
Flush+Flush:
A Fast and Stealthy Cache Attack∗

Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

Graz University of Technology, Austria

Abstract. Research on cache attacks has shown that CPU caches leak
significant information. Proposed detection mechanisms assume that all
cache attacks cause more cache hits and cache misses than benign appli-
cations and use hardware performance counters for detection.

In this article, we show that this assumption does not hold by develop-
ing a novel attack technique: the Flush+Flush attack. The Flush+Flush
attack only relies on the execution time of the flush instruction, which
depends on whether data is cached or not. Flush+Flush does not make
any memory accesses, contrary to any other cache attack. Thus, it causes
no cache misses at all and the number of cache hits is reduced to a mini-
mum due to the constant cache flushes. Therefore, Flush+Flush attacks
are stealthy, i.e., the spy process cannot be detected based on cache hits
and misses, or state-of-the-art detection mechanisms. The Flush+Flush
attack runs in a higher frequency and thus is faster than any existing
cache attack. With 496 KB/s in a cross-core covert channel it is 6.7 times
faster than any previously published cache covert channel.

1 Introduction

The CPU cache is a microarchitectural element that reduces the memory access
time of recently-used data. It is shared across cores in modern processors, and is
thus a piece of hardware that has been extensively studied in terms of informa-
tion leakage. Cache attacks include covert and cryptographic side channels, but
caches have also been exploited in other types of attacks, such as bypassing kernel
ASLR [14], detecting cryptographic libraries [17], or keystroke logging [10]. Hard-
ware performance counters have been proposed recently as an OS-level detection
mechanism for cache attacks and Rowhammer [5, 13, 31]. This countermeasure
is based on the assumption that all cache attacks cause significantly more cache
hits and cache misses than benign applications. While this assumption seems
reasonable, it is unknown whether there are cache attacks that do not cause a
significant number of cache hits and cache misses.

This paper has been accepted at DIMVA 2016 (dimva2016.mondragon.edu/en). The
final publication is available at link.springer.com (http://link.springer.com/).
∗ The officially published version of this paper had a label error in Figure 1 which
was corrected in this version.
† Part of the work was done while author was affiliated to Technicolor and Eurecom.

2 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

In this article, we present the Flush+Flush attack. Flush+Flush exploits the
fact that the execution time of the clflush instruction is shorter if the data
is not cached and higher if the data is cached. At the same time, the clflush

instruction evicts the corresponding data from all cache levels. Flush+Flush ex-
ploits the same hardware and software properties as Flush+Reload [45]: it works
on read-only shared memory, cross-core attack and in virtualized environments.
In contrast to Flush+Reload , Flush+Flush does not make any memory accesses
and thus does not cause any cache misses at all and only a minimal number of
cache hits. This distinguishes Flush+Flush from any other cache attack. How-
ever, with both Flush+Reload and Flush+Flush the victim process experiences
an increased number of cache misses.

We evaluate Flush+Flush both in terms of performance and detectability
in three scenarios: a covert channel, a side-channel attack on user input, and a
side-channel attack on AES with T-tables. We implement a detection mechanism
that monitors cache references and cache misses of the last-level cache, similarly
to state of the art [5, 13, 31]. We show that existing cache attacks as well as
Rowhammer attacks can be detected using performance counters. However, we
demonstrate that this countermeasure is non-effective against the Flush+Flush
attack, as the fundamental assumption fails. The Flush+Flush attack is thus
more stealthy than existing cache attacks, i.e., a Flush+Flush spy process cannot
be detected based on cache hits and cache misses. Thus, it cannot be detected
by state-of-the-art detection mechanisms.

The Flush+Flush attack runs in a higher frequency and thus is faster than
any existing cache attack in side-channel and covert channel scenarios. It achieves
a cross-core transmission rate of 496 KB/s, which is 6.7 times faster than any
previously published cache covert channel. The Flush+Flush attack does not
trigger prefetches and thus allows to monitor multiple addresses within a 4 KB
memory range in contrast to Flush+Reload that fails in these scenarios [10].

Our key contributions are:

– We detail a new cache attack technique that we call Flush+Flush. It relies
only on the difference in timing of the clflush instruction between cached
and non-cached memory accesses.

– We show that in contrast to all other attacks, Flush+Flush is stealthy, i.e.,
it cannot be detected using hardware performance counters. We show that
Flush+Flush also outperforms all existing cache attacks in terms of speed.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on CPU caches, shared memory, and cache attacks. Section 3
describes the Flush+Flush attack. Section 4 investigates how to leverage hard-
ware performance counters to detect cache attacks. We compare the performance
and detectability of Flush+Flush attacks compared to state-of-the-art attacks in
three scenarios: a covert channel in Section 5, a side-channel attack on keystroke
timings in Section 6, and on cryptographic algorithms in Section 7. Section 8
discusses implications and countermeasures. Section 9 discusses related work.
Finally, we conclude in Section 10.

Flush+Flush: A Fast and Stealthy Cache Attack∗ 3

2 Background

2.1 CPU Caches

CPU caches hide the memory accesses latency to the slow physical memory
by buffering frequently used data in a small and fast memory. Modern CPU
architectures implement n-way set-associative caches, where the cache is divided
into cache sets, and each cache set comprises several cache lines. A line is loaded
in a set depending on its address, and each line can occupy any of the n ways.

On modern Intel processors, there are three cache levels. The L3 cache, also
called last-level cache, is shared between all CPU cores. The L3 cache is inclusive,
i.e., all data within the L1 and L2 caches is also present in the L3 cache. Due
to these properties, executing code or accessing data on one core has immediate
consequences even for the private caches of the other cores. This can be exploited
in so called cache attacks. The last-level cache is divided into as many slices as
cores, interconnected by a ring bus. Since the Sandy Bridge microarchitecture,
each physical address is mapped to a slice by an undocumented so-called complex-
addressing function, that has recently been reversed-engineered [27].

A cache replacement policy decides which cache line to replace when loading
new data in a set. Typical replacement policies are least-recently used (LRU),
variants of LRU and bimodal insertion policy where the CPU can switch between
the two strategies to achieve optimal cache usage [33]. The unprivileged clflush

instruction evicts a cache line from all the cache hierarchy. However, a program
can also evict a cache line by accessing enough memory.

2.2 Shared Memory

Operating systems and hypervisors instrument shared memory to reduce the
overall physical memory utilization and the TLB utilization. Shared libraries
are loaded into physical memory only once and shared by all programs using
them. Thus, multiple programs access the same physical pages mapped within
their own virtual address space.

The operating system similarly optimizes mapping of files, forking a process,
starting a process twice, or using mmap or dlopen. All cases result in a memory
region shared with all other processes mapping the same file.

On personal computers, smartphones, private cloud systems and even in pub-
lic clouds [1], another form of shared memory can be found, namely content-based
page deduplication. The hypervisor or operating system scans the physical mem-
ory for byte-wise identical pages. Identical pages are remapped to the same phys-
ical page, while the other page is marked as free. This technique can lower the use
of physical memory and TLB significantly. However, sharing memory between
completely unrelated and possibly sandboxed processes, and between processes
running in different virtual machines brings up security and privacy concerns.

4 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

2.3 Cache Attacks and Rowhammer

Cache attacks exploit timing differences caused by the lower latency of CPU
caches compared to physical memory. Access-driven cache attacks are typically
devised in two types: Prime+Probe [30, 32,39] and Flush+Reload [11, 45].

In Prime+Probe attacks, the attacker occupies a cache set and measures
whenever a victim replaces a line in that cache set. Modern processors have a
physically indexed last-level cache, use complex addressing, and undocumented
replacement policies. Cross-VM side-channel attacks [16, 24] and covert chan-
nels [28] that tackle these challenges have been presented in the last year.
Oren et al. [29] showed that a Prime+Probe cache attack can be launched from
within sandboxed JavaScript in a browser, allowing a remote attacker to eaves-
drop on network traffic statistics or mouse movements through a website.

Flush+Reload is a two phase attack that works on a single cache line. First,
it flushes a cache line using the clflush instruction, then it measures the time
it takes to reload the data. Based on the time measurement, the attacker deter-
mines whether a targeted address has been reloaded by another process in the
meantime. In contrast to Prime+Probe, Flush+Reload exploits the availability
of shared memory and especially shared libraries between the attacker and the
victim program. Applications of Flush+Reload have been shown to be reliable
and powerful, mainly to attack cryptographic algorithms [12,17,18,48].

Rowhammer is not a typical cache attack but a DRAM vulnerability that
causes random bit flips by repeatedly accessing a DRAM row [20]. It however
shares some similarities with caches attacks since the accesses must bypass all
levels of caches to reach DRAM and trigger bit flips. Attacks exploiting this
vulnerability have already been demonstrated to gain root privileges and to
evade a sandbox [36]. Rowhammer causes a significant number of cache hits and
cache misses, that resemble a cache attack.

3 The Flush+Flush Attack

The Flush+Flush attack is a faster and stealthier alternative to existing cache
attacks that also has fewer side effects on the cache. In contrast to other cache
attacks, it does not perform any memory accesses. For this reason it causes
no cache misses and only a minimal number of cache hits. Thus, proposed de-
tection mechanisms based on hardware performance counters fail to detect the
Flush+Flush attack. Flush+Flush exploits the same hardware and software prop-
erties as Flush+Reload . It runs across cores and in virtualized environments if
read-only shared memory with the victim process can be acquired.

Our attack builds upon the observation that the clflush instruction can
abort early in case of a cache miss. In case of a cache hit, it has to trigger
eviction on all local caches. This timing difference can be exploited in form of a
cache attack, but it can also be used to derive information on cache slices and
CPU cores as each core can access its own cache slice faster than others.

The attack consists of only one phase, that is executed in an endless loop. It
is the execution of the clflush instruction on a targeted shared memory line.

Flush+Flush: A Fast and Stealthy Cache Attack∗ 5

The attacker measures the execution time of the clflush instruction. Based
on the execution time, the attacker decides whether the memory line has been
cached or not. As the attacker does not load the memory line into the cache, this
reveals whether some other process has loaded it. At the same time, clflush
evicts the memory line from the cache for the next loop round of the attack.

The measurement is done using the rdtsc instruction that provides a sub-
nanosecond resolution timestamp. It also uses mfence instructions, as clflush

is only ordered by mfence, but not by any other means.

100 110 120 130 140 150 160 170 180 190 200
0%

25%

50%

75%

100%

Execution Time (in cycles)

N
u
m
b
e
r
o
f
c
a
se

s

Sandy Miss Sandy Hit Ivy Miss Ivy Hit Haswell Miss Haswell Hit

Fig. 1. Execution time of the clflush instruction on cached and uncached memory on
different CPU architectures.∗

Figure 1 shows the execution time histogram of the clflush instruction for
cached and non-cached memory lines, run on the three setups with different
recent microarchitectures: a Sandy Bridge i5-2540M, an Ivy Bridge i5-3320M
and a Haswell i7-4790. The timing difference of the peaks is 12 cycles on Sandy
Bridge, 9 cycles on Ivy Bridge, and 12 cycles on Haswell. If the address maps to
a remote core, another penalty of 3 cycles is added to the minimum execution
time for cache hits. The difference is enough to be observed by an attacker. We
discuss this timing difference and its implications in Section 9.1. In either case the
execution time is less than the access time for both memory cached in the last-
level cache and memory accesses that are not cached. Therefore, Flush+Flush is
significantly faster than any other last-level cache attack.

The Flush+Flush attack inherently has a slightly lower accuracy than the
Flush+Reload technique in some cases, due to the lower timing difference be-
tween a hit and a miss and because of a lower access time on average. Neverthe-
less, the same amount of information is extracted faster using the Flush+Flush
attack due to the significantly lower execution time. Furthermore, the reload-step
of the Flush+Reload attack can trigger the prefetcher and thus destroy measure-
ments by fetching data into the cache. This is the case especially when moni-
toring more than one address within a physical page [10]. As the Flush+Flush
attack never performs any memory accesses, this problem does not exist and the
Flush+Flush attack achieves an even higher accuracy here. For the same reason,
the Flush+Flush attack causes no cache misses and only a minimal number of

∗ The officially published version of this paper had an error in Figure 1, where the
labels were incorrectly swapped. We fixed the error in this version of the paper.

6 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

Name Description

BPU RA/ RM Branch prediction unit read accesses/misses
BRANCH INSTRUCTIONS/ MISSES Retired branch instructions/mispredictions
BUS CYCLES Bus cycles
CACHE MISSES/ REFERENCES Last-level cache misses/references
UNC CBO CACHE LOOKUP C-Box events incl. clflush (all slices)
CPU CYCLES/REF CPU CYCLES CPU cycles with/without scaling
DTLB RA/ RM/ WA/ WM Data TLB read/write accesses/misses
INSTRUCTIONS Retired instructions
ITLB RA/ RM Instruction TLB read/write accesses
L1D RA/ RM/ WA/ WM L1 data cache read/write accesses/misses
L1I RM L1 instruction cache read misses
LL RA/ WA Last-level cache read/write accesses

Table 1. List of hardware performance events we use.

cache hits. Thus, recently proposed detection mechanisms using cache references
and cache misses fail to detect Flush+Flush.

4 Detecting Cache Attacks with Hardware Performance
Counters

Cache attacks can lead to an increased number of cache hits or cache misses in
the attacker process or in other processes. Thus, it may be possible to detect
abnormal behavior on a system level. However, to stop or prevent an attack, it
is necessary to identify the attacking process. Therefore, we consider an attack
stealthy if the attacking spy process cannot be identified.

Hardware performance counters are special-purpose registers that are used to
monitor special hardware-related events. Events that can be monitored include
cache references and cache misses on the last-level cache. They are mostly used
for performance analysis and fine tuning, but have been found to be suitable to
detect Rowhammer and the Flush+Reload attack [5,13,31]. The focus of our work
is to show that detection of existing attacks is straight-forward, but detection
of the Flush+Flush attack using these performance counters is infeasible, due to
the absence of cache misses and the minimal number of cache references.

We analyze the feasibility of such detection mechanisms using the Linux
perf_event_open syscall interface that provides userspace access to a subset of
all available performance counters on a per-process basis. The actual accesses to
the model specific registers are performed in the kernel. The same information
can be used by a system service to detect ongoing attacks. During our tests we
ran the performance monitoring with system service privileges.

We analyzed all 23 hardware and cache performance events available with
the Linux syscall interface on our system. Additionally, we analyzed the so
called uncore [15] performance monitoring units and found one called C-Box
that is influenced by cache hits, misses and clflush instructions directly. The
UNC CBO CACHE LOOKUP event of the C-Box allows monitoring a last-level cache
lookups per cache slice, including by the clflush instruction. The C-Box moni-
toring units are not available through a generic interface but only through model

Flush+Flush: A Fast and Stealthy Cache Attack∗ 7

specific registers. Table 1 lists all events we evaluated. We found that there are
no other performance counters documented to monitor cache hits, misses or
clflush instructions specifically. Furthermore, neither the hypervisor nor the
operating system can intercept the clflush instruction or monitor the frequency
of clflush instructions being executed using performance counters.

The number of performance events that can be monitored simultaneously is
limited by hardware. On all our test systems it is possible to monitor up to 4
events simultaneously. Thus, any detection mechanism can only use 4 perfor-
mance events simultaneously.

We evaluated the 24 performance counters for the following scenarios:

1. Idle: idle system,
2. Firefox: user scrolling down a chosen Twitter feed in Firefox,
3. OpenTTD: user playing a game
4. stress -m 1: loop reading and writing in dynamically allocated 256 MB arrays,
5. stress -c 1: loop doing a CPU computation with almost no memory,
6. stress -i 1: loop calling the I/O sync() function,
7. Flush+Reload : cache attack on the GTK library to spy on keystroke events,
8. Rowhammer: Rowhammer attack.

The first 3 scenarios are casual computer usage scenarios, the next 3 cause a
benign high load situation and the last 2 perform an attack. A good detection
mechanism classifies as benign the scenarios 1 to 6 and as attacks 7 and 8.

We use the instruction TLB (ITLB) performance counters (ITLB RA+ITLB WA)
to normalize the performance counters to make cache attacks easier to detect,
and prevent scenarios 2 and 3 from being detected as malicious. Indeed, the
main loop that is used in the Flush+Reload and Rowhammer attacks causes a
high number of last-level cache misses while executing only a small piece of code.
Executing only a small piece of code causes a low pressure on the ITLB.

Table 2 shows a comparison of performance counters for the 8 scenarios
tested over 135 seconds. These tests were performed in multiple separate runs as
the performance monitoring unit can only monitor 4 events simultaneously. Not
all cache events are suitable for detection. The UNC_CBO_CACHE_LOOKUP event
that counts cache slice events including clflush operations shows very high
values in case of stress -i. It would thus lead to false positives. Similarly,
the INSTRUCTIONS event used by Chiappetta et al. [5] has a significantly higher
value in case of stress -c than in the attack scenarios and would cause false
positives in the case of benign CPU intensive activities. The REF_CPU_CYCLES

is the unscaled total number of CPU cycles consumed by the process. Divided
by the TLB events, it shows how small the executed loop is. The probability of
false positive matches is high, for instance in the case of stress -c.

Thus, 4 out of 24 events allow detecting both Flush+Reload and Rowhammer
without causing false positives for benign applications. The rationale behind
these events is as follows:

1. CACHE_MISSES occur after data has been flushed from the last-level cache,
2. CACHE_REFERENCES occur when reaccessing memory,

8 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

Event / Test Idle Firefox OTTD stress -m stress -c stress -i F+R Rowhammer

BPU RA 4.35 14.73 67.21 92.28 6 109 276.79 3.23 127 443.28 23 778.66
BPU RM 0.36 0.32 1.87 0.00 12 320.23 0.36 694.21 25.53
BRANCH INST. 4.35 14.62 74.73 92.62 6 094 264.03 3.23 127 605.71 23 834.59
BRANCH MISS. 0.36 0.31 2.06 0.00 12 289.93 0.35 693.97 25.85
BUS CYCLES 4.41 1.94 12.39 52.09 263 816.26 6.20 30 420.54 98 406.44
CACHE MISSES 0.09 0.15 2.35 58.53 0.06 1.92 693.67 13 766.65
CACHE REFER. 0.40 0.98 6.84 61.05 0.31 2.28 693.92 13 800.01
UNC CBO LOO. 432.99 3.88 18.66 4 166.71 0.31 343 224.44 2 149.72 50 094.17
CPU CYCLES 38.23 67.45 449.23 2 651.60 9 497 363.56 237.62 1 216 701.51 3 936 969.93
DTLB RA 5.11 19.19 123.68 31.78 6 076 031.42 3.04 47 123.44 25 459.36
DTLB RM 0.07 0.09 1.67 0.05 0.05 0.04 0.05 0.03
DTLB WA 1.70 11.18 54.88 30.97 3 417 764.10 1.13 22 868.02 25 163.03
DTLB WM 0.01 0.01 0.03 2.50 0.01 0.01 0.01 0.16
INSTRUCTIONS 20.24 66.04 470.89 428.15 20 224 639.96 11.77 206 014.72 132 896.65
ITLB RA 0.95 0.97 0.98 1.00 0.96 0.97 0.96 0.97
ITLB RM 0.05 0.03 0.02 0.00 0.04 0.03 0.04 0.03
L1D RA 5.11 18.30 128.75 31.53 6 109 271.97 3.01 47 230.08 26 173.65
L1D RM 0.37 0.82 8.47 61.63 0.51 0.62 695.22 15 630.85
L1D WA 1.70 10.69 57.66 30.72 3 436 461.82 1.13 22 919.77 25 838.20
L1D WM 0.12 0.19 1.50 30.57 0.16 0.44 0.23 10.01
L1I RM 0.12 0.65 0.21 0.03 0.65 1.05 1.17 1.14
LL RA 0.14 0.39 5.61 30.73 0.12 0.47 695.35 9 067.77
LL WA 0.01 0.02 0.74 30.30 0.01 0.01 0.02 4 726.97
REF CPU CYC. 157.70 69.69 445.89 1 872.05 405 922.02 223.08 1 098 534.32 3 542 570.00

Table 2. Comparison of performance counters normalized to the number of ITLB
events in different cache attacks and normal scenarios over 135 seconds in separate
runs.

3. L1D_RM occur because flushing from last-level cache also flushes from the
lower cache levels,

4. LL_RA are a subset of the CACHE_REFERENCES counter, they occur when reac-
cessing memory,

Two of the events are redundant: L1D_RM is redundant with CACHE_MISSES, and
LL_RA with CACHE_REFERENCES. We will thus focus on the CACHE_MISSES and
CACHE_REFERENCES events as proposed in previous work [5, 13,31].

We define that a process is considered malicious if more than km cache miss
or kr cache reference per ITLB event are observed. The attack is detected if

CCACHE MISSES

CITLB RA + CITLB WA

≥ km, or
CCACHE REFERENCES

CITLB RA + CITLB WA

≥ kr,

with C the value of the corresponding performance counter. The operating sys-
tem can choose the frequency in which to run the detection checks.

The thresholds for the cache reference and cache hit rate are determined
based on a set of benign applications and malicious applications. It is chosen to
have the maximum distance to the minimum value for any malicious application
and the maximum value for any benign application. In our case this is km = 2.35
and kr = 2.34. Based on these thresholds, we perform a classification of pro-
cesses into malicious and benign processes. We tested this detection mechanism
against various cache attacks and found that it is suitable to detect different
Flush+Reload , Prime+Probe and Rowhammer attacks as malicious. However,
the focus of our work is not the evaluation of detection mechanisms based on

Flush+Flush: A Fast and Stealthy Cache Attack∗ 9

performance counters, but to show that such detection mechanisms cannot re-
liably detect the Flush+Flush attack due to the absence of cache misses and a
minimal number of cache references.

In the following sections, we evaluate the performance and the detectability
of Flush+Flush compared to the state-of-the-art cache attacks Flush+Reload
and Prime+Probe in three scenarios: a covert channel, a side channel on user
input and a side channel on AES with T-tables.

5 Covert Channel Comparison

In this section, we describe a generic low-error cache covert channel framework.
In a covert channel, an attacker runs two unprivileged applications on the sys-
tem under attack. The processes are cooperating to communicate with each
other, even though they are not allowed to by the security policy. We show how
the two processes can communicate using the Flush+Flush, Flush+Reload , and
Prime+Probe technique. We compare the performance and the detectability of
the three implementations. In the remainder of the paper, all the experiments
are performed on a Haswell i7-4790 CPU.

5.1 A Low-error Cache Covert Channel Framework

In order to perform meaningful experiments and obtain comparable and fair
results, the experiments must be reproducible and tested in the same condi-
tions. This includes the same hardware setup, and the same protocols. Indeed,
we cannot compare covert channels from published work [24, 28] that have dif-
ferent capacities and error rates. Therefore, we build a framework to evaluate
covert channels in a reproducible way. This framework is generic and can be
implemented over any covert channel that allows bidirectional communication,
by implementing the send() and receive() functions.

The central component of the framework is a simple transmission protocol.
Data is transmitted in packets of N bytes, consisting of N − 3 bytes payload, a
1 byte sequence number and a CRC-16 checksum over the packet. The sequence
number is used to distinguish consecutive packets. The sender retransmits pack-
ets until the receiver acknowledges it. Packets are acknowledged by the receiver
if the checksum is valid.

Although errors are still possible in case of a false positive CRC-16 checksum
match, the probability is low. We choose the parameters such that the effective
error rate is below 5%. The channel capacity measured with this protocol is
comparable and reproducible. Furthermore, it is close to the effective capacity in
a real-world scenario, because error-correction cannot be omitted. The number of
transmitted bits is the minimum of bits sent and bits received. The transmission
rate can be computed by dividing the number of transmitted bits by the runtime.
The error rate is given by the number of all bit errors between the sent bits and
received bits, divided by the number of transmitted bits.

10 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

5.2 Covert Channel Implementations

We first implemented the Flush+Reload covert channel. By accessing fixed mem-
ory locations in a shared library the a 1 is transmitted, whereas a 0 is transmitted
by omitting the access. The receiver performs the actual Flush+Reload attack to
determine whether a 1 or a 0 was transmitted. The bits retrieved are then parsed
as a data frame according to the transmission protocol. The sender also monitors
some memory locations using Flush+Reload for cache hits too, to receive packet
acknowledgments.

Sender Receiver Sender Receiver

L1

L2

L3

1 23 1

(a) Transmitting a '1' (b) Transmitting a '0'

Fig. 2. Illustration of the Flush+Flush covert channel.

The second implementation is the Flush+Flush covert channel, illustrated by
Figure 2. It uses the same sender process as the Flush+Reload covert channel.
To transmit a 1 (Figure 2-a), the sender accesses the memory location, that is
cached (step 1). This time, the receiver only flushes the shared line. As the line is
present in the last-level cache by inclusiveness, it is flushed from this level (step
2). A bit also indicates that the line is present in the L1 cache, and thus must
also be flushed from this level (step 3). To transmit a 0 (Figure 2-b), the sender
stays idle. The receiver flushes the line (step 1). As the line is not present in the
last-level cache, it means that it is also not present in the lower levels, which
results in a faster execution of the clflush instruction. Thus only the sender
process performs memory accesses, while the receiver only flushes cache lines.
To send acknowledgment bytes the receiver performs memory accesses and the
sender runs a Flush+Flush attack.

The third implementation is the Prime+Probe covert channel. It uses the
same attack technique as Liu et al. [24], Oren et al. [29], and Maurice et al. [28].
The sender transmits a 1 bit by priming a cache set. The receiver probes the
same cache set. Again the receiver determines whether a 1 or a 0 was trans-
mitted. We make two adjustments for convenience and to focus solely on the
transmission part. First, we compute a static eviction set by using the complex
addressing function [27] on physical addresses. This avoids the possibility of er-
rors introduced by timing-based eviction set computation. Second, we map the
shared library into our address space to determine the physical address to attack
to make an agreement on the cache sets in sender and receiver. Yet, the shared

Flush+Flush: A Fast and Stealthy Cache Attack∗ 11

Technique Packet
size

Capacity
in KB/s

Error
rate

Sender
refer-
ences

Sender
misses

Sender
stealth

Receiver
refer-
ences

Receiver
misses

Receiver
stealth

Flush+Flush 28 496 0.84% 1809.26 96.66 7 1.75 1.25 3
Flush+Reload 28 298 0.00% 526.14 56.09 7 110.52 59.16 7
Flush+Reload 5 132 0.01% 6.19 3.20 7 45.88 44.77 7
Flush+Flush 5 95 0.56% 425.99 418.27 7 0.98 0.95 3
Prime+Probe 5 67 0.36% 48.96 31.81 7 4.64 4.45 7
Flush+Reload 4 54 0.00% 0.86 0.84 3 2.74 1.25 7
Flush+Flush 4 52 1.00% 0.06 0.05 3 0.59 0.59 3
Prime+Probe 4 34 0.04% 55.57 32.66 7 5.23 5.01 7

Table 3. Comparison of capacity and detectability of the three cache covert channels
with different parameters. Flush+Flush and Flush+Reload use the same sender process.

library is never accessed and unmapped even before the Prime+Probe attack is
started. We assume that the sender and receiver have agreed on the cache sets
in a preprocessing step. This is practical even for a timing-based approach.

5.3 Performance Evaluation

Table 3 compares the capacity and the detectability of the three covert chan-
nels in different configurations. The Flush+Flush covert channel is the fastest
of the three covert channels. With a packet size of 28 bytes the transmission
rate is 496 KB/s. At the same time the effective error rate is only 0.84%. The
Flush+Reload covert channel also achieved a good performance at a packet size
of 28 bytes. The transmission rate then is 298 KB/s and the error rate < 0.005%.
With a packet size of 4 bytes, the performance is lower in all three cases.

A Prime+Probe covert channel with a 28-byte packet size is not realistic.
First, to avoid triggering the hardware prefetcher we do not access more than
one address per physical page. Second, for each eviction set we need 16 ad-
dresses. Thus we would require 28B · 4096 · 16 = 14 GB of memory only for the
eviction sets. For Prime+Probe we achieved the best results with a packet size
of 5 bytes. With this configuration the transmission rate is 68 KB/s at an error
rate of 0.14%, compared to 132 KB/s using Flush+Reload and 95 KB/s using
Flush+Flush.

The Flush+Flush transmission rate of 496 KB/s is significantly higher than
any other state-of-the-art cache covert channels. It is 6.7 times as fast as the
fastest cache covert channel to date [24] at a comparable error rate. Our covert
channel based on Flush+Reload is also faster than previously published cache
covert channels, but still much slower than the Flush+Flush covert channel.
Compared to our Prime+Probe covert channel, Flush+Flush is 7.3 times faster.

5.4 Detectability

Table 3 shows the evaluation of the detectability for packet sizes that yielded
the highest performance in one of the cases. Flush+Reload and Flush+Flush
use the same sender process, the reference and miss count is mainly influenced

12 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

by the number of retransmissions and executed program logic. Flush+Reload
is detected in all cases either because of its sender or its receiver, although its
sender process with a 4-byte packet size stays below the detection threshold. The
Prime+Probe attack is always well above the detection threshold and therefore
always detected as malicious. All Flush+Flush receiver processes are classified
as benign. However, only the sender process used for the Flush+Flush and the
Flush+Reload covert channels with a 4-byte packet size is classified as benign.

The receiver process performs most of the actual cache attack. If it is sufficient
to keep the receiver process stealthy, Flush+Flush clearly outperforms all other
cache attacks. If the sender has to be stealthy as well, the sender process used by
Flush+Flush and Flush+Reload performs better than the Prime+Probe sender
process. However, due to the high number of cache hits it is difficult to keep
the sender process below the detection threshold. An adversary could choose to
reduce the transmission rate in order to be stealthier in either case.

6 Side-Channel Attack on User Input

Another cache attack that has been demonstrated recently using Flush+Reload ,
is eavesdropping on keystroke timings. We attack an address in the GTK library
invoked when processing keystrokes. The attack is implemented as a program
that constantly flushes the address, and derives when a keystroke occurred, based
on memory access times or the execution time of the clflush instruction.

6.1 Performance Evaluation

We compare the three attacks Flush+Flush, Flush+Reload , and Prime+Probe,
based on their performance in this side-channel attack scenario. During each test
we simulate a user typing a 1000-character text into an editor. Each test takes
135 seconds. As expected, Flush+Reload has a very high accuracy of 96.1%. This
allows direct logging of keystroke timings. Flush+Flush performs notably well,
with 74.7% correctly detected keystrokes. However, this makes a practical attack
much harder than with Flush+Reload . The attack with Prime+Probe yielded no
meaningful results at all due to the high noise level. In case of Flush+Reload and
Flush+Flush the accuracy can be increased significantly by attacking 3 addresses
that are used during keystroke processing simultaneously. The decision whether a
keystroke was observed is then based on these 3 addresses increasing the accuracy
significantly. Using this technique reduces the error rate in case of Flush+Reload
close to 100% and above 92% in case of Flush+Flush.

6.2 Detectability

To evaluate the detectability we again monitored the cache references and cache
misses events, and compared the three cache attacks with each other and with an
idle system. Table 4 shows that Flush+Reload generates a high number of cache
references, whereas Flush+Flush causes a negligible number of cache references.

Flush+Flush: A Fast and Stealthy Cache Attack∗ 13

Technique Cache references Cache misses Stealthy

Flush+Reload 5.140 5.138 7

Flush+Flush 0.002 0.000 3

Table 4. Comparison of performance counters normalized to the number of ITLB
events for cache attacks on user input.

We omitted Prime+Probe in this table as it was not sufficiently accurate to
perform the attack.

Flush+Reload yields the highest accuracy in this side-channel attack, but it
is easily detected. The accuracy of Flush+Flush can easily be increased to more
than 92% and it still is far from being detected. Thus, Flush+Flush is a viable
and stealthy alternative to the Flush+Reload attack as it is not classified as
malicious based on the cache references or cache misses performance counters.

7 Side-Channel Attack on AES with T-Tables

To round up our comparison with other cache attacks, we compare Flush+Flush,
Flush+Reload , and Prime+Probe in a high frequency side-channel attack sce-
nario. Finding new cache attacks is out of scope of our work. Instead, we try to
perform a fair comparison between the different attack techniques by implement-
ing a well known cache attack using the three techniques on a vulnerable imple-
mentation of a cryptographic algorithm. We attack the OpenSSL T-Table-based
AES implementation that is known to be susceptible to cache attacks [2, 30].
This AES implementation is disabled by default for security reasons, but still
exists for the purpose of comparing new and existing side-channel attacks.

The AES algorithm uses the T-tables to compute the ciphertext based on
the secret key k and the plaintext p. During the first round, table accesses are
made to entries Tj [pi ⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16. Using a cache
attack it is possible to derive values for pi⊕ki and thus, possible key-byte values
ki in case pi is known.

7.1 Attack Implementation Using Flush+Flush

The implementation of the chosen-plaintext attack side-channel attacks for the
three attack techniques is very similar. The attacker triggers an encryption,
choosing pi while all pj with i 6= j are random. One cache line holds 16 T-Table
entries. The cache attack is now performed on the first line of each T-Table. The
attacker repeats the encryptions with new random plaintext bytes pj until only
one pi remains to always cause a cache hit. The attacker learns that pi⊕ki ≡d4e 0
and thus ki ≡d4e pi. After performing the attack for all 16 key bytes, the attacker
has derived 64 bits of the secret key k. As we only want to compare the three
attack techniques, we do not extend this attack to a full key recovery attack.

14 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

Fig. 3. Comparison of Cache Templates (address range of the first T-table) generated
using Flush+Reload (left), Flush+Flush (middle), and Prime+Probe (right). In all
cases k0 = 0x00.

Technique Number of encryptions

Flush+Reload 250
Flush+Flush 350
Prime+Probe 4 800

Table 5. Number of encryptions to determine the upper 4 bits of a key byte.

7.2 Performance Evaluation

Figure 3 shows a comparison of cache templates generated with Flush+Reload ,
Flush+Flush, and Prime+Probe using 1 000 000 encryptions to create a visible
pattern in all three cases. Similar templates can be found in previous work [10,
30, 37]. Table 5 shows how many encryptions are necessary to determine the
upper 4 bits correctly. We performed encryptions until the correct guess for the
upper 4 bits of key byte k0 had a 5% margin over all other key candidates.
Flush+Flush requires around 1.4 times as many encryptions as Flush+Reload ,
but 13.7 times less than Prime+Probe to achieve the same accuracy.

Flush+Flush is the only attack that does not trigger the prefetcher. Thus, we
can monitor multiple adjacent cache sets. By doing this we double the number
of cache references, but increase the accuracy of the measurements so that 275
encryptions are sufficient to identify the correct key byte with a 5% margin. That
is only 1.1 times as many encryptions as Flush+Reload and 17.5 times less than
Prime+Probe. Thus, Flush+Flush on multiple addresses is faster at deriving the
same information as Flush+Reload .

7.3 Detectability

Table 6 shows a comparison of the performance counters for the three attacks
over 256 million encryptions. The Flush+Flush attack took only 163 seconds
whereas Flush+Reload took 215 seconds and Prime+Probe 234 seconds for the
identical attack. On a system level, it is possible to notice ongoing cache attacks
on AES in all three cases due to the high number of cache misses caused by the
AES encryption process. However, to stop or prevent the attack, it is necessary
to detect the spy process. Prime+Probe exceeds the detection threshold by a
factor of 468 and Flush+Reload exceeds the threshold by a factor of 1070. To
stay below the detection threshold, slowing down the attack by at least the same

Flush+Flush: A Fast and Stealthy Cache Attack∗ 15

Technique Cache
references

Cache
misses

Execution
time in s

References
(norm.)

Misses
(norm.)

Stealthy

Flush+Reload 1 024 · 106 19 284 602 215 2 513.43 47.33 7

Prime+Probe 4 222 · 106 294 897 508 234 1 099.63 76.81 7

Flush+Flush 768 · 106 1 741 163 1.40 0.00 3

Table 6. Comparison of the performance counters when performing 256 million en-
cryptions with different cache attacks and without an attack.

factor would be necessary. In contrast, Flush+Flush is not detected based on our
classifier and does not have to be slowed down to be stealthy.

8 Discussion

8.1 Using clflush to Detect Cores and Cache Slices

140 142 144 146 148 150 152 154 156 158 160

0

2

4

6

·105

Execution Time (in cycles)

N
u
m
b
e
r
o
f
c
a
se

s

Core 0

Core 1

Core 2

Core 3

Fig. 4. Excerpt of the clflush histogram for an address in slice 1 on different cores.
The lower execution time on core 1 shows that this address maps to slice 1.

The Flush+Flush attack can be used to determine on which CPU core a
process is running or to which cache slice an address maps. Indeed, a clflush

on a remote cache slice takes longer than a clflush on a local cache slice, as
shown in Figure 4. This is due to the ring bus architecture connecting remote
slices. Knowing the physical address of a memory access on a local slice, we can
then use the complex addressing function [27] to determine on which core the
process runs. However, this would require high privileges. Yet, it is possible to
determine to which slice an address maps without knowing the physical address
by performing a timing attack. This can be done by an unprivileged process, as
pinning a thread to a CPU core requires no privileges.

This can be exploited to detect colocation on the same CPU, CPU core or
hyperthreading core in restricted environments even if the cpuid instructions is
virtualized. It is more difficult to determine which CPU core a thread runs on
based on memory access timings because of the influence of lower level caches.
Such an attack has also not been demonstrated yet. The information on the
executing CPU core can be used to enhance cache attacks and other attacks such
as the Rowhammer attack [9, 20]. Running clflush on a local slice lowers the

16 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

execution time of each Rowhammer loop round by a few cycles. The probability
of bit flips increases as the execution time lowers, thus we can leverage the
information whether an address maps to a local slice to improve this attack.

A similar timing difference also occurs upon memory accesses that are served
from the local or a remote slice respectively. The reason again is the direct con-
nection to the local cache slice while remote cache slices are connected via a ring
bus. However, as memory accesses will also be cached in lower level caches, it is
more difficult to observe the timing difference without clflush. The clflush in-
struction directly manipulates the last-level cache, thus lower level caches cannot
hide the timing difference.

While the operating system can restrict access on information such as the
CPU core the process is running on and the physical address mapping to make ef-
ficient cache attacks harder, it cannot restrict access to the clflush instruction.
Hence, the effect of such countermeasures is lower than expected.

8.2 Countermeasures

We suggest modifying the clflush instruction to counter the wide range of
attacks that it can be used for. The difference in the execution time of clflush
is 3 cycles depending on the cache slice and less than 12 cycles depending on
whether it is a cache miss. In practice the clflush instruction is used only in
rare situations and not in a high frequency. Thus, a hypothetical performance
advantage cannot justify introducing these exploitable timing differences. We
propose making clflush a constant-time instruction. This would prevent the
Flush+Flush attack completely, as well as information leakage on cache slices
and CPU cores.

Flush+Flush is the only cache attack that does not perform any memory ac-
cesses and thus causes no cache misses and only a minimal number of cache ref-
erences. One theoretical way to detect our attack would be to monitor each load,
e.g., by timing, and to stop when detecting too many misses. However, this so-
lution is currently not practical, as a software-based solution that monitors each
load would cause a significant performance degradation. A similar hardware-
based solution called informing loads has been proposed by Kong et al. [21],
however it needs a change in the instruction set. Without hardware modifica-
tions it would be possible to enable the rdtsc instruction only in privileged
mode as can be done using seccomp on Linux [25] since 2008. Fogh [7] pro-
posed to simulate the rdtsc in an interrupt handler, degrading the accuracy of
measurements far enough to make cache attacks significantly harder.

Flush+Reload and Flush+Flush both require shared memory. If shared mem-
ory is not available, an attacker would have to resort to a technique that even
works without shared memory such as Prime+Probe. Furthermore, making the
clflush instruction privileged would prevent Flush+Reload and Flush+Flush
as well. However, this would require changes in hardware and could not be im-
plemented in commodity systems.

Flush+Flush: A Fast and Stealthy Cache Attack∗ 17

9 Related work

9.1 Detecting and Preventing Cache Attacks

Zhang et al. [47] proposed HomeAlone, a system-level solution that uses a
Prime+Probe covert channel to detect the presence of a foe co-resident virtual
machine. The system monitors random cache sets so that friendly virtual ma-
chines can continue to operate if they change their workload, and that foe virtual
machines are either detected or forced to be silent. Cache Template Attacks [10]
can be used to detect attacks on shared libraries and binaries as a user. However,
such a permanent scan increases the system load and can only detect attacks in
a small address range within a reasonable response time.

Herath and Fogh [13] proposed to monitor cache misses to detect Flush+Reload
attacks and Rowhammer. The system would slow down or halt all attacker pro-
cesses. With the detection mechanism we implemented, we show that this tech-
nique is feasible for previous attacks but not for the Flush+Flush attack. Chi-
appetta et al. [5] proposed to build a trace of cache references and cache misses
over the number of executed instructions to detect Flush+Reload attacks. They
then proposed three methods to analyze this trace: a correlation-based method,
and two other ones based on machine learning techniques. However, a learning
phase is needed to detect malicious programs that are either from a set of known
malicious programs or resemble a program from this set. They are thus are less
likely to detect new or unknown cache attacks or Rowhammer attacks, in con-
trast to our ad-hoc detection mechanism. Payer [31] proposed a system called
HexPADS to use cache references, cache misses, but also other events like page
faults to detect cache attacks and Rowhammer at runtime.

Cache attacks can be prevented at three levels: at the hardware level, at the
system level, and finally, at the application level. At the hardware level, several
solutions have been proposed to prevent cache attacks, either by removing cache
interferences, or randomizing them. The solutions include new secure cache de-
signs [23,41,42] or altering the prefetcher policy [8]. However, hardware changes
are not applicable to commodity systems. At the system level, page coloring pro-
vides cache isolation in software [19,34]. Zhang et al. [49] proposed a more relaxed
isolation like repeated cache cleansing. These solutions cause performance issues,
as they prevent optimal use of the cache. Application-level countermeasures seek
to find the source of information leakage and patch it [4]. However, application-
level countermeasures are bounded and cannot prevent cache attacks such as
covert channels and Rowhammer. In contrast with prevention solutions that in-
cur a loss of performance, using performance counters does not prevent attacks
but rather detect them without overhead.

9.2 Usage of Hardware Performance Counters in Security

Hardware performance counters are made for performance monitoring, but secu-
rity researchers found other applications. In defensive cases, performance coun-
ters allow detection of malware [6], integrity checking of programs [26], control

18 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

flow integrity [44], and binary analysis [43]. In offensive scenarios, it has been
used for side-channel attacks against AES [40] and RSA [3]. Performance coun-
ters have also been used by Maurice et al. [27] to reverse engineer the complex
addressing function of the last-level cache of modern Intel CPUs.

9.3 Cache Covert Channels

Cache covert channels are a well-known problem, and have been studied rel-
atively to the recent evolutions in microarchitecture. The two main types of
access-driven attacks can be used to derive a covert channel. Covert channels
using Prime+Probe have already been demonstrated in [24, 28]. Flush+Reload
has been used for side-channels attacks [45], thus a covert channel can be de-
rived easily. However, to the best of our knowledge, there was no study of the
performance of such a covert channel.

In addition to building a covert channel with our new attack Flush+Flush,
we re-implemented Prime+Probe and implemented Flush+Reload .1 We thus pro-
vide an evaluation and a fair comparison between these different covert channels,
in the same hardware setup and with the same protocol.

9.4 Side-Channel Attacks on User Inputs

Section 6 describes a side channel to eavesdrop on keystrokes. If an attacker
has root access to a system, there are simple ways to implement a keylogger.
Without root access, software-based side-channel attacks have already proven
to be a reliable way to eavesdrop on user input. Attacks exploit the execution
time [38], peaks in CPU and cache activity graphs [35], or system services [46].
Zhang et al. [46] showed that it is possible to derive key sequences from inter-
keystroke timings obtained via procfs. Oren et al. [29] demonstrated that cache
attacks in sandboxed JavaScript inside a browser can derive user activities, such
as mouse movements. Gruss et al. [10] showed that auto-generated Flush+Reload
attacks can be used to measure keystroke timings as well as identifying keys.

10 Conclusion

In this paper we presented Flush+Flush, a novel cache attack that, unlike any
other, performs no memory accesses. Instead, it relies only on the execution
time of the flush instruction to determine whether data is cached. Flush+Flush
does not trigger prefetches and thus is applicable in more situations than other
attacks. The Flush+Flush attack is faster than any existing cache attack. It
achieves a transmission rate of 496 KB/s in a covert channel scenario, which is 6.7
times faster than any previous cache covert channel. As it performs no memory
accesses, the attack causes no cache misses at all. For this reason, detection

1 After public disclosure of the Flush+Flush attack on November 14, 2015,
Flush+Flush has also been demonstrated on ARM-based mobile devices [22].

Flush+Flush: A Fast and Stealthy Cache Attack∗ 19

mechanisms based on performance counters to monitor cache activity fail, as
their underlying assumption is incorrect.

While the Flush+Flush attack is significantly harder to detect than existing
cache attacks, it can be prevented with small hardware modifications. Making
the clflush instruction constant-time has no measurable impact on today’s
software and does not introduce any interface changes. Thus, it is an effective
countermeasure that should be implemented.

Finally, the experiments led in this paper broaden the understanding of the
internals of modern CPU caches. Beyond the adoption of detection mechanisms,
the field of cache attacks benefits from these findings, both to discover new
attacks and to be able to prevent them.

11 Acknowledgments

We would like to thank Mathias Payer, Anders Fogh, and our anonymous re-
viewers for their valuable comments and suggestions.

Supported by the EU Horizon 2020 programme under GA No.
644052 (HECTOR), the EU FP7 programme under GA No. 610436
(MATTHEW), the Austrian Research Promotion Agency (FFG)

and Styrian Business Promotion Agency (SFG) under GA No. 836628 (SeCoS),
and Cryptacus COST Action IC1403.

References

1. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: WOOT’15 (2015)

2. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., Department of Mathe-
matics, Statistics, and Computer Science, University of Illinois at Chicago (2005)

3. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: Utilizing Per-
formance Monitors for Compromising keys of RSA on Intel Platforms. Cryptology
ePrint Archive, Report 2015/621 (2015)

4. Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. Cryptology ePrint
Archive, Report 2006/052 (2006)

5. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Cryptology ePrint Archive,
Report 2015/1034 (2015)

6. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,
S., Stolfo, S.: On the feasibility of online malware detection with performance
counters. ACM SIGARCH Computer Architecture News 41(3), 559–570 (2013)

7. Fogh, A.: Cache side channel attacks. http://dreamsofastone.blogspot.co.at/
2015/09/cache-side-channel-attacks.html (2015)

8. Fuchs, A., Lee, R.B.: Disruptive Prefetching: Impact on Side-Channel Attacks and
Cache Designs. In: Proceedings of the 8th ACM International Systems and Storage
Conference (SYSTOR’15) (2015)

9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript. In: DIMVA’16 (2016)

20 Daniel Gruss, Clémentine Maurice†, Klaus Wagner, and Stefan Mangard

10. Gruss, D., Spreitzer, R., Mangard, S.: Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches. In: USENIX Security Symposium (2015)

11. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games – Bringing Access-Based
Cache Attacks on AES to Practice. In: S&P’11 (2011)

12. Gülmezoğlu, B., Inci, M.S., Eisenbarth, T., Sunar, B.: A Faster and More Realistic
Flush+Reload Attack on AES. In: Constructive Side-Channel Analysis and Secure
Design (COSADE) (2015)

13. Herath, N., Fogh, A.: These are Not Your Grand Daddy’s CPU Performance
Counters - CPU Hardware Performance Counters for Security. Black Hat 2015
Briefings (Aug 2015), https://www.blackhat.com/docs/us-15/materials/us-

15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-

CPU-Hardware-Performance-Counters-For-Security.pdf

14. Hund, R., Willems, C., Holz, T.: Practical Timing Side Channel Attacks against
Kernel Space ASLR. In: 2013 IEEE Symposium on Security and Privacy. pp. 191–
205 (2013)

15. Intel: Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3
(3A, 3B & 3C): System Programming Guide 253665 (2014)

16. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: A Shared Cache Attack that Works
Across Cores and Defies VM Sandboxing – and its Application to AES. In: S&P’15
(2015)

17. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: Crypto
library detection in cloud. Proceedings on Privacy Enhancing Technologies 1(1),
25–40 (2015)

18. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In:
AsiaCCS’15 (2015)

19. Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level protection
against cache-based side channel attacks in the cloud. In: Proceedings of the 21st
USENIX Security Symposium (2012)

20. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai,
K., Mutlu, O.: Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: Proceeding of the 41st annual International
Symposium on Computer Architecuture (ISCA’14) (2014)

21. Kong, J., Acıiçmez, O., Seifert, J.P., Zhou, H.: Hardware-software integrated ap-
proaches to defend against software cache-based side channel attacks. In: Pro-
ceedings of the 15th International Symposium on High Performance Computer
Architecture (HPCA’09). pp. 393–404 (2009)

22. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S.: Armageddon: Last-level cache
attacks on mobile devices. CoRR abs/1511.04897 (2015)

23. Liu, F., Lee, R.B.: Random Fill Cache Architecture. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO’14). pp. 203–215 (2014)

24. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-Level Cache Side-Channel
Attacks are Practical. In: S&P’15 (2015)

25. lwn.net: 2.6.26-rc1 short-form changelog. https://lwn.net/Articles/280913/

(May 2008)
26. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost

effective way for integrity checking of programs. In: Proceedings of the sixth ACM
workshop on Scalable trusted computing (2011)

27. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
Engineering Intel Complex Addressing Using Performance Counters. In: RAID
(2015)

Flush+Flush: A Fast and Stealthy Cache Attack∗ 21

28. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: Cross-Cores Cache Covert
Channel. In: DIMVA’15 (2015)

29. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the
Sandbox – Practical Cache Attacks in Javascript. arXiv: 1502.07373v2 (2015)

30. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: the
Case of AES. In: CT-RSA 2006 (2006)

31. Payer, M.: HexPADS: a platform to detect “stealth” attacks. In: ESSoS’16 (2016)
32. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
33. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion

policies for high performance caching. ACM SIGARCH Computer Architecture
News 35(2), 381 (Jun 2007)

34. Raj, H., Nathuji, R., Singh, A., England, P.: Resource Management for Isolation
Enhanced Cloud Services. In: Proceedings of the 1st ACM Cloud Computing Se-
curity Workshop (CCSW’09). pp. 77–84 (2009)

35. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: CCS’09
(2009)

36. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: Black Hat (2015)

37. Spreitzer, R., Plos, T.: Cache-Access Pattern Attack on Disaligned AES T-Tables.
In: Constructive Side-Channel Analysis and Secure Design (COSADE). pp. 200–
214 (2013)

38. Tannous, A., Trostle, J.T., Hassan, M., McLaughlin, S.E., Jaeger, T.: New Side
Channels Targeted at Passwords. In: ACSAC. pp. 45–54 (2008)

39. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Coun-
termeasures. Journal of Cryptology 23(1), 37–71 (Jul 2010)

40. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance
counters. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC’08). (2008)

41. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. ACM SIGARCH Computer Architecture News 35(2), 494 (Jun
2007)

42. Wang, Z., Lee, R.B.: A Novel Cache Architecture with Enhanced Performance
and Security. In: IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’08). pp. 83–93 (2008)

43. Willems, C., Hund, R., Fobian, A., Felsch, D., Holz, T., Vasudevan, A.: Down to
the bare metal: Using processor features for binary analysis. In: ACSAC’12 (2012)

44. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: Detecting violation of control flow
integrity using performance counters. In: DSN’12 (2012)

45. Yarom, Y., Falkner, K.: Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In: USENIX Security Symposium (2014)

46. Zhang, K., Wang, X.: Peeping Tom in the Neighborhood: Keystroke Eavesdropping
on Multi-User Systems. In: USENIX Security Symposium (2009)

47. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: Co-residency Detection
in the Cloud via Side-Channel Analysis. In: S&P’11 (2011)

48. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-Tenant Side-Channel
Attacks in PaaS Clouds. In: CCS’14 (2014)

49. Zhang, Y., Reiter, M.: Düppel: retrofitting commodity operating systems to miti-
gate cache side channels in the cloud. In: CCS’13 (2013)

