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Abstract—Page cache attacks are hardware-agnostic and can
have a high temporal and spatial resolution. With mitigations de-
ployed since 2019, only Evict+Reload-style timing measurements
remain, but suffer from a very low temporal resolution and a
high impact on system performance due to eviction.

In this paper, we show that the problem of page cache attacks
is significantly larger than anticipated. We first present a new
systematic approach to page cache attacks based on four primi-
tives: flush, reload, evict, and monitor. From these primitives, we
derive five generic attack techniques on the page cache: Flush+
Monitor, Flush+Reload, Flush+Flush, Evict+Monitor, and Evict+
Reload. We show mechanisms for all primitives that operate on
fully up-to-date Linux kernels, bypassing existing mitigations.
We demonstrate the practicality of our revived page cache
attacks in three scenarios, showing that we advance the state
of the art by orders of magnitude in terms of spatial and
temporal attack resolution: First, the channel capacity with our
fastest attack (Flush+Monitor) achieves an average capacity of
37.7kB/s in a cross-process covert channel. Second, for low-
frequency attacks, we demonstrate inter-keystroke timing and
event detection attacks across processes, with a spatial resolution
of 4kB and a temporal resolution of 0.8 ps, improving the
state of the art by 6 orders of magnitude. Third, in a website-
fingerprinting attack, we achieve an F; score of 90.54 % in a top-
100 closed-world scenario. We conclude that further mitigations
are necessary against the page cache side channel.

I. INTRODUCTION

Caches play a central role in hardware and software system
performance by hiding memory latency. They typically buffer
data based on temporal (e.g., recently used data) and spatial
locality (e.g., prefetching code and data in spatial proxim-
ity). Side channels have been known for decades [38], [77],
with generic techniques identified in the past two decades,
including Evict+Time [51], Prime+Probe [51], [53], Flush+
Reload [76], Evict+Reload [25], and Flush+Flush [24]. While
these techniques have been described primarily for CPU
hardware caches, they have been generically applied in various
contexts [1], [15], [16], [20], [22], [44], [54].

Several works investigated timing side channels in software
caches [17], [22], [45], [73]. Gruss et al. [22] mounted the
first attack on the operating system’s page cache. Several other
works focused on other timing differences in the kernel [9],
[31], [40], [45], [46], [52], [67], [78]. Boskov et al. [5] used
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the Linux mincore system call (syscall) to exploit the page
cache across Docker containers. Schwarzl et al. [66] showed
that page cache attacks can be valuable in a template attack,
combining multiple channels with different spatial resolutions.
Two of these [5], [22] monitor the page cache using mincore,
another [66] uses the preadv2 syscall, and the last [34] targets
specific SSD features for fast eviction and reloads, with the
reload being the source of information leakage. However, the
mincore syscall has been patched since 2019 to mitigate these
cross-process and cross-container attacks: mincore now only
reports the number of owned pages a process has cached [37]
but not per-page residency information. Hence, even if a victim
loads a page into the page cache, the attacker does not see a
change in the information mincore provides.

Schwarzl et al. [66] showed that an attacker can still mount
a page cache attack using an Evict+Monitor-style attack:
The attacker continuously evicts the target page and uses
preadv2 with the RWF_NOWAIT flag. If the page is already
in RAM, preadv2 & RWF_NOWAIT returns data; otherwise,
the syscall & flag return early without bringing data into
the RAM. A limitation of prior work [5], [22], [66] is the
fragility of eviction strategies employed, which may make the
system unreliable due to the dynamically allocated non-page-
cache pages used during eviction. Furthermore, as reported by
Schwarzl et al. [66], eviction is slow on recent Linux kernels,
typically in the range of multiple seconds.

In this paper, we show that the page cache attack surface is
significantly larger than anticipated and existing mitigations
can be bypassed. Even worse, we show that we can not
only revive previously mitigated page cache attacks but also
increase their temporal resolution by 6 orders of magnitude.
The foundation of our paper is a systematic approach dividing
the interaction with the Linux page cache into four primitives:
flush, reload, evict, and monitor. For each primitive and mech-
anism, we determine the origin (e.g., kernel functions) that
causes the leakage or manipulation of page-cache residency.

Based on this analysis, we (1) systematically backtrack for
flush, which operations on different file systems can lead to
a page cache flush operation; (2) for reload, we perform a
systematic and exhaustive manual analysis of all system calls
accepting file descriptors or file paths whether they lead to
kernel functionality that can be used as a reload primitive;
(3) for monitor, we discover three independent paths through
the kernel that lead to equally exploitable behavior; and (4)
for evict, the mechanism which was best studied so far, we
propose a small extension to the state of the art using a


https://dx.doi.org/10.14722/ndss.2026.240006
www.ndss-symposium.org

dynamic adjustment to rapidly changing memory pressure.

We show that for each primitive, an attacker has viable

mechanisms to bypass existing mitigations.

We extend our systematic view of the attack primitives by
deriving five generic attack techniques on the page cache,
classifying both known techniques and those that have not
been used in page cache attacks yet: Evict+Reload [34], [66],
Flush+Reload, Evict+Monitor [5], [22], [66], Flush+Flush, and
Flush+Monitor. Our attack techniques are hardware-agnostic
and work provided the victim has access to the target file. For
our Flush+Flush attack, we observe that unprivileged page-
cache flush operations leak the page cache status with their
execution time. Since our attack techniques work entirely
on the software level, they are agnostic to CPU count, core
scheduling, and other hardware configurations.

We evaluate our generic techniques in three attack scenarios:
First, we evaluate the channel capacity in a cross-process sce-
nario and show that the fastest of the five techniques (Flush+
Monitor with cachestat) achieves an average capacity of
37.7kB/s with less than 3 x 107*% error, which is 5.3 times
faster than prior work [22]. Second, we demonstrate that we
can monitor events in co-located processes across container
boundaries following the threat model of Boskov et al. [5].
We mount a Ul redressing attack, an inter-keystroke timing
attack, detect events inside programs, and detect the launch
of shells in co-located containers. The spatial resolution of
our attack is 4kB, which is inherent to page cache attacks.
We achieve a temporal resolution of 0.8 us with more than
1 million measurements per second, which is 6 orders of
magnitude higher resolution than state-of-the-art attacks using
mincore prior to any mitigations. Third, we evaluate our
attacks in a website-fingerprinting attack, with three of our
attacks achieving an F; score of more than 85 % and our best
attack (Flush+Monitor) achieving 90.5% in a closed-world
scenario across the top 100 websites.

Overall, our attacks show that ad hoc mitigations are insuf-
ficient to sustainably mitigate the information leakage from
the page cache. We discuss existing mitigation approaches
that primarily focus on the leakage side and why they are
insufficient to prevent the information leakage presented in
this work. We conclude that further fundamental mitigations
are necessary to reduce the side-channel attack surface of the
page cache.

Contributions. In summary, our main contributions are:

1) We classify page-cache attack techniques into a system
of four primitives—flush, reload, evict, and monitor—
and derive five generic attack techniques, classifying both
known techniques and techniques that have not been used
for page cache attacks yet: Flush+Monitor, Flush+Reload,
Flush+Flush, Evict+Monitor, and Evict+Reload.

2) We systematically backtrack flush on different file systems,
exhaustively manually analyze all system calls accepting
file descriptors or paths for reload, precisely analyze
kernel code execution for monitor, resulting in a set of
mechanisms that can be used to build full attacks on up-
to-date Linux kernels that bypass existing mitigations.

3) We measure the capacity of all attack techniques in
cross-process covert channels. Our fastest attack (Flush+
Monitor) achieves an average capacity of 37.7kB/s with
less than 3x 10~* % error, 5.3 times faster than prior work.

4) In our evaluation, we present a keystroke timing attack (av-
erage 5.5 keys/second), a Ul redressing attack with a tem-
poral resolution 6 orders of magnitude higher than state of
the art, event detection inside programs, a cross-container
app launch detection, and a website-fingerprinting attack
with our best attack achieving 90.5 % in a closed-world
scenario across the top 100 visited websites.

Outline. Section II provides background on page cache

attacks. Section III introduces our attack primitives and Sec-

tion IV our threat model. Section V constructs generic attack
techniques and Section VI evaluates them in different scenar-
ios. Section VII discusses mitigations. Section VIII concludes.

Responsible Disclosure. In January and April 2025, we

disclosed our findings to the Linux kernel security team. The

cachestat syscall was mitigated in February 2025 and was
assigned CVE-2025-21691.

II. BACKGROUND

In this section, we provide a brief overview of the page
cache and side-channel attacks.

A. Operating System Page Cache

Since hard disk drives (HDDs) and solid-state disks (SSDs)
have comparably high access latency, modern operating sys-
tems implement a page cache to buffer recently and frequently
accessed memory. The page cache generally buffers all files
regardless of how they are used, including memory-mapped
files and files accessed via file operations and including shared
library and common binary pages that are mapped multiple
times by different processes to save memory. Writing to a
page in the page cache either requires write permissions or
follows copy-on-write semantics.

Linux maintains two doubly-linked lists for pages in the
page cache: the active 1ist for pages recently accessed and
the inactive 1list for pages that are not recently accessed.
Pages are moved from the active to the inactive list using a
variant of the LRU replacement algorithm [11], [12], [13],
[32]. Linux maintains a third list for pages that have been
recently evicted. Ideally, the page cache occupies all available
but otherwise unused memory to minimize disk I/O.

B. Side-Channel Attacks

The principle of side-channel attacks was first scientifi-
cally explored by Kocher [36]. Following this seminal work,
research initially focused on cryptographic implementations
and the exploitation of timing differences stemming from
CPU caches [3], [51], [53], [72]. Over the last two decades,
this research has yielded generic cache attack techniques
independent of the underlying concrete cache technology used.
The most prominent cache attack techniques are Prime+Probe
by Osvik et al. [51], and Flush+Reload by Yarom et al.



[76]. Numerous variants have been presented with Evict+
Reload [25] and Flush+Flush [24] as noteworthy examples.

Caches exist throughout the hardware-software stack,
leading to significant performance gains as well as side-
channel leakage across all layers, including various software
caches [17], [22], [26], [31], [45], [73]. For cryptographic
algorithms, constant-time code [36] is a principle to prevent
timing leakage stemming from implementation (e.g., vari-
ous caches); however, it is not realistic for general-purpose
code [65].

Besides the page cache [22] (see Section II-C), many
system-level resources have been attacked with side channels.
Jiang et al. [31] and Chen et al. [9] exploited contention on
file sync operations and write buffers to build covert channels.
Lee et al. [40] and Maar et al. [45] exploited timing side
channels in the Linux slab allocator. Shen et al. [67] presented
a covert channel based on kernel locking primitives [78].

C. Page Cache Attacks and Related Works

Knowing which pages are in the page cache can provide
tremendous performance benefits for certain use cases [68].
Hence, Linux provides several mechanisms to check whether
a page is resident in the page cache. Prior work exploited the
mincore system call for Linux [5], [22]. The syscall provides
per-page information for mapped pages, informing the caller
which of its mapped pages is currently in the page cache.
This information is equivalent to the information gained by
the reload operation in Flush+Reload. The difference between
mincore and a reload is that the former is not destructive, i.e.,
it does not bring a page into the page cache.

Gruss et al. [22] demonstrated the first page-cache attacks.
The attacks they mounted could be called Evict+Monitor,
using page cache eviction followed by mincore, a monitoring
primitive. This syscall was thus patched in response [37].
Gruss et al. [22] achieved a channel capacity of 7kB/s
(Linux) to 273kB/s (Windows) and mounted side-channel
attacks e.g., on keystrokes, with a temporal resolution of
149 ms. Boskov et al. [5] exploited the same interface in
cross-container attacks. Since the mitigation patches, mincore
only returns valid data if the process has CAP SYS ADMIN
permissions, or if it can modify the underlying file [37].
Consequently, using mincore to monitor activity in shared
libraries or binaries has been mitigated.

Instead of mincore, Schwarzl et al. [66] showed that an
attacker can also use the preadv2 system call with the RWF
NOWAIT flag. When a page is not in the page cache, this
syscall & flag returns early without bringing the page into
the page cache, thereby leaking whether the page resides in
the cache. Their approach, Evict+Monitor in our classification,
requires constant eviction to restore the initial state, lowering
the temporal resolution to 2s or more. This resolution is too
low for keystroke timing attacks and Ul-redressing attacks.

An alternative to these syscalls is timing information [22],
[34], e.g., via reload. The attacker simply accesses the page,
loading it into the page cache. By measuring the time it takes
to access the page, the attacker can infer whether the page was

in the page cache or loaded from the disk. This approach is
destructive and, thus, the performance is substantially lower,
in the range of multiple seconds for eviction.

Page Cache Eviction. The core of prior page cache at-
tacks is page cache eviction. Gruss et al. [23] described
the first eviction strategy for the page cache in the context
of Rowhammer attacks. Instead of exhausting memory via
dynamically allocated memory, they use memory mappings
of read-only files that remain equally evictable as other pages
in the page cache. Hence, their eviction is less fragile than
previous approaches but still takes 2.68 s per eviction.

Gruss et al. [22] tried to overcome this limitation by
introducing three eviction sets: The first eviction set comprises
pages already in the page cache and used by other processes.
A thread runs constantly to keep these pages among the
most recently accessed. The second eviction set is disk-backed
pages brought to the page cache when accessed. These pages
are accessed rarely and randomly to maintain a set of eviction
candidates that are more likely to be evicted than most pages
from the initial eviction set. The third eviction set contains
dynamically allocated, i.e., non-evictable pages. This set is
used to increase memory pressure up far enough to evict the
target pages from the page cache but far smaller than the
number of evictable pages in the first two eviction sets.

As an additional optimization Gruss et al. [22] use madvise
with the MADV DONTNEED for the target page and MADV
WILLNEED for all other pages, as well as posix fadvise
with POSIX FADV DONTNEED for the target page. With this
optimization they report a much lower runtime of 149 ms
for their eviction. Juffinger et al. [34] showed that eviction
can perform faster (22ms) on SSDs with specific hardware
features, viz. host-memory buffer.

In Section III, we describe that using posix fadvise with
POSIX FADV_ DONTNEED is equivalent to a flush operation,
with the caveat that the pages are not mapped. However,
it is likely that flushing performed by Gruss et al. [22]
was ineffective as it was operated on a mapped page; in
Section III-B, we explain the reason why flushing mapped
pages is ineffective. Therefore, we believe Gruss et al. [22] in
many cases mounted only an Evict+Monitor. The runtime of
Evict+Monitor is much higher due to eviction runtimes in the
range of a hundred milliseconds, while the runtime of Flush+
Monitor is in the order of microseconds (see Section V).

III. ATTACK PRIMITIVES

In this section, we discuss mechanisms, viz. syscalls and
techniques, to implement each of the abstract primitives and
analyze potential convergence points inside the Linux kernel
as well as alternative routes depending on file systems or
available system calls. Throughout the paper, we instantiate the
primitives with suitable mechanisms available to the attacker.
Noteworthy, prior works on page cache attacks [22] were
mitigated in Linux in 2019, specifically with a focus on the
mincore system call [37]. We show that with various alterna-
tive mechanisms to implement our attack primitives (reload,
monitor, evict, and flush), we can bypass these mitigations
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Fig. 2. Read operations trigger the kernel’s read-ahead mechanism. Reading
the file backward does not trigger this mechanism, resulting in stable timings
and avoiding issues with monitoring multiple pages per file.

and, as we later show, improve attack performance by orders of
magnitude. In Section V, we combine these primitives to build
attack techniques for increasing the temporal resolution of
attacks on the page cache. All experiments in this section and
the following sections were performed on an AMD Ryzen 7
7700X (Zen 4) with 32 GB of DDRS memory running Ubuntu
22.04.4 LTS (Linux kernel 6.8.0) and an ext4 file system.

A. Reload

The reload primitive determines whether a page is present
in the page cache by measuring the time it takes a process
to read a page. A long reload time indicates that the page
was not in the page cache, while a short reload time indicates
the opposite. A straightforward reload mechanism is the read
syscall. In Figure 1, we show the significant difference in
execution time of read when a page is in the page cache
compared to when it is not. On our machine, using the read
syscall to read a page takes over fifty times longer when the
page is not cached (210000 cycles (n=2 x 10°, 0z=68000))
than when being present in the page cache (3900 cycles
(n=2 x 10°, 07=900) ) (46.66 us versus 0.86 us). To ensure
the page is not in the page cache, we remove the page from
the page cache using the flush primitive (see Section III-B).
Bypassing Read-Ahead. As an optimization to increase
performance, Linux, by default, reads 32 pages ahead upon
any file access [8], akin to the CPU’s prefetcher. Similar as
on the CPU-level, with prefetching and Flush+Reload, this

limits what an attacker can observe, i.e., the attacker cannot
monitor multiple locations within the prefetching range. Prior
work [22], [66] mentions this read-ahead mechanism as a
limitation and a source of noise, as it inadvertently destroys
information regarding the presence of the subsequent 32 pages
in the page cache. This limitation was overcome either by
applying more memory pressure [22], or by passing MADV _
RANDOM to madvise indicating a random read order while
being cognizant that this may not always work [5], [66].
We investigated this issue and confirmed that read-ahead can
interfere with measurements. In our work, we find two novel
methods to entirely bypass the read-ahead mechanism:

1) Backward-Reading: By reading the file backward, the
read-ahead mechanism can be bypassed, as illustrated
in Figure 2. We observe that the read-ahead mechanism
does not affect backward reading in any of our experiments
on Linux. As this backwards-reading naturally undermines
the read-ahead mechanism, thus severely reducing per-
formance, it provides the attacker with precise timing
differences that enable the reload primitive.

2) readahead Syscall: This syscall is an explicit request
to the read-ahead mechanism to bring pages from disk.
We notice a difference in the time it takes to bring
pages when they are in cache (~0.46ps) versus when
they are to be fetched from disk (~2.64pus). We also
find that posix fadvise + POSIX FADV WILLNEED is
similarly plumbed in the kernel, leading to similar timings
as readahead. Although readahead is a faster reload
mechanism than read, it quickly becomes unreliable under
memory pressure and some system activity.

Manual Exhaustive System Call Analysis. We analyze all
system calls that accept a file descriptor or a file path as
an argument to determine which can be used as a reload
mechanism. Given the complex data structures and variety
of flags available for files, we opted for a manual analysis
by a human expert instrumenting the syscalls to automatically
generate call traces that reveal which kernel functions are used,
i.e., which system calls interact with the page cache.
Automated methods, e.g., static analysis using sparse [7],
smatch [2], or coccinelle [39], are challenging to employ for a
multitude of reasons: function and operation table pointers typ-
ically resolve at run time; configuration options often lead to
divergent paths; filesystems interact with different subsystems
resulting in vastly different behavior; hardware-specific config
options programmed variably (and in turn macros expanding in
separate, hardware-specific ways); unclear runtime permission
interactions with user-chosen or distribution-default security
subsystems; distribution patches whose code must be consid-
ered; numerous fallback functions; syscalls having more than
one definition depending on configuration preferences along
with runtime options. Altogether, these reasons lead to a search
space explosion overwhelming automation attempts.
Therefore, we use a manual and tool-assisted system to
determine which syscalls accepting file descriptors can be
used as a reload mechanism. We first generate tags for the



TABLE I
LINUX SYSCALLS THAT BEHAVE AS RELOAD MECHANISMS

Syscall

Reload Time [us]

Kernel Function

From Cache From Disk
copy file range 3.64 50.07 filemap splice read
mmap access 0.97 142.72 filemap_ map_pages
posix_fadvise
+ POSIX FADV WILLNEED 0.45 2.63 page_cache_ra_unbounded
pread 0.91 46.90 filemap_ read
preadv 1.03 46.90 filemap read
preadv2 0.98 46.91 filemap read
read 0.86 46.66 filemap read
readahead 0.46 2.63 page cache ra unbounded
readv 0.84 67.79 filemap_ read
sendfile 3.42 49.51 filemap splice read
splice 0.67 48.46 filemap splice read
1 x64_sys_call()
s 64 sys read ) EPage Not In Cache DPage In Cache
3 ksys_read () 3
4 vis_read () 7]
5 rw_verify_area() 8 103
6 ext4_file_read_iter () G
7 generic_file_read_iter () =] 102
8 5
9 filemap_get_pages () JED 10!
=]
Listing 1. The path taken by the read syscall. Z. 100 5|
2000 4000 6000 8000
Time to Flush [Cycles]
entire kernel using ctags [14], resulting in 7.9 million tags.
From the Linux x86 syscall table [42], we generate signatures
for every syscall, resulting in 408 syscalls with 509 total Fig. 3. The flush primitive using posix fadvise with POSIX FADV

function signatures; there are duplicates due to the syscall ABI.
Filtering for syscalls accepting file descriptors results in 175
signatures including duplicates; de-duplicating generates 119
total syscalls. Filtering out syscalls which require a “special”
file descriptor (pipefd, socketfd, epollfd, dirfd, pidfd,
fanotify), or requires privileges, or capabilities, we reduce
to 46 remaining syscalls.

We write minimal code for each syscall accounting for
flags accepted by the syscall and flush the testing file (see
Section III-B) prior to every recording. Furthermore, we use
ftrace [63] to record call graphs for determining which
kernel functions introduce the timing differences when loading
a page from the page cache versus when loading it from disk.
As an example, we show the path taken by read in Listing 1.
The read syscall calls filemap read in its execution, a MM
API call which “read[s] data from the page cache” or brings
it into the page cache if the data is not present [41].

Out of 46 system calls, we found eleven system calls that
can be used as reload mechanisms, as shown in Table 1. For
the eleven syscalls, we find three Linux MM API calls —
filemap read, filemap splice read, page cache
ra_unbounded— and one internal function — filemap
map pages— that these syscalls call in their call trace.
Two of these MM API calls — filemap read, filemap
splice read— further converge to filemap get pages.
Note that the page cache is implemented at the MM API level
and any functions beyond can be considered as already inside

DONTNEED exposes a different timing depending on whether the target page
is currently in the page cache or not.

the page cache implementation, i.e., the interaction with the
page cache is already evident at this point. Finally, there is
an abundance of alternative paths to reach the same reload
primitives, e.g., through drivers and various file systems, that
provide the same functionality to an attacker. Given this
abundance of alternative paths, we conclude that both for
exploiting and mitigating a reload mechanism, it is more
promising to focus either on the MM API on the one side
or the syscall interface on the other side but not the numerous
alternative paths in between them.

Reload mechanisms are inherently destructive: while they
leak whether a page is in the page cache, they also modify
the page cache state by loading the specific page into the page
cache. That is, after using the reload primitive, any previous
page cache state is irreversibly lost. With the page cached,
victim accesses cannot be observed anymore. Hence, using a
reload requires repeated flushing or eviction after every reload
to reset the page cache state.

B. Flush

Flush is an unprivileged and deterministic primitive that
removes pages from the page cache. Prior work [5], [22]
used posix fadvise with POSIX FADV DONTNEED along
with madvise with MADV DONTNEED to hasten a page’s



x64_sys_call()
__x64_sys_fadvise64 ()
ksys_fadvise64_64 ()
generic_fadvise ()
__filemap_fdatawrite_range ()
lru_add_drain ()
mapping_try_invalidate ()

f 1
/* Remove an unused folio from the page-cache x/
long mapping_evict_folio(...) {

/* ... if any page in the folio is mapped */
if (folio_ref_count(folio) >
folio_nr_pages(folio) +
folio_has_private(folio) + 1)
return O;

Fig. 4. The flush primitive, posix_ fadvise with POSIX_ FADV_DONTNEED,
cannot flush a mapped page. The function mapping evict folio prevents
the removal of a mapped page from the page cache.

eviction from the page cache. Unlike prior work, we do not
use madvise with MADV_ DONTNEED simultaneously as we
find that mapping a file prevents it from being flushed. In
Figure 4, we show why posix fadvise with POSIX FADV
DONTNEED does not flush a mapped page.

Prior work has not reported (and likely also not observed)
this behavior, as they worked with mapped files to be able
to call madvise [66] or mincore [5], [22]; thus, flushing
has not been employed in side-channel attacks on the page
cache so far. This discovery allows us to construct the flush
primitive (posix fadvise with POSIX FADV DONTNEED
only) which speeds up the attack presented by Schwarzl et al.
[66] by six orders of magnitude (see Section V-B).

The execution time of the flush primitive is shown in
Figure 3. We can see that not only is the flush primitive a fast
and reliable method to remove pages from the page cache,
but it also leaks whether a page was cached in its execution
time. This behavior was first discovered by Gruss et al. [24]
in the context of CPU caches. On our machine, we find that
flushing pages not in the page cache requires 1620 cycles
(n=2 x 108, 6=120), while flushing pages in cache takes 6340
cycles (n=2 x 10°, 0=760). We exploit this timing difference
to determine whether a page is present in the page cache with
our Flush+Flush attack in Section V-E.

Backtracking Flush for Attacks on Different File Systems.
We pursued a similar approach to find flush mechanisms as
for the reload mechanisms. Through this approach, we indeed
discovered one flush mechanism in our setup: The kernel
function responsible for the flushing behavior is mapping -
try invalidate (see Figure 4). In contrast to the reload
mechanisms, we find that there are not many alternative paths
to reach the flush primitive. In fact, this function is only called
twice in the kernel, once by posix fadvise and another
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Fig. 5. The evict primitive, using memory pressure with multiple eviction sets,
is significantly slower than flushing pages from the page cache. An attacker
can use the evict primitive in Evict+Reload or Evict+Monitor attacks.

by invalidate mapping pages. The latter function is
predominantly only called by filesystems and drivers, some of
which use it to implement direct IO writes (e.g., Btrfs, ext2,
ext4, GFS2) while others employ the function to implement
custom page-cache clearing methods (e.g., NILFS2, CephFS,
EROFS). The only two non-filesystem and non-driver usages
of invalidate mapping pages are via posix fadvise
(retry attempt if mapping try invalidate failed) and a
privileged sysctl interface to drop the page cache.

C. Evict

By accessing a large number of pages, an attacker can
induce sufficient memory pressure to forcefully evict a target
page from the page cache [22]. Since the entire page cache acts
as a fully-associative cache, there is no way to target a subset
of the cache or even a single targeted page. Instead, many
unrelated pages are also evicted alongside the targeted page.
Eviction is a non-deterministic and difficult-to-control primi-
tive as the kernel decides which pages are evicted when low
on memory using a multi-generational LRU algorithm [13].

We use the page cache eviction technique presented by
Gruss et al. [22], albeit without the posix fadvise op-
timization that we identified as a flushing operation (see
Section III-B). The spread of the evict primitive’s execution
time is shown in Figure 5. With the following three eviction
sets, it takes 16 ms (n=3000, 0=3.4) on average to evict a
targeted page on a system with roughly 500 MiB free, as
reported by the free command.

Eviction Set 1 are pages frequently used by processes
and their eviction would slow the processes down. To avoid
slowing the system, a thread constantly reads this set of pages.
These pages are marked with MADV WILLNEED, and CPU
usage is kept low by combining sched yield and sleeps.

Eviction Set 2 are pages not yet in cache. They are
randomly accessed to evict pages present in the page cache.
On our system, this set totals to 70 GB. These pages are also
marked with MADV_ WILLNEED, and CPU usage is kept low by
combining sched yield and sleeps.

Eviction Set 3 are pages serving as a baseline memory
pressure, preventing regions of memory from being used.
These pages are not to be swapped out, which can be achieved
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Fig. 6. The mechanism behind the monitor primitive, cachestat, requires
less than 3 000 cycles to report whether a page is in the page cache, making
it a very fast source of information leakage.

by using the mlock syscall. This syscall prevents up to 1/8 of
RAM from being swapped out on Debian-based systems by
default; however, an attacker can easily overcome this limit
by spawning more processes. This eviction set substantially
reduces the amount of free memory and lowers the overall
time to perform eviction.

Eviction Set 4: Dynamic Memory Pressure. Eviction with
the three eviction sets works well for the scenarios described
by Gruss et al. [22]. However, we observe that the low and
static amount of free memory can lead to stability issues if
the memory usage varies widely for the different targeted
activities. A low static memory pressure results in unsuccessful
evictions and increased execution times until a successful
eviction. For instance, when fingerprinting websites based on
their usage of 1ibxul, the shared library used by Firefox (see
Section VI-D), we notice that specific sites like openai.com
occupy considerable amounts of memory (3 GB), while others
like wikipedia.com occupy far less (90 MB). Hence, atop the
three previously explained eviction sets, we find it necessary
to introduce a fourth eviction set that dynamically responds to
a program’s memory footprint.

We design the fourth eviction set to allocate and free 64 MiB
chunks of memory as needed. When the victim’s pages are in
the page cache, the thread allocates a 64 MiB region. Similarly,
the thread de-allocates all regions when the victim’s pages
have been evicted. This information on whether the target
pages are in the page cache is known to the thread either
via the reload or monitor primitives, which we discuss in
Section III-A and Section III-D, respectively. With this fourth
eviction set, an attacker can efficiently and dynamically apply
memory pressure for various attacks.

D. Monitor

The better alternative to the reload primitive is the monitor
primitive, as it is not destructive: unlike the reload primitive,
monitor merely reports the presence of a page in the page
cache without bringing it into memory if it is not present. In
the past, Gruss et al. [22] used the mincore syscall as the
mechanism for the monitor primitive, which requires files to
be mapped. However, this source of leakage has been patched
since Linux kernel version 5.2 [37] and hence, it cannot be

TABLE II
LINUX SYSCALLS THAT LEAK PAGE-LEVEL OR FILE-LEVEL INFORMATION
ABOUT PAGE-CACHE RESIDENCY

Syscall Page-Level File-Level Prior work
cachestat ) Y _
preadv2
+ RWF_ NOWAIT g ° [66]
mincore
(before mitigation) 1 o (51, [22]
inotify add_watch o ® (64]

+ IN_ACCESS

Symbols: The syscall leaks (@) or does not leak (O) page-cache residency.

used in page cache attacks anymore. In Table II, we overview
all monitor mechanisms that work at the level of pages or files.

Schwarzl et al. [66] used the preadv2 syscall with the
RWF NOWAIT flag as a monitor mechanism. When a page
is present in the page cache, this syscall performs a read;
otherwise, it returns an EAGAIN error when the page is not in
the page cache. This behavior is intended [43]. The preadv2
syscall with RWF_NOWAIT takes 4977cycle (n=2 x 106,
0=3700) when a page is present in the page cache, while it
takes 3 370 cycle (n=2 x 10%, 0=985) when the page is not in
page cache. Ruggia et al. [64] use the Android FileObserver
class, which internally uses inotify [35], as a file-level
monitor mechanism.

In Linux kernel version 6.5, a new syscall, cachestat,
was introduced to “query the page cache state of large file
sets” [55]. The cachestat syscall reports five page-cache
statistics about a range in a file, of which we require only
the number of cached pages. By specifying length and offset,
an attacker can get information about a single page or multiple
continuous pages with a single invocation of cachestat.

The execution time of the monitor primitive is shown in
Figure 6. Evaluating cachestat as a monitor primitive, we
find that it requires only 2280 cycles (n=2 x 10°, 0=204) for
a page in the page cache and 1470 cycles (n=2 x 10°, 0=71)
for a page not in cache. While there is a timing difference, the
information on whether a page is present in the page cache is
already contained in the return value, i.e., there is no additional
value in exploiting the timing difference. However, if future
versions of the interface are hardened against page cache
attacks, it is crucial not to overlook the timing difference.

We can retrofit prior page cache attacks that used a monitor
primitive with cachestat [5], [22], [66] and, thus, re-enable
them. Compared to mincore, cachestat requires a file
descriptor instead of a mapped address. This is a significant
advantage, as a file does not have to be mapped, allowing for
reliable flush operations (see Section III-B). The cachestat
syscall being fast and non-destructive makes monitor-based
attack techniques (i.e., Flush+Monitor and Evict+Monitor) the
fastest and most reliable.

The cachestat syscall has been introduced as a faster
variant of mincore, which we verify with two experiments.
First, we measure the timestamps required by both syscalls.



Second, we analyze the accesses to the Translation Lookaside
Buffer (TLB), indicating the number of memory accesses per-
formed. In our experiments, we run cachestat and mincore
on a 1GiB file and a memory-mapped region, respectively.
Each experiment is repeated 10 times for reliability. The results
demonstrate that cachestat reduces timestamps by approxi-
mately 45 % and TLB accesses by around 30 %, showcasing
a significantly faster syscall.

System Call Convergence Analysis. We analyze whether
the three different monitor mechanisms converge to a single
path in the kernel. Surprisingly, the monitor mechanisms we
analyzed do not converge to a single path in the kernel
to determine page cache residency. The cachestat syscall
implements filemap cachestat, which in turn directly op-
erates on folios. The mincore syscall implements mincore -
walk ops operations, which walks over the page tables. The
preadv2 syscall with RWF_NOWAIT flag internally sets the
IOCB_NOIO flag, which in turn makes filemap get pages
return early with an error before the read can occur if a page is
not present in the page cache, which is determined by a folio
operation. Therefore, using the same approach as for flush
primitives, we do not discover further monitor mechanisms.
Instead, discovering further monitor primitives may require
a different approach, as they appear to have distinct and
independent paths to the page-cache residency information.

IV. THREAT MODEL

We assume a standard threat model applied for similar side
channels, e.g., Flush+Reload on CPU caches [25], [76] and
prior page cache attacks [22]. In this threat model, the attacker
has unprivileged local code execution on the target system,
albeit under a separate user with no access to files and data
belonging other users. The attacker requires read-only access
to files that are installed for all users in the system, i.e., shared
libraries, executables, and shared data files. Based on this
standard threat model, all primitives from Section III can be
used by an attacker. The attacker’s goal is to learn page-use
information from other users’ processes.

Cross-Container. Like prior work [5], [82], we mount
attacks in a cross-container threat model, enabled by file and
library sharing across containers. We specifically target Docker
containers in which three of four primitives can be employed:
flush, evict, and reload. Only the mechanism behind monitor,
cachestat, is disabled by the default seccomp policy [48].
Target Page. We assume the attacker knows files and page
numbers of interesting attack targets. The attacker can obtain
this information in an offline analysis on a victim program by
employing templating [66] to profile its file accesses.

V. COMBINING PRIMITIVES: ATTACK TECHNIQUES

In this section, we present five attack techniques based
on the four primitives from Section III. Each attack strategy
combines of two primitives, as shown in Figure 7. One
primitive is used to remove a page from the page cache, i.e.,
bring the page cache into a state where victim accesses can
be observed, and the second leaks whether a specific page

Section V-E
Section V-B .
Monitor
. Section V-D
Evict Reload

Fig. 7. Combining the primitives yields five different attack techniques. We
cover all attack techniques in sub-sections of Section V.

is currently in the page cache, i.e., it is used to monitor
the activity of a victim process. The techniques we present
follow the standard naming pattern for attack techniques
from microarchitectural attacks on CPU caches. Flush+Reload,
Evict+Reload, and Flush+Flush follow the exact same working
principle as their microarchitectural variants [24], [25], [76],
Evict+Monitor and Flush+Monitor are logical extensions using
the monitor primitive. Unless specified, we use read as reload
and cachestat as monitor mechanism.

A. Flush+Reload

Flush+Reload is a well-established side-channel attack on
CPU caches [21], [27], [28], [30], [76], [81]. The attack
principle can also be applied to the page cache by flushing
a page and measuring the time it takes to reload the page.
A short reload time indicates that the page was cached in
the meantime, while a long reload time means it was not.
In Section III-A, we found that the reload primitive takes
46.66 us to bring a page into the page cache as compared
to 0.86 ps if a page is already present in the page cache. This
significant difference is easy to distinguish. As discussed in
Section III-A, our reload primitive bypasses the kernel’s read-
ahead mechanism by using backward-reading.

The core Flush+Reload sequence comprises of three steps.
First, the attacker flushes the target set of pages from the
page cache. In the second step, the attacker waits for a short
while for the victim to access pages from this set. Finally,
the attacker times how long a reload operation takes on these
pages to detect whether they were accessed.

Like Flush+Reload on processor caches, Flush+Reload on
the page cache is susceptible to different sources of noise, like
scheduling or changing CPU frequency. The CPU frequency
can be stabilized by running a busy loop on the sibling SMT
thread. Pinning a process to a specific core is possible without
any privileges. The most significant source of noise is the
scheduler interrupting the attacker while timing the reload.
Similar to prior work [25], we find that yielding after every
Flush+Reload sequence tends to be an effective method to
reduce the chance that the kernel interrupts the attacker. While
this makes the Flush+Reload loop slightly slower (from 58 ps
to 64 ps), it makes Flush+Reload substantially more reliable.
Note that the timing thresholds we report are dependent on
the system configuration, e.g., CPU frequency, and similar as
in other side-channel attacks (e.g., native Flush+Reload on



the CPU’s hardware caches [76]) the thresholds have to be
determined on the victim system. The similarities also extend
to the read-ahead mechanism, which behaves very similar
to the CPU’s prefetcher [25], which is a known potential
limitation for an attacker.

B. Flush+Monitor

Combining flush and monitor results in the least noisy
attack strategy since both primitives are deterministic syscall
interfaces. Moreover, the mechanisms behind both flush and
monitor are faster than all the other primitives, with the
upper limit defined by the time it takes to flush a page in
the page cache, which is 0.8us on our system (see Sec-
tion III-B). This makes the Flush+Monitor attack strategy
noiseless, information-rich, and fast.

The core sequence is similar to the steps of Flush+Reload.
First, the attacker flushes the target set of pages. Second, the
attacker waits for a short while. Third, instead of timing a
reload operation, the attacker uses the monitor primitive to
monitor whether the page is in the page cache or not. As the
monitor operation is non-destructive, the attacker can loop over
this third step until a cache hit is observed. Consequently, one
round of the attack takes only 0.3 us while there is no victim
access and 2.2 ps for any round with victim access.

Schwarzl et al. [66] mount an Evict+Monitor page-cache
attack with preadv?2 and the RWF_ NOWAIT flag as the monitor
mechanism. They require gaps of ~2 s for detecting keystrokes
due to the very long time required for page-cache eviction.
However, our Flush+Monitor attack requires only 0.6pus in
the same setup while there is no victim access and 2.3 ps for
any round with a victim access. Thus, our new flush primitive
improves the temporal resolution and sampling rate of the
attack by Schwarzl et al. [66] by 6 orders of magnitude.

The monitor primitive does not suffer from any of the
three sources of noise that reload suffers, nor is the monitor
primitive affected by any read-ahead mechanism since the
mechanism (cachestat) does not read any pages. Hence, it
is the fastest and most reliable attack. In Section VI, we con-
sistently observe Flush+Monitor-based attacks to outperform
all other attack techniques.

C. Evict+Monitor

Considering that the flush primitive may be patched or
unavailable in a concrete attack scenario, we also explore
Evict+Monitor as an alternative to Flush+Monitor. While
eviction is less reliable than flushing, we can use the monitor
primitive to detect when the eviction was successful. Eviction
is also much slower than flushing.

The core sequence is identical to Flush+Monitor, with three
steps: eviction, waiting, and monitoring. Again, the monitor
operation is non-destructive, allowing the attacker to loop over
this third step until a cache hit is observed. Consequently, one
round of the attack still takes only 0.068s for a page in the
page cache compared to 2.1 us for a page not in cache. Prior
work predominantly mounted Evict+Monitor [5], [22], [66].

D. Evict+Reload

If both flush and monitor are not available, an attacker
can still resort to Evict+Reload, which only requires memory
accesses for eviction and memory accesses for reloading.
With eviction and reloading being less reliable than flush and
monitor, the attack is also less reliable. This unreliability is due
to timing variations and thresholds that have to be determined
experimentally, but also due to eviction only having a certain
success rate. Furthermore, the attack is made more challenging
by constantly reloading victim pages, as this behavior prevents
these pages from being evicted (due to the LRU).

The core sequence is identical to Flush+Reload, with three
steps: eviction, waiting, and reloading. As the reload operation
is destructive, the attacker has to increase the time between
rounds, making Evict+Reload much slower, with one round of
the attack taking 0.13 s for a page in the page cache compared
to 0.32ms for a page not in cache.

E. Flush+Flush

An interesting alternative if neither reload nor monitor are
available is Flush+Flush, which has been explored as a side-
channel attack on CPU caches [24]. We apply the same
principle to the page cache, with the Flush+Flush sequence
essentially being a single loop measuring the time it takes
to flush a page from the page cache. At the same time, this
resets the page cache state such that the subsequent victim
access can be observed. Interestingly and similar to CPU
caches [24], a high execution time (1.4 ps) corresponds to a
cache hit, whereas a low execution time (0.36 us) corresponds
to a cache miss (see Section III-B). This difference is easily
distinguishable, e.g., using a threshold of 0.88 ps. Similar to
the monitor primitive, flushing does not trigger the read-ahead
mechanism of the kernel (see Section III-A). A single round of
the attack can be performed in 1.2 us when there is no victim
access and 2.5 us when there is a victim access.

VI. EVALUATION

In this section, we evaluate our five attack techniques on
a variety of attacks. First, we evaluate the maximum channel
capacity using a covert channel with each attack technique,
reaching a transmission speed of up to 37.7kB/s with Flush+
Monitor. We show how our attack techniques can be used to
observe low-frequency events like starting processes, unrelated
containers detecting shell launches in other container, or
individual keystrokes typed by a user. Last, we present a
website fingerprinting attack with an F; score of up to 90.5 %.

A. Experimental Setup

We evaluated all attacks on an AMD Ryzen 7 7700X 8-Core
CPU with 32 GB DDRS memory running Ubuntu 22.04.4 LTS
(kernel 6.8.0) without swap and also verified them on an Intel
Core i5-11300H with 16 GB DDR4 memory running Arch
Linux (kernel 6.12.4-archl-1), which yields similar results as
the attacks are hardware agnostic. We tested both with the
default mlock limit of 1/8 of RAM, e.g., with 8 processes,
but also tested the higher limit of 1/4 of RAM, e.g., with 4



TABLE III
COVERT CHANNELS WITH OUR FIVE ATTACK TECHNIQUES.

Attack Technique Error Rate Channel Capacity
Flush+Monitor < 3x1074% 37.7kB/s
Flush+Flush 1.8% 33.9kB/s
Flush+Reload <2.9x%x1073% 4.3kB/s
Evict+Monitor <89 x1073% 1.4kB/s
Evict+Reload 6x1074% 1.2kB/s

processes instead. Both approaches yield similar results as the
processes are mostly idle and simply occupy memory.

The only special requirement for monitor-based attacks is
that the system must run at least Linux version 6.5 since this
is the version when cachestat was introduced. Since the
cachestat syscall does not yet have an interface function
in the libc, we manually called cachestat using the syscall
function with its assigned number, 451.

For eviction-based attacks, we assume a base memory
pressure from the first three eviction sets such that there is 4
GB of free memory. This assumption aligns with recent work
using page cache eviction [33].

B. Covert Channel

To evaluate the maximum achieved channel capacity with
two colluding communicating parties, we build a covert chan-
nel with each of our five attack techniques. Our fastest covert
channel using Flush+Monitor reaches up to 37.7 kB/s with an
error rate less than 3 x 1074%. This is significantly faster than
comparable covert channels in previous work, such as the one
by Gruss et al. [22], who attained 7kB/s.

On channels with transmission errors, we use the binary
symmetric channel model to compute the true channel capacity
TasT=C-(1+((1-p)-logy(1—p)+p-logy(p))). Here,
C' is the raw bit-rate and p the bit-error rate.

1) Threat Model: Our threat model consists of two pro-
cesses on the same machine without a legitimate communi-
cation channel. Both processes share read access to two sets
of files on the system. These could be, for example, shared
libraries, which are readable by every process on the system.
One set is used for synchronization, and it can be any size
— we call this the synchronization file. The other set of files
is used for the actual transmission, and a larger set allows
sending more bits at once — this is the transmission file. In
our experiments, we use a transmission file size of 1 GiB.
Unlike countless prior works [47], [54], [58], [62], [75], our
covert channel does not need a high-precision clock shared
between the two processes.

Finally, we assume that the transmitted data is represented
by a similar amount of O bits and 1 bits. This is required to
even out the highly unequal times it takes to read a page not
in cache (50 us) versus a page in cache (2 ps). All data can be
converted to be balanced with small overheads, for example,
using 8b/10b encoding [74]. We use a randomly generated
stream of bits for our evaluation.
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2) Flush-based Covert Channels: In a flush-based covert
channel, the sender reads the whole transmission file to load
all pages of the file into the page cache and flushes all
pages corresponding to O bits in the data to send, other page
correspond to 1 bits. Once complete, the sender reads the
synchronization file to signal the receiver to read the message.
Flush+Monitor. The receiver monitors the synchronization
file using cachestat, and upon seeing it in cache, it gets
the cache status of every page of the transmission file. Our
Flush+Monitor covert channel reaches 37.7 kB/s with an error
rate less than 3x 10~4%. Both the flush and monitor primitives
are non-variable in nature, i.e., a flush always happens, and a
monitor always tells the page-cache state, leading to a noise-
free and robust covert channel. Our transmission file size is
1 GB; with a much larger file whose size is comparable to free
memory, it is possible for the kernel to begin evicting pages,
causing the receiver to incorrectly perceive these as O bits.
Flush+Reload. The receiver times the reload primitive, read,
to obtain whether the synchronization file is in the page
cache. As this is destructive, the receiver has to flush the
synchronization file after each measurement. If the sender
reads the synchronization file between the read and flush of the
receiver, the receiver misses the signal. Therefore, the sender
performs the read 100 times. Afterwards, the receiver uses
backward-reading technique presented in Section III-A to read
the transmission file to learn the message.

Our Flush+Reload covert channel reaches 4.3 kB/s with an
error rate less than 2.9 x 1073%. We measure such a stark
difference in speed between the Flush+Monitor and Flush+
Reload covert channels because cachestat is significantly
faster than read (1875 cycles vs 120000 cycles).
Flush+Flush. The receiver uses the flush-timing side channel
to obtain the cache state. After signaled, the receiver flushes
the transmission file page-by-page to reconstruct the message.
Our Flush+Flush covert channel reaches a raw transmission
speed of 34.6 kB/s with an error rate of 1.8 %. This results in
a true channel capacity of 33.9kB/s

3) Evict-based Covert Channels: In an evict-based covert
channel, the sender attempts to completely evict the transmis-
sion and synchronization files before communicating.
Evict+Monitor. We find that it takes all four eviction sets
roughly 13s (n=30, 0=0.8s) on average to evict the entire
transmission file, regardless of the transmission file’s size from
128 MiB to 2GiB. Eviction set 4 allocates 64 MiB chunks;
although it could be faster to evict files if the chunk size was
larger, we find that it often ends up being too big, slowing
the system, and triggering the out-of-memory (OOM) killer.
With 64 MiB chunks, we could always reliably evict the file
without slowing the system down or running OOM.

The sender invokes eviction set 4 and ensures that the
transmission file is evicted with cachestat before freeing
eviction set 4 to release memory pressure. Afterwards, for
every 1 the sender reads the corresponding page backwards
through the file. Then, the sender reads the synchronization
file to communicate that it is done. The receiver is identical to
the one in Flush+Monitor. Our Evict+Monitor channel reaches



TABLE IV
FLUSH+MONITOR COVERT CHANNEL ON DIFFERENT HARDWARE

CPU oS Kernel RAM Capacity

Intel Ultra 7 265K Ubuntu 24.04  6.14.0 8GB 73.1kB/s

Intel 19 13900KF Ubuntu 22.04 6.8.0 64 GB 71.5kB/s

Intel i5-11300H Debian 13 6.12.43 16GB 55.0kB/s

Intel i5-8265U Ubuntu 22.04 6.8.0 16 GB 35.9kB/s

AMD Epyc 7313P  Ubuntu 22.04 6.11.0 64 GB 31.8kB/s
TABLE V

FLUSH+MONITOR COVERT CHANNEL ON DIFFERENT FILESYSTEMS

btrfs ext4 ext3 ext2 ntfs
Channel Capacity 64.3kB/s  54.99kB/s 43.8kB/s 44.4kB/s 48.3kB/s

Intel i5-11300H running Debian 13 (kernel 6.12.43) and 16 GB memory;
Monitor mechanism: cachestat

File System

1.4kB/s (< 8.9 x 1073% error rate), including the eviction
time that all four eviction sets take at the beginning.
Evict+Reload. Unlike the Evict+Monitor covert channel,
Evict+Reload cannot use monitor to determine whether a file
is in cache. Instead, the sender must rely only on reload to
determine whether a file is in cache. For this, the sender
chooses N equidistant pages as “probing pages” of the file.
These probes are reloaded to determine whether any part of the
file is in the page cache. If even one probe is in the page cache,
the sender must increase the memory pressure by employing
eviction set 4. If all probes are not in the page cache, the
sender assumes that the file is no longer in the page cache
and stops applying memory pressure.

The sender uses multiple sets of N probing pages, as
reading one set to determine the file’s cache state makes its
pages recently used and unlikely to be evicted. Therefore, after
checking the cache state and increasing memory pressure, a
new, not recently-used set is used to check the cache state.
The sender repeats this, at most 64 times with N = 16 probe
pages each. The sets are laid out to prevent read-ahead using
backwards-reading (see Section III-A).

After evicting the file, the sender reads the corresponding
page for every 1 to transmit, backwards through the file.
Finally, it reads the synchronization file to signal the receiver.
The receiver reloads pages of the synchronization file using the
backward-reading technique. Upon seeing it in the page cache,
it reads the transmission file. The receiver ignores the pages
used by the sender to check if the transmission file is cached.
Our Evict+Reload channel reaches a raw speed of 1.2kB/s
(< 6 x 107%% error rate), including the eviction time that all
four eviction sets take at the beginning.

Hardware Agnosticism. All our attack techniques are hard-
ware and filesystem agnostic. In Table IV, we present the
true capacity of our Flush+Monitor covert channel using
cachestat on five different hardware. Table V presents the
same covert channel on five files systems, all performed on
the same machine. Systems with kernel versions before 6.5
do not support cachestat. However, it is still possible to
employ preadv2 with RWF_NOWAIT as a monitor mechanism
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Fig. 8. For 7.7s, the string “thepasswordisasecret” was typed into

gedit while a malicious program employing the Evict+Monitor attack strategy
monitored page 32 of libgedit-41.so, a shared library on which gedit
depends. Each red, dashed line represents a key press while each blue dot is
a change in the thirty-second page’s presence in the page cache.

(on kernel versions after 4.14) for a Flush+Monitor covert
channel while other non-monitor-based attacks still can be
utilized.

On an Intel 7 Ultra 155U running Ubuntu 18.04.6 (kernel
5.4.0-84-generic) with 32 GB of memory, our Flush+Monitor
covert channel has a capacity of 69.1kB/s, while Flush+
Reload reaches 5.1kB/s. On an Intel i5-11300H running
Debian 12 (kernel 6.1.0-39) with 32 GB of memory, the Flush+
Monitor covert channel has a capacity of 37.3kB/s, while
Flush+Reload reaches 2.68 kB/s.

C. Observing Low Frequency Events

In this section, we show that our attack techniques can be
used to observe singular low-frequency events like keystrokes
for inter-keystroke timings, the starting of different processes
for Ul redress attacks, or actions within programs like Discord.

Like prior work [22], [66], we template pages of binaries
and shared libraries to find code pages that are executed on the
events we want to observe. Afterwards, we constantly remove
the target page(s) from the cache and check if it was brought
back into the cache. We know that the event code is executed
when the page containing it is loaded back into the cache by
the program we want to observe.

1) Threat Model: We assume an attacker is on the same
machine and, for some attacks, inside a Docker container.
The attacker wants to spy on user behavior, e.g., keystrokes,
when applications are started, or events inside applications.
The attacker has access to shared libraries and binaries but
no other permissions. We assume there are no other paths or
vulnerabilities that could be exploited.

2) Inter-Keystroke Timing: In this section, we present an
inter-keystroke timing attack [22], [49], [59], [60], [62], [69],
[79] using Evict+Monitor on gedit, a text editor. Keypress-
timing information does not directly leak specific keys, but
rather indirectly [69], [79]. We can only execute the inter-
keystroke timing attack by means of eviction, as no pages
corresponding to keys can be flushed. As the source of leak-
age, we target page 32 of 1libgedit-41.so. This page was
determined by gradually increasing memory pressure while
pressing keys and monitoring libgedit to see which pages
are reloaded. Page 32 was the least noisy page corresponding
to keystrokes.



With 401 human keystrokes pressed in 72s (average:
5.5keys/s), our Evict+Monitor attack loop observed an F,;
score of 96.7%. In Figure 8, we show the recording of an
Evict+Monitor attack loop while a script using xdotool typed
characters into gedit. The script typing the keys also recorded
the precise timestamps of each key press, shown as red dashed
lines. Changes in the page state of libgedit are depicted
as blue dots. To ensure that all the keys are not pressed
with uniform time between each key press, the script added a
random delay between each key press. During this attack, the
free space in memory as reported by the free command was
between 450 MiB to 550 MiB.

As seen in Figure 8, there are thirteen single-observations
(single in-cache observations) and seven double-observations
(two rapid and successive in-cache observations). These
double-observations are trivial to filter out as the minimum dif-
ference in time between two keystrokes (0.35 s) is greater than
the difference in time between two observations corresponding
to the same key (0.15s). It is possible to misinterpret two
different keystrokes as a double-observation (false negative)
should the person be fast at typing. To obtain better inter-
keystroke timings, we can collect typing traces multiple times,
as shown in prior work [49], [65].

3) UI Redress Attack: In this section, we demonstrate that
we can detect when a process started reliably with very short
delay using Flush+Monitor. This can be exploited for a Ul
redress attack on a password authentication window where
a user enters their password [4], [10], [18], [22], [34], [50],
[61]. An attacker can detect such a window by detecting the
presence of pkexec in the page cache. The pkexec program of
PolicyKit [56] uses an authentication agent, e.g., UI password
window, to authorize a user. Once pkexec has been detected in
the page cache, an attacker can draw an identical-looking and
fake password-authentication window over the real window.
All seven pages of pkexec can be flushed when the program is
not in use, and all pages are brought into cache when executing
the program. On average, we detect the first page of pkexec
in 800 ns (n=100, =60 ns).

Another target file to detect the start of pkexec is
libpwquality.so.1.0.2, a shared library used by pkexec.
We find that 1ibpwquality is only used by three programs
on a default Ubuntu installation: sddm or gdm (display man-
agers), sudo, and polkit-agent-helper-1 (spawned by
pkexec). By monitoring the seventh page of libpwquality
with Flush+Monitor, we detect the pkexec in 900 ns (n=100,
0=60ns) on average.

4) Cross-Container Shell-Launch Detection: Boskov et al.
[5] demonstrated page-cache attacks across Docker containers
using Evict+Monitor. As noted in Section IV, the monitor
primitive’s mechanism, cachestat, is disabled by default in
Docker containers [48]. Despite the lack of this primitive, we
show that a container can still reliably use the Flush+Reload
attack strategy on shared libraries to detect events in co-located
containers. In particular, we show that a container can detect
when another container starts a shell by flushing & reloading
pages 45, 46, and 47 of the 1libtinfo.so.6 shared library.
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Fig. 9. A malicious Docker container can use Flush+Reload on pages 45,

46, and 47 of libtinfo.so.6 to detect whether another Docker container
launches. The reload-time for these pages considerably dips when another
container launches — 4 000 cycles versus 350 000 cycles.

When shells are run, e.g., bash at container launch, they load
libtinfo for terminal-related information.

We use a default Ubuntu 22.04 Docker container for our
evaluation and find that it can flush and reload the three pages
of 1libtinfo to successfully determine whether a shell was
started in another container. In Figure 9, we plot the reload-
times of pages 45, 46, and 47 of 1ibtinfo as measured by
a malicious container while a benign containers launches a
shell five times. Reload times are consistently above 100 000
cycles, averaging around 350000 cycles, while the shell is
not launched. When the container spawns a shell, the time
to reload drops significantly, averaging 4 000 cycles. With a
simple threshold of 100000 cycles, the malicious container
detects all five times the benign container launched a shell.

Only relying on 1ibtinfo comes with the risk of detecting
false negatives. For example, if the user starts multiple tmux
sessions, each session spawns a shell. However, this can be
overcome by monitoring multiple shared libraries used when
a container launches — effectively fingerprinting a container
launch. A set of shared libraries can be determined via an
offline templating analysis [66].

5) Events Inside Programs: In this section, we briefly show
that we can also detect events inside running applications.
In a more complex continuation of this attack, we perform
website fingerprinting in the next section. Schwarzl et al.
[66] attacked electron apps by combining CPU caches and
the page cache. With our high-frequency page cache flushing
primitive, we can perform attacks on electron apps with only
the page cache. We target Discord 0.0.78, which requires and
uses /usr/share/discord/libffmpeg.so. By constantly
running Flush+Monitor on 1ibffmpeg, we find three interest-
ing observations: First, pages 174 and 887 are used whenever
an embedded YouTube video starts playing. Second, Pages 190
to 221 are momentarily brought into cache when an internally-
shared video plays, before being removed. Last, pages 936 to
974 are used whenever a sound is played, such as the sounds
for deafen, mute, join voice chat.



TABLE VI
WEBSITE FINGERPRINTING RESULTS FOR EACH ATTACK TECHNIQUE.

Attack Technique F; Score
Flush+Monitor 90.5 %
Flush+Reload 88.1 %
Flush+Flush 86.1 %
Evict+Monitor 79.5 %
Evict+Reload 37.9 %

100

Prediction

_

Website

Fig. 10. Classification heat map of the website fingerprinting using Flush+
Monitor. The F; score is 90.5 %.

D. Website Fingerprinting

In this section we present a website fingerprinting at-
tack [33], [60], [71], [80], reaching an F; score of up to 90.5 %
on the top 100 websites from the Alexa top 1 million list.

1) Evaluation Methodology: We exclude two of the top
100 websites due to issues with blocking and excessively slow
loading times: jd.com and mediafire.com.

We target Firefox 133.0, which uses the shared library
libxul.so, a file 41 205 pages large. Instead of keeping track
of all 41205 pages, we template the library in an offline
analysis to narrow down the number of pages. As a part of this
offline analysis, we launch each of the top 100 websites and
monitor 1ibxul using Flush+Monitor to find out which pages
these websites use. We narrow down pages that are used by a
maximum of any 80 websites, and this results in 7198 pages in
our case, which is 17.47 % of the total library size. Therefore,
we only track these 7198 pages to determine which website
the user is visiting. Any subsequent updates to 1ibxul will
require a reevaluation of the shared library.

For each of our five website-fingerprinting attacks, we open
each website 30 times, recording the page cache behavior
of our 7198 target pages for 10 seconds, resulting in 3000
measurements. We randomize the order in which websites are
launched to mitigate possible unknown biases. After recording
the data, we post-process it as described in Section VI-D2.
This post-processing is the same for all attack techniques. Ap-
pendix A describes specific details of eviction-based website
fingerprinting.
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2) Data Processing: After recording the 7198 pages of
libxul.so, we convert the data into “activity strings”. These
strings contain the changes in the presence of each page in
the page cache, ‘1’ representing presence in the cache while
‘0’ representing the opposite. If a page is accessed by the
victim previously removed from page cache by the attacker
and subsequently accessed by the victim again, the activity
string here is “101”. Since most websites only use few pages,
we disregard any “0” activity strings and reduce them to an
empty string, “”, no activity. For classification, we pass these
activity strings to a random forest classifier, the results of
which shown in Table VI.

3) Results: We present our results in Table VI. Using flush
to remove pages from page cache, we fingerprint websites
with an F; score of at least 85%. Out of the three flush-
based attack techniques, Flush+Monitor performs the best with
an F; score of 90.5 %, shown as a heat map in Figure 10.
This is unsurprising as both the flush and monitor primitives
are deterministic. While reload does provide a clear source of
information (with a threshold of 200000 cycles), there still
are some fluctuations due to other system noise. With Flush+
Reload we get an F; score of 88.1 %. Although using flush to
leak whether a page is in cache has a close threshold (1500
vs 5000 cycles), we still get an F; score of 86.1 %.

The results for Evict+Monitor are comparable to the worst
flush-based website fingerprinting attack, Flush+Flush. We see
a sharp drop in F; score with Evict+Reload as the reloads add
more pressure, making it harder to evict the target set of pages
since these were recently accessed. Despite this, the F; score
of Evict+Reload is still better than random guessing.

VII. COUNTERMEASURES

Mitigating all page cache attacks is a challenging endeavor
that may or may not be desirable for a concrete system. Infor-
mation provided by interfaces like mincore and cachestat
can have substantial performance benefits in real-world use
cases [68]. Furthermore, it may be possible for the kernel to
introduce a new syscall which behaves as a flush, reload, or
monitor mechanism.

In the case of flush and reload, we discussed the con-
verging kernel functions in Section III-B and Section III-A
respectively. Therefore, for an effective mitigation of flush and
reload, these kernel functions must be restricted at a file and
process level. However, most systems of individual users may
not require flush to be available for all unprivileged processes.
As the only filesystem agnostic mechanism for flushing is
posix fadvise with POSIX FADV DONTNEED, it may even
be a viable method to make the advice privileged or require
a capability. Updating the posix fadvise system call alone
would mitigate all flush-based attacks (Flush+Reload, Flush+
Monitor, and Flush+Flush).

As cachestat shows, new syscalls can easily reintroduce
leakage that undermines prior mitigation efforts. The preven-
tion of monitor mechanisms is challenging as there is no clear
convergence to a kernel function (see Section III-D), and thus
resorting to mitigating known mechanisms on a case-by-case



basis. Since, we find that the amount of time cachestat
requires to report a page’s presence in the cache also leaks
information (see Section III-D), this timing difference must
also be considered when designing and mitigating syscalls.

With flush, reload, and monitor mitigated, only evict is to
be mitigated. Eviction is not trivial to mitigate and may persist
as explored extensively in secure CPU cache research [6],
[19], [29], [57], [70]. However, mitigating reload and monitor
eliminates both evict-based attacks: Evict+Monitor and Evict+
Reload.

VIII. CONCLUSION

In this paper, we showed that the problem of page cache
attacks is significantly larger than anticipated. Based on a sys-
tematic approach with four primitives (flush, reload, evict, and
monitor) and five attack techniques (Flush+Monitor, Flush+
Reload, Flush+Flush, Evict+Monitor, and Evict+Reload), fol-
lowing the terminology of CPU cache attacks, we mount
attacks on fully up-to-date Linux kernels, bypassing exist-
ing mitigations. We demonstrate fast covert channels, inter-
keystroke timing and event detection attacks, outperforming
prior mitigated attacks by orders of magnitude, and a website-
fingerprinting attack with an F; score of 90.54 %. Our work
shows that mitigating page cache attacks is more challenging
than anticipated: While ad-hoc measures like making specific
system calls privileged are necessary, an abundance of differ-
ent primitives and techniques remain available to an attacker,
inherent to the page cache being a cache. Thus, the problem
is currently open and future research needs to find solutions
that go beyond specific system calls.
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APPENDIX A
EVICTION-BASED WEBSITE FINGERPRINTING

To effectively evict our target pages, we have to dynamically
apply memory pressure by means of eviction set 4. The
memory consumption of Firefox is highly dependent on the
opened website (see Section III-C), and thus it is insufficient
only to apply a static pressure. Hence, we dynamically control
memory pressure by employing eviction set 4.

To control memory pressure, we use the number of pages of
our target file, 1ibxul, that are not in the page cache as our
base metric, determined by using the monitor primitive. When
the percentage of pages not in cache is lower than the specified
memory pressure, we allocate more memory to increase the
memory pressure and evict more pages. Conversely, when the
percentage is greater, we free memory. For example, a memory
pressure of 10 % causes 10 % 1ibxul’s pages to be evicted.

Naturally, a higher memory pressure causes the system to
become unstable. We were able to reliably achieve a maxi-
mum memory pressure of 30 %. At memory pressures greater
than 30 %, we consistently notice the Out-of-Memory (OOM)
killer terminate our memory-pressure program. Therefore, we
present the results below for eviction-based website finger-
printing attacks at 30 % memory pressure. To keep results
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https://www.kernel.org/doc/html/v6.8/core-api/mm-api.html#c.filemap_read
https://www.kernel.org/doc/html/v6.8/core-api/mm-api.html#c.filemap_read
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/moby/profiles/blob/main/seccomp/default.json
https://github.com/moby/profiles/blob/main/seccomp/default.json
https://lore.kernel.org/lkml/20230503013608.2431726-3-nphamcs@gmail.com/
https://lore.kernel.org/lkml/20230503013608.2431726-3-nphamcs@gmail.com/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://lore.kernel.org/lkml/5c3e7de6.1c69fb81.4aebb.3fec@mx.google.com/
https://lore.kernel.org/lkml/5c3e7de6.1c69fb81.4aebb.3fec@mx.google.com/

consistent between runs, we read the entire 1ibxul file before
beginning the recording.

Data Processing. We truncate the activity strings to length
8, since any more page cache state changes are artifacts of
the eviction pressure. These artifacts have the unwanted effect
of making the data very sparse, and thus, we find truncation
to reduce noise. We also disregard any single-length activity
strings (‘0” or ‘1’) as we found that these made the data noisy
and the classification worse.

APPENDIX B
ARTIFACT APPENDIX

Page cache attacks have been thought to be mititgated or
impractically slow since the mitigation of the Linux mincore
syscall in 2019. In this paper, we not only revive practical
attacks on the page cache, but also provide a systematic clas-
sification & understanding of primitives which interact with
page cache. This understanding helps us advance page cache
attacks, including speeding up previously known primitives by
six orders of magnitude.

This artifact demonstrates the four primitives which we
describe in our paper — flush, reload, evict, and monitor —,
two methods to overcome the read-ahead mechanism, syscalls
determined to be reload mechanisms, covert channels, and
proof-of-concept attacks. Our attacks are hardware-agnostic
and primarily depend on the versions of the Linux kernel
used. We recommend evaluating our attacks on kernel versions
above 4.14, ideally above 6.5. In February 2025, one of the
monitor mechanisms, the cachestat syscall was mitigated;
patches have been rolled out across Linux distributions, and
the exact patch number can be checked to determine when it
was patched. However, cachestat is not strictly required for
our evaluation, as we demonstrate our attacks using another
monitor mechanism, preadv2 + RWF_NOWAIT, introduced in
kernel 4.14 and still working.

A. Description & Requirements

1) How to Access: Our Zenodo artifact is available at
https://doi.org/10.5281/zenodo.17915256, made conveniently
available at https://github.com/isec-tugraz/Eviction-Notice.

2) Hardware Dependencies: We tested all our attacks on
x86 desktop / notebook CPUs. To keep evaluation times short,
we suggest testing on Intel and AMD CPUs with 8 GB to
32GB of RAM.

3) System Requirements: Linux kernel versions above 4.14
and ideally above 6.5. We developed and tested all our artifacts
on Debian 13 and Debian-based Linux distributions (Ubuntu
22.04). Although our attacks should work on most Linux
distributions, distribution-specific idiosyncrasies might make
it challenging to mount attacks in the exact manner described
in this artifact. One of the syscalls on which we rely as
a monitor mechanism is cachestat. This syscall has been
mitigated in February 2025, and no longer works in the cross-
user threat model of our paper. Therefore, it may be neces-
sary to downgrade the kernel for testing cachestat alone.
However, we have another monitor mechanism, preadv2 +

10)
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RWF _NOWAIT, which works with kernel versions above 4.14.
Swapping should be switched off to keep evaluation time short.
We suggest an ext4 filesystem and glibc version > 2.34 is
required. Finally, systems with /tmp/ mounted as tmpfs will
not be able to carry out the specific implementation of this
artifact.

4) Attack Requirements: Creating another user is required
to completely evaluate our attacks in the cross-user threat
model. To create another user requires root permissions.

5) Software Dependencies: None

6) Benchmarks: None

7) Security, Privacy, and Ethical Concerns: Our artifacts
do not perform any malicious operations by design. The
only evaluation which may be destructive is eviction-based
evaluation: if aggressive values are chosen, it may cause the
system to become unstable or even crash, requiring a forced
restart. For eviction-based operations, we recommend closing
applications, saving important data, and disabling swapping.
All other operations are non-destructive.

B. Artifact Installation & Configuration

To configure a system in which cachestat (monitor mech-
anism) works in a cross-user threat model, please check
the Debian Security Tracker for when different distributions
patched it and revert to that patched kernel. Our monitor-based
attacks are configured to use an alternative with preadv2 if
setting up an unpatched kernel requires too much time.

C. Experiment Workflow

1) Create a new user: sudo adduser testinguser

2) Download the zipped artifact file and unzip its contents to
/path/.

Run the script:
create-testing-file.sh
Calibration: Compile code in /path/calibration/ and
run to compute three thresholds.

Set these thresholds across:

3) /path/helper-scripts/-

4)

5)
/path/primitives/Makefile
/path/covert-channels/flush-reload/Makefile
/path/covert-channels/flush-flush/Makefile
/path/attacks/docker/watcher/watcher-flush-
_reload/Makefile

Primitives: Compile code in /path/primitives/ and
evaluate all four primitives

Reload Mechanisms: Compile code in /path/-
reload-mechanisms/ and evaluate all eleven syscalls &
methods.

Covert Channels: Compile code in the three directories
of /path/covert-channels and evaluate all three covert
channels.

Attacks (1): Evaluate a Flush+Monitor attack to detect
when a binary is run.

Attacks (2): Build two docker containers (using docker
compose) and evaluate a Flush+Reload attack to detect
when a binary is run cross-container.

6)

7)

8)

9)


https://doi.org/10.5281/zenodo.17915256
https://github.com/isec-tugraz/Eviction-Notice
https://security-tracker.debian.org/tracker/CVE-2025-21691/

11) Attacks (3): Using an apt version of Firefox, evaluate
a Flush+Monitor attack to theoretically mount a website
fingerprinting attack.

D. Major Claims

e (CI): Our work advances page cache attacks by sys-
tematically classifying flush, monitor, reload, and evict
primitives. These four are outlined in Section III-A, III-
B, III-C, II-D and are proven by experiment (E2).

(C2): In our work, we find two novel techniques to
overcome a well-known limitation with reload: the read-
ahead mechanism. This is proven by experiment (E2) and
discussed in Section III-A: the backward-reading technique
and readahead syscall.

(C3): Our work revives page cache attacks and improves
state of the art by 6 orders of magnitude. Discussed
in Section V-A, this is proven by experiment (E4) with
a Flush+Monitor covert channel based on preadv2 and
RWF NOWAIT.

E. Evaluation

For each experiment, we provide in-depth instructions in the
artifact’s singular README file. The structure of the README
follows the experiment order in this appendix.

1) Experiment (EI): [Calibration] [10 human-minutes]:
Determining timing thresholds

[Preparation] The testing file should be created with
create-testing-file.sh. In calibration/, execute
make.

[Execution] Run the three compiled binaries in build/,
each with one argument: path to testing file. Run these binaries
5-10 times to gauge a good threshold.

[Results] The binaries report FLUSH THRESHOLD, READ -
THRESHOLD, and READAHEAD THRESHOLD. Note a threshold
for each which appears most of the time (a rough number is
fine). These will be set in the Makefiles in experiment (E2).

2) Experiment (E2): [Primitives] [SO human-minutes]: Val-
idating primitives

[Preparation] Set the determined thresholds from experi-
ment (El) in primitives/Makefile. Afterwards, run make
and copy the build folder to /tmp/build-primitives. En-
sure swapping is switched off.

[Execution] As testinguser, execute the binaries in /tmp/-
build-primitives to test flush, reload, monitor, and evict
(detailed instructions in the README). Afterwards, test the read-
ahead mechanism bypasses and eviction. Warning: Eviction
may cause instability and possibly crashes.

[Results] Flush and evict should be able to remove pages
from the page cache, while reload brings it back into the
page cache. Monitor reports the presence of pages in cache.
monitor-cachestat may fail if the mitigation is in place.

3) Experiment (E3): [Reload Mechanisms] [10 human-
minutes]: Validating 11 syscalls and methods as reload mech-
anisms.

[Preparation] Run make in reload-mechanisms.

[Execution] Run test-all-reload. sh.
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[Results] This experiment tests 11 syscalls and methods as
reload mechanisms by flushing, reloading, and reloading again
for each syscall and method. On average, there should be a
notable timing difference between between [Flushed] and
[After Reload].

4) Experiment (E4): [Covert Channels] [20 human-
minutes]: We demonstrate three out of five covert channels.
Notably, Evict+Monitor and Evict+Reload are not provided
to save time. Eviction is a challenging primitive on unknown
systems, especially when run repeatedly. If eviction was made
to work in experiment (E2), we claim that performing a
reload or monitor preceded by an eviction is a rudimentary
demonstration of an Evict-based covert channel.

[Preparation] Set the determined thresholds from exper-
iment (E1) in each of Makefiles in covert-channels/.
Afterwards, run make in all three directories and copy the build
folder to /tmp/covert-channels. Generate a synchroniza-
tion and communication file.

[Execution] One after the other, run each receiver as testin-
guser and the sender as the normal user. The Flush+Flush
covert channel may be quite challenging for achieving a high
accuracy as the threshold for flush is quite small. Nevertheless,
we offer three suggestions in Flush+Flush section of the
README to help achieving a higher accuracy.

[Results] Each receiver of the covert channel reports a
percentage of data correctly transmitted. Both the sender and
receiver report time taken to transmit and receive.

5) Experiment (E5): [Attacks] [45 human-minutes]:

[Preparation] Set the determined thresholds from
experiment (E1) in the Makefile of attacks/docker/-
watcher/watcher-flush reload/Makefile. Run
docker compose in the watcher and provoker directories.
Install an apt version of Firefox.

[Execution] First, run a flush and while-loop of monitor
checking for the presence of htop in cache, and then run htop.
Second, run the two docker containers. Start the program in
watcher first watching 1s, and execute 1s in provoker. Finally,
launch a Flush+Monitor loop on Firefox’s 1ibxul.so, launch
Firefox, and visit 5 websites.

[Results] The first part reports htop’s presence in cache
upon running htop. The second part reports a much lower
timing when 1s is executed cross-container. The third part
reports a different range of values in 1ibxul.so’s page count
upon visiting different websites.
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