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Protection from Side-Channel Attacks
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enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology



Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology



Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks.

It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology



Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.

4 Daniel Gruss — Graz University of Technology





SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]
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Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...processed with a simple moving average...2

2Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent3

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

3Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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• Power consumption [KJJ99; MOP08]

• Electro-magnetic radiation [RR01; KS09]

• Temperature [HS13]

• Photonic emission [Sch+12; CSW17]

• Acoustic emissions [Bac+10]

→ Physical access usually relevant, but code execution on device

usually not relevant
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Differences and Similarities www.tugraz.at

• threat model

• temporal component

• observer effect (destructive measurements)

• spatial component
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Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system
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Truly remote attacks... www.tugraz.at

Just a few examples:

• Remote timing attacks on crypto ([Ber04; BB05] and many

more)

• ThrowHammer [Tat+18] and NetHammer [Lip+17]

• NetSpectre [Sch+18b]
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Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower
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Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect
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Microarchitectural Observer Effect www.tugraz.at

device under test = measurement device

• measuring time takes some time

• limits the resolution

• measuring cache hits/misses manipulates the cache state

• virtually all measurements are destructive

19 Daniel Gruss — Graz University of Technology



Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall
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Measuring Processor Operations



Timing Measurements www.tugraz.at

• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]

21 Daniel Gruss — Graz University of Technology



What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

22 Daniel Gruss — Graz University of Technology





Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.
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Memory Access Latency www.tugraz.at
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Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!
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• We can build our own timer [Lip+16; Sch+17]

• Start a thread that continuously increments a global variable
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Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3 1 t imestamp = r d t s c ( ) ;
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CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

1 whi le ( 1 ) {
2 t imestamp++;

3 }
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CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

0.87

1 mov &timestamp , %rcx

2 1 : i n c %rax

3 mov %rax , (% rcx )

4 jmp 1b
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• processed by individual execution units
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Temporal Component www.tugraz.at

• trace over time contains information

• single spikes contain information

• can’t arbitrarily improve clock

• microarchitectural attacks somewhat similar to SPA

→ single spike can already reveal a secret
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Case Study: Double Fetches www.tugraz.at

• “time-of-check-to-time-of-use”

• Caused by accessing the shared memory twice

• Double-fetch bugs = exploitable double fetches

• Can microarchitectural attacks help here?
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open(string , O_CREAT);

Thread 2

31 Daniel Gruss — Graz University of Technology



A Double Fetch www.tugraz.at

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

Thread 2

31 Daniel Gruss — Graz University of Technology



A Double Fetch www.tugraz.at

string

/ p a t h / f i l e \0 p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

Thread 2

31 Daniel Gruss — Graz University of Technology



A Double Fetch www.tugraz.at

string

/ p a t h / f i l e X p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

Thread 2

schedule
string [10] = ’X’;
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string

/ p a t h / f i l e X p a y l o a d \0

length

Thread 1
strcpy(string , "/path/file\0 payload");

open(string , O_CREAT);

// <switch to kernel >

int len = strlen(string);

char* local = malloc(len + 1);

strcpy(local , string);

// <memory corruption >

Thread 2

schedule string [10] = ’X’;
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Microarchitectural Attacks to the Rescue! www.tugraz.at

• Idea: memory access can be observed through the cache

• Observe cache activity using a cache attack
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DECAF4 www.tugraz.at

DECAF

(Syscall) Fuzzer

Exploit double fetch

Report

general bug

Detect double fetches

Double fetch

candidates

Report double-

fetch bug
Fix double-fetch bug

4Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs

using Modern CPU Features. In: AsiaCCS (2018).
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Detection via Flush+Reload www.tugraz.at
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Double-fetch Bug Exploitation www.tugraz.at

• Only double-fetch bugs are interesting

→ exploit while fuzzing

• Flip value as fast as possible?

• Better use a trigger (just like in physical fault attacks!)
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Cache-based Trigger www.tugraz.at
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Getting rid of Double Fetch Bugs www.tugraz.at

• Problem: modified value → exploit

• Idea: Ensure that both accesses are atomic

→ Another microarchitectural feature: Intel TSX
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Hardware Transactional Memory www.tugraz.at

• Make a sequence of reads and writes atomic

• Operations are wrapped in a transaction

• Conflicts → transaction is rolled back

• Implemented via the cache
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Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Microarchitectural Defenses www.tugraz.at

• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?

43 Daniel Gruss — Graz University of Technology



Spatial Component www.tugraz.at

• physical: different offsets on the chip

• microarchitectural:

• different microarchitectural elements

• more significant: huge virtual adress space

• 248 different virtual memory locations

• the location is often (part of) the secret
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Cache Template Attack Demo



Cache Template5 www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

5Daniel Gruss et al. Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. In:

USENIX Security Symposium. 2015.
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Side-Channel Attacks and Fault Attacks?



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks? [Hal+09]

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre? [Lip+18; Koc+19]

47 Daniel Gruss — Graz University of Technology
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Building Meltdown www.tugraz.at

*( volatile char*) 0;

array [84 * 4096] = 0;

48 Daniel Gruss — Graz University of Technology



Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions
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Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached
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• Index of cache hit reveals data

• Permission check is in some cases not fast enough

52 Daniel Gruss — Graz University of Technology



Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A

cc
es

s
ti

m
e

[c
yc

le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

52 Daniel Gruss — Graz University of Technology









Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention
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Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

56 Daniel Gruss — Graz University of Technology



Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

(( size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}
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Foreshadow / Foreshadow-NG6 [Van+18; Wei+18] www.tugraz.at

6Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In: USENIX Security Symposium. 2018.
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L1TF/Foreshadow Demo



Spectre v1 www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre v4: Ignore sanitizing write access and use unsanitized old value instead
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Spectre v5: mistrain RSB → mispredict return
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“Speculative Buffer Overflows”7 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ not really Spectre but a Meltdown variant

7Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In: arXiv:1807.03757

(2018).
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Meltdown vs. Spectre www.tugraz.at

Meltdown attacks

• Meltdown, LazyFP (v3.1),

Foreshadow, Foreshadow-NG, ...

• Out-of-Order Execution

• no prediction required

→ melt down isolation by ignoring access

permissions (e.g., page table bits)

• practical mitigation in software (e.g.,

KAISER)

Spectre attacks

• v1, v1.1, v2, v4, SpectreRSB (v5)

• Speculative Execution ⊂
Out-of-Order Execution

• fundamentally rely on prediction

• difficult to mitigate because it does

not violate access permissions

• ...

• ...
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Conclusion www.tugraz.at

• large-scale attacks due to different threat model

• overlap could be leveraged to gain more complete picture

• space for promising mitigations (due to inherent restrictions for

the attacker)
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I forgot the “Who am I” slide!!1 www.tugraz.at

I’m building up a group @ Graz University of Technology

→ looking for PhD students!
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Alexander Schlösser et al. Simple Photonic Emission Analysis of AES. In:

CHES’12. 2012.

Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache

Attacks. In: DIMVA. 2017.

Michael Schwarz et al. Automated Detection, Exploitation, and Elimination of

Double-Fetch Bugs using Modern CPU Features. In: AsiaCCS (2018).

Michael Schwarz et al. NetSpectre: Read Arbitrary Memory over Network. In:

arXiv:1807.10535 (2018).

Andrei Tatar et al. Throwhammer: Rowhammer Attacks over the Network and

Defenses. In: USENIX ATC. 2018.

Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom

with Transient Out-of-Order Execution. In: USENIX Security Symposium. 2018.

Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Memory Abstraction with

Transient Out-of-Order Execution. In: Technical report (2018).


	References

