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Intel SGX www.tugraz.at

• Instruction-set extension

• Integrity and confidentiality of code and data in untrusted

environments

• Run with user privileges and restricted, e.g., no system calls

• Run programs in enclaves using protected areas of memory
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1337 4242

Revolutionary concept!

Store your food at home, 
never go to the grocery store 
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

ORDER VIA PHONE: +555 12345
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Timing Measurements www.tugraz.at

• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]
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What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed?

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]
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Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.
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Temporal Component www.tugraz.at

• Flush+Reload has beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!
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Timer www.tugraz.at

• We can build our own timer

• Start a thread that continuously increments a global variable

• The global variable is our timestamp
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Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7
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3
1 t imestamp = r d t s c ( ) ;
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Modern Processor Design www.tugraz.at
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Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.
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SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]
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Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

18 Daniel Gruss — Graz University of Technology



Attacking a weak RSA implementation inside SGX www.tugraz.at

...processed with a simple moving average...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent1

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

19 Daniel Gruss — Graz University of Technology



Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

19 Daniel Gruss — Graz University of Technology



Building Meltdown www.tugraz.at

*( volatile char*) 0;

array [84 * 4096] = 0;

20 Daniel Gruss — Graz University of Technology
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• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions
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Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

23 Daniel Gruss — Graz University of Technology
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• Flush+Reload over all pages of the array
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• Index of cache hit reveals data

• Permission check is in some cases not fast enough
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Kernel Address Isolation to have Side channels Efficiently Removed



Kernel Address Isolation to have Side channels Efficiently Removed

KAISER /ˈkʌɪzə/
1. [german] Emperor,
ruler of an empire
2. largest penguin, 
emperor penguin



KAISER Illustration www.tugraz.at
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KAISER (Stronger Kernel Isolation) Patches www.tugraz.at

• Our patch

• Adopted in

Linux

• Adopted in

Windows

• Adopted in

OSX/iOS

→ now in every computer
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LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en
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Prediction
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LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology



Spectre-PHT (v1) www.tugraz.at

LUT index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology



Spectre-PHT (v1) www.tugraz.at

LUT

Index ’e’
Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology



Spectre-PHT (v1) www.tugraz.at

LUT

Index ’e’

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

34 Daniel Gruss — Graz University of Technology



Spectre-PHT (v1) www.tugraz.at
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Spectre www.tugraz.at
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Mistraining Location www.tugraz.at
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Classification Tree www.tugraz.at

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [32]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [54, 52]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [54, 18]

BTB-CA-OP [54]

BTB-SA-IP ⭑

BTB-SA-OP [18]Cross-address-space

Same-address-space RSB-CA-IP [64, 56]

RSB-CA-OP [56]

RSB-SA-IP [64]

RSB-SA-OP [64, 56]

Meltdown-NM [86]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [10, 41]

Meltdown-US [61]

Meltdown-P [93, 96]

Meltdown-RW [52]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [44]

Meltdown-BND ⭑

prediction

fault
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Mitigations www.tugraz.at

Table 1: Spectre-type defenses and what they mitigate.

Attack

Defense
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e
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L
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Y
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N

B
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S
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IP
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B
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T
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ck
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g
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R
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on

S
lo

th
S

S
B

D
/S

S
B

B

Intel

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

ARM

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

AMD

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Symbols show if an attack is mitigated ( ), partially mitigated ( ), not mitigated ( ), theoretically

mitigated ( ), theoretically impeded ( ), not theoretically impeded ( ), or out of scope ( ).
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Performance Costs www.tugraz.at

Table 2: Reported performance impacts of countermeasures

Defense

Impact
Performance Loss Benchmark

InvisiSpec 22% SPEC

SafeSpec 3% (improvement) SPEC2017 on MARSSx86

DAWG 2–12%, 1–15% PARSEC, GAPBS

RSB Stuffing no reports

Retpoline 5–10% real-world workload servers

Site Isolation only memory overhead

SLH 36.4%, 29% Google microbenchmark suite

YSNB 60% Phoenix

IBRS 20–30% two sysbench 1.0.11 benchmarks

STIPB 30– 50% Rodinia OpenMP, DaCapo

IBPB no individual reports

Serialization 62%, 74.8% Google microbenchmark suite

SSBD/SSBB 2–8% SYSmark R©2014 SE & SPEC integer

KAISER/KPTI 0–2.6% system call rates

L1TF mitigations -3–31% various SPEC
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What if we want to modify data?



DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip
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DRAM organization www.tugraz.at

chip

bank 0

row 0

row 1

row 2

. . .

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each
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Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer
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DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer
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Hammering techniques www.tugraz.at

• There are two different hammering techniques

• #1: Hammer one row next to victim row and other random rows

• #2: Hammer two rows neighboring victim row

• #3: Hammer only one row next to victim row
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#1 - Single-sided hammering www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

activate
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#2 - Double-sided hammering www.tugraz.at
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#3 - One-location hammering www.tugraz.at
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How to exploit random bit flips? www.tugraz.at

• They are not random → highly reproducible flip pattern!

1. Choose a data structure that you can place at arbitrary memory

locations

2. Scan for “good” flips

3. Place data structure there

4. Trigger bit flip again
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What if we cannot target kernel pages? www.tugraz.at

• Many applications perform actions as root

• They can be used by unprivileged users as well

• sudo
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

HLT
1 1 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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JE
0 1 1 1 0 1 0 0

XORB
0 0 1 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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JE
0 1 1 1 0 1 0 0

PUSHQ
0 1 0 1 0 1 0 0

<prefix>
0 1 1 0 0 1 0 0
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Opcode Flipping - Conditional Jump www.tugraz.at

JE
0 1 1 1 0 1 0 0

JNE
0 1 1 1 0 1 0 1

<prefix>
0 1 1 0 0 1 0 0
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Page Cache www.tugraz.at

• If a binary is loaded the first time, it is loaded to the memory

• It stays in memory (in the page cache) even after execution

• Only evicted if page cache is full

• Page cache is huge - usually all unused memory
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Memory Waylaying www.tugraz.at

(1) Start

B

X
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Memory Waylaying www.tugraz.at

(2) Evict Page Cache

X
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Memory Waylaying www.tugraz.at

(3) Access Binary

B

X
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Memory Waylaying www.tugraz.at

(4) Evict + Access

B

X
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(5) Evict + Access

B

X
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Memory Waylaying www.tugraz.at

(6) Stop if target reached

BX
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How well does it work? www.tugraz.at

• New pages cover most of the physical memory

1
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How well does it work? www.tugraz.at

• Great advantage over memory massaging: only negligible memory footprint
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Rowhammer + SGX = Cheap Denial of Service



Bit Flips in the EPC www.tugraz.at

• What happens if a bit flips in the SGX EPC?

• Integrity check will fail!

→ Locks up the memory controller

→ Not a single further memory access!

→ System halts immediately
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Bit Flips in the EPC www.tugraz.at

• If a malicious enclave induces a bit flip, . . .

• . . . the entire machine halts

• . . . including co-located tenants

• Denial-of-Service Attacks in the Cloud [Gru+18; Jan+17]
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SGX + One-location Hammering + Opcode Flipping =

Undetectable Exploit







Bypassing the Defenses www.tugraz.at
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Intel SGX

One-location hammering

Opcode flipping

Memory waylaying

Defense class defeated
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How did we get here? www.tugraz.at

We have ignored microarchitectural attacks for many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

• Rowhammer → “only affects cheap sub-standard modules”

→ for years we solely optimized for performance
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... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology



... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology



... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology



... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology



... and we’re still optimizing for performance www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary

61 Daniel Gruss — Graz University of Technology



Conclusions www.tugraz.at

• new class of software-based attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems
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