
(Why) Are Microarchitectural Attacks Really

Different than Physical Side-Channel Attacks?

Daniel Gruss

September 10, 2018

Graz University of Technology

1 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

2 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

2 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

2 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

2 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

2 Daniel Gruss — Graz University of Technology

Stealing Bitcoins? www.tugraz.at

SGX

2 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Untrusted part

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Untrusted part

Create Enclave

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

SGX www.tugraz.at

Application

Trusted part

C
al

l
G

at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

3 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks.

It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology

Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold

and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE.

Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology

SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]

5 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

6 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

...processed with a simple moving average...2

2Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

7 Daniel Gruss — Graz University of Technology

Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent3

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

3Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.

8 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Physical Side Channels www.tugraz.at

• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant

9 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996

2004 2006 2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004

2006 2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006

2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009

2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013

2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013

2014

2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013

2014

2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013 2014

2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013 2014

2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013 2014

2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013 2014

2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013 2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

1996 2004 2006 2009 2011

2013 2014 2015

10 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

2016 2017 2018

11 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

2016

2017 2018

11 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

2016 2017

2018

11 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks www.tugraz.at

2016 2017 2018

11 Daniel Gruss — Graz University of Technology

Differences and Similarities www.tugraz.at

• threat model

• temporal component

• observer effect (destructive measurements)

• spatial component

12 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system

13 Daniel Gruss — Graz University of Technology

Truly remote attacks... www.tugraz.at

Just a few examples:

• Remote timing attacks on crypto ([Ber04; BB05] and many

more)

• ThrowHammer [Tat+18] and NetHammer [Lip+17]

• NetSpectre [Sch+18b]

14 Daniel Gruss — Graz University of Technology

Truly remote attacks... www.tugraz.at

Just a few examples:

• Remote timing attacks on crypto ([Ber04; BB05] and many

more)

• ThrowHammer [Tat+18] and NetHammer [Lip+17]

• NetSpectre [Sch+18b]

14 Daniel Gruss — Graz University of Technology

Truly remote attacks... www.tugraz.at

Just a few examples:

• Remote timing attacks on crypto ([Ber04; BB05] and many

more)

• ThrowHammer [Tat+18] and NetHammer [Lip+17]

• NetSpectre [Sch+18b]

14 Daniel Gruss — Graz University of Technology

Truly remote attacks... www.tugraz.at

Just a few examples:

• Remote timing attacks on crypto ([Ber04; BB05] and many

more)

• ThrowHammer [Tat+18] and NetHammer [Lip+17]

• NetSpectre [Sch+18b]

14 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

CPU Cache www.tugraz.at

15 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Flush+Reload www.tugraz.at

16 Daniel Gruss — Graz University of Technology

Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower

17 Daniel Gruss — Graz University of Technology

Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower

17 Daniel Gruss — Graz University of Technology

Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower

17 Daniel Gruss — Graz University of Technology

Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower

17 Daniel Gruss — Graz University of Technology

Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower

17 Daniel Gruss — Graz University of Technology

Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower

17 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect

18 Daniel Gruss — Graz University of Technology

Microarchitectural Observer Effect www.tugraz.at

device under test = measurement device

• measuring time takes some time

• limits the resolution

• measuring cache hits/misses manipulates the cache state

• virtually all measurements are destructive

19 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall

20 Daniel Gruss — Graz University of Technology

Measuring Processor Operations

Timing Measurements www.tugraz.at

• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]

21 Daniel Gruss — Graz University of Technology

What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

22 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

23 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

23 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

23 Daniel Gruss — Graz University of Technology

Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

23 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u

m
b

er
of

ac
ce

ss
es

Cache Hits

24 Daniel Gruss — Graz University of Technology

Memory Access Latency www.tugraz.at

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u

m
b

er
of

ac
ce

ss
es

Cache Hits Cache Misses

24 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!

25 Daniel Gruss — Graz University of Technology

Timer www.tugraz.at

• We can build our own timer [Lip+16; Sch+17]

• Start a thread that continuously increments a global variable

• The global variable is our timestamp

26 Daniel Gruss — Graz University of Technology

Timer www.tugraz.at

• We can build our own timer [Lip+16; Sch+17]

• Start a thread that continuously increments a global variable

• The global variable is our timestamp

26 Daniel Gruss — Graz University of Technology

Timer www.tugraz.at

• We can build our own timer [Lip+16; Sch+17]

• Start a thread that continuously increments a global variable

• The global variable is our timestamp

26 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3 1 t imestamp = r d t s c () ;

27 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

1 whi le (1) {
2 t imestamp++;

3 }

27 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

1 mov ×tamp , %rcx

2 1 : i n c l (% rcx)

3 jmp 1b

27 Daniel Gruss — Graz University of Technology

Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

0.87

1 mov ×tamp , %rcx

2 1 : i n c %rax

3 mov %rax , (% rcx)

4 jmp 1b

27 Daniel Gruss — Graz University of Technology

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

28 Daniel Gruss — Graz University of Technology

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

28 Daniel Gruss — Graz University of Technology

Out-of-Order Execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

28 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret

29 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret

29 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret

29 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret

29 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret

29 Daniel Gruss — Graz University of Technology

Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret

29 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?

30 Daniel Gruss — Graz University of Technology

A Double Fetch www.tugraz.at

string

31 Daniel Gruss — Graz University of Technology

A Double Fetch www.tugraz.at

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

Thread 2

31 Daniel Gruss — Graz University of Technology

A Double Fetch www.tugraz.at

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

Thread 2

31 Daniel Gruss — Graz University of Technology

A Double Fetch www.tugraz.at

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

Thread 2

31 Daniel Gruss — Graz University of Technology

A Double Fetch www.tugraz.at

string

/ p a t h / f i l e X p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

Thread 2

schedule
string [10] = ’X’;

31 Daniel Gruss — Graz University of Technology

A Double Fetch www.tugraz.at

string

/ p a t h / f i l e X p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

strcpy(local , string);

// <memory corruption >

Thread 2

schedule string [10] = ’X’;

31 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks to the Rescue! www.tugraz.at

• Idea: memory access can be observed through the cache

• Observe cache activity using a cache attack

32 Daniel Gruss — Graz University of Technology

Microarchitectural Attacks to the Rescue! www.tugraz.at

• Idea: memory access can be observed through the cache

• Observe cache activity using a cache attack

32 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF

(Syscall) Fuzzer

Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF
(Syscall) Fuzzer

Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF
(Syscall) Fuzzer

Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF
(Syscall) Fuzzer

Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF
(Syscall) Fuzzer Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF
(Syscall) Fuzzer Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug

Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

DECAF4 www.tugraz.at

DECAF
(Syscall) Fuzzer Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).

33 Daniel Gruss — Graz University of Technology

Detection via Flush+Reload www.tugraz.at

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·106

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e
[c

yc
le

s]

34 Daniel Gruss — Graz University of Technology

Detection via Flush+Reload www.tugraz.at

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·106

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e
[c

yc
le

s]

Data was accessed

34 Daniel Gruss — Graz University of Technology

Detection via Flush+Reload www.tugraz.at

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e
[c

yc
le

s]

35 Daniel Gruss — Graz University of Technology

Detection via Flush+Reload www.tugraz.at

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e
[c

yc
le

s]

First access

35 Daniel Gruss — Graz University of Technology

Detection via Flush+Reload www.tugraz.at

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e
[c

yc
le

s]

First access Second access

35 Daniel Gruss — Graz University of Technology

Double-fetch Bug Exploitation www.tugraz.at

• Only double-fetch bugs are interesting

→ exploit while fuzzing

• Flip value as fast as possible?

• Better use a trigger (just like in physical fault attacks!)

36 Daniel Gruss — Graz University of Technology

Double-fetch Bug Exploitation www.tugraz.at

• Only double-fetch bugs are interesting

→ exploit while fuzzing

• Flip value as fast as possible?

• Better use a trigger (just like in physical fault attacks!)

36 Daniel Gruss — Graz University of Technology

Double-fetch Bug Exploitation www.tugraz.at

• Only double-fetch bugs are interesting

→ exploit while fuzzing

• Flip value as fast as possible?

• Better use a trigger (just like in physical fault attacks!)

36 Daniel Gruss — Graz University of Technology

Double-fetch Bug Exploitation www.tugraz.at

• Only double-fetch bugs are interesting

→ exploit while fuzzing

• Flip value as fast as possible?

• Better use a trigger

(just like in physical fault attacks!)

36 Daniel Gruss — Graz University of Technology

Double-fetch Bug Exploitation www.tugraz.at

• Only double-fetch bugs are interesting

→ exploit while fuzzing

• Flip value as fast as possible?

• Better use a trigger (just like in physical fault attacks!)

36 Daniel Gruss — Graz University of Technology

Cache-based Trigger www.tugraz.at

3 3.5 4 4.5 5 5.5 6 6.5 7

·105

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e

[c
yc

le
s]

37 Daniel Gruss — Graz University of Technology

Cache-based Trigger www.tugraz.at

3 3.5 4 4.5 5 5.5 6 6.5 7

·105

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e

[c
yc

le
s]

First access

37 Daniel Gruss — Graz University of Technology

Cache-based Trigger www.tugraz.at

3 3.5 4 4.5 5 5.5 6 6.5 7

·105

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e

[c
yc

le
s]

First access Modify value

37 Daniel Gruss — Graz University of Technology

Cache-based Trigger www.tugraz.at

3 3.5 4 4.5 5 5.5 6 6.5 7

·105

200

220

240

260

Runtime [cycles]

A
cc

es
s

ti
m

e

[c
yc

le
s]

First access Modify value Second access with modified value

37 Daniel Gruss — Graz University of Technology

Cache-based Trigger www.tugraz.at

0 50 100 150 200 250 300 350 400 450 500 550 600
0

25

50

75

100

Access delta [cycles]

P
ro

b
ab

ili
ty

[%
]

Flush+Reload Flipping

38 Daniel Gruss — Graz University of Technology

Cache-based Trigger www.tugraz.at

1 2 3 4
0

25

50

75

100

Number of checks

P
ro

b
ab

ili
ty

[%
]

Flush+Reload

Flipping

39 Daniel Gruss — Graz University of Technology

Getting rid of Double Fetch Bugs www.tugraz.at

• Problem: modified value → exploit

• Idea: Ensure that both accesses are atomic

→ Another microarchitectural feature: Intel TSX

40 Daniel Gruss — Graz University of Technology

Getting rid of Double Fetch Bugs www.tugraz.at

• Problem: modified value → exploit

• Idea: Ensure that both accesses are atomic

→ Another microarchitectural feature: Intel TSX

40 Daniel Gruss — Graz University of Technology

Getting rid of Double Fetch Bugs www.tugraz.at

• Problem: modified value → exploit

• Idea: Ensure that both accesses are atomic

→ Another microarchitectural feature: Intel TSX

40 Daniel Gruss — Graz University of Technology

Hardware Transactional Memory www.tugraz.at

• Make a sequence of reads and writes atomic

• Operations are wrapped in a transaction

• Conflicts → transaction is rolled back

• Implemented via the cache

41 Daniel Gruss — Graz University of Technology

Hardware Transactional Memory www.tugraz.at

• Make a sequence of reads and writes atomic

• Operations are wrapped in a transaction

• Conflicts → transaction is rolled back

• Implemented via the cache

41 Daniel Gruss — Graz University of Technology

Hardware Transactional Memory www.tugraz.at

• Make a sequence of reads and writes atomic

• Operations are wrapped in a transaction

• Conflicts → transaction is rolled back

• Implemented via the cache

41 Daniel Gruss — Graz University of Technology

Hardware Transactional Memory www.tugraz.at

• Make a sequence of reads and writes atomic

• Operations are wrapped in a transaction

• Conflicts → transaction is rolled back

• Implemented via the cache

41 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

xbegin

xend

else path
of xbegin

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

xbegin

mov

xend

else path
of xbegin

read read

data

read set

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

xbegin

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read set

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

mov

xbegin

mov

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read write

read set

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

mov

xbegin

mov

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read write

transactional abort read set

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

mov

xbegin

mov

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read write

transactional abort read set

First access

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

mov

xbegin

mov

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read write

transactional abort read set

First access

Modification

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

mov

xbegin

mov

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read write

transactional abort read set

First access

Second access Modification

42 Daniel Gruss — Graz University of Technology

Transactional Memory www.tugraz.at

Thread 1Thread 0 Cache

mov

mov

mov

xbegin

mov

mov

mov

xend

else path
of xbegin

data

read read

dataread

data

write

read write

transactional abort read set

First access

Second access Modification

Exploit detected

42 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret

44 Daniel Gruss — Graz University of Technology

Cache Template Attack Demo

Cache Template5 www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

5Daniel Gruss et al. Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. In:

USENIX Security Symposium. 2015.

46 Daniel Gruss — Graz University of Technology

Side-Channel Attacks and Fault Attacks?

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology

Out-of-order state does not become architecturally visible

but . . .

Out-of-order state does not become architecturally visible

but . . .

Building Meltdown www.tugraz.at

(volatile char) 0;

array [84 * 4096] = 0;

48 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

49 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

49 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

49 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

50 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

50 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

50 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

50 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

51 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

51 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

52 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

52 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

55 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

55 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

55 Daniel Gruss — Graz University of Technology

Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

56 Daniel Gruss — Graz University of Technology

Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

((size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

57 Daniel Gruss — Graz University of Technology

Foreshadow / Foreshadow-NG6 [Van+18; Wei+18] www.tugraz.at

6Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In: USENIX Security Symposium. 2018.

58 Daniel Gruss — Graz University of Technology

L1TF/Foreshadow Demo

Spectre v1 www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v1 www.tugraz.at

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead

60 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

fly()

swim
()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

Spectre v2 www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre v2: mistrain BTB → mispredict indirect jump/call

Spectre v5: mistrain RSB → mispredict return

61 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”7 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ not really Spectre but a Meltdown variant

7Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In: arXiv:1807.03757

(2018).

62 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”7 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ not really Spectre but a Meltdown variant

7Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In: arXiv:1807.03757

(2018).

62 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”7 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ not really Spectre but a Meltdown variant

7Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In: arXiv:1807.03757

(2018).

62 Daniel Gruss — Graz University of Technology

“Speculative Buffer Overflows”7 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ not really Spectre but a Meltdown variant

7Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In: arXiv:1807.03757

(2018).

62 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

63 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

63 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

63 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

63 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

63 Daniel Gruss — Graz University of Technology

Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...

63 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)

64 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)

64 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)

64 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)

64 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)

64 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)

64 Daniel Gruss — Graz University of Technology

I forgot the “Who am I” slide!!1 www.tugraz.at

I’m building up a group @ Graz University of Technology

→ looking for PhD students!

65 Daniel Gruss — Graz University of Technology

I forgot the “Who am I” slide!!1 www.tugraz.at

I’m building up a group @ Graz University of Technology

→ looking for PhD students!

65 Daniel Gruss — Graz University of Technology

I forgot the “Who am I” slide!!1 www.tugraz.at

I’m building up a group @ Graz University of Technology

→ looking for PhD students!

65 Daniel Gruss — Graz University of Technology

I forgot the “Who am I” slide!!1 www.tugraz.at

I’m building up a group @ Graz University of Technology

→ looking for PhD students!

65 Daniel Gruss — Graz University of Technology

I forgot the “Who am I” slide!!1 www.tugraz.at

I’m building up a group @ Graz University of Technology

→ looking for PhD students!

65 Daniel Gruss — Graz University of Technology

(Why) Are Microarchitectural Attacks Really

Different than Physical Side-Channel Attacks?

Daniel Gruss

September 10, 2018

Graz University of Technology

66 Daniel Gruss — Graz University of Technology

References

Michael Backes et al. Acoustic Side-Channel Attacks on Printers. In: USENIX

Security. 2010.

David Brumley et al. Remote timing attacks are practical. In: Computer Networks

48.5 (2005), pp. 701–716.

Daniel J. Bernstein. Cache-Timing Attacks on AES. 2004. url:

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

Elad Carmon et al. Photonic Side Channel Attacks Against RSA. In: HOST’17.

2017.

Daniel Gruss et al. Rowhammer.js: A Remote Software-Induced Fault Attack in

JavaScript. In: DIMVA. 2016.

Daniel Gruss et al. Cache Template Attacks: Automating Attacks on Inclusive

Last-Level Caches. In: USENIX Security Symposium. 2015.

J. Alex Halderman et al. Lest we remember: cold-boot attacks on encryption keys.

In: Communications of the ACM (May 2009).

Michael Hutter et al. The temperature side channel and heating fault attacks. In:

International Conference on Smart Card Research and Advanced Applications.

Springer. 2013, pp. 219–235.

Paul Kocher et al. Differential power analysis. In: Annual International Cryptology

Conference. Springer. 1999, pp. 388–397.

Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution. In: S&P.

2019.

Emilia Käsper et al. Faster and Timing-Attack Resistant AES-GCM. In:

Cryptographic Hardware and Embedded Systems (CHES). 2009, pp. 1–17.

Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In:

arXiv:1807.03757 (2018).

Moritz Lipp et al. ARMageddon: Cache Attacks on Mobile Devices. In: USENIX

Security Symposium. 2016.

Moritz Lipp et al. Nethammer: Inducing Rowhammer Faults through Network

Requests. In: arXiv:1711.08002 (2017).

Moritz Lipp et al. Meltdown: Reading Kernel Memory from User Space. In:

USENIX Security Symposium. 2018.

Stefan Mangard et al. Power analysis attacks: Revealing the secrets of smart

cards. Vol. 31. Springer Science & Business Media, 2008.

Yossef Oren et al. The Spy in the Sandbox: Practical Cache Attacks in JavaScript

and their Implications. In: CCS. 2015.

Josyula R Rao et al. EMpowering Side-Channel Attacks. In: IACR Cryptology

ePrint Archive 2001 (2001), p. 37.

Alexander Schlösser et al. Simple Photonic Emission Analysis of AES. In:

CHES’12. 2012.

Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache

Attacks. In: DIMVA. 2017.

Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of

Double-Fetch Bugs using Modern CPU Features. In: AsiaCCS (2018).

Michael Schwarz et al. NetSpectre: Read Arbitrary Memory over Network. In:

arXiv:1807.10535 (2018).

Andrei Tatar et al. Throwhammer: Rowhammer Attacks over the Network and

Defenses. In: USENIX ATC. 2018.

Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom

with Transient Out-of-Order Execution. In: USENIX Security Symposium. 2018.

Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Memory Abstraction with

Transient Out-of-Order Execution. In: Technical report (2018).

	References

