
How the Hardware undermines Software Security

Daniel Gruss

March 25, 2019

Graz University of Technology

1 Daniel Gruss — Graz University of Technology

Intel SGX www.tugraz.at

• Instruction-set extension

• Integrity and confidentiality of code and data in untrusted

environments

• Run with user privileges and restricted, e.g., no system calls

• Run programs in enclaves using protected areas of memory

2 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Untrusted part

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Untrusted part

Create Enclave

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX Encrypted Memory www.tugraz.at

Physical Memory

E
P
C

(1
2
8
M
B
)

0 GB 16GB

4 Daniel Gruss — Graz University of Technology

SGX Encrypted Memory www.tugraz.at

Physical Memory

E
P
C

(1
2
8
M
B
)

0 GB 16GB

4 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

5 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

5 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

5 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

5 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

5 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

5 Daniel Gruss — Graz University of Technology

1337 4242

Revolutionary concept!

Store your food at home,
never go to the grocery store
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

6 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

7 Daniel Gruss — Graz University of Technology

Timing Measurements www.tugraz.at

• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]

8 Daniel Gruss — Graz University of Technology

What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed?

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

9 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

10 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

10 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

10 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

10 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u

m
b

er
of

ac
ce

ss
es

Cache Hits

11 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u

m
b

er
of

ac
ce

ss
es

Cache Hits Cache Misses

11 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

12 Daniel Gruss — Graz University of Technology

Timer www.tugraz.at

• We can build our own timer

• Start a thread that continuously increments a global variable

• The global variable is our timestamp

13 Daniel Gruss — Graz University of Technology

Timer www.tugraz.at

• We can build our own timer

• Start a thread that continuously increments a global variable

• The global variable is our timestamp

13 Daniel Gruss — Graz University of Technology

Timer www.tugraz.at

• We can build our own timer

• Start a thread that continuously increments a global variable

• The global variable is our timestamp

13 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3
1 t imestamp = r d t s c () ;

14 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3
1 whi le (1) {
2 t imestamp++;

3 }

14 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
1 whi le (1) {
2 t imestamp++;

3 }

14 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
1 mov ×tamp , %rcx

2 1 : i n c l (% rcx)

3 jmp 1b

14 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

1 mov ×tamp , %rcx

2 1 : i n c l (% rcx)

3 jmp 1b

14 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

1 mov ×tamp , %rcx

2 1 : i n c %rax

3 mov %rax , (% rcx)

4 jmp 1b

14 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

0.87

1 mov ×tamp , %rcx

2 1 : i n c %rax

3 mov %rax , (% rcx)

4 jmp 1b

14 Daniel Gruss — Graz University of Technology

Modern Processor Design www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units
A

L
U

,A
E

S,
..

.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

15 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

16 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

16 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks.

It is the

enclave developer’s responsibility to address side-channel attack concerns.

16 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

16 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

17 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold

and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

17 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE.

Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

17 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

17 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

18 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

...processed with a simple moving average...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

18 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent1

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

18 Daniel Gruss — Graz University of Technology

Back to Work

Wait for an hour

Wait for an hour

LATENCY

Parallelize
D

ep
en

de
nc

y

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

19 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

19 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

(volatile char) 0;

array [84 * 4096] = 0;

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

23 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

23 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

24 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

24 Daniel Gruss — Graz University of Technology

Kernel Address Isolation to have Side channels Efficiently Removed

Kernel Address Isolation to have Side channels Efficiently Removed

KAISER /ˈkʌɪzə/
1. [german] Emperor,
ruler of an empire
2. largest penguin,
emperor penguin

KAISER Illustration www.tugraz.at

Without KAISER:

Shared address space

User memory Kernel memory

0 −1

context switch

With KAISER:

User address space

User memory Not mapped

0 −1

Kernel address space

SMAP + SMEP Kernel memory

0 −1

context switch

sw
itch

a
d
d
r.

sp
a
ce

Interrupt

dispatcher

26 Daniel Gruss — Graz University of Technology

KAISER Illustration www.tugraz.at

Without KAISER:

Shared address space

User memory Kernel memory

0 −1

context switch

With KAISER:

User address space

User memory Not mapped

0 −1

Kernel address space

SMAP + SMEP Kernel memory

0 −1

context switch

sw
itch

a
d
d
r.

sp
a
ce

Interrupt

dispatcher

26 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

27 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

27 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

27 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

27 Daniel Gruss — Graz University of Technology

KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer

27 Daniel Gruss — Graz University of Technology

»A table for 6 please«

Speculative Cooking

»A table for 6 please«

Spectre-PHT (v1) www.tugraz.at

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’t’

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’e’
Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’e’

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’x’

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’x’

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’t’

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’t’

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’K’

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’K’

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’E’

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’E’

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’Y’

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre-PHT (v1) www.tugraz.at

LUT

Index ’Y’

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology

Spectre www.tugraz.at

operation #n

re
tir

e

prediction

re
tir

e

operation #n+2

re
tir

e

pr
ed

ic
t

C
F/

D
F

possibly
architectural transient execution

flush pipeline
on wrong
prediction

time

35 Daniel Gruss — Graz University of Technology

Meltdown www.tugraz.at

operation #n

re
tir

e

re
tir

e

operation #n+2

re
tir

e

data dependency

data Meltdown

possibly
architectural transient execution

exception raise

time

36 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

in-place/
same-
address-space

out-of-place/
same-
address-space

Victim

Victim branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

in-place/
cross-
address-space

out-of-place/
cross-
address-space

Attacker

Shadow branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

Shared Branch Prediction State

37 Daniel Gruss — Graz University of Technology

Classification Tree www.tugraz.at

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [32]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [54, 52]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [54, 18]

BTB-CA-OP [54]

BTB-SA-IP ⭑

BTB-SA-OP [18]Cross-address-space

Same-address-space RSB-CA-IP [64, 56]

RSB-CA-OP [56]

RSB-SA-IP [64]

RSB-SA-OP [64, 56]

Meltdown-NM [86]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [10, 41]

Meltdown-US [61]

Meltdown-P [93, 96]

Meltdown-RW [52]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [44]

Meltdown-BND ⭑

prediction

fault

38 Daniel Gruss — Graz University of Technology

Mitigations www.tugraz.at

Table 1: Spectre-type defenses and what they mitigate.

Attack

Defense

In
vi

si
S

p
ec

S
af

eS
p

ec
D

A
W

G
R

S
B

S
tu

ffi
ng

R
et

p
ol

in
e

P
oi

so
n

V
al

ue
In

de
x

M
as

ki
ng

S
it

e
Is

ol
at

io
n

S
L

H
Y

S
N

B
IB

R
S

S
T

IP
B

IB
P

B
S

er
ia

liz
at

io
n

T
ai

nt
T

ra
ck

in
g

T
im

er
R

ed
uc

ti
on

S
lo

th
S

S
B

D
/S

S
B

B

Intel

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

ARM

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

AMD

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not mitigated (), theoretically

mitigated (), theoretically impeded (), not theoretically impeded (), or out of scope ().
39 Daniel Gruss — Graz University of Technology

Performance Costs www.tugraz.at

Table 2: Reported performance impacts of countermeasures

Defense

Impact
Performance Loss Benchmark

InvisiSpec 22% SPEC

SafeSpec 3% (improvement) SPEC2017 on MARSSx86

DAWG 2–12%, 1–15% PARSEC, GAPBS

RSB Stuffing no reports

Retpoline 5–10% real-world workload servers

Site Isolation only memory overhead

SLH 36.4%, 29% Google microbenchmark suite

YSNB 60% Phoenix

IBRS 20–30% two sysbench 1.0.11 benchmarks

STIPB 30– 50% Rodinia OpenMP, DaCapo

IBPB no individual reports

Serialization 62%, 74.8% Google microbenchmark suite

SSBD/SSBB 2–8% SYSmark R©2014 SE & SPEC integer

KAISER/KPTI 0–2.6% system call rates

L1TF mitigations -3–31% various SPEC

40 Daniel Gruss — Graz University of Technology

What if we want to modify data?

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip

42 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each

43 Daniel Gruss — Graz University of Technology

DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each

43 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer

44 Daniel Gruss — Graz University of Technology

Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer

44 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

Hammering techniques www.tugraz.at

• There are three different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row

45 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

46 Daniel Gruss — Graz University of Technology

#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

46 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

47 Daniel Gruss — Graz University of Technology

#2 - Double-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

47 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate

48 Daniel Gruss — Graz University of Technology

#3 - One-location hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips

48 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again

49 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo

50 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JL
0 1 1 1 1 1 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JO
0 1 1 1 0 0 0 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JBE
0 1 1 1 0 1 1 0

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

<prefix>
0 1 1 0 0 1 0 0

51 Daniel Gruss — Graz University of Technology

Page Cache www.tugraz.at

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution

• Only evicted if page cache is full

• Page cache is huge - usually all unused memory

52 Daniel Gruss — Graz University of Technology

Page Cache www.tugraz.at

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution

• Only evicted if page cache is full

• Page cache is huge - usually all unused memory

52 Daniel Gruss — Graz University of Technology

Page Cache www.tugraz.at

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution

• Only evicted if page cache is full

• Page cache is huge - usually all unused memory

52 Daniel Gruss — Graz University of Technology

Page Cache www.tugraz.at

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution

• Only evicted if page cache is full

• Page cache is huge - usually all unused memory

52 Daniel Gruss — Graz University of Technology

Memory Waylaying www.tugraz.at

(1) Start

B

X

53 Daniel Gruss — Graz University of Technology

Memory Waylaying www.tugraz.at

(2) Evict Page Cache

X

53 Daniel Gruss — Graz University of Technology

Memory Waylaying www.tugraz.at

(3) Access Binary

B

X

53 Daniel Gruss — Graz University of Technology

Memory Waylaying www.tugraz.at

(4) Evict + Access

B

X

53 Daniel Gruss — Graz University of Technology

Memory Waylaying www.tugraz.at

(5) Evict + Access

B

X

53 Daniel Gruss — Graz University of Technology

Memory Waylaying www.tugraz.at

(6) Stop if target reached

BX

53 Daniel Gruss — Graz University of Technology

How well does it work? www.tugraz.at

• New pages cover most of the physical memory

1

54 Daniel Gruss — Graz University of Technology

How well does it work? www.tugraz.at

• Great advantage over memory massaging: only negligible memory footprint

55 Daniel Gruss — Graz University of Technology

Rowhammer + SGX = Cheap Denial of Service

Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately

56 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately

56 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately

56 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately

56 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately

56 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately

56 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• If a malicious enclave induces a bit flip, . . .

• . . . the entire machine halts

• . . . including co-located tenants

• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

57 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• If a malicious enclave induces a bit flip, . . .

• . . . the entire machine halts

• . . . including co-located tenants

• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

57 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• If a malicious enclave induces a bit flip, . . .

• . . . the entire machine halts

• . . . including co-located tenants

• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

57 Daniel Gruss — Graz University of Technology

Bit Flips in the EPC www.tugraz.at

• If a malicious enclave induces a bit flip, . . .

• . . . the entire machine halts

• . . . including co-located tenants

• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]

57 Daniel Gruss — Graz University of Technology

SGX + One-location Hammering + Opcode Flipping =

Undetectable Exploit

Bypassing the Defenses www.tugraz.at

Bypass

Defense Class

S
ta

ti
c

A
na

ly
si

s

P
er

fo
rm

an
ce

C
ou

nt
er

s

M
em

or
y

A
cc

es
s

P
at

te
rn

P
hy

si
ca

l
P

ro
xi

m
it

y

M
em

or
y

fo
ot

pr
in

t

Intel SGX

One-location hammering

Opcode flipping

Memory waylaying

Defense class defeated

59 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto

→ “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

→ “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

→ “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer

→ “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance

60 Daniel Gruss — Graz University of Technology

... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology

... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology

... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology

... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology

... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• new class of software-based attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems

62 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• new class of software-based attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems

62 Daniel Gruss — Graz University of Technology

Conclusions www.tugraz.at

• new class of software-based attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems

62 Daniel Gruss — Graz University of Technology

How the Hardware undermines Software Security

Daniel Gruss

March 25, 2019

Graz University of Technology

63 Daniel Gruss — Graz University of Technology

References

Daniel Gruss et al. Another Flip in the Wall of Rowhammer Defenses. In: S&P.

2018.

Yeongjin Jang et al. SGX-Bomb: Locking Down the Processor via Rowhammer

Attack. In: SysTEX. 2017.

Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache

Attacks. In: DIMVA. 2017.

	References

