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Side Channel or not? www.tugraz.at

• Observing cache utilization with performance counters? → No

• Observing cache utilization with performance counters and

using it to infer a crypto key? → Yes

• Measuring memory access latency with Flush+Reload? → No

• Measuring memory access latency with Flush+Reload and using

it to infer keystroke timings? → Yes
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Speculative Side-Channel Attacks? www.tugraz.at

sid
e

ch
an

nels

• traditional cache attacks (crypto, keys, etc)

• actual misspeculation (e.g., branch

misprediction)

• Meltdown, Foreshadow, ZombieLoad, etc

• Let’s avoid the term Speculative Side

Channels
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CPU Cache www.tugraz.at

printf("%d", i);

printf("%d", i);
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2-way set associativity www.tugraz.at

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache setsf
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address space Cache

Victim
address space
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ScatterCache www.tugraz.at

if cache attacks are simple because the mapping to sets is simple ..
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ScatterCache - Hardware www.tugraz.at
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 0 • Index Derivation Function

(IDF) takes an address and

returns a cache set

• Depends on hardware key K

and optional Security

Domain ID (SDID)

• → unique combination of

cache lines for each address
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ScatterCache - Hardware www.tugraz.at

Set 0 Set 1 Set 2 Set 3

Addr. A
Domain X
Addr. A

Domain Y

Addr. B
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ScatterCache - Software Support www.tugraz.at

• ScatterCache requires no software support, default SDID = 0

• But - OS support enables security domains

→ shared read-only pages can be private in the cache!

• OS can define SDID per process and separate user space and kernel

space

• Process can request distinct SDIDs for memory ranges
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ScatterCache - Security Improvements www.tugraz.at

• Non-shared memory has no shared cache lines

→ Flush+Reload, Flush+Flush and Evict+Reload are not possible

• Shared, read-only memory is like non-shared memory, given OS

support. Without OS support, eviction-based attacks are hindered

• Shared, writable memory can’t be separated, eviction-based attacks

are hindered
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ScatterCache - Prime+Probe www.tugraz.at

• Specialized Prime+Probe variants are still possible

• But, overlap in more than 1 cache line is very unlikely

→ Eviction is now probabilistic, p = 1
nways 2

to evict

• Evicting an address with 99% certainty needs 275 addresses for

8-way cache, instead of ≈ 8 for standard Prime+Probe

• Constructing this set requires ≈ 225 profiled victim accesses,

compared to less than 100 accesses for standard, noise-free

Prime+Probe
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ScatterCache - Performance www.tugraz.at

• Micro benchmarks GAP, MiBench, Imbench, scimark2 on gem5 full

system simulator

• Macro benchmarks from SPEC CPU 2017 on custom cache

simulator

• Cache hit rate always at or above levels of set-associative cache

with random replacement

• Typically 2%− 4% below LRU on micro benchmarks, 0%− 2% for

SPEC
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Where can data be? www.tugraz.at
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ConTExT Idea www.tugraz.at

• Mark secrets in source code

• Propagate taint through memory hierarchy:

• Pages

• Cache Lines (in caches and buffers)

• Registers
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ConTExT Comparison www.tugraz.at

Serializing Barrier
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• Writing to unprotected memory exposes value to attackers

→ Untaint register

• Split stack into protected and unprotected half

• Stack spills of unprotected data → stay unprotected as long as

they stay in the cache
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Implementation www.tugraz.at

• Compiler Extension

• Linux Patch

• CPU Emulation in Bochs

• Native via uncacheable memory (ConTExT-light)
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Performance www.tugraz.at

Benchmark
SPEC Score Overhead

Baseline ConTExT [%]

600.perlbench s 7.03 6.86 +2.42

602.gcc s 11.90 11.80 +0.84

605.mcf s 9.06 9.16 −1.10

620.omnetpp s 5.07 4.81 +5.13

623.xalancbmk s 6.06 5.95 +1.82

625.x264 s 9.25 9.25 0.00

631.deepsjeng s 5.26 5.22 +0.76

641.leela s 4.71 4.64 +1.48

648.exchange2 s would require Fortran runtime

657.xz s 12.10 12.10 0.00

Average +1.26

Table 1: Performance of the ConTExT split stack using the SPECspeed 2017 integer

benchmark.
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DRAM organization www.tugraz.at

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:

rank 0

chip
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chip
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. . .
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64k cells
1 capacitor,

1 transitor each
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Rowhammer www.tugraz.at

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

• Cells leak → repetitive refresh

necessary

• Maximum interval between

refreshes to guarantee data

integrity

• Cells leak faster upon

proximate accesses →
Rowhammer
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Quick fixes (that don’t work) www.tugraz.at

• no flush instruction

• increase refresh rate

Errors depending on refresh interval
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What about ECC? www.tugraz.at

• ECC protection: server can handle or correct single bit errors

• no standard for event reporting

• ECCploit paper (S&P 2019)

• RAMbleed (S&P 2020)
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PARA www.tugraz.at

PARA - Probabilistic Adjacent Row Activation

• one row closed → one adjacent row opened with low probability p

• Rowhammer: one row opened and closed a high number of times Nth

• statistically, neighbor rows are refreshed → no bit flip

• implementation at the memory controller level

• advantage: stateless → not expensive

• for p = 0.001 and Nth = 100K , experiencing one error in one year has a

probability 9.4× 10−14
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TRR www.tugraz.at

Target Row Refresh (TRR)

• counter per row

• increment neighbor rows

• refresh when counter reaches a

threshold
refresh
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Preventing Rowhammer attacks in software www.tugraz.at

• B-CATT: disable vulnerable physical memory

• G-CATT/ZebRAM: isolate security domains in physical memory

G-CATTB-CATT/ZebRAM
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Rowhammer... www.tugraz.at

• lower refresh rate = lower energy but more bit flips

• ECC memory → fewer bit flips

→ it’s an optimization problem

• what if “too aggressive” changes over time?

→ difficult to optimize with an intelligent adversary
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• many attacks out there

• thorough defenses can defeat entire classes of attacks

• important to distinguish between different attacks
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