
90).

[135] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019 (pp. 83, 84).

108

[136] Intel. Deep Dive: Load Value Injection. 2020. url: https :

/ / software . intel . com / security - software - guidance /

insights/deep-dive-load-value-injection (p. 91).

[137] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 18, 83).

[138] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 2019 (p. 67).

[139] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018 (pp. 62, 65, 74, 77, 90).

[140] Intel. Intel Xeon Processor Scalable Family Technical Overview.
2017 (p. 77).

[141] Intel. Intel-SA-00233 Microarchitectural Data Sampling Advisory.
2019. url: https://www.intel.com/content/www/us/en/

security- center/advisory/intel- sa- 00233.html (pp. 81,
87).

[142] Intel. L1 Terminal Fault SA-00161. 2018. url: https://software.
intel . com / security - software - guidance / software -

guidance/l1-terminal-fault (p. 90).

[143] Intel. Q2 2018 Speculative Execution Side Channel Update. 2018
(pp. 74, 77).

[144] Intel. Retpoline: A Branch Target Injection Mitigation. Revision
003. 2018 (pp. 65, 66).

[145] Intel. Side Channel Mitigation by Product CPU Model. url: https:
//www.intel.com/content/www/us/en/architecture-and-

technology/engineering-new-protections-into-hardware.

html (pp. 64, 88).

[146] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (pp. 63, 90).

[147] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross pro-
cessor cache attacks. In: AsiaCCS. 2016 (p. 40).

[148] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES. In: S&P. 2015 (p. 37).

[149] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Know Thy Neighbor: Crypto Library Detection in Cloud.
In: PETS (2015) (p. 39).

109

https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html

References

[150] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Lucky 13 Strikes Back. In: AsiaCCS. 2015 (p. 39).

[151] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Wait a minute! A fast, Cross-VM attack on AES.
In: RAID’14. 2014 (p. 39).

[152] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (pp. 41, 53, 83, 84).

[153] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Math-
ias Payer. Block Oriented Programming: Automating Data-Only
Attacks. In: CCS. 2018 (p. 22).

[154] Jacek Galowicz. Cyberus Technology - Meltdown. 2018. url: https:
//www.cyberus-technology.de/posts/2018-01-03-meltdown.

html (p. 51).

[155] Himanshi Jain, D Anthony Balaraju, and Chester Rebeiro. Spy
Cartel: Parallelizing Evict+ Time-Based Cache Attacks on Last-
Level Caches. In: Journal of Hardware and Systems Security 3.2
(2019), pp. 147–163 (p. 35).

[156] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In:
SysTEX. 2017 (p. 41).

[157] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (pp. 22, 41, 49, 89).

[158] Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J
Peter Brady, Sergey Bratus, and Sean W Smith. Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation. In: HotSoS.
2020 (p. 67).

[159] Dougall Johnson. I can read user memory using speculative exec
reliably. 2018. url: https://twitter.com/dougallj/status/
948494573965201408 (p. 52).

[160] Dougall Johnson. x86-64 Speculative Execution Harness.
2018. url: https : / / gist . github . com / dougallj /

f9ffd7e37db35ee953729491cfb71392 (p. 52).

110

https://www.cyberus-technology.de/posts/2018-01-03-meltdown.html
https://www.cyberus-technology.de/posts/2018-01-03-meltdown.html
https://www.cyberus-technology.de/posts/2018-01-03-meltdown.html
https://twitter.com/dougallj/status/948494573965201408
https://twitter.com/dougallj/status/948494573965201408
https://gist.github.com/dougallj/f9ffd7e37db35ee953729491cfb71392
https://gist.github.com/dougallj/f9ffd7e37db35ee953729491cfb71392

[161] Dougall Johnson. Yes - Intel does have broken speculative exe-
cution. 2018. url: https://twitter.com/dougallj/status/
948457072047276032 (p. 52).

[162] Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang,
Ozgur Sinanoglu, and Ramesh Karri. MAGIC: Malicious Aging in
Circuits/Cores. In: ACM TACO. 2015 (p. 41).

[163] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. A high-resolution side-channel attack on last-level
cache. In: DAC. 2016 (p. 37).

[164] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
Channel Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141–158 (p. 34).

[165] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In: USENIX Security Symposium. 2020 (p. 42).

[166] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In: DAC. 2019 (pp. 70, 88).

[167] Taehyun Kim and Youngjoo Shin. Reinforcing Meltdown Attack
by Using a Return Stack Buffer. In: IEEE Access 7 (2019) (pp. 59,
78).

[168] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA. 2014 (p. 41).

[169] Russel King. ARM: spectre-v2: harden branch predictor on context
switches. 2018 (p. 64).

[170] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In: MICRO. 2018
(p. 68).

[171] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 53,
55, 67, 77, 83, 88).

[172] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018 (p. 62).

111

https://twitter.com/dougallj/status/948457072047276032
https://twitter.com/dougallj/status/948457072047276032

References

[173] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Melt-
down and Spectre. In: (2018). url: https://spectreattack.com
(p. 72).

[174] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 7,
11, 12, 42, 43, 47, 51, 53–58, 61, 64, 69).

[175] Paul C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(p. 34).

[176] Igor Korkin. Divide et Impera: MemoryRanger Runs Drivers in
Isolated Kernel Spaces. In: arXiv:1812.09920 (2018) (p. 89).

[177] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 18, 47,
53, 58, 78).

[178] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled
N Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. SPECCFI:
Mitigating Spectre Attacks using CFI Informed Speculation. In:
S&P. 2020 (pp. 8, 66).

[179] Jonas Krautter, Dennis Gnad, and Mehdi Tahoori. FPGAhammer:
Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA
on AES. In: CHES. 2018 (p. 42).

[180] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
Rambleed: Reading bits in memory without accessing them. In:
S&P. 2020 (p. 41).

[181] Mark Lanteigne. How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware. 2016. url: http://www.thirdio.
com/rowhammer.pdf (p. 41).

[182] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (pp. 18, 37, 47, 48).

112

https://spectreattack.com
http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf

[183] Tom Lendacky. [PATCH] x86/cpu, x86/pti: Do not enable PTI on
AMD processors. 2017. url: https://lkml.org/lkml/2017/12/
27/2 (p. 52).

[184] Chaz Lever, Robert Walls, Yacin Nadji, David Dagon, Patrick
McDaniel, and Manos Antonakakis. Domain-Z: 28 registrations
later measuring the exploitation of residual trust in domains. In:
S&P. 2016 (p. 46).

[185] Congmiao Li and Jean-Luc Gaudiot. Challenges in Detecting an
“Evasive Spectre”. In: IEEE Computer Architecture Letters (2020)
(pp. 71, 91).

[186] Congmiao Li and Jean-Luc Gaudiot. Online detection of spectre
attacks using microarchitectural traces from performance counters.
In: Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 2018 (pp. 71, 91).

[187] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng.
Conditional Speculation: An effective approach to safeguard out-of-
order execution against spectre attacks. In: HPCA. 2019 (pp. 70,
88).

[188] Chulseung Lim, Kyungbae Park, Geunyong Bak, Donghyuk Yun,
Myungsang Park, Sanghyeon Baeg, Shi-Jie Wen, and Richard Wong.
Study of proton radiation effect to row hammer fault in DDR4
SDRAMs. In: Microelectronics Reliability 80 (2018), pp. 85–90
(p. 41).

[189] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: 2020
(p. 41).

[190] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (p. 41).

[191] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (pp. 35, 37, 39,
41).

[192] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clé-
mentine Maurice, and Daniel Gruss. Take a Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In: AsiaCCS.
2020 (pp. 38, 40, 56).

113

https://lkml.org/lkml/2017/12/27/2
https://lkml.org/lkml/2017/12/27/2

References

[193] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 7, 8, 11, 12, 43, 47, 50, 51, 70,
73–77, 81).

[194] Daiping Liu, Shuai Hao, and Haining Wang. All Your DNS Records
Point to Us: Understanding the Security Threats of Dangling DNS
Records. In: CCS. 2016 (p. 46).

[195] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In:
MICRO. 2014 (p. 30).

[196] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 37).

[197] Jason Lowe-Power, Venkatesh Akella, Matthew K Farrens, Samuel
T King, and Christopher J Nitta. Position Paper: A case for expos-
ing extra-architectural state in the ISA. In: HASP. 2018 (pp. 69,
88).

[198] Andrei Lutas and Dan Lutas. Bypassing KPTI Using the Specula-
tive Behavior of the SWAPGS Instruction. In: BlackHat Europe.
2019 (pp. 56, 57).

[199] LWN. The current state of kernel page-table isolation. 2017.
url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 89).

[200] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 18, 47, 53, 58, 62).

[201] Giorgi Maisuradze. Assessing the Security of Hardware-Assisted
Isolation Techniques. PhD thesis. Saarland University, 2019 (pp. 81,
87).

[202] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sor-
niotti, Engin Kirda, William Robertson, and Anil Kurmus. Spec-
ulator: A Tool to Analyze Speculative Execution Attacks and
Mitigations. In: ACM ACSAC. 2019 (pp. 56, 57).

[203] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti,
Wil Robertson, Engin Kirda, and Anil Kurmus. Bypassing memory
safety mechanisms through speculative control flow hijacks. In:
arXiv:2003.05503 (2020) (p. 57).

114

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

[204] Enrico Mariconti, Jeremiah Onaolapo, Syed Sharique Ahmad, Nico-
las Nikiforou, Manuel Egele, Nick Nikiforakis, and Gianluca Stringh-
ini. What’s in a Name?: Understanding Profile Name Reuse on
Twitter. In: WWW’17. 2017 (p. 46).

[205] James Martindale. I kinda hacked a few Facebook accounts us-
ing a vulnerability they won’t fix. 2017. url: https://medium.
com / @jkmartindale / i - kinda - hacked - a - few - facebook -

2f5669794f79 (p. 46).

[206] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In: RAID. 2015
(pp. 28, 35–37).

[207] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (p. 37).

[208] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 37).

[209] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. Spectre is here to stay: An analysis of side-channels
and speculative execution. In: arXiv:1902.05178 (2019) (pp. 63,
94).

[210] Avi Mendelson. Secure Speculative Core. In: System-on-Chip Con-
ference (SOCC). 2019 (p. 69).

[211] Microsoft. Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer. 2018 (p. 71).

[212] Microsoft Techcommunity. Hyper-V HyperClear Mitigation for L1
Terminal Fault. 2018. url: https://techcommunity.microsoft.
com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-

for-L1-Terminal-Fault/ba-p/382429 (p. 90).

[213] MITRE. CWE-416: Use After Free. 2020. url: https://cwe.

mitre.org/data/definitions/416.html (p. 75).

[214] MITRE. CWE-688: Function Call With Incorrect Variable or Ref-
erence as Argument. 2020. url: https://cwe.mitre.org/data/
definitions/688.html (p. 75).

115

https://medium.com/@jkmartindale/i-kinda-hacked-a-few-facebook-2f5669794f79
https://medium.com/@jkmartindale/i-kinda-hacked-a-few-facebook-2f5669794f79
https://medium.com/@jkmartindale/i-kinda-hacked-a-few-facebook-2f5669794f79
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/688.html
https://cwe.mitre.org/data/definitions/688.html

References

[215] MITRE. CWE-689: Permission Race Condition During Resource
Copy. 2020. url: https://cwe.mitre.org/data/definitions/
689.html (p. 75).

[216] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam:
A false dependency attack against constant-time crypto implemen-
tations in SGX. In: CT-RSA. 2018 (pp. 35, 48).

[217] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cache-
zoom: How SGX amplifies the power of cache attacks. In: CHES.
2017 (p. 37).

[218] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis. In: USENIX Security. 2020 (pp. 74, 83, 93).

[219] John Monaco. SoK: Keylogging Side Channels. In: S&P. 2018
(p. 39).

[220] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (p. 42).

[221] Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz
Akram, Vianney Lapotre, Guy Gogniat, and Pascal Benoit. WHIS-
PER: A Tool for Run-time Detection of Side-Channel Attacks. In:
IEEE Access (2020) (pp. 71, 91).

[222] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M Michael,
and Hisanobu Tomari. Quantitative comparison of Hardware Trans-
actional Memory for Blue Gene/Q, zEnterprise EC12, Intel Core,
and POWER8. In: ISCA. 2015 (p. 32).

[223] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
Retrofitting Fine Grain Isolation in the Firefox Renderer. In:
USENIX Security Symposium. 2020 (p. 68).

[224] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
Retrofitting Fine Grain Isolation in the Firefox Renderer (Extended
Version). In: arXiv:2003.00572 (2020) (p. 68).

[225] Michael Neve and Jean-Pierre Seifert. Advances on Access-Driven
Cache Attacks on AES. In: Selected Areas in Cryptography (SAC).
2006 (p. 36).

116

https://cwe.mitre.org/data/definitions/689.html
https://cwe.mitre.org/data/definitions/689.html

[226] O’Keeffe, Dan and Muthukumaran, Divya and Aublin, Pierre-Louis
and Kelbert, Florian and Priebe, Christian and Lind, Josh and
Zhu, Huanzhou and Pietzuch, Peter. Spectre attack against SGX
enclave. 2018 (p. 56).

[227] Ejebagom John Ojogbo, Mithuna Thottethodi, and TN Vijaykumar.
Secure automatic bounds checking: prevention is simpler than cure.
In: International Symposium on Code Generation and Optimization.
2020 (p. 68).

[228] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. You Shall Not Bypass: Employing data de-
pendencies to prevent Bounds Check Bypass. In: arXiv:1805.08506
(2018) (p. 65).

[229] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof
Fetzer. Bringing Spectre-type vulnerabilities to the surface. In:
USENIX Security. 2020 (p. 62).

[230] Hamza Omar, Brandon D’Agostino, and Omer Khan. OPTIMUS:
A Security-Centric Dynamic Hardware Partitioning Scheme for
Processors that Prevent Microarchitecture State Attacks. In: IEEE
Transactions on Computers (2020) (p. 66).

[231] Hamza Omar and Omer Khan. IRONHIDE: A Secure Multicore
Architecture that Leverages Hardware Isolation Against Microar-
chitecture State Attacks. In: arXiv:1904.12729 (2019) (p. 66).

[232] Open Source Security Inc. Respectre: The State of the Art in
Spectre Defenses. 2018 (p. 62).

[233] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (p. 37).

[234] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 34–36).

[235] Dan Page. Theoretical use of cache memory as a cryptanalytic side-
channel. In: Cryptology ePrint Archive, Report 2002/169 (2002)
(p. 34).

[236] Tapti Palit, Fabian Monrose, and Michalis Polychronakis. Mitigat-
ing data leakage by protecting memory-resident sensitive data. In:
ACSAC. 2019 (p. 67).

[237] Andrew Pardoe. Spectre mitigations in MSVC. 2018 (p. 62).

117

References

[238] Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte,
and Mark Tehranipoor. Leveraging Side-Channel Information for
Disassembly and Security. In: ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC) 16.1 (2019), pp. 1–21 (p. 91).

[239] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(pp. 34, 36).

[240] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 37, 40, 41, 70).

[241] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. 2018
(pp. 68, 71).

[242] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Man-
fred Lochter, and Paul Rösler. Attacking deterministic signature
schemes using fault attacks. In: EuroS&P. 2018 (p. 41).

[243] Joop van de Pol, Nigel P Smart, and Yuval Yarom. Just a little
bit more. In: CT-RSA 2015. 2015 (p. 39).

[244] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis
Polychronakis, and Vasileios P Kemerlis. kRˆ X: Comprehensive
Kernel Protection against Just-In-Time Code Reuse. In: EuroSys.
2017 (p. 22).

[245] Potential Impact on Processors in the POWER Family. IBM, 2018.
url: https://www.ibm.com/blogs/psirt/potential-impact-
processors-power-family/ (p. 50).

[246] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic Analysis of Randomization-based Protected
Cache Architectures. In: (in submission) (2021) (p. 31).

[247] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in Scatter-
Cache. In: arXiv:1908.03383 (2019) (p. 31).

[248] Rui Qiao and Mark Seaborn. A New Approach for Rowhammer At-
tacks. In: International Symposium on Hardware Oriented Security
and Trust. 2016 (p. 41).

[249] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies. In: CCS. 2019 (p. 42).

118

https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/

[250] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults. In: AsianHOST. 2019 (p. 42).

[251] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In: IEEE MICRO.
2018 (p. 31).

[252] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In: ISCA. 2019 (pp. 30, 31).

[253] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a Needle in
the Software Stack. In: USENIX Security Symposium. 2016 (p. 41).

[254] Refined Speculative Execution Terminology. 2020. url: https:
/ / software . intel . com / security - software - guidance /

insights / refined - speculative - execution - terminology

(p. 8).

[255] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and
Johanna Sepúlveda. Side channel attack on NoC-based MPSoCs are
practical: NoC Prime+Probe attack. In: Symposium on Integrated
Circuits and Systems Design (SBCCI). 2016 (p. 37).

[256] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site Isolation:
Process Separation for Web Sites within the Browser. In: USENIX
Security Symposium. 2019 (pp. 8, 68, 90).

[257] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (p. 37).

[258] Rogue Data Cache Load / CVE-2017-5754 / INTEL-SA-00088.
Intel Corp., 2018. url: https://software.intel.com/security-
software-guidance/software-guidance/rogue-data-cache-

load (p. 50).

[259] Simon Rokicki. GhostBusters: Mitigating Spectre Attacks on a
DBT-Based Processor. In: DATE. 2020 (pp. 70, 88).

[260] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A. Adam Ding.
SCADET: A Side-Channel Attack Detection Tool for Tracking
Prime+Probe. In: ICCAD. 2018 (p. 71).

[261] SafeSide: Understand and mitigate software-observable side-chan-
nels. Google, 2019. url: https://github.com/google/safeside
(p. 48).

119

https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://github.com/google/safeside

References

[262] Gururaj Saileshwar and Moinuddin K Qureshi. CleanupSpec: An
“Undo” Approach to Safe Speculation. In: MICRO. 2019 (pp. 69,
88).

[263] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jim-
borean, Stefanos Kaxiras, and Magnus Själander. Ghost loads:
what is the cost of invisible speculation? In: International Confer-
ence on Computing Frontiers. 2019 (pp. 70, 88).

[264] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jim-
borean, and Magnus Själander. Efficient invisible speculative exe-
cution through selective delay and value prediction. In: ISCA. 2019
(pp. 71, 88).

[265] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum 2 to RIDL: Rogue In-flight Data Load. 2020
(p. 82).

[266] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum to RIDL: Rogue In-flight Data Load. 2019
(p. 82).

[267] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 47,
74, 75, 81, 82, 87).

[268] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs
via Cache Evictions. 2020 (p. 82).

[269] Michael Schwarz. Software-based Side-Channel Attacks and De-
fenses in Restricted Environments. PhD thesis. Graz University of
Technology, 2019 (p. 55).

[270] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (pp. 9, 47, 53, 56, 74, 77, 83).

[271] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS (2018) (p. 39).

120

[272] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 37).

[273] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020 (pp. 10–12, 67, 69, 88).

[274] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks. In: NDSS. 2018
(p. 71).

[275] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (pp. 37, 41).

[276] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 9,
11, 12, 46, 47, 74, 75, 80–82, 87).

[277] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 37, 71).

[278] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (pp. 7, 8, 11, 12, 56, 64).

[279] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019 (p. 41).

[280] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: abusing Intel
SGX to conceal cache attacks. In: Cybersecurity 3.1 (2020), p. 2
(p. 37).

[281] Martin Schwarzl, Michael Schwarz, Thomas Schuster, and Daniel
Gruss. It’s not Prefetch: Speculative Dereferencing of Registers. In:
(in submission) (2020) (pp. 11, 12).

[282] Mark Seaborn and Thomas Dullien. Exploiting the DRAM row-
hammer bug to gain kernel privileges. In: Black Hat Briefings. 2015
(p. 41).

121

References

[283] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: CCS. 2007
(pp. 22, 55–57).

[284] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restricting
control flow during speculative execution. In: CCS. 2018 (pp. 65,
90).

[285] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restrict-
ing control flow during speculative execution with venkman. In:
arXiv:1903.10651 (2019) (pp. 65, 90).

[286] Johannes Sianipar, Muhammad Sukmana, and Christoph Meinel.
Moving Sensitive Data Against Live Memory Dumping, Spectre
and Meltdown Attacks. In: International Conference on Systems
Engineering (ICSEng). 2018 (pp. 67, 91).

[287] Ben Smith. Enable SharedArrayBuffer by default on non-android.
2018 (p. 71).

[288] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrien-
ko, Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time
code reuse: On the effectiveness of fine-grained address space layout
randomization. In: S&P. 2013 (p. 22).

[289] Software Techniques for Managing Speculation on AMD Processors.
Revison 7.10.18. Advanced Micro Devices Inc., 2018 (pp. 63, 64,
88).

[290] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan
Mangard. Systematic classification of side-channel attacks: a case
study for mobile devices. In: IEEE Communications Surveys &
Tutorials 20.1 (2017), pp. 465–488 (p. 34).

[291] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Reg-
ister State using Microarchitectural Side-Channels. In: arXiv:1806.-
07480 (2018) (pp. 47, 59, 74, 78, 90).

[292] SUSE. Security update for kernel-firmware. 2018. url: https:

//www.suse.com/support/update/announcement/2018/suse-

su-20180008-1/ (p. 64).

[293] Arne Swinnen. Authentication bypass on Uber’s Single Sign-On
via subdomain takeover. 2017. url: https://www.arneswinnen.
net/2017/06/authentication-bypass-on-ubers-sso-via-

subdomain-takeover/ (p. 46).

122

https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/

[294] Jakub Szefer. Survey of Microarchitectural Side and Covert Chan-
nels, Attacks, and Defenses. In: Cryptology ePrint Archive, Report
2016/479 (2016) (p. 34).

[295] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal War in Memory. In: S&P. 2013 (p. 22).

[296] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In: USENIX Security Symposium. 2017 (p. 42).

[297] Churan Tang, Zongbin Liu, Cunqing Ma, Jingquan Ge, and
Chenyang Tu. SecFlush: A Hardware/Software Collaborative De-
sign for Real-Time Detection and Defense Against Flush-Based
Cache Attacks. In: International Conference on Information and
Communications Security. 2019 (p. 91).

[298] Mohammadkazem Taram, Ashish Venkat, and DM Tullsen. Con-
text-sensitive fencing: Securing speculative execution via microcode
customization. In: ASPLOS. 2019 (p. 65).

[299] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Row-
hammer Attacks over the Network and Defenses. In: USENIX ATC.
2018 (p. 41).

[300] The Chromium Projects. Actions required to mitigate Speculative
Side-Channel Attack techniques. 2018 (p. 71).

[301] The Chromium Projects. Site Isolation. 2018 (p. 68).

[302] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. In: IBM Journal of research and Development
11.1 (1967), pp. 25–33 (p. 15).

[303] David Trilla, Carles Hernandez, Jaume Abella, and Francisco J. Ca-
zorla. Cache Side-channel Attacks and Time-predictability in High-
performance Critical Real-time Systems. In: DAC. 2018 (p. 31).

[304] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Check-
Mate: Automated Synthesis of Hardware Exploits and Security
Litmus Tests. In: MICRO. 2018 (pp. 56, 78).

[305] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-Synthesized Attacks
Exploiting Invalidation-Based Coherence Protocols. In: arXiv:1802.-
03802 (2018) (pp. 56, 78).

123

References

[306] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanaly-
sis of DES implemented on computers with cache. In: CHES. 2003
(p. 34).

[307] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs/
answer/7625886 (p. 65).

[308] Eben Upton. Why Raspberry Pi isn’t vulnerable to Spectre or
Meltdown. 2018. url: https://www.raspberrypi.org/blog/why-
raspberry-pi-isnt-vulnerable-to-spectre-or-meltdown/

(p. 66).

[309] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, and
Peter Druschel. ERIM: Secure and Efficient In-process Isolation
with Memory Protection Keys. In: USENIX Security Symposium.
2019 (p. 77).

[310] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 8, 11, 47, 74, 79, 80,
86).

[311] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(pp. 10–12, 42, 47, 73, 74, 77, 85, 87, 94, 95).

[312] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (p. 41).

[313] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution. In:
USENIX Security Symposium. 2017 (p. 41).

[314] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Malicious management unit: Why stopping cache attacks in
software is harder than you think. In: USENIX Security Symposium.
2018 (p. 37).

124

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.raspberrypi.org/blog/why-raspberry-pi-isnt-vulnerable-to-spectre-or-meltdown/
https://www.raspberrypi.org/blog/why-raspberry-pi-isnt-vulnerable-to-spectre-or-meltdown/

[315] Marco Vassena, Klaus V. Gleissenthall, Rami Gökhan Kici, Deian
Stefan, and Ranjit Jhala. Automatically Eliminating Speculative
Leaks With Blade. In: arXiv:2005.00294 (2019) (p. 65).

[316] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016 (p. 41).

[317] Pepe Vila, Andreas Abel, Marco Guarnieri, Boris Köpf, and Jan
Reineke. Flushgeist: Cache Leaks from Beyond the Flush. In:
arXiv:2005.13853 (2020) (p. 38).

[318] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In: S&P. 2019 (pp. 30, 35, 36).

[319] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Di-
estelhorst, Bashir M Al-Hashimi, and Geoff V Merrett. BRB: Miti-
gating Branch Predictor Side-Channels. In: HPCA. 2019 (p. 63).

[320] Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism. ARM, 2018. url: https : / / developer .

arm . com / support / arm - security - updates / speculative -

processor-vulnerability (p. 50).

[321] Luke Wagner. Mitigations landing for new class of timing attack.
2018 (p. 71).

[322] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael Abu-Ghazaleh,
Srikanth V Krishnamurthy, Edward JM Colbert, and Paul Yu.
Unveiling your keystrokes: A Cache-based Side-channel Attack on
Graphics Libraries. In: NDSS. 2019 (p. 39).

[323] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V
Krishnamurthy. PAPP: Prefetcher-Aware Prime and Probe Side-
channel Attack. In: DAC. 2019 (p. 37).

[324] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas,
Tulika Mitra, and Abhik Roychoudhury. KLEESpectre: Detecting
Information Leakage through Speculative Cache Attacks via Sym-
bolic Execution. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 29.3 (2020), pp. 1–31 (p. 62).

[325] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead Defense
against Spectre Attacks via Binary Analysis. In: arXiv:1807.05843
(2018) (p. 62).

125

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

References

[326] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead Defense
against Spectre attacks via Program Analysis. In: Transactions on
Software Engineering (2019) (p. 56).

[327] Han Wang, Hossein Sayadi, Tinoosh Mohsenin, Liang Zhao, Avesta
Sasan, Setareh Rafatirad, and Houman Homayoun. Mitigating
Cache-Based Side-Channel Attacks through Randomization: A
Comprehensive System and Architecture Level Analysis. In: DATE.
2020 (p. 71).

[328] Zhenghong Wang and Ruby B Lee. Covert and Side Channels due
to Processor Architecture. In: ACSAC. 2006 (p. 48).

[329] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In: ACM SIGARCH
Computer Architecture News 35.2 (2007), p. 494 (p. 30).

[330] ZiHao Wang, ShuangHe Peng, XinYue Guo, and WenBin Jiang.
Zero in and TimeFuzz: detection and mitigation of cache side-
channel attacks. In: International Conference on Security for Infor-
mation Technology and Communications. 2018 (p. 91).

[331] Robert NM Watson, Jonathan Woodruff, Michael Roe, Simon W
Moore, and Peter G Neumann. Capability hardware enhanced
RISC instructions (CHERI): Notes on the Meltdown and Spectre
attacks. Tech. rep. University of Cambridge, Computer Laboratory,
2018 (p. 66).

[332] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
SGXJail: Defeating Enclave Malware via Confinement. In: RAID.
2019 (p. 33).

[333] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and
Baris Kasikci. Nda: Preventing speculative execution attacks at
their source. In: MICRO. 2019 (pp. 56, 69, 88).

[334] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 74, 79, 80, 90).

126

https://foreshadowattack.eu/foreshadow-NG.pdf

[335] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Cus-
todio, Thomas Eisenbarth, and Berk Sunar. JackHammer: Effi-
cient Rowhammer on Heterogeneous FPGA-CPU Platforms. In:
arXiv:1912.11523 (2019) (p. 41).

[336] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: USENIX
Security Symposium. 2019 (p. 31).

[337] Chris Williams. Kernel-memory-leaking Intel processor design flaw
forces Linux, Windows redesign. In: The Register (). url: https:
//www.theregister.co.uk/2018/01/02/intel_cpu_design_

flaw/ (p. 52).

[338] Henry Wong. Measuring Reorder Buffer Capacity. 2013. url: http:
//blog.stuffedcow.net/2013/05/measuring-rob-capacity/

(p. 18).

[339] Meng Wu and Chao Wang. Abstract interpretation under specula-
tive execution. In: PLDI. 2019 (p. 62).

[340] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud. In: ACM Transactions on Networking (2014) (p. 40).

[341] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the
Hyper-space: High-speed Covert Channel Attacks in the Cloud. In:
USENIX Security Symposium. 2012 (p. 40).

[342] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security Symposium. 2016
(p. 41).

[343] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECH-
MINER: A Framework for Investigating and Measuring Speculative
Execution Vulnerabilities. In: NDSS. 2020 (p. 78).

[344] Wenjie Xiong and Jakub Szefer. Leaking Information Through
Cache LRU States. In: HPCA. 2020 (p. 56).

[345] Wenjie Xiong and Jakub Szefer. Survey of Transient Execution
Attacks. In: arXiv:2005.13435 (2020) (pp. 43, 48, 74).

127

https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/
http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/

References

[346] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie,
Yuanyuan Zhang, and Dawu Gu. From collision to exploitation:
Unleashing use-after-free vulnerabilities in linux kernel. In: CCS.
2015 (p. 46).

[347] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
channel attacks: Deterministic side channels for untrusted operating
systems. In: S&P. 2015 (p. 41).

[348] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierarchy. In: MICRO.
2018 (pp. 70, 88).

[349] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In: S&P.
2019 (pp. 38, 40).

[350] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.
In: Cryptology ePrint Archive, Report 2014/140 (2014) (p. 48).

[351] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 34, 38, 39, 48).

[352] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Ra-
jwar. Performance evaluation of Intel® transactional synchroniza-
tion extensions for high-performance computing. In: International
Conference on High Performance Computing, Networking, Storage
and Analysis. 2013 (p. 31).

[353] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep
Torrellas, and Christopher W Fletcher. Speculative Taint Tracking
(STT) A Comprehensive Protection for Speculatively Accessed
Data. In: MICRO. 2019 (pp. 69, 88).

[354] Drew Zagieboylo, G Edward Suh, and Andrew C Myers. Using
information flow to design an isa that controls timing channels. In:
CSF. 2019 (p. 88).

[355] Shaza Zeitouni, David Gens, and Ahmad-Reza Sadeghi. It’s hammer
time: how to attack (rowhammer-based) dram-pufs. In: DAC. 2018
(p. 41).

128

[356] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Ex-
ploring Branch Predictors for Constructing Transient Execution
Trojans. In: ASPLOS. 2020 (pp. 54, 56, 57).

[357] Weijuan Zhang, Xiaoqi Jia, Chang Wang, Shengzhi Zhang, Qingjia
Huang, Mingsheng Wang, and Peng Liu. A Comprehensive Study
of Co-residence Threat in Multi-tenant Public PaaS Clouds. In:
Information and Communications Security. Springer, 2016 (p. 34).

[358] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented
flush-reload side channels on arm and their implications for android
devices. In: CCS. 2016 (p. 39).

[359] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter.
HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis. In: S&P. 2011 (p. 37).

[360] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (p. 39).

[361] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-VM Side Channels and Their Use to Extract Private
Keys. In: CCS. 2012 (p. 36).

[362] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and
Zhi Wang. TeleHammer: Cross-Privilege-Boundary Rowhammer
through Implicit Accesses. In: arXiv:1912.03076 (2019) (p. 41).

[363] Zhi Zhang, Yueqiang Cheng, Yinqian Zhang, and Surya Nepal.
GhostKnight: Breaching Data Integrity via Speculative Execution.
In: arXiv:2002.00524 (2020) (p. 56).

[364] Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang,
Lixin Zhang, Xuehai Qian, and Dan Meng. A Lightweight Isolation
Mechanism for Secure Branch Predictors. In: arXiv:2005.08183
(2020) (p. 63).

[365] Beilei Zheng, Jianan Gu, and Chuliang Weng. CBA-Detector: An
Accurate Detector Against Cache-Based Attacks Using HPCs and
Pintools. In: International Symposium on Advanced Parallel Pro-
cessing Technologies. 2019 (p. 91).

129

Information on Part II

Note that Part II is not included in this PDF. Please download the full
version for Part II.

131

The complexity of modern computer systems has dramatically in-
creased over the past decades and continues to increase. Security
problems often arise when abstractions are imperfect or incom-
plete, which they inherently need to be to hide complexity.

In this habilitation, we introduce transient-execution attacks.
Transient-execution attacks exploits that the complex hardware
transiently runs ahead and performs operations it should not per-
form. In this transient window, attackers can steal secrets from a
victim. These attacks have not only sparked a wide media echo
but also a long list of follow-up publications on new attack vari-
ants and mitigations. We also discuss mitigation proposals and
mitigations that have been deployed in practice in this habilita-
tion.

Content of this Habilitation

Graz University of Technology
Faculty of Computer Science

Institute for Applied Infromation Processing
and Communications

