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Abstract
Differential Power Analysis (DPA) measures single-bit dif-
ferences between data values used in computer systems by
statistical analysis of power traces. In this paper, we show that
the mere co-location of data values, e.g., attacker and victim
data in the same buffers and caches, leads to power leakage in
modern CPUs that depends on a combination of both values,
resulting in a novel attack, Collide+Power. We systematically
analyze the power leakage of the CPU’s memory hierarchy to
derive precise leakage models enabling practical end-to-end
attacks. These attacks can be conducted in software with any
signal related to power consumption, e.g., power consumption
interfaces or throttling-induced timing variations. Leakage
due to throttling requires 133.3 times more samples than di-
rect power measurements. We develop a novel differential
measurement technique amplifying the exploitable leakage
by a factor of 8.778 on average, compared to a straightfor-
ward DPA approach. We demonstrate that Collide+Power
leaks single-bit differences from the CPU’s memory hierarchy
with fewer than 23 000 measurements. Collide+Power varies
attacker-controlled data in our end-to-end DPA attacks. We
present a Meltdown-style attack, leaking from attacker-chosen
memory locations, and a faster MDS-style attack, which leaks
4.82 bit/h. Collide+Power is a generic attack applicable to
any modern CPU, arbitrary memory locations, and victim ap-
plications and data. However, the Meltdown-style attack is not
yet practical, as it is limited by the state of the art of prefetch-
ing victim data into the cache, leading to an unrealistic real-
world attack runtime with throttling of more than a year for a
single bit. Given the different variants and potentially more
practical prefetching methods, we consider Collide+Power a
relevant threat that is challenging to mitigate.

1 Introduction

Power analysis attacks exploit differences in the power con-
sumption of hardware circuits for different operations or data
operands [2, 17, 26]. Most power analysis attacks use exter-
nal measurement equipment on small devices such as smart

cards [29, 30] to extract their internal secret information (e.g.,
cryptographic keys). Without physical access, an attacker can
still resort to software-based side channels, exploiting, e.g.,
timing [15], or the cache state [28, 42]. While the attack tech-
niques are generic, these physical and software-based side-
channel attacks are typically specific to a victim application,
e.g., a cryptographic implementation. Hence, for all of these
side-channel attacks, there is clear guidance on how develop-
ers can mitigate them, e.g., constant-time implementations,
blinding, masking, or adding randomness [24].

Meltdown [20] and MDS [3, 34, 37] can still leak secret
information even when developers followed best practices on
mitigations. In this sense, they are generic attacks that are not
tailored to a specific algorithm but rather a CPU, meaning
they can leak arbitrary data from a victim context regardless
of the algorithm executed. However, Meltdown and MDS are
mitigated through hardware and software patches.

Recently, software-based power side channels gained more
traction [8, 9, 19, 21, 25, 27, 33, 38, 41], especially after the
discovery that software-level interfaces are precise enough
to mount power analysis attacks on cryptographic implemen-
tations [19]. One stop-gap solution against these attacks is
making the corresponding software-level interfaces privileged
(e.g., Intel RAPL). However, adaptive power management
leads to constant frequency adjustments to comply with en-
ergy and heat limits. When the CPU works with data operands
that consume more energy, the CPU reaches these limits more
frequently. Consequently, power consumption variations trans-
late directly into timing differences [21, 38]. Hence, software-
based power side channels are still practical. Still, so far,
they targeted specific applications and have not been able to
demonstrate Meltdown-style or MDS-style generic leakage
from arbitrary memory locations and victim contexts.

In this paper, we present Collide+Power, a novel attack
showing that software-based power side channels constitute
a much more fundamental and generic security threat. Our
central observation is that the mere co-location of data values,
e.g., attacker and victim data in buffers and caches, in modern
CPUs introduces subtle but exploitable power leakage that



depends on the combination of both values. This combination
has several components, including e.g., the Hamming distance
between attacker and victim data. Thus, we can exploit this
combined leakage by varying the attacker-controlled data
value and learning the precise victim value from the combined
power leakage. Consequently, Collide+Power overcomes all
isolation boundaries on modern systems, enabling practical
attacks leaking 4.82 bit/h from other security domains.

The foundation of our end-to-end attacks is amplifying the
subtle leakage signal, which is far below other components of
the power consumption. For this purpose, we develop a novel
differential measurement technique where each sample is
based on two measurements with inverted attacker-controlled
values. Due to the nature of the power leakage in the CPU’s
memory hierarchy, this approach cancels out unwanted noise
terms and amplifies the desired signal by a factor of 8.778 on
average compared to a straightforward DPA approach.

Another building block for our end-to-end attacks is a pre-
cise power leakage model of the CPU’s memory hierarchy.
Prior models [19, 21, 38] have not captured the subtly com-
bined leakage we exploit and cannot be used in our attack
to leak data from arbitrary memory locations. We develop
precise leakage models for various attack scenarios, depend-
ing on the microarchitectural element where the attacker and
victim data are colliding, e.g., leakage models considering L1
cache eviction when targeting L1 caches. Based on our precise
models, we demonstrate that Collide+Power can even leak
single-bit differences with fewer than 23 000 measurements.

In our end-to-end attacks, Collide+Power varies attacker-
controlled data during differential power analysis. In this
work, we demonstrate two powerful attack scenarios: The
first is MDS-Power, an MDS-style attack [34, 37], leaking
arbitrary data accessed by the victim (data in use), without
assumptions on the algorithm run by the victim. Our end-
to-end MDS-Power attack leaks 4.82 bit/h from another se-
curity domain co-located on a sibling hardware thread. The
second scenario is Meltdown-Power, a Meltdown-style at-
tack [20], leaking data at rest, with 0.136 bit/h (with amplifi-
cation) from arbitrary memory locations in the kernel, using
the same attack mechanism as Meltdown to interact with the
cache hierarchy [13, 35]. Nevertheless, our Meltdown-Power
proof-of-concept has severe practical limitations due to the
state-of-the-art of prefetching data into the memory hierar-
chy in a real-world scenario, leading to an unrealistic attack
runtime of more than a year per bit with throttling. However,
discovering faster ways to prefetch data into the memory
hierarchy improves the leakage rates of Collide+Power.

Collide+Power is a generic attack that works on any mod-
ern CPU that co-locates attacker and victim data in the mi-
croarchitecture, e.g., caches. Thus, conceptually, it is the same
step as from cache side channels to Meltdown applied to
power side channels (cf. Table 1). Our Collide+Power attack
framework is agnostic to the type of leakage traces and works
with traces from the RAPL interface and timing differences

Table 1: Collide+Power fills a significant gap, broadening
software-based power analysis from attacks on specific algo-
rithms to generic attacks like Meltdown and MDS.

Target

Attack Software Implementation Generic (CPU and Hardware)

Traditional Microarchitectural
Side Channel

Prime+Probe [28]
Flush+Reload [42]
BranchScope [7]

Meltdown [20]
Foreshadow [39]

MDS [34, 37]

Software-based Power
Side Channel

Platypus [19]
Hertzbleed [38]
FTS-CA [21]

Collide+Power
(our work)

without any modifications alike1. Our evaluation shows that
an end-to-end Collide+Power attack instantiated with timing
side-channel traces only requires 133.3 times more samples
than direct power measurements. To facilitate the genericity
and reproducibility of our results, we perform most of the
evaluation and analysis with the generic RAPL interface.

We conclude that software-based power analysis attacks are
more generic and extend beyond the leakage of well-known
and structured attack targets from cryptographic contexts. In
contrast to attacks relying on the design of microarchitectural
elements such as Spectre or Flush+Reload, Collide+Power,
like Rowhammer, exploits fundamental physical properties
present in CPUs. Therefore, mitigating these attacks poses a
much larger challenge than previous works anticipated, and
fully mitigating Collide+Power, regardless of whether the vic-
tim performs side-channel hardened cryptographic or general-
purpose operations, remains a significant challenge.

To summarize, we make the following contributions:
1. We systematically analyze the leakage of different oper-

ations on the memory hierarchy and develop a leakage
model including the attacker-victim combined leakage.

2. We present a novel and generic differential measurement
technique combining multiple guess measurements per
victim data value, amplifying the leakage by 8.778x.

3. We demonstrate unprivileged end-to-end Collide+Power
attacks with throttling, leaking arbitrary secret data without
targeting the specific algorithm the victim uses.

4. We evaluate Collide+Power in theoretical and practical
end-to-end attacks and, in the more practical attacks, ob-
serve average leakage rates of 4.82 bit/h, with a success
rate of 98.9 % (n=1000, σx̄=0.32 %).

Outline. Section 2 provides background, and Section 3 the
high-level idea. Section 4 presents the leakage analysis, and
Section 5 our novel differential measurement. We discuss the
implementation in Section 6, the evaluation in Section 7, and
mitigations and limitations in Section 8. Section 9 concludes.
Responsible Disclosure. We disclosed our findings to Intel
on November 23, 2022, and ARM and AMD on February
9, 2023. Collide+Power was assigned CVE-2023-20583 and
was held under embargo until August 1, 2023. The vendors
responded with advisories and guidelines to mitigate the risk.

1The source code of the framework and the proof-of-concepts can be
found at: https://github.com/iaik/CollidePower

https://github.com/iaik/CollidePower


2 Background

In this section, we present background on memory within
CPUs, transient-execution, and power-analysis attacks.

2.1 The CPU’s Memory Hierarchy
Modern CPUs have an internal hierarchy from small memo-
ries close to the execution pipeline to large memories such
as an SRAM last-level L3 cache or even a DRAM-based
victim L4 cache. Data is always served from the fastest hier-
archy level that holds the data, dramatically lowering average
memory access latencies. Buffers typically serve a dedicated
purpose, e.g., load and store buffer (the memory order buffer)
track load and store operations. Caches are the next larger stor-
ages, following a similar design across different CPUs: They
are organized in n-way sets with cache-line sizes of 64 B. The
smallest, L1 cache, is split between data (which we focus on)
and instructions. The L2 cache is slightly larger and slower.
The last-level L3 cache is significantly larger, organized in
independent cache slices, and shared across cores.

Caches have been a popular target of side-channel attacks,
such as Prime+Probe [22, 28, 31]. In a Prime+Probe attack,
the attacker creates and uses an eviction set to constantly
prime an entire cache set. When the victim accesses a cache
line mapping to the primed cache set, an attacker-controlled
entry is evicted, which the attacker can observe by the access
latency to its own eviction set during the subsequent priming.

When data is used, it travels through the memory hierarchy
and is placed in buffers and caches, involving busses and
fill buffers to transmit or temporarily store the data. Besides
caches, the line-fill buffer (LFB), a temporary storage for,
e.g., data loads and evictions, uncacheable, and non-temporal
accesses, has been exploited in different attacks [20, 34, 37].

2.2 Transient-Execution Attacks
Out-of-order and speculative execution contribute to perfor-
mance substantially. Instructions are retired in order, and the
outcomes of predictions and faults are checked before com-
mitting the results. Mispredictions are rolled back and undone.
Instructions executed out-of-order or speculatively which are
never committed, are called transient [4, 16]. Transient exe-
cution may change the microarchitectural state, e.g., cache
accesses. If these state changes depend on secret data, attack-
ers can extract the secrets by leveraging a side channel [4,16].
Canella et al. [4] systematized transient-execution attacks into
Spectre-type attacks and Meltdown-type attacks. Meltdown-
type attacks [4, 20] leverage transient execution in out-of-
order execution since exceptions are raised in the retirement
phase of out-of-order execution. In contrast, Spectre-type
attacks [4, 16] exploit transient execution caused by spec-
ulatively executing mispredicted branches. Various attacks
have been demonstrated exploiting different prediction mech-

anisms in modern CPUs [4, 10, 14, 16, 23]. Spectre attacks on
the kernel require code snippets (gadgets) in the kernel.

2.3 Power-Analysis Attacks
Power analysis attacks exploit differences in the energy con-
sumption of a hardware circuit when computing with secret
data. The switching behavior of CMOS circuits (the build-
ing block of CPUs), i.e., the transitions between ‘0’ and ‘1’
bits, dictates the power consumption in a data-dependent way.
There are mainly two analysis methods: First, Simple Power
Analysis (SPA) [17] uses direct observations in a power trace
to identify secret information, e.g., different energy signatures
of secret-dependent control flow. Second, Differential Power
Analysis (DPA) [17] uses statistical methods like the differ-
ence of means or correlations (then also called Correlation
Power Analysis, CPA [2]) to infer secret information when
SPA is insufficient. Regardless of the power analysis tech-
nique, external measurement equipment is typically used to
measure energy consumption.

Lipp et al. [19] transformed traditional power-analysis at-
tacks into software-based attacks on modern x86 CPUs using
the Running Average Power Limit (RAPL) [11] interface.
They demonstrate SPA and CPA on modern x86 CPUs and
extract AES-NI and RSA keys despite the comparably low
sampling rate of the software interface. In response to this
attack, the RAPL interface is no longer accessible to unprivi-
leged users. Furthermore, to protect Intel’s Trusted Execution
Environment (SGX), the interface no longer reports the ex-
act energy consumption when SGX is enabled. However, as
modern CPUs use adaptive power management to comply
with thermal and power limits, the CPU frequency and perfor-
mance depend on energy consumption. Computing on data
that consumes more energy leads to more frequent throttling,
observable by an unprivileged attacker, even in remotely mea-
surable timing differences [38]. Statistical methods reduce
the noise far enough to enable inference of processed data.
Wang et al. [38] demonstrated software-based power side-
channel attacks based on the CPU frequency as a proxy and
replacement for energy consumption interfaces. Liu et al. [21]
later also showed that frequency and timing could replace di-
rect power consumption measurements. Both works leak cryp-
tographic keys from other security domains, Wang et al. [38]
even remotely across the network.

3 High-Level Overview of Collide+Power

In this section, we present the high-level idea of Col-
lide+Power. Collide+Power is a software-based power side-
channel attack exploiting the fundamental design of how mod-
ern CPUs handle data. We exploit that the mere co-location
in the memory hierarchy, e.g., attacker and victim data in a
cache, introduces subtle but exploitable leakage in the power
consumption. As illustrated in Figure 1 for the example of
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(a) Step 1: The attacker primes each cache line of the target cache
set with the attacker-controlled guess G.
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(b) Step 2: The victim accesses the secret V and forces a cache line
to change from G to V .
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(c) Step 3: The energy consumption during this change is propor-
tional to the number of bit changes between G and V .

Figure 1: Collide+Power uses the attacker-controlled cache
lines filled with G to recover the victim value V .

caches, an attacker can influence the power consumption with
known and attacker-controlled values. When replacing a value
in the cache, the power consumption of the CPU depends on
the Hamming distance between old and new values stored in
the cache, i.e., the number of different bits between the two
values. The smaller the Hamming distance between the two
values, the less energy is consumed, reaching its minimum for
identical values and the maximum for inverse values. Thus,
an attacker varying its own data value accordingly can infer
the precise victim’s data value without being able to access it.

3.1 A Precise Model for DPA

Exploiting subtle power differences is challenging. Collide+
Power uses DPA, and more specifically CPA, which can ex-
ploit arbitrarily small power differences as long as the number
of measurements can be increased. This is the case in our
attack scenario, as attacker-controlled data and victim data
are co-located in the cache for an arbitrarily long time. Pre-
vious work by Lipp et al. [19] showed that repeating byte-
wise loads on x86 CPUs follow the Hamming weight model.
This Hamming weight model does not capture the leakage
components that combine attacker-controlled and victim data,
i.e., the Hamming distance. However, for Collide+Power, the
Hamming distance between two distinct cache line values G
and V of different security domains is the relevant signal for

0b1000 0b0100 0b0010 0b0001

Guess G

P
(G,V

)

Figure 2: High-level intuition for Hamming-distance-based
leakage. Leaking the secret V by using guesses with constant
hw(G) isolates hd(G,V) in the leakage model (Equation 1).
Here binary guesses (hw(G)= 1) are used to infer the inverted
bits of V (0b0101) due to the changes in hd(G,V).

the attack. Furthermore, the power consumption is much more
significantly influenced by other constant and non-constant
factors, outweighing the signal by orders of magnitude. These
factors include data-dependent noise, i.e., components de-
pending on the attacker-controlled value G and the victim
value V but not in a combined and exploitable way. These
factors include independent noise, i.e., from other processes
or environmental influences. Our generalized power model
(cf. Section 4) for the CPU’s memory hierarchy,

P(G,V) ≈ a0 ⋅hd(G,V)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
signal

+w0 ⋅hw(G)+w1 ⋅hw(V)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
data−dependentnoise

+ ωÍÑÏ
noise

, (1)

includes all of these factors as well as the Hamming weights
and the Hamming distance, where the guess G is attacker-
controlled, and V is the targeted constant secret victim value.
From Toy Example to Real-World Attack. As the power
observations directly only reveal a combination of Hamming
distance between G and V and their Hamming weights, an
attacker needs to vary the parameter G to infer the exact
value of V . Figure 2 shows a simplified instance of this prob-
lem. By choosing guesses G = 2i, i ∈ N with constant Ham-
ming weights, i.e., hw(G) = 1, the data-dependent noise of
Equation 1 is constant, but the Hamming distance hd(G,V)
changes based on G. Thus by finding guesses that reduce
P , we can infer that the corresponding bit is also set in the
secret victim value V . While this toy example provides a
great intuition of the basic idea, Collide+Power uses a more
sophisticated and robust correlation-based approach.

Leaking the value V is a search for the maximum correla-
tion between the model and observations. Our CPA uses the
recorded samples as observations O and maximizes the corre-
lation for a given model M(G,V). Crucial for the success rate
of the CPA is the accuracy of the model and its component and
the ratio between the signal and the noise (cf. Equation 1), i.e.,
the signal-to-noise ratio. Therefore, we design in-depth exper-
iments to recover the structure in Sections 4.1 and 4.2 and the
coefficients for the different components in Section 4.3.
Differential Measurement. To increase the signal-to-noise
ratio further, we exploit that the power consumption can be
influenced by two extremes: the maximum Hamming distance



and the minimum Hamming distance. Instead of just one mea-
surement, with one attacker-controlled value and an unknown
victim value, we perform two measurements in a differential
measurement technique (cf. Section 5). The first measure-
ment takes a chosen G, yielding PG , and the second takes
the inverted guess G̃, yielding PG̃ . By using the difference
between PG and PG̃ as a single combined sample, this mea-
surement technique increases the signal-to-noise ratio by a
factor of 8.778 on average. It not only doubles the weight of
the Hamming distance in the power leakage but also reduces
other constant and non-constant factors.

3.2 End-to-End Attacks
Collide+Power is a generic attack for various scenarios and
environments. The commonality is that the attacker triggers
a situation where attacker-controlled values G and victim-
controlled values V compete for storage in the same shared
microarchitectural element. Depending on the target, this may
involve cache eviction or flushing, loading of cache lines,
or read and write accesses without cache interaction. Conse-
quently, Collide+Power has no more requirements than typical
cache attacks, i.e., the ability to perform memory accesses.
We build two end-to-end attack variants on Collide+Power:

In MDS-Power, we target data in use by a victim program.
The victim constantly uses a secret value, i.e., in a loop, which
effectively keeps it in the memory hierarchy of the core (e.g.,
buffers like the LFB or the L1 cache). In this scenario, identi-
cal to MDS attacks, Collide+Power leaks precise secret values
from a victim co-located on a sibling thread with 4.82 bit/h.

In Meltdown-Power, we target data at rest from arbitrary
memory addresses. The attacker uses the same mechanisms
as in Meltdown to pull victim data into caches, i.e., leakage
of data is facilitated by prefetch gadgets in the kernel [35],
which are still present in kernels today [4, 13, 40]. Meltdown-
Power leaks amplified data values with 0.136 bit/h in exactly
the same scenario, making it a drop-in replacement for the
now mitigated Meltdown attack. Finally, mounting Meltdown-
Power in a real-world setting, i.e., using frequency throttling
attacks [21, 38], we estimate that an attacker requires 2.86
years to leak an unamplified bit from the kernel. However, this
low security risk might drastically change if new architectural
or microarchitectural ways of prefetching victim data in co-
location with attacker-controlled data are discovered.

3.3 Threat Model
We assume the attacker runs unprivileged native code. If spe-
cific interfaces, e.g., RAPL, are unavailable [19], Collide+
Power has the minimal requirement that the attacker can mea-
sure time (e.g., with rdtscp), serving as a proxy for the power
consumption [21,38]. Collide+Power is agnostic to the type of
leakage traces and works identically with any direct or indirect
power trace. Furthermore, similar to prior works on software-

1 func record_sample(G, V) -> Sample {
2 fill(cache_line[0..15], G, V);
3 Measurement start = measure();
4 repeat (L) { access(cache_line[0..15]); }
5 return measure() - start;
6 }

Listing 1: Pseudo code measuring the power consumption
over a loop accessing 16 distinct cache lines.

based power side channels [38], we either stress the other
CPU cores, i.e., a multi-threaded attack, or use the throttling
effect through default or adjusted power limits, translating en-
ergy consumption into timing differences. The only additional
assumption MDS-Power makes is that attacker and victim are
co-located on sibling threads of a physical core, identical to
the threat model of RIDL and ZombieLoad [34, 37].

Meltdown-Power has no core co-location requirement. As
in Meltdown, we assume the attacker has a target address to
attack [20]. When targeting the CPU’s caches with Meltdown-
Power, interaction with the caches is required, i.e., regular
memory accesses to load and evict data from L1 and L2 cache.
Meltdown-Power also requires the presence of a prefetch
gadget in the kernel, which Meltdown also requires for non-L1
cache data leakage [35]. Recent work confirmed that prefetch
gadgets are still present in kernels today [4, 13, 40]. Like
Meltdown, Meltdown-Power uses the prefetch gadget to load
the victim cache line V into the cache. We evaluate Meltdown-
Power with two different gadgets: an artificial Spectre-RSB
prefetch gadget for a comprehensive evaluation and a real-
world Spectre-PHT prefetch gadget to demonstrate the signal.
We detail and evaluate all attacks in Sections 6 and 7.

4 Memory-Hierarchy Leakage Analysis

In this section, we analyze the power leakage of the CPU’s
memory hierarchy and derive a precise power leakage model.
We find the general structure of the model in Section 4.1, ana-
lyze the effect of data location and bus widths in Section 4.2,
and compute the precise coefficients in Section 4.3.

4.1 Determining the Structure of the Leakage

In this section, we design experiments to generate activity in
certain cache levels. We analyze all pairwise combinations
of Hamming distance and Hamming weight between slices
of values within attacker-controlled and victim cache lines,
revealing the components of the power leakage. We use an
Intel Core i7-8700K CPU for our analysis. Section 7.1 shows
that this analysis applies to a broad range of CPUs. We find
three zones within a cache line that influence the leakage
strength and structure, which can be represented by Hamming
distance and Hamming weight expressions.



S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
1

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
2

G G G G G G G G G G G G G G G GVC
L

s

(a) No Eviction: All cache lines are in individual L1 and L2 sets.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15L
1

S0 S64 S128 S192 S256 S320 S384 S448 S512 S576 S640 S704 S768 S832 S896 S960L
2

G G G G G G G G G G G G G G G GVC
L

s

(b) L1 Eviction: All cache lines are in the same L1 set.
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(c) L1+L2 Eviction: All cache lines are in the same L1 set. The
first eight are in one L2 set. The remaining are in individual L2 sets.

Figure 3: Eviction patterns used to derive the leakage model.

Accessing and Filling the Cache Lines. For our analysis,
we focus on two different values placed in the cache lines: the
attacker controlled guess G and the victim value V . Listing 1
shows the code used to access the cache lines with movq loads,
i.e., 8 B loads, and generate one sample for a randomly chosen
V and G. Each sample is generated by measuring the RAPL
energy consumption over a tight loop running L iterations
of 16 accesses interacting with the memory hierarchy. The
number of iterations determines the measurement duration.
According to our analysis, hardware prefetchers also have a
minor influence on the leakage. However, we disable hard-
ware prefetchers to derive a precise leakage model that the
attacker can utilize. We detail the influences of the hardware
prefetchers in Section 7.6 and emphasize that the attacks also
work with hardware prefetchers enabled. MDS-Power does
not trigger any prefetching as all data accesses are already
cached and served from the cache (cf. Section 6). Meltdown-
Power is influenced by the prefetcher loading the adjacent
victim cache line, which we analyze in Section 7.6.
Cache Line Eviction. The i7-8700K we use for our analysis
has an 8-way L1 cache and a 4-way L2 cache with pseudo-
LRU replacement [1], allowing us to precisely determine the
cache line to be evicted from the cache. For the 8-way L1
cache design, we use a setup with 16 distinct cache lines. Out
of the 16 cache lines, we use one as the victim cache line
filled with V . The remaining 15 cache lines represent attacker-
controlled lines, each filled with the guess G. To determine
the influence of accessing these 16 cache lines on the leakage
model, we evaluate three eviction types with chosen L1 and
L2 cache sets as shown in Figure 3, one without eviction,
one with L1 eviction only, and one with L1 and L2 eviction:
No Eviction: All cache lines are in different L1 sets; all 16
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(a) No Eviction: hd(Vi,G j)
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(b) L1 Eviction: hd(Vi,G j)
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(c) L1+L2 Eviction: hd(Vi,G j)
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(d) L1+L2 Eviction: hd(Gi,G j)
Figure 4: Coefficients for the sliced components hd(Vi,G j)
for all eviction techniques and hd(Gi,G j) for L1+L2 eviction.
We see that the structure of the power model changes based
on the eviction technique and additional unaligned effects.

accesses are served from the L1 cache without self-eviction.
L1 Eviction: All 16 cache lines are in one L1 but different L2
cache sets, resulting in constant L1 but no L2 cache eviction.
L1+L2 Eviction: 8 cache lines are in one L1 and L2 cache set;
the other 8 are in one L1 but unique L2 cache sets. Based on
these experiments, we determine precisely how these cases
influence the power leakage of the CPU.
Leakage Structure Analysis. We split the values V and G
into consecutive slices and determine the impact on the sliced
components hd(Vi,G j), hd(Vi,V j), hd(Gi,G j), hw(Gi), and
hw(Vi) on the power consumption. We perform a linear re-
gression with all the resulting variables and visualize the
coefficients, i.e., a non-zero coefficient indicates if a slice is
relevant for the power leakage function. Overall, we record
24 130 228 samples with the test code (cf. Listing 1) for the
three eviction types. Figure 4 shows the results for 8 B slice
sizes. This indicates that the Hamming distance and weight
model the leakage components very well. Visually, we see
three distinct effects: First, regardless of the eviction tech-
nique the first 8 B component hd(V0,G0) shows a clear sig-
nal. Second, hd(Vk,Gk), k ∈ {1 to 7} expose a leakage sig-
nal for the L1 and L1+L2 eviction case, albeit weaker than
hd(V0,G0). Finally, when considering L1+L2 eviction, an
additional shifted signal components appear for hd(Vk,Gh),
hd(Vk,Vh), hd(Gk,Gh) with k ∈ {0 to 7} and h = k+4 mod 8.
The period of this shift is 32 B, indicating that this effect could
originate from a bus-size change from 64 B to 32 B, e.g., the
interconnect between L2 and L3, meaning that the two halves
of the cache line are transmitted after each other. Combining
these observations that relate to the widths with which data
is moved through the memory hierarchy, we can distinguish
the influence of three zones within a cache line on the power
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Figure 5: We fill the guess value G and victim value V with
repeating nibbles. We use four distinct nibbles for both the
upper and lower half of each 64 B value.

leakage model: (1) the bytes accessed by the movq instruction,
(2) the lower half of a cache line, and (3) the upper half of a
cache line. Reducing the slice sizes down to single bits, i.e.,
all possible cases, confirms that the leakage still follows the
same structure, confirming the suitability of the model.

The power leakage is influenced by the bytes accessed, the
lower and upper cache line half, in distinct ways that can
be modeled by Hamming distance and Hamming weight.

4.2 Modelling the Leakage Function
In this section, we derive and quantify a power leakage model
that predicts the power consumption of loads, stores, and evic-
tions from different points in the cache hierarchy, depending
on the data. This model is the basis of our correlation power
analysis attack and our end-to-end attacks (see Section 6).
We extend the initial experiments with stores (movq) and
prefetches (prefetcht0) to distinguish a load that fills a reg-
ister from a prefetch that only brings data into the cache. To
measure the effects of dirty cache lines, we clear the lowest
8 bytes of a cache line, marking it as dirty. Based on our
previous insights into influence factors within a cache line,
we optimize the regression analysis by operating with repeat-
ing nibbles (4-bit values), reducing the runtime by several
orders of magnitude. Figure 5 shows the structure of two
64 B values: the attacker controlled guess G and the victim
value V . Each value is split into the lower (GL,VL) and upper
(GU ,VU ) 32 B parts, resembling the discovered zones. Finally,
we randomly sample four nibbles, i.e., vL, vU , gL, and gU , to
fill V = VL∣VU and G = GL∣GU respectively. We consider 4-bit
aligned nibbles, resulting in 128 nibbles per value. Our exper-
iments reveal that the power model consists of four distinct
leakage components depending on the cache eviction strategy
used. Forwarding data to a register adds additional leakage.
The Full Leakage Model. Due to the different energy con-
sumption of the instructions and the eviction strategies, we
use the average power (P) as our measurement, i.e., the en-
ergy over time. This measurement compares how substantial
the leakage is and optimizes for the fastest leakage method.
Furthermore, we determine the influence of the Hamming
distance and the Hamming weights of G and V on the average
power consumption. We perform a linear regression with the
model shown in Equation 2 to get the exact scaling factors
that model the µW changes due to single-bit changes. We
choose a least-squares linear regression as it minimizes the
error between the noisy measurements and the model. The
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Figure 6: Aligned, cross, and self leakage between G and V .

model is visualized in Figure 6 and features the following
components. First, the model contains the aligned leakage
terms (ai), i.e., the leakage between aligned bits in the cache
line. Second, the model contains the cross leakage terms (ci),
i.e., the leakage across the lower and upper parts of different
cache lines. Third, we also include the self leakage terms (si),
i.e., the leakage between the upper and the lower parts of the
same cache line. Finally, we add the Hamming weights (wi)
of each upper and lower cache-line part yielding the model

P = a0 ⋅hd(VL,GL)+a1 ⋅hd(VU ,GU )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
aligned leakage

+c0 ⋅hd(VL,GU )+ c1 ⋅hd(VU ,GL)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
cross leakage

+ s0 ⋅hd(VL,VU )+ s1 ⋅hd(GL,GU )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
self leakage

+w0 ⋅hw(VL)+w1 ⋅hw(VU )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
victim weight

+w2 ⋅hw(GL)+w3 ⋅hw(GU )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
guess weight

. (2)

4.3 Quantifying the Leakage Function
Table 2 shows the results of the regression analysis (cf. Sec-
tion 4.2). The results indicate that eviction strategy and access
instruction influence the power leakage model of the cache
hierarchy. Furthermore, the correlation and model coefficients
change based on the data placement. The results account for
the repeating nibbles and show the coefficients for single nib-
bles, allowing us to quantify and compare the bit leakage in
µW . Furthermore, we introduce the aligned signal-to-noise ra-
tio (SNRA) between the aligned leakage and all other compo-
nents, i.e., the noise, for simple comparison across techniques.
This is not the overall signal-to-noise ratio of the model but
rather the part important for our attacks.
Instructions and Data Placement. In line with our regres-
sion analysis (cf. Section 4.1), we observe that the position of
the data and the instructions used to access the data influence
the model coefficients. First, using no eviction never yields a
significant signal for the upper cache line parts VU and GU , as
data is never moved between L1 and L2 cache. Furthermore,
for prefetch with no eviction, we never observe any significant
signal for any of the cache line parts, as no part of the cache
line is moved into a register, and prefetch moves no data when
it is already present in the L1 cache. For the store instruction,
we overwrite the lower 8 B with zeros. We observe no signal
with no eviction, as the dirty cache line never leaves the cache,
and no actual victim or guess nibbles are stored. Therefore,



Table 2: The results of the linear regression, the correlation coefficients, and SNRA for different types of evictions and instructions.
Effectiveness Aligned Leakage Cross Leakage Self Leakage Weights

ρ̂ SNRA hd(vL,gL) hd(vU ,gU) hd(vL,gU) hd(vU ,gL) hd(vL,vU) hd(gL,gU) hw(vL) hw(vU) hw(gL) hw(gU)
Ins

t.
Evic

t.

⋅1 ⋅10−3 a0 in µW a1 in µW c0 in µW c1 in µW s0 in µW s1 in µW w0 in µW w1 in µW w2 in µW w3 in µW

None 0.118 6.384 159.2 3.0 0.0 2.2 0.0 2.4 0.0 0.0 173.8 0.0
L1 0.737 2.645 219.9 108.7 0.0 0.0 0.0 0.0 186.9 90.1 3198.8 1399.1

L
oa

d

L1+L2 0.633 1.957 119.2 54.9 48.9 34.5 52.8 548.8 118.3 43.7 1679.5 637.4

None 0.003 0.001 0.0 2.5 0.0 2.1 4.3 3.2 1.6 0.1 3.2 0.0
L1 0.191 0.861 27.1 30.1 0.0 0.0 2.8 0.0 8.7 10.1 183.6 184.8

Pr
ef

et
ch

L1+L2 0.218 0.491 17.0 17.8 10.5 10.2 12.2 177.2 7.7 5.9 118.1 114.8

None 0.003 0.001 1.5 0.6 0.5 0.0 0.0 0.0 5.4 0.0 4.8 0.1
L1 0.103 0.376 18.6 21.4 1.5 0.9 3.4 45.3 6.4 11.8 78.9 115.5

St
or

e

L1+L2 0.280 0.644 64.5 83.7 42.0 41.2 89.1 946.0 21.7 66.7 188.1 630.4

we conclude that explicitly loading data introduces observable
leakage, e.g., 159.2 µW per bit difference for our test CPU.

The model coefficients are influenced by the instruction
performing the access and from where to where data is
transmitted in the CPU’s internal memory hierarchy.

Cache Eviction. Model coefficients are influenced by differ-
ent types of cache eviction, influencing the aligned signal-to-
noise ratios of the techniques. The SNRA for load instructions
decreases by a factor of 2.413 when switching from no evic-
tion to L1 eviction. We see a further decrease of factor 1.351
when switching from L1 to L1+L2 eviction, similar to the
factor of 1.753 when using prefetch instructions. However,
for store instructions, we see an increase of factor 1.712 in the
aligned signal-to-noise ratio when performing L1+L2 evic-
tion. We conclude that the mechanism to write back dirty
cache lines add additional leakage (which we exploit in Sec-
tion 7.5). Overall, we observe that for higher cache eviction
activity, the correlation coefficients are increasing, indicating
that the overall model represents the power consumption more
accurately, but the desired signal is not increasing as strongly.

The model is more accurate with more cache eviction. How-
ever, the aligned signal-to-noise ratio decreases for the load
and prefetch instructions, whereas for store instructions, it
increases when using additional evictions.

Memory Bus Effects. The results in Table 2 support the leak-
age patterns from our regression analysis (cf. Section 4.1).
First, we observe that aligned leakage, i.e., coefficients a0 and
a1, is present regardless of the eviction used. This is funda-
mental for our two attack variants MDS-Power and Meltdown-
Power (cf. Section 6). When using L1+L2 eviction we ob-
serve additional effects: cross-leakage and self-leakage (cf.
Figure 6). The self-leakage of the attacker-controlled guess
in the case of the load instructions is a factor of 4.604 times
stronger than the aligned leakage, 9.955 times for prefetches,
and 11.302 times for stores, respectively. However, our novel
differential measurement technique removes all the influences
of self-leakage in the signal, as we demonstrate in Section 5.

Finally, we observe cross-leakage between the upper and
lower parts of V and G. In all cases, the cross-leakage terms
c0 and c1 are smaller than the aligned leakage terms. There-
fore, the main influence in the CPA is still the aligned leakage.

L1+L2 eviction adds additional leakage effects. The self-
leakage of the attacker-controlled guess overshadows all
other components. However, we address this with our differ-
ential measurement technique. The aligned leakage terms
outweigh the cross-leakage terms.

We conclude that an attacker has several different ways
to influence and model the leakage. By using memory ac-
cesses, cache loads and stores, and eviction, the attacker can
precisely control and optimize the leakage rate for victim data
in different locations in the CPU’s internal memory hierarchy.

5 Differential Measurement

As outlined in Section 3.1, increasing the signal-to-noise ratio
is crucial to make Collide+Power practical. We propose a
differential measurement technique to eliminate some noise
influences, amplify the leakage, and reduce the required sam-
ples. We exploit that the power consumption can be influenced
by two extremes: the maximum and minimum Hamming dis-
tance between attacker and victim value. However, the mea-
surements are affected by additive noise ω that, based on our
analysis, is near constant between temporally close samples.
Masking Victim Data. An attacker cannot influence the
victim data value V in a real-world scenario. Therefore, we
introduce the mask m, a 64 B value, indicating which bits of
G should be inverted; all remaining bits are unchanged. We
measure one sample PG for the guess G and directly afterward
the sample PG̃ with the inverse guess G̃ = G⊕m and subtract
the two samples ∆P(G, G̃) = PG −PG̃ . The mask m selects
only a fraction of the cache line of V for the differential
measurement, reducing the search complexity in a divide-
and-conquer-style approach. The differential measurement
changes the simplified leakage model of

P(G,V) = a0 ⋅hd(G,V)+w0 ⋅hw(V)+w2 ⋅hw(G)+ω, (3)



Table 3: The coefficients and statistics of the differential measurement technique for different types of evictions and instructions.
Effectiveness Aligned Leakage Cross Leakage Self Leakage Weights

ρ̂ SNRA hd(vL,gL) hd(vU ,gU) hd(vL,gU) hd(vU ,gL) hd(vL,vU) hd(gL,gU) hw(vL) hw(vU) hw(gL) hw(gU)
Ins

t.
Evic

t.

⋅1 ⋅10−3 a0 in µW a1 in µW c0 in µW c1 in µW s0 in µW s1 in µW w0 in µW w1 in µW w2 in µW w3 in µW

None 0.311 72.004 544.5 4.2 1.1 0.5 0.0 0.0 0.0 0.0 362.6 0.0
L1 0.907 7.873 598.3 278.8 0.0 0.0 0.0 0.0 0.0 0.0 6124.4 2696.9

L
oa

d

L1+L2 0.822 5.632 339.3 141.7 106.6 89.4 0.0 0.0 0.0 0.0 3750.7 1435.0

None 0.003 0.000 0.0 0.8 0.0 5.7 0.0 0.0 0.0 0.0 1.7 2.8
L1 0.370 11.365 136.7 133.9 1.9 0.1 0.0 0.0 0.0 0.0 454.1 455.5

Pr
ef

et
ch

L1+L2 0.300 5.294 80.5 86.9 40.9 43.0 0.0 0.0 0.0 0.0 334.0 332.5

None 0.003 0.000 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 7.0 0.0
L1 0.241 3.876 63.3 74.5 4.9 9.6 0.0 0.0 0.0 0.0 204.6 303.2

St
or

e

L1+L2 0.450 6.457 133.7 169.0 84.7 86.2 0.0 0.0 0.0 0.0 347.1 1130.5

by subtracting the model for P(G̃,V) to

∆P = 2a0 ⋅hd(Gm,Vm)+2w2 ⋅hw(Gm)− (a0+w2) ⋅hw(m), (4)

where Gm = G ∧m and Vm = V ∧m are the masked cache
lines with which we mask non-targeted data. The noise term
ω and the unknown but constant value hw(V) cancel out.
Furthermore, subtracting hd(G̃,V) from hd(G,V) yields a 2x
amplification and a constant offset hw(m). Finally, hw(G)−
hw(G̃) also results in a 2x amplification and another offset
hw(m). Thus, the final model amplifies the leakage by a factor
of 2 and eliminates some additive noise. We show the full
derivation of Equation 4 in Appendix A.
Quantifying the Differential Measurements. Table 3
shows the results with our differential measurement technique.
We see that the derived differential model ∆P(G, G̃) in Equa-
tion 4 holds, and we gain a twofold amplification in a0, a1,
w2, and w3 compared to Table 2. We can also see that w0 and
w1, i.e., the influence of hw(V), are reduced to 0. Similarly,
using L1+L2 eviction completely removes the self-leakage
effects s0 and s1. The correlation coefficients between our
model and the actual measurements increase up to 0.907 in
the case of loads with L1 eviction, i.e., a 23 % increase, in-
dicating that this significantly reduces the overall noise ω

of the measurements. Finally, we also see that the aligned
signal-to-noise ratio is increased by up to a factor of 11.27
(8.778 on average). Therefore, the measured results support
our derivation of the differential model and its properties.

Our differential measurement model amplifies the signal by
a factor of 2 and eliminates a significant part of the additive
noise and self-leakage effects.

CPA Model Coefficients. In this section, we discuss how
to minimize profiling for the CPA model used for Collide+
Power (cf. Section 3). We derive the leakage structure and
coefficients in Equation 2 and Table 3. As these exact coef-
ficients require additional time to profile, we discuss three
different approaches. First, we can profile the coefficients
for the target CPU once and use a full model of Equation 2.
An attacker could target its own cache lines to obtain these

coefficients. Second, we try to approximate the coefficients
without profiling the target. The correlation coefficient ρ̂ is
scaling and location invariant, meaning that linear scaling
⋅a and offsets +b of the model do not influence the CPA at-
tack. Due to the scaling invariance, we only need the ratio
between some of the coefficients based on the used setup,
e.g., w2/a0. If we consider Table 3, we observe that this ratio
can be approximated based on the attack technique used. The
ratio is approximately 0.7 for no eviction, 10.2 for L1 cache
eviction, and 11.1 for L1+L2 cache eviction when using load
instructions. The resulting model, then, is

M(Gm,Vm) = hd(Gm,Vm)+ w2
a0
⋅hw(Gm). (5)

Finally, we fix the attacker-controlled parameter hw(Gm) to a
constant value simplifying the differential model to

M(Gm,Vm) = hd(Gm,Vm). (6)

Due to the mask m, and the differential measurement, we
can partition the brute-force approach of recovering V into
smaller problems by only recovering Vm. The attacker can
choose an arbitrary mask m and, according to Equation 4,
only the selected bits will produce a measurable Hamming
distance hd(Gm,Vm) because the unmasked parts cancel out.
We further verify that the unmasked portions do not influence
the CPA success probability in Section 7.2.

6 End-to-End Attack Implementation

In this section, we describe the implementation of our two Col-
lide+Power end-to-end attacks: MDS-Power and Meltdown-
Power. While Meltdown-type attacks are mitigated in re-
cent CPU generations, Collide+Power forms a drop-in re-
placement, achieving leakage rates of 4.82 bit/h in the MDS-
Power case and 0.136 bit/h in the amplified Meltdown-Power
case. The MDS-Power variant targets data-in-use, whereas
the Meltdown-Power variant targets data-at-rest. Generally,
Collide+Power is agnostic to the power side channel used.
Depending on the system configuration and hardware, high-
accuracy channels like Intel RAPL may be available to the at-



1 while (true) {
2 access(&victim_cache_line);
3 }

Listing 2: In the RIDL PoC, a victim program frequently
accesses the victim cache line V . Collide+Power extracts the
accessed data without relying on any MDS vulnerabilities.

Internal CachesAttacker:

Victim:

î prime( G )

î access( V )

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

T
hr

ea
d

T
hr

ea
d

Ph
ys

ic
al

C
or

e

Figure 7: MDS-Power: Attacker and victim constantly reload
G and V respectively while being co-located on hyperthreads.

tacker. However, for our end-to-end attacks, we rely on timing-
based power side-channel attacks, which are not mitigated on
x86 systems and, thus, can be mounted by an unprivileged
attacker, as we confirm in our evaluation (cf. Section 7.4).

6.1 MDS-Power Implementation
MDS-Power follows the exact scenario and threat model of
MDS attacks like RIDL and ZombieLoad [34, 37] (cf. Sec-
tion 3.3). Listing 2 shows the RIDL PoC2 where the victim
program accesses a cache line in a loop while being co-located
with the attacker on the same physical core. Although a real-
world victim program is unlikely to perform secret accesses
in a loop, it offers a fair comparison of MDS-Power with
RIDL and ZombieLoad as they use similar victim programs.
Intel fixed this MDS hardware flaw in the 9th CPU genera-
tion. With MDS-Power, we demonstrate MDS-style leakage
without relying on any hardware MDS vulnerability.

The basic setup of MDS-Power is illustrated in Figure 7.
MDS-Power exploits that due to the victim’s own load, the
victim’s secret value constantly moves through the CPU’s
memory hierarchy, e.g., in and out of internal buffers. The
attacker simultaneously repeatedly loads guesses G, which
then move through the same parts of the CPU’s memory
hierarchy. MDS-Power then instantiates Collide+Power either
with direct (e.g., the Intel RAPL interface if available) or
indirect (e.g., via timing differences due to throttling) power
side-channel leakage. MDS-Power is evaluated in Section 7.3.

6.2 Meltdown-Power Implementation
Meltdown-Power follows the scenario and threat model of
the original Meltdown attack [20], leaking arbitrary kernel

2RIDL PoC source code: https://github.com/vusec/ridl/blob/
be77e2bd16df8a1ec78c4bf9b82912c230971dc2/pocs/ridl_basic.c

Internal CachesAttacker (Userspace):

Victim (Kernel):
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access-PHT/RSB( V )
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Figure 8: Meltdown-Power: The attacker primes the cache
with G and uses an RSB or PHT gadget in the kernel to load
V . The address of V can be any kernel address.

1 # rdx = &victim_cache_line
2 module_ioctl:
3 call retpoline(%rip)
4 misspeculation:
5 mov (%rdx), %rax
6 ud2
7 retpoline:
8 lea retpoline_end(%rip), %rax
9 mov %rax, (%rsp)

10 ret
11 retpoline_end:
12 xor %eax, %eax
13 ret

Listing 3: The artificial Spectre-RSB prefetch gadget in a
kernel module used for the first Meltdown-Power evaluation.

data from userspace (cf. Section 3.3). Like Meltdown on
non-L1 data, Meltdown-Power depends on the victim code
to load the data, possibly triggered by the attacker. We use a
Spectre prefetch gadget inside the kernel [35]. They are more
widespread [4, 13] than regular Spectre gadgets, as they only
load data but do not leak it. The attacker then alternatingly
primes the cache with 15 distinct cache lines filled with the
guess G (cf. Section 4) and then reloads the victim cache line
V using a prefetch gadget, as shown in Figure 8. We evaluate
Meltdown-Power with two prefetch gadgets, an artificial one
for an in-depth evaluation and a real-world gadget to show
the practicality of Meltdown-Power.
Artifical Spectre-RSB Prefetch Gadget. We start our eval-
uation with the Spectre-RSB gadget shown in Listing 3, lo-
cated in the ioctl entry function of a kernel module. During
misspeculation, it dereferences rdx containing an attacker-
controlled pointer to the victim cache line V . Similar to the
retpoline mitigation [36], the gadget first calls a function
(Line 3), which in Lines 8 and 9, modifies the return address
on the stack to point to the ioctl return. Then, the CPU
misspeculates the return address and transiently accesses the
victim cache line V (Line 5). This brings V into the cache,
exposing it to Collide+Power. Identical to the prefetch gad-
get exploited by Meltdown [35], this gadget can fetch any
kernel-accessible memory location into the cache, including
all physical memory, via the direct-physical map.
Real-World Spectre-PHT Prefetch Gadget. To demon-
strate the practicality of Meltdown-Power, we also evaluate
Meltdown-Power with a real-world Spectre prefetch gadget in

https://github.com/vusec/ridl/blob/be77e2bd16df8a1ec78c4bf9b82912c230971dc2/pocs/ridl_basic.c
https://github.com/vusec/ridl/blob/be77e2bd16df8a1ec78c4bf9b82912c230971dc2/pocs/ridl_basic.c


Linux kernel 5.14, in the function find_keyring_by_name
of the KEYCTL_JOIN_SESSION_KEYRING syscall, discov-
ered by Johannesmeyer et al. [13]. Appendix B shows the rel-
evant part of the code and details how misspeculation causes
type confusion to bring victim data into the CPU’s memory
hierarchy to expose it to Collide+Power.

For Collide+Power, we need to minimize the activity in the
kernel to obtain a high signal-to-noise ratio. Instead of using
a single process rapidly creating new keyrings, we use child
processes in the same namespace that hold their keyrings for
a longer time frame. This avoids the frequent clean-up opera-
tions for unused keyrings in the kernel, minimizing kernel ac-
tivity. With the number of child processes, we control the loop
iterations, tuning the mistraining of the branch prediction. By
naming all keyrings differently, we reduce the operations per-
formed within the loop by continuing it early. The last keyring
in the iterated list satisfies all conditions to join, greatly reduc-
ing the code executed in KEYCTL_JOIN_SESSION_KEYRING
after the misspeculation. Thus, we minimize the noise sub-
stantially compared to prior work, enabling us to use this
real-world prefetch gadget in an end-to-end Meltdown-Power
attack. Meltdown-Power is evaluated in Section 7.5.

7 Evaluation

In this section, we evaluate Collide+Power on multiple CPUs
to demonstrate that cache-hierarchy leakage is a widespread
problem. Furthermore, in an end-to-end scenario, we demon-
strate MDS-Power leaking data from the sibling thread with
both the RAPL interface and throttling side channels. Fi-
nally, we evaluate Meltdown-Power in one artificial setting
to demonstrate that we can extract single bits from the kernel
and measure an amplified real-world prefetch gadget to verify
that we observe a signal useable for Collide+Power.

7.1 Affected CPUs

We systematically analyze on which CPUs the differential
model Equation 4 of Collide+Power works. We perform the
same experiments as in Section 5 and report the maximum
observed correlation coefficient and the maximum SNRA, i.e.,
the significance of the aligned Hamming distance leakage,
which is the foundation of Collide+Power. Table 4 shows our
result on 14 CPUs from both AMD and Intel, spanning a re-
lease period from 2011 until 2021, for nearly all of which we
can demonstrate to be affected by Collide+Power. We observe
that 12 out of 14 CPUs have a maximum correlation coeffi-
cient above 0.1, reaching 0.907 on the Intel Core i7-8700K (cf.
Table 3). Furthermore, we found a maximum signal-to-noise
ratio of 79.132⋅10−3 on the Intel Core i9-9980HK, which is
9.9 % stronger than the Intel Core i7-8700K. For the CPUs
with lower metrics, we cannot exclude that a slightly different
cache eviction (cf. Figure 3) could increase leakage. Finally,
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Figure 9: The CPA success probability for the raw channel
when using loads to evict the L1. We target both amplified
(128x) and single nibble (1x) victim values. The probability
increases with a lower leakage rate, i.e., with more samples.
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Figure 10: The CPA success probability is not influenced by
the non-targeted data in the victim cache line. We target the
unamplified (1x) victim nibble and fill the remaining parts
with zero, constant, and randomly changing data.

we conclude that Collide+Power is widespread due to how
we build and design CPU memory hierarchies.

7.2 Evaluation of the Model for the Channel
Our evaluation of the CPA models using our differential mea-
surement shows the general capabilities of Collide+Power.
We focus on load instructions with L1 cache eviction in two
settings. First, we fill the complete values V and G with the
repeating nibbles v and g, respectively (128x). Second, we
use a single nibble v and g and zero the remaining parts, rep-
resenting no-amplification (1x). To compute the CPA success
probability (cf. Figure 9), we repeatedly take a specific num-
ber of random samples from our measured samples, perform
the CPA, and compute how often v was recovered without any
bit errors. The number of samples used determines the leakage
rate. In the amplified case, we can recover 505.81 bit/h of v
with a success probability of 99.0 % (n=1000, σx̄=0.31 %).
Without amplification, we still achieve a leakage rate of
10.99 bit/h with 99.8 % (n=1000, σx̄=0.14 %), correspond-
ing to 23 000 differential measurements per nibble.

The differential measurement technique allows the masking
of specific data within a cache line. To verify that the differ-



Table 4: Evaluation of the leakage model for Collide+Power on different CPUs and microarchitectures.

CPU Microarchitecture Microcode Stepping Release Year L1 Ways L2 Ways ρ̂ SNRA ⋅10−3

Core i5-2520M Sandy Bridge 0x1b 7 2011 8 8 0.011 0.107
Core i3-7100T Kaby Lake 0xec 9 2017 8 4 0.024 0.416
Xeon E-2176M Coffee Lake 0xf0 10 2018 8 4 0.820 17.997
Core i7-10510U Comet Lake 0xc6 12 2019 8 4 0.549 7.188
Core i7-10710U Comet Lake 0xe0 0 2019 8 4 0.130 0.008
Core i7-1185G7 Tiger Lake 0x72 1 2020 12 20 0.728 7.643
Core i9-12900K Alder Lake 0xf 2 2021 12 10 0.352 3.513
Core i9-9900 Coffee Lake 0xd6 12 2019 8 4 0.725 10.992
Core i7-8700K Coffee Lake 0xf0 10 2017 8 4 0.907 72.004

In
te

l

Core i9-9980HK Coffee Lake 0xaa 13 2019 8 4 0.799 79.132

Ryzen 5 2500U Zen 0x810100b 0 2017 8 8 0.428 5.429
Ryzen 5 3550H Zen+ 0x8108102 1 2019 8 8 0.585 3.025
EPYC 7252 Rome 0xa50000c 0 2019 8 8 0.160 0.178A

M
D

Ryzen 9 5900HX Zen 3 0x8301055 0 2021 8 8 0.650 7.269
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Figure 11: Comparison between different CPA models and
the influence of the wrong ratio on the success probability.
The wrong ratio requires reducing the leakage rate by a factor
of 20 to achieve the same success rate as the correct ratio.

ential measurement is unaffected by the unmasked data, we
perform an experiment that targets the unamplified (1x) vic-
tim nibble v in three distinct scenarios: We fill the remaining
parts of the cache line with either zero, random data that stays
constant, or random data that changes between measurements
and compute the influences on the CPA success probability.
We use movq loads with the no eviction pattern (cf. Figure 3)
for this analysis and show in Figure 10 that the unmasked vic-
tim data does not influence the CPA success probability. This
matches the derivation of Equation 4 where the unmasked
terms cancel out. We discuss changing the masked data as
mitigation against Collide+Power in Section 8.

In Figure 11, we compare coefficients of the CPA model (cf.
Section 5) based on the amplified (128x) L1 eviction experi-
ment from the first paragraph. First, when only using samples
with fixed Hamming weight (hw(G) = 2), we achieve a 2.5
times higher leakage rate than the exact model to achieve a
success rate of 99.8 % (n=1000, σx̄=0.14 %). Second, fixing
the ratio w2/a0 to 10.2 does not result in an observable differ-
ence to the exact model coefficients. Finally, using the incor-

rect ratio w2/a0 of 3.9 requires reducing the leakage rate 20
times to reach a success rate of 99.3 % (n=1000, σx̄=0.26 %).
Therefore, we conclude that small inaccuracies in the model
coefficients can be compensated with more samples.

7.3 Evaluation of MDS-Power

We evaluate MDS-Power on an Intel Core i9-9900K CPU
with Ubuntu 20.04.5 LTS and Linux kernel 5.4. To compare
the leakage of the different approaches, we report the leakage
rate in bits per hour with the CPA success probability of
recovering the victim nibble v without errors. We disabled the
hardware prefetchers during this experiment. However, as we
discuss in Section 4.1, the best attack scenario is unaffected
by hardware prefetchers. Figure 12a compares the leakage
for different eviction strategies when using load instructions
to access the guess cache lines, measured with RAPL. We
observe that the no eviction technique achieves a leakage
rate of 188.80 bit/h and recovers the amplified nibble (128x)
with 99.2 % (n=1000, σx̄=0.28 %) success rate. No eviction
achieves 9.33 times the leakage rate of the L1 cache eviction
and 18.07 times the leakage rate of the L1+L2 cache eviction.
When targeting a single unamplified nibble (1x), no eviction
achieves a leakage rate of 4.82 bit/h with a success rate of
98.9 % (n=1000, σx̄=0.32 %).

Figure 12b evaluates the no-eviction technique with throt-
tling attacks [21, 38]. With adaptive power management [11],
the CPU regulates its frequency and voltage to meet its power
targets. However, the time-stamp counter frequency, read by
rdtscp, is fixed, and therefore, throttling-based attacks can
be mounted with this simple primitive. We evaluate the two
distinct methods to achieve frequency throttling, as described
in Section 3.3. First, we set the power limit of the CPU to
5.625 W over 0.977 ms in the MSR_PKG_POWER_LIMIT [12].
We observe that when using the MSR to set the power
limits, the no-eviction technique achieves a leakage rate of
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(a) MDS-Power using RAPL. The no-eviction technique works best.
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(b) MDS-Power using the timing-based throttling side channel and
the no-eviction technique. MSR uses a reduced power limit. Stress
uses stressors on the other CPU cores to limit the power budget.

Figure 12: MDS-Power probability to leak the nibble v error-
free for different strategies and measurement methods.

33.78 bit/h with a success probability of 99.5 % (n=1000,
σx̄=0.22 %) leaking the amplified nibble compared to the
leakage rate of 0.68 bit/h with a success probability of 99.5 %
(n=1000, σx̄=0.22 %) when targeting the unamplified nibble.

Second, we run the stress program on the remaining logical
threads reducing the available thermal and energy budget. We
achieve a leakage rate of 1.16 bit/h with a success probability
of 99.6 % (n=1000, σx̄=0.19 %) in the amplified and a leak-
age rate of 0.065 bit/h with a success probability of 95.3 %
(n=1000, σx̄=0.66 %) for the unamplified case, respectively.
We summarize the results of MDS-Power in Table 5. We con-
clude that MDS-Power can extract secret information with
throttling side channels, albeit with a strongly reduced leakage
rate compared to RAPL.

7.4 Collide+Power through Power and Time

We verify that the leakage models derived in Section 5 holds
when exchanging the average power measurements with tim-
ing measurements. Table 6 shows the correlation coefficients,
the aligned signal-to-noise ratio, and the model coefficients
for the RAPL interface, throttling attacks via the energy limit
MSR, and throttling via stress (cf. Section 3.3). We denote
that the unit changes from Watt to Seconds due to the different
measurements. We reuse the recorded data of the MDS-Power

Table 5: Summary of MDS-Power using load instructions for
the different measurement variants and eviction techniques.

Eviction Ampl. Leakage Rate Measurement Duration Samples
⋅1bit/h ⋅1ms

None 128x 188.80 36.3 1050
L1 128x 20.24 71.3 4998
L1+L2 128x 10.45 79.2 8705R

A
PL

None 1x 4.82 36.3 40 000

None 128x 33.78 76.1 2800

L
im

it

None 1x 0.68 75.6 140 000

None 128x 1.16 44.2 140 000

St
re

ss

None 1x 0.065 44.5 2 500 000

Table 6: Comparison between the model coefficients for none-
evicting loads for RAPL and throttling side channels.

ρ̂ SNRA hd(V,G) hw(V) hw(G)
Interface ⋅1 ⋅10−3 a0 w0 w2

RAPL 0.378 39.5 275.0 µW 14.7 µW 453.5 µW
MSR 0.189 13.3 1840.5 ns −70.8 ns 2390.3 ns
Stress 0.029 0.3 62.2 ns −0.9 ns 87.4 ns

experiment on our Core i9-9900 CPU (cf. Section 7.3). In
line with the differential leakage model, we observe that the
hw(V) component is minimal compared to the other compo-
nents due to the differential measurements. Furthermore, we
see a decrease in the correlation coefficient of factor 2 when
switching from RAPL to the power limit MSR and a decrease
of 13.034 when switching from RAPL to stress. We conclude
that although the signal-to-noise ratio and the correlation co-
efficients are decreasing, we still observe a measurable signal
usable for MDS-Power as shown in Section 7.3.

7.5 Evaluation of Meltdown-Power
Meltdown-Power has a significantly lower performance than
MDS-Power due to the amount of code executed for the
prefetch gadget and the reliability of its speculation. Gen-
erally, this activity drastically increases the time to obtain a
single measurement sample and reduces the signal-to-noise
ratio. Therefore, to enable a fair and robust comparison to
MDS-Power, we evaluate Meltdown-Power primarily with
the RAPL interface. Furthermore, we disable the hardware
prefetchers during this experiment. We discuss and evalu-
ate the resulting implications in Section 7.6. We estimate
the number of samples required to observe the same leakage
with throttling side channels (cf. Section 7.4), based on our
RAPL measurements, taking the evaluation of MDS-Power
into account (see Section 7.3). Some Meltdown mitigations
switch the cr3 register during context switches [20], which
implicitly flushes the TLB. When the kernel flushes the TLB
upon entry, the real-world prefetch gadget found by Johannes-
meyer et al. [13] has a low prefetch rate on our test machine.
As Meltdown-Power is particularly relevant on systems not af-
fected by Meltdown, we assume that such mitigations are not
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(a) Meltdown-Power using the artificial Spectre-RSB gadget on
CPUs A and B with either loads (LD) or stores (ST).
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(b) Meltdown-Power using the real-world kernel Spectre-PHT gad-
get. The plots donated with 3rd show the probabilities of finding the
correct v in the first three candidates predicted by the model.

Figure 13: Meltdown-Power probability to leak the nibble v
error-free for different strategies and prefetching methods.

in place, and the TLB is not flushed after entering the kernel,
which is commonly the case on newer microarchitectures.

We evaluate Meltdown-Power with Ubuntu 20.04 LTS on
an Intel Core i7-8700K (CPU A), an Intel Core i9-9980HK
(CPU B), and an Intel Core i7-6700K (CPU C). CPU A and
C run Linux kernel version 5.4, and CPU B version 5.13. We
find that L1+L2 eviction with dirty cache line works best
for Meltdown-Power and did not observe a signal with no-
eviction, in line with our assumptions as the guess G will
not reach the value V . We disabled the hardware prefetchers.
However, in this scenario, we show in Section 7.6 that the
influences of the hardware prefetchers are minimal.

First, we evaluate the artificial Spectre-RSB gadget from
Listing 3 located within a custom kernel module in Figure 13a.
In the amplified nibble (128x) case, we achieve a leakage
rate of 12.47 bit/h with 99.9 % (n=1000, σx̄=0.10 %) success
probability on CPU B which is 2.843 times higher than the
leakage rate of CPU A with 99.2 % (n=1000, σx̄=0.28 %) suc-
cess probability. Furthermore, in an unamplified scenario (1x),
we achieve a leakage rate of 0.84 bit/h with a success proba-
bility of 99.7 % (n=1000, σx̄=0.17 %) on CPU B.

Second, we evaluate Meltdown-Power with the real-world
Spectre-PHT gadget. The real-world Spectre-PHT gadget
loads the cache line with a 90.51 % (n=10 000, σx̄=0.03 %)

Table 7: Summary of Meltdown-Power when using L1+L2
eviction for the different variants across machines.

CPU Inst. Ampl. Leakage Rate Measurement Duration Samples
⋅1bit/h ⋅1ms

A Load 128x 2.94 122.5 20 000
A Store 128x 4.39 109.4 15 000
B Load 128x 12.47 192.4 3000
B Store 128x 8.55 168.5 5000

R
SB

B Store 1x 0.84 519.3 16 500

A Store 128x 0.136 1968.8 27 000

PH
T

C Store 128x 0.147 2099.8 23 370

Fullv . . . v

a . . . a
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Figure 14: We fill the guess value G, the victim value V , and
the adjacent cache line of the victim A with repeating nibbles.

probability on CPU C when using 20 keyrings (cf. Sec-
tion 6.2). We fix the victim nibble v, i.e., the target of the
attack, to 7 and use the 128x amplification to fill the complete
victim value V . The attacker configures the prefetch gadget
to load the victim’s direct physical map address and uses 20
keyrings for the loop. Figure 13b shows that on CPU A we
achieve a leakage rate of 0.136 bit/h with a success probabil-
ity of 98.8 % (n=1000, σx̄=0.34 %) to recover the victim nib-
ble v. On CPU C, we achieve 0.147 bit/h with a probability of
96.7 % (n=1000, σx̄=0.56 %). Table 7 summarizes the results
of Meltdown-Power, and we conclude that Meltdown-Power
is capable of extracting data across privilege boundaries.

Finally, we estimate the leakage rates for additional
Meltdown-Power scenarios. First, we compute the leakage
rate when targeting an unamplified nibble in the kernel with
RAPL. We use the leakage conversion factor of 46.02 (cf.
Section 7.2) resulting in a duration estimate of 14.1 days/bit.
Second, we estimate the leakage rates for throttling attacks
when using both the power limits and the stress program to
leak the unamplified nibble. Based on Section 7.3 and Ta-
ble 5, we compute a leakage rate conversion factor of 7.09 be-
tween RAPL and the power limits and 74.15 between RAPL
and stress, respectively. This results in a leakage duration
of 99.95 days/bit with power limits and 2.86 years/bit with
stress-induced throttling, indicating a reduced SNR. We con-
clude that the real-world leakage rates with the Spectre-PHT
gadget are impractical. Future work is required to determine
whether potential improvements and optimized prefetch gad-
gets exist and can bring the attack runtime down to a level
where Meltdown-Power poses a significant security risk.

7.6 Evaluation of Hardware Prefetchers
We identified that Meltdown-Power is influenced by the
prefetcher loading the adjacent victim cache line. Therefore,
we analyze the influences of the adjacent cache line prefetcher



Table 8: Coefficients and statistics of the differential measure-
ment technique modeling the adjacent cache line prefetcher.

HWPF ρ̂ SNRA hd(v,g) hd(a,g) hw(v) hw(a) hw(g)
⋅1 ⋅10−3 µW µW µW µW µW

Enabled 0.891 9.263 351.26 25.69 0.00 0.00 3250.24
Disabled 0.902 12.055 307.10 0.00 0.76 0.00 2514.21
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Figure 15: The CPA success probability of the raw channel
when using loads with L1+L2 eviction for (128x) amplified
nibbles for enabled and disabled hardware prefetchers.

on the leakage when this prefetcher is the most active with
L1+L2 eviction as this pattern triggers the most evictions and
reloads (cf. Figure 3). Figure 14 introduces a new fill value A,
filled with the repeating nibble a, resembling the data located
in the adjacent cache line to the victim data V . We fill the
attacker-controlled adjacent guess cache lines with zeros and
perform the leakage analysis with the load instructions and
L1+L2 eviction on our Core i7-8700K (cf. Sections 4.3 and 5).
First, we identify the strength of each leakage component for v,
a, and g in our leakage model. Table 8 shows that the desired
leakage component hd(v,g) is 13.67 times stronger than the
undesired leakage component hd(a,g) of the adjacent cache
line prefetcher. The coefficient for hd(a,g) drops to zero if
the hardware prefetchers are disabled. Second, we determine
the influences of the hardware prefetchers on the CPA success
probability when not modeling any prefetchers in the model,
i.e., ignoring the prefetching effects. Figure 15 shows the
CPA success probability with hardware prefetchers enabled
or disabled, respectively. We compute an average decrease of
1.33 % when the hardware prefetchers are enabled. However,
in the success probabilities above 95 %, we observe an av-
erage decrease of only 0.297 %. We conclude that hardware
prefetchers only have minimal influence on Collide+Power.

8 Mitigations and Limitations

In this section, we discuss potential mitigations and limi-
tations of Collide+Power. A principled mitigation against
Collide+Power should eliminate or reduce the root cause of
the leakage. We discuss mitigation ideas on the hardware
and software level, although entirely preventing power-based
leakage is still an open problem for general-purpose CPUs.

Hardware Mitigations. Power analysis attacks have been
studied for decades on smaller form factor devices, such as
smart cards [2, 17, 24]. Hence, hardware-based mitigations
were researched and deployed in the wild for these systems.
Such mitigations include blinding, masking, or adding ran-
domness [24]. However, these mitigations require a funda-
mental hardware redesign and are usually tailored to protect
cryptographic algorithms. Furthermore, these mitigations of-
ten require additional hardware for partitioning the compu-
tation into multiple parts, adding a significant performance
impact [32]. Therefore, while it is theoretically possible with
newer CPUs, such effective but costly mitigations are unlikely
to be added to consumer CPUs.
Software and Operating System Mitigations. Meltdown-
Power shown in Section 6.2 relies on a prefetch gadget in
the kernel. Hence, a potential mitigation is eliminating all
prefetch gadgets in the kernel. However, orthogonal research
from Johannesmeyer et al. [13] on gadget finding suggests that
a plethora of such gadgets exist in the kernel. Exacerbating
the problem further: The prefetch gadgets required for Col-
lide+Power are simpler than traditional transient-execution
gadgets as they do not require the encoding part, e.g., a secret-
dependent cache access. Orthogonally, MDS-Power currently
requires co-location with the victim on a hyperthread, which
could be prohibited if a group scheduling policy is imple-
mented. However, the effects described in this paper likely
apply to additional shared buffers in the CPU. Following the
suggestions of Wang et al. [38], Turbo Boost and SpeedStep
on Intel or Cool’n’Quiet on AMD CPUs can be disabled to
curb userspace attacks, causing the CPU to reach the power
limit less frequently. However, the question arises of which
other power-related signals an attacker could use instead of
the throttling side channels. Finally, in Section 7.2, we show
that changing data co-located in the victim cache line does not
impact the attacker’s success probability. However, dynam-
ically changing the victim values, e.g., cryptographic keys,
breaks the assumptions of Collide+Power that the victim data
is constant during the attack, effectively preventing leakage
due to the relatively low leakage rates. Nevertheless, in con-
trast to traditional rekeying, the changing interval must de-
pend on wall-clock time, not usage count, as unused secrets
could be reachable with Collide+Power. Another alternative
mitigation for MDS-Power is to sandwich secret data loads
between victim-controlled loads, preventing the collisions of
the attacker-controlled guesses and the victim value. However,
this mitigation is ineffective against Meltdown-Power.
Limitations. While Collide+Power exploits the energy differ-
ences induced by cache loads, our primitives are not limited to
the cache. In theory, the contents of any microarchitectural ele-
ment with data-dependent energy consumption can be leaked.
In practice, we require that the energy consumption becomes
observable via performance counters for a privileged attacker
or with frequency scaling in an unprivileged scenario. Future
work could explore the impacts of Collide+Power on other mi-



croarchitectural buffers. The current Meltdown-Power proof-
of-concept has severe practical limitations reflected in the low
security risk when using the Spectre-PHT prefetch gadget.
Therefore, Collide+Power benefits from research identifying
optimized prefetch gadgets.

9 Conclusion

Collide+Power shows that mere co-location of data values in
microarchitectures introduces combined leakage in the power
domain. Our systematic analysis of the CPU’s memory hierar-
chy led to precise leakage models that enable the exploitation
of this combined leakage. We demonstrated that Collide+
Power works with power consumption interfaces or throttling-
induced timing variations alike. Our novel differential mea-
surement technique amplifies the signal-to-noise ratio by a fac-
tor of 8.778 on average, compared to a straightforward DPA
approach. We demonstrated that Collide+Power can even leak
single-bit differences from the CPU’s memory hierarchy with
fewer than 23 000 measurements. In MDS-style end-to-end
attacks, Collide+Power leaks 4.82 bit/h in the same scenario
as RIDL and ZombieLoad but without relying on the MDS
hardware flaw. However, in real-world Meltdown-style at-
tacks, we encounter practical limitations leading to leakage
rates of more than a year per bit with throttling. Future work
is required to find more practical prefetching methods to re-
place the current Spectre-PHT gadget and to reevaluate the
potential security risk of Meltdown-Power. Since Collide+
Power is a generic attack with different variants, applying to
any modern CPU, it poses a significant challenge for future
work to develop mitigations against this threat. For commod-
ity systems, mitigating Collide+Power is more challenging,
as it exploits the very basics of microarchitecture design.
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A Differential Leakage Model Derivation

We derive Equation 4 by starting with the power leakage
model of Equation 3, defined as

P(G,V) = a0 ⋅hd(G,V)+w0 ⋅hw(V)+w2 ⋅hw(G)+ω.

We add an adaptive noise term ω to model a realistic mea-
surement. We model the power consumption of two dis-
tinct attacker-controlled guesses, the normal guess G and its
masked inverse G̃ = G⊕m. We assume that the noise between
two successive samples is constant due to time locality. The
victim data V stays constant during both of these guesses.
This yields the two equations

PG = a0 ⋅hd(G,V)+w2 ⋅hw(G)+w0 ⋅hw(V)+ω and

PG̃ = a0 ⋅hd(G̃,V)+w2 ⋅hw(G̃)+w0 ⋅hw(V)+ω.

Subtraction of the equations PG and PG̃ yields the power
difference between both of the attacker’s guesses,

PG −PG̃ = a0 ⋅ (hd(G,V)−hd(G̃,V)) (((((((
+w0 ⋅hw(V)+ω

+w2 ⋅ (hw(G)−hw(G̃)) (((((((
−w0 ⋅hw(V)−ω.

First, we derive the results of the subtraction of the Hamming
difference hd(G,V) with the Hamming difference where one
parameter is the mask inverse hd(G̃,V). We consider the fol-
lowing equation hd(x,y)−hd(¬x,y). To change a value from
x to y, hd(x,y) bits need to be flipped. Similarly, to change
from x to ¬x, the number of bits in a word (N) need to change.
Therefore, we can flip from ¬x to x and undo the flips we
require to get to y, yielding hd(¬x,y) = N−hd(x,y). There-
fore,

hd(x,y)−hd(¬x,y) = 2 ⋅hd(x,y)−N.

If we consider hd(G,V)−hd(G⊕m,V), we observe that only
the bits selected by m are active as the other bit differences
cancel out due to the Hamming distance. Therefore, the word
size is reduced to N = hw(m), and we derive

hd(G,V)−hd(G⊕m,V) = 2 ⋅hd(Gm,Vm)−hw(m).
where Gm = G∧m and Vm = V∧m are the masked cache lines
with which we mask away non-targeted data. Second, we
derive the results of the subtraction of the Hamming weight

1 struct key *find_keyring_by_name(const char *name,
-> bool uid_keyring) {

2 // ...
3 list_for_each_entry(keyring,
-> &ns->keyring_name_list, name_link) {

4
5 if(!kuid_has_mapping(ns, keyring->user->uid))
6 continue;
7
8 if(test_bit(KEY_FLAG_REVOKED, &keyring->flags))
9 continue;

10
11 if (strcmp(keyring->description, name) != 0)
12 continue;
13 // ...
14 }
15 // ...
16 }

Listing 4: The Spectre-PHT prefetch gadget of the Linux
kernel key management used to load arbitrary data.

hw(G) with the Hamming weight of the mask inverse hw(G̃).
We use the following property hw(¬x)=N−hw(x) to derive

hw(x)−hw(¬x) = 2 ⋅hw(x)−N.

With the same reasoning about the active bits, we derive

hw(G)−hw(G⊕m) = 2 ⋅hw(Gm)−hw(m).
Resulting in the final differential power leakage model of
Equation 4,

PG −PG̃ = a0 ⋅ (2 ⋅hd(Gm,Vm)−hw(m))
+w2 ⋅ (2 ⋅hw(Gm)−hw(m)) .

B Kernel Spectre-PHT Prefetch Gadget

The prefetch gadget in Listing 4 was discovered by Jo-
hannesmeyer et al. [13]. First, Line 3 iterates over a list
of keyrings ns->keyring_name_list of the running pro-
cess’s namespace. During this iteration, the CPU’s branch
predictor is mistrained and speculatively accesses one ad-
ditional element at the end of the loop. Due to the given
memory layout [5, 6, 13, 18], during speculative execution, a
type confusion occurs, where a struct user_namespace
is interpreted as a struct key. Therefore, the speculative
access of keyring->user->uid in Line 5 actually accesses
ns->projid_map->entry[3], which is controllable by an
attacker, resulting in the desired prefetch gadget [13]. The
array ns->projid_map->entry[3] can be filled by the at-
tacker by writing to /proc/self/projid_map.
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