
SCIENCE PASSION TECHNOLOGY

Brief Overview on Meltdown and Spectre

Daniel Gruss

January 25, 2018

Graz University of Technology

1 Daniel Gruss — Graz University of Technology



National Geographic



Whoami www.tugraz.at

• Daniel Gruss

• Post-Doc @ Graz University of Technology

• Twitter: @lavados

• Email: daniel.gruss@iaik.tugraz.at

3 Daniel Gruss — Graz University of Technology



Software-based Side-Channel Attacks www.tugraz.at

• security and privacy rely on secrets (unknown to attackers)

• secrets can leak through side channels

• software-based → no physical access

4 Daniel Gruss — Graz University of Technology



Software-based Side-Channel Attacks www.tugraz.at

• security and privacy rely on secrets (unknown to attackers)

• secrets can leak through side channels

• software-based → no physical access

4 Daniel Gruss — Graz University of Technology



The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

5 Daniel Gruss — Graz University of Technology



The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

5 Daniel Gruss — Graz University of Technology



The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

5 Daniel Gruss — Graz University of Technology



The Core of Meltdown/Spectre www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

5 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss

printf("%d", i);

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

printf("%d", i);

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
se

printf("%d", i);

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

DRAM access,
slow

6 Daniel Gruss — Graz University of Technology



CPU Cache www.tugraz.at

printf("%d", i);
Cache 

miss Reque
st

Respon
sei

printf("%d", i);

Cache 
hit

No DRAM acces
s,

much faster

DRAM access,
slow

6 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

7 Daniel Gruss — Graz University of Technology



Flush+Reload www.tugraz.at

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

7 Daniel Gruss — Graz University of Technology



Memory Access Latency www.tugraz.at

8 Daniel Gruss — Graz University of Technology



Memory Access Latency www.tugraz.at

8 Daniel Gruss — Graz University of Technology



Cache Template Attack Demo



Cache Template www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680

0x7c6c0

0x7c700

0x7c740

0x7c780

0x7c7c0

0x7c800

0x7c840

0x7c880

0x7c8c0

0x7c900

0x7c940

0x7c980

0x7c9c0

0x7ca00

0x7cb80

0x7cc40

0x7cc80

0x7ccc0

0x7cd00

10 Daniel Gruss — Graz University of Technology



Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);

11 Daniel Gruss — Graz University of Technology



Out-of-order Execution www.tugraz.at

1 int width = 10, height = 5;

2

3 float diagonal = sqrt(width * width

4 + height * height);

5 int area = width * height;

6

7 printf("Area %d x %d = %d\n", width , height , area);

Parallelize
D

ep
en

de
nc

y

11 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

12 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

12 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

12 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

12 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

1 char data = *(char*)0xffffffff81a000e0;

2 array[data * 4096] = 0;

• Then check whether any part of array is cached

13 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

14 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

14 Daniel Gruss — Graz University of Technology



Spying on passwords



Leaking a picture like in CSI Cyber



Leaking a photo



Leaking Passwords from your Password Manager www.tugraz.at

18 Daniel Gruss — Graz University of Technology



How to stop a Meltdown? www.tugraz.at

• Kernel addresses in user space are a problem

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

19 Daniel Gruss — Graz University of Technology



How to stop a Meltdown? www.tugraz.at

• Kernel addresses in user space are a problem

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

19 Daniel Gruss — Graz University of Technology



How to stop a Meltdown? www.tugraz.at

• Kernel addresses in user space are a problem

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

19 Daniel Gruss — Graz University of Technology



How to stop a Meltdown? www.tugraz.at

• Kernel addresses in user space are a problem

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

19 Daniel Gruss — Graz University of Technology



KAISER Patch www.tugraz.at

Today’s operating systems:

Shared address space

User memory Kernel memory

0 −1

context switch

Stronger kernel isolation:

User address space

User memory Not mapped

0 −1

Kernel address space

Not mapped Kernel memory

0 −1

context switch

sw
itch

a
d
d
r.

sp
a
ce

Interrupt

dispatcher

20 Daniel Gruss — Graz University of Technology



Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch

21 Daniel Gruss — Graz University of Technology



Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch

21 Daniel Gruss — Graz University of Technology



Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch

21 Daniel Gruss — Graz University of Technology



Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch

21 Daniel Gruss — Graz University of Technology



Kernel Address Space Isolation www.tugraz.at

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI (Kernel

Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double Map”

• All share the same idea: switching address spaces on context switch

21 Daniel Gruss — Graz University of Technology



Performance www.tugraz.at

• Depends on how often you need to switch between kernel and user space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

22 Daniel Gruss — Graz University of Technology



Performance www.tugraz.at

• Depends on how often you need to switch between kernel and user space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

22 Daniel Gruss — Graz University of Technology



Performance www.tugraz.at

• Depends on how often you need to switch between kernel and user space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

22 Daniel Gruss — Graz University of Technology



Performance www.tugraz.at

• Depends on how often you need to switch between kernel and user space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

22 Daniel Gruss — Graz University of Technology



Meltdown and Spectre www.tugraz.at

23 Daniel Gruss — Graz University of Technology



Meltdown and Spectre www.tugraz.at

23 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 1) www.tugraz.at

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

24 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre (variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

25 Daniel Gruss — Graz University of Technology



Spectre www.tugraz.at

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler extensions

26 Daniel Gruss — Graz University of Technology



Spectre www.tugraz.at

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler extensions

26 Daniel Gruss — Graz University of Technology



Spectre www.tugraz.at

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler extensions

26 Daniel Gruss — Graz University of Technology



Spectre www.tugraz.at

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler extensions

26 Daniel Gruss — Graz University of Technology



Spectre www.tugraz.at

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler extensions

26 Daniel Gruss — Graz University of Technology



Spectre Variant 1 Mitigations www.tugraz.at

• LFENCE

→ speculation barrier to insert after every bounds check

• implemented as a compiler extension

27 Daniel Gruss — Graz University of Technology



Spectre Variant 1 Mitigations www.tugraz.at

• LFENCE

→ speculation barrier to insert after every bounds check

• implemented as a compiler extension

27 Daniel Gruss — Graz University of Technology



Spectre Variant 1 Mitigations www.tugraz.at

• LFENCE

→ speculation barrier to insert after every bounds check

• implemented as a compiler extension

27 Daniel Gruss — Graz University of Technology



Spectre Variant 1 Mitigations www.tugraz.at

• LFENCE

→ speculation barrier to insert after every bounds check

• implemented as a compiler extension

27 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

• Indirect Branch Restricted Speculation (IBRS):

• do not speculate based on anything before entering or outside IBRS

mode

• Single Thread Indirect Branch Predictors (STIBP)

• do not speculate based on anything the other hyperthread does

• Indirect Branch Predictor Barrier (IBPB):

• flush branch-target buffer

28 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

• Indirect Branch Restricted Speculation (IBRS):

• do not speculate based on anything before entering or outside IBRS

mode

• Single Thread Indirect Branch Predictors (STIBP)

• do not speculate based on anything the other hyperthread does

• Indirect Branch Predictor Barrier (IBPB):

• flush branch-target buffer

28 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

• Indirect Branch Restricted Speculation (IBRS):

• do not speculate based on anything before entering or outside IBRS

mode

• Single Thread Indirect Branch Predictors (STIBP)

• do not speculate based on anything the other hyperthread does

• Indirect Branch Predictor Barrier (IBPB):

• flush branch-target buffer

28 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

• Indirect Branch Restricted Speculation (IBRS):

• do not speculate based on anything before entering or outside IBRS

mode

• Single Thread Indirect Branch Predictors (STIBP)

• do not speculate based on anything the other hyperthread does

• Indirect Branch Predictor Barrier (IBPB):

• flush branch-target buffer

28 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

• Indirect Branch Restricted Speculation (IBRS):

• do not speculate based on anything before entering or outside IBRS

mode

• Single Thread Indirect Branch Predictors (STIBP)

• do not speculate based on anything the other hyperthread does

• Indirect Branch Predictor Barrier (IBPB):

• flush branch-target buffer

28 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Microcode/MSRs) www.tugraz.at

• Indirect Branch Restricted Speculation (IBRS):

• do not speculate based on anything before entering or outside IBRS

mode

• Single Thread Indirect Branch Predictors (STIBP)

• do not speculate based on anything the other hyperthread does

• Indirect Branch Predictor Barrier (IBPB):

• flush branch-target buffer

28 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Software) www.tugraz.at

retpoline

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

29 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Software) www.tugraz.at

retpoline

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

29 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Software) www.tugraz.at

retpoline

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

29 Daniel Gruss — Graz University of Technology



Spectre Variant 2 Mitigations (Software) www.tugraz.at

retpoline

1 push <call_target >

2 call 1f

3 2: ; speculation will continue here

4 lfence ; speculation barrier

5 jmp 2b ; endless loop

6 1:

7 lea 8(% rsp), %rsp ; restore stack pointer

8 ret ; the actual call to <call_target >

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

29 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto

→ “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

→ “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

→ “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

30 Daniel Gruss — Graz University of Technology



When you read the Intel manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

31 Daniel Gruss — Graz University of Technology



When you read the Intel manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

31 Daniel Gruss — Graz University of Technology



When you read the Intel manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

31 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

Motor Vehicle Deaths in U.S. by Year

32 Daniel Gruss — Graz University of Technology



What do we learn from it? www.tugraz.at

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

33 Daniel Gruss — Graz University of Technology



SCIENCE PASSION TECHNOLOGY

Brief Overview on Meltdown and Spectre

Daniel Gruss

January 25, 2018

Graz University of Technology

34 Daniel Gruss — Graz University of Technology


