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Abstract

Research on transient execution attacks including Spectre
and Meltdown showed that exception or branch mispredic-
tion events might leave secret-dependent traces in the CPU’s
microarchitectural state. This observation led to a prolifera-
tion of new Spectre and Meltdown attack variants and even
more ad-hoc defenses (e.g., microcode and software patches).
Both the industry and academia are now focusing on finding
effective defenses for known issues. However, we only have
limited insight on residual attack surface and the completeness
of the proposed defenses.

In this paper, we present a systematization of transient
execution attacks. Our systematization uncovers 6 (new) tran-
sient execution attacks that have been overlooked and not
been investigated so far: 2 new exploitable Meltdown ef-
fects: Meltdown-PK (Protection Key Bypass) on Intel, and
Meltdown-BND (Bounds Check Bypass) on Intel and AMD;
and 4 new Spectre mistraining strategies. We evaluate the
attacks in our classification tree through proof-of-concept im-
plementations on 3 major CPU vendors (Intel, AMD, ARM).
Our systematization yields a more complete picture of the
attack surface and allows for a more systematic evaluation of
defenses. Through this systematic evaluation, we discover that
most defenses, including deployed ones, cannot fully mitigate
all attack variants.

1 Introduction

CPU performance over the last decades was continuously
improved by shrinking processing technology and increasing
clock frequencies, but physical limitations are already hin-
dering this approach. To still increase the performance, ven-
dors shifted the focus to increasing the number of cores and
optimizing the instruction pipeline. Modern CPU pipelines
are massively parallelized allowing hardware logic in prior
pipeline stages to perform operations for subsequent instruc-
tions ahead of time or even out-of-order. Intuitively, pipelines
may stall when operations have a dependency on a previous

instruction which has not been executed (and retired) yet.
Hence, to keep the pipeline full at all times, it is essential to
predict the control flow, data dependencies, and possibly even
the actual data. Modern CPUs, therefore, rely on intricate mi-
croarchitectural optimizations to predict and sometimes even
re-order the instruction stream. Crucially, however, as these
predictions may turn out to be wrong, pipeline flushes may be
necessary, and instruction results should always be committed
according to the intended in-order instruction stream. Pipeline
flushes may occur even without prediction mechanisms, as on
modern CPUs virtually any instruction can raise a fault (e.g.,
page fault or general protection fault), requiring a roll-back
of all operations following the faulting instruction. With pre-
diction mechanisms, there are more situations when partial
pipeline flushes are necessary, namely on every misprediction.
The pipeline flush discards any architectural effects of pend-
ing instructions, ensuring functional correctness. Hence, the
instructions are executed transiently (first they are, and then
they vanish), i.e., we call this transient execution [50,56, 85].

While the architectural effects and results of transient in-
structions are discarded, microarchitectural side effects re-
main beyond the transient execution. This is the foundation
of Spectre [50], Meltdown [56], and Foreshadow [85]. These
attacks exploit transient execution to encode secrets through
microarchitectural side effects (e.g., cache state) that can later
be recovered by an attacker at the architectural level. The
field of transient execution attacks emerged suddenly and pro-
liferated, leading to a situation where people are not aware
of all variants and their implications. This is apparent from
the confusing naming scheme that already led to an arguably
wrong classification of at least one attack [48]. Even more
important, this confusion leads to misconceptions and wrong
assumptions for defenses. Many defenses focus exclusively
on hindering exploitation of a specific covert channel, instead
of addressing the microarchitectural root cause of the leak-
age [45,47,50,91]. Other defenses rely on recent CPU features
that have not yet been evaluated from a transient security per-
spective [84]. We also debunk implicit assumptions including
that AMD or the latest Intel CPUs are completely immune to



Meltdown-type effects, or that serializing instructions miti-

gate Spectre Variant 1 on any CPU.

In this paper, we present a systematization of transient
execution attacks, i.e., Spectre, Meltdown, Foreshadow, and
related attacks. Using our decision tree, transient execution
attacks are accurately classified through an unambiguous nam-
ing scheme (cf. Figure 1). The hierarchical and extensible na-
ture of our taxonomy allows to easily identify residual attack
surface, leading to 6 previously overlooked transient execu-
tion attacks (Spectre and Meltdown variants) first described in
this work. Two of the attacks are Meltdown-BND, exploiting
a Meltdown-type effect on the x86 bound instruction on Intel
and AMD, and Meltdown-PK, exploiting a Meltdown-type
effect on memory protection keys on Intel. The other 4 attacks
are previously overlooked mistraining strategies for Spectre-
PHT and Spectre-BTB attacks. We demonstrate the attacks
in our classification tree through practical proofs-of-concept
with vulnerable code patterns evaluated on CPUs of Intel,
ARM, and AMD.

Next, we provide a classification of gadgets and their preva-
lence in real-world software based on an anaylsis of the Linux
kernel. We also give a short overview on current tools for
automatic gadget detection.

We then provide a systematization of the state-of-the-art
defenses. Based on this, we systematically evaluate defenses
with practical experiments and theoretical arguments to show
which work and which do not or cannot suffice. This sys-
tematic evaluation revealed that we can still mount transient
execution attacks that are supposed to be mitigated by rolled
out patches. Finally, we discuss how defenses can be designed
to mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:

1. We systematize Spectre- and Meltdown-type attacks, ad-
vancing attack surface understanding, highlighting mis-
classifications, and revealing new attacks.

2. We provide a clear distinction between Meltdown/Spectre,
required for designing effective countermeasures.

3. We provide a classification of gadgets and discuss their
prevalence in real-world software.

4. We categorize defenses and show that most, including
deployed ones, cannot fully mitigate all attack variants.

5. We describe new branch mistraining strategies, highlight-
ing the difficulty of eradicating Spectre-type attacks.

We responsibly disclosed the work to Intel, ARM, and AMD.
Experimental Setup. Unless noted otherwise, the experi-
mental results reported were performed on recent Intel Sky-
lake 15-6200U, Coffee Lake i7-8700K, and Whiskey Lake i7-
8565U CPUs. Our AMD test machines were a Ryzen 1950X
and a Ryzen Threadripper 1920X. For experiments on ARM,
an NVIDIA Jetson TX1 has been used.

Outline. Section 2 provides background. We systematize

Spectre in Section 3 and Meltdown in Section 4. We analyze
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Figure 1: Transient execution attack classification tree with
demonstrated attacks (red, bold), negative results (green,
dashed), some first explored in this work (% / ¥).

and classify gadgets in Section 5 and defenses in Section
We discuss future work and conclude in Section

2 Transient Execution

Instruction Set Architecture and Microarchitecture. The
instruction set architecture (ISA) provides an interface be-
tween hardware and software. It defines the instructions that
a processor supports, the available registers, the addressing
mode, and describes the execution model. Examples of dif-
ferent ISAs are x86 and ARMv8. The microarchitecture then
describes how the ISA is implemented in a processor in the
form of pipeline depth, interconnection of elements, execution
units, cache, branch prediction. The ISA and the microarchi-
tecture are both stateful. In the ISA, this state includes, for
instance, data in registers or main memory after a success-
ful computation. Therefore, the architectural state can be ob-
served by the developer. The microarchitectural state includes,
for instance, entries in the cache and the translation lookaside
buffer (TLB), or the usage of the execution units. Those mi-
croarchitectural elements are transparent to the programmer
and can not be observed directly, only indirectly.

Out-of-Order Execution. On modern CPUs, individual in-
structions of a complex instruction set are first decoded and
split-up into simpler micro-operations (uOPs) that are then
processed. This design decision allows for superscalar op-
timizations and to extend or modify the implementation of
specific instructions through so-called microcode updates.
Furthermore, to increase performance, CPU’s usually imple-
ment a so-called out-of-order design. This allows the CPU
to execute 4OPs not only in the sequential order provided by

An up-to-date version of the tree is available at http://transient.
fail/



the instruction stream but to dispatch them in parallel, utiliz-
ing the CPU’s execution units as much as possible and, thus,
improving the overall performance. If the required operands
of a yOP are available, and its corresponding execution unit
is not busy, the CPU starts its execution even if gOPs earlier
in the instruction stream have not finished yet. As immediate
results are only made visible at the architectural level when
all previous OPs have finished, CPUs typically keep track
of the status of yOPs in a so-called Reorder Buffer (ROB).
The CPU takes care to retire uOPs in-order, deciding to either
discard their results or commit them to the architectural state.
For instance, exceptions and external interrupt requests are
handled during retirement by flushing any outstanding #OP
results from the ROB. Therefore, the CPU may have executed
so-called transient instructions [56], whose results are never
committed to the architectural state.

Speculative Execution. Software is mostly not linear but
contains (conditional) branches or data dependencies between
instructions. In theory, the CPU would have to stall until a
branch or dependencies are resolved before it can continue
the execution. As stalling decreases performance significantly,
CPUs deploy various mechanisms to predict the outcome of a
branch or a data dependency. Thus, CPUs continue executing
along the predicted path, buffering the results in the ROB
until the correctness of the prediction is verified as its depen-
dencies are resolved. In the case of a correct prediction, the
CPU can commit the pre-computed results from the reorder
buffer, increasing the overall performance. However, if the
prediction was incorrect, the CPU needs to perform a roll-
back to the last correct state by squashing all pre-computed
transient instruction results from the ROB.

Cache Covert Channels. Modern CPUs use caches to hide
memory latency. However, these latency differences can be ex-
ploited in side-channels and covert channels [24,51,60,67,92].
In particular, Flush+Reload allows observations across cores
at cache-line granularity, enabling attacks, e.g., on crypto-
graphic algorithms [26, 43, 92], user input [24, 55,72], and
kernel addressing information [23]. For Flush+Reload, the
attacker continuously flushes a shared memory address using
the c1flush instruction and afterward reloads the data. If the
victim used the cache line, accessing it will be fast; otherwise,
it will be slow.

Covert channels are a special use case of side-channel at-
tacks, where the attacker controls both the sender and the
receiver. This allows an attacker to bypass many restrictions
that exist at the architectural level to leak information.
Transient Execution Attacks. Transient instructions reflect
unauthorized computations out of the program’s intended
code and/or data paths. For functional correctness, it is crucial
that their results are never committed to the architectural state.
However, transient instructions may still leave traces in the
CPU’s microarchitectural state, which can subsequently be
exploited to partially recover unauthorized results [50,56, 85].
This observation has led to a variety of transient execution
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Figure 2: High-level overview of a transient execution attack
in 5 phases: (1) prepare microarchitecture, (2) execute a trig-
ger instruction, (3) transient instructions encode unauthorized
data through a microarchitectural covert channel, (4) CPU
retires trigger instruction and flushes transient instructions,
(5) reconstruct secret from microarchitectural state.

attacks, which from a high-level always follow the same ab-
stract flow, as shown in Figure 2. The attacker first brings
the microarchitecture into the desired state, e.g., by flushing
and/or populating internal branch predictors or data caches.
Next is the execution of a so-called trigger instruction. This
can be any instruction that causes subsequent operations to
be eventually squashed, e.g., due to an exception or a mis-
predicted branch or data dependency. Before completion of
the trigger instruction, the CPU proceeds with the execution
of a transient instruction sequence. The attacker abuses the
transient instructions to act as the sending end of a microar-
chitectural covert channel, e.g., by loading a secret-dependent
memory location into the CPU cache. Ultimately, at the re-
tirement of the trigger instruction, the CPU discovers the
exception/misprediction and flushes the pipeline to discard
any architectural effects of the transient instructions. How-
ever, in the final phase of the attack, unauthorized transient
computation results are recovered at the receiving end of the
covert channel, e.g., by timing memory accesses to deduce
the secret-dependent loads from the transient instructions.
High-Level Classification: Spectre vs. Meltdown. Tran-
sient execution attacks have in common that they abuse tran-
sient instructions (which are never architecturally committed)
to encode unauthorized data in the microarchitectural state.
With different instantiations of the abstract phases in Fig-
ure 2, a wide spectrum of transient execution attack variants
emerges. We deliberately based our classification on the root
cause of the transient computation (phases 1, 2), abstracting
away from the specific covert channel being used to transmit
the unauthorized data (phases 3, 5). This leads to a first im-
portant split in our classification tree (cf. Figure 1). Attacks
of the first type, dubbed Spectre [50], exploit transient exe-
cution following control or data flow misprediction. Attacks
of the second type, dubbed Meltdown [56], exploit transient
execution following a faulting instruction.

Importantly, Spectre and Meltdown exploit fundamentally
different CPU properties and hence require orthogonal de-
fenses. Where the former relies on dedicated control or data
flow prediction machinery, the latter merely exploits that data
from a faulting instruction is forwarded to instructions ahead



Table 1: Spectre-type attacks and the microarchitectural ele-
ment they exploit (@), partially target (©), or not affect (O).

Element m 8 = m

Attack E E E 22 5':
Spectre-PHT (Variant 1) [S0] O © @ O O
Spectre-PHT (Variant 1.1)[48] O © @ O O
Spectre-BTB (Variant2) [50] @ © O O O
Spectre-RSB (ret2spec) [52,59] © O O @ O
Spectre-STL (Variant4) [29] O O O O @

Glossary: Branch Target Buffer (BTB), Branch History Buffer (BHB), Pattern
History Table (PHT), Return Stack Buffer (RSB), Store To Load (STL).

in the pipeline. Note that, while Meltdown-type attacks so
far exploit out-of-order execution, even elementary in-order
pipelines may allow for similar effects [86]. Essentially, the
different root cause of the trigger instruction (Spectre-type
misprediction vs. Meltdown-type fault) determines the nature
of the subsequent unauthorized transient computations and
hence the scope of the attack.

That is, in the case of Spectre, transient instructions can
only compute on data which the application is also allowed
to access architecturally. Spectre thus transiently bypasses
software-defined security policies (e.g., bounds checking,
function call/return abstractions, memory stores) to leak se-
crets out of the program’s intended code/data paths. Hence,
much like in a “confused deputy” scenario, successful Spec-
tre attacks come down to steering a victim into transiently
computing on memory locations the victim is authorized to
access but the attacker not. In practice, this implies that one or
more phases of the transient execution attack flow in Figure
should be realized through so-called code gadgets executing
within the victim application. We propose a novel taxonomy
of gadgets based on these phases in Section

For Meltdown-type attacks, on the other hand, transient ex-
ecution allows to completely “melt down” architectural isola-
tion barriers by computing on unauthorized results of faulting
instructions. Meltdown thus transiently bypasses hardware-
enforced security policies to leak data that should always
remain architecturally inaccessible for the application. Where
Spectre-type leakage remains largely an unintended side-
effect of important speculative performance optimizations,
Meltdown reflects a failure of the CPU to respect hardware-
level protection boundaries for transient instructions. That is,
the mere continuation of the transient execution after a fault
itself is required, but not sufficient for a successful Meltdown
attack. As further explored in Section 6, this has profound con-
sequences for defenses. Overall, mitigating Spectre requires
careful hardware-software co-design, whereas merely replac-
ing the data of a faulting instruction with a dummy value
suffices to block Meltdown-type leakage in silicon, e.g., as it
is done in AMD processors, or with the Rogue Data Cache
Load resistance (RDCL_NO) feature advertised in recent Intel
CPUs from Whiskey Lake onwards [40].
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Figure 3: A branch can be mistrained either by the victim
process (same-address-space) or by an attacker-controlled
process (cross-address-space). Mistraining can be achieved
either using the vulnerable branch itself (in-place) or a branch
at a congruent virtual address (out-of-place).

3 Spectre-type Attacks

In this section, we provide an overview of Spectre-type at-
tacks (cf. Figure 1). Given the versatility of Spectre variants in
a variety of adversary models, we propose a novel two-level
taxonomy based on the preparatory phases of the abstract
transient execution attack flow in Figure 2. First, we distin-
guish the different microarchitectural buffers that can trigger
a prediction (phase 2), and second, the mistraining strategies
that can be used to steer the prediction (phase 1).
Systematization of Spectre Variants. To predict the out-
come of various types of branches and data dependencies,
modern CPUs accumulate an extensive microarchitectural
state across various internal buffers and components [19]. Ta-
ble | overviews Spectre-type attacks and the corresponding
microarchitectural elements they exploit. As the first level of
our classification tree, we categorize Spectre attacks based on
the microarchitectural root cause that triggers the mispredic-
tion leading to the transient execution:
* Spectre-PHT [48, 50] exploits the Pattern History Table
(PHT) that predicts the outcome of conditional branches.
» Spectre-BTB [50] exploits the Branch Target Buffer
(BTB) for predicting branch destination addresses.
* Spectre-RSB [52,59] primarily exploits the Return Stack
Buffer (RSB) for predicting return addresses.
» Spectre-STL [29] exploits memory disambiguation for
predicting Store To Load (STL) data dependencies.
Note that NetSpectre [74], SGXSpectre [63], and SGXPec-
tre [13] focus on applying one of the above Spectre variants
in a specific exploitation scenario. Hence, we do not consider
them separate variants in our classification.
Systematization of Mistraining Strategies. We now pro-
pose a second-level classification scheme for Spectre vari-
ants that abuse history-based branch prediction (i.e., all of
the above except Spectre-STL). These Spectre variants first
go through a preparatory phase (cf. Figure 2) where the mi-
croarchitectural branch predictor state is “poisoned” to cause
intentional misspeculation of a particular victim branch. Since
branch prediction buffers in modern CPUs [19,50] are com-



monly indexed based on the virtual address of the branch
instruction, mistraining can happen either within the same
address space or from a different attacker-controlled process.
Furthermore, as illustrated in Figure 3, when only a subset of
the virtual address is used in the prediction, mistraining can
be achieved using a branch instruction at a congruent virtual
address. We thus enhance the field of Spectre-type branch
poisoning attacks with 4 distinct mistraining strategies:
1. Executing the victim branch in the victim process (same-
address-space in-place).
2. Executing a congruent branch in the victim process (same-
address-space out-of-place).
3. Executing a shadow branch in a different process (cross-
address-space in-place).
4. Executing a congruent branch in a different process (cross-
address-space out-of-place).
In current literature [6, 13,48,50], several of the above branch
poisoning strategies have been overlooked for different Spec-
tre variants. We summarize the results of an assessment of
vulnerabilities under mistraining strategies in Table 2. Our
systematization thus reveals clear blind spots that allow an
attacker to mistrain branch predictors in previously unknown
ways. As explained further, depending on the adversary’s ca-
pabilities (e.g., in-process, sandboxed, remote, enclave, etc.)
these previously unknown mistraining strategies may lead to
new attacks and/or bypass existing defenses.

3.1 Spectre-PHT (Input Validation Bypass)

Microarchitectural Element. Kocher et al. [50] first intro-
duced Spectre Variant 1, an attack that poisons the Pattern
History Table (PHT) to mispredict the direction (taken or
not-taken) of conditional branches. Depending on the un-
derlying microarchitecture, the PHT is accessed based on a
combination of virtual address bits of the branch instruction
plus a hidden Branch History Buffer (BHB) that accumulates
global behavior for the last N branches on the same physical
core [18,19]

Reading Out-of-Bounds. Conditional branches are com-
monly used by programmers and/or compilers to maintain
memory safety invariants at runtime. For example, consider
the following code snippet for bounds checking [50]:

if (x < len(arrayl)) { y = array2[arrayl([x] * 4096]; }

At the architectural level, this program clearly ensures that the
index variable x always lies within the bounds of the fixed-
length buffer arrayl. However, after repeatedly supplying
valid values of x, the PHT will reliably predict that this branch
evaluates to true. When the adversary now supplies an invalid
index x, the CPU continues along a mispredicted path and
transiently performs an out-of-bounds memory access. The
above code snippet features an explicit example of a “leak
gadget” that may act as a microarchitectural covert channel:
depending on the out-of-bounds value being read, the transient

Table 2: Spectre-type attacks performed in-place, out-of-place,
same-address-space (i.e., intra-process), or cross-address-
space (i.e., Cross-process).

oS ‘5‘?) < v
Attack Q@c‘@' Qe&e’ Qe&e’ Qe&a’
Method S S S S
intra-process in-place @ [48,50] % @ [59] @ [29]
Intel - — — — — — outof-place x ~ @[13] @[52590
cross-process in-place * ®[13,50] @[52,59] O
out-of-place % @ [50] @ [52] O
intra-process PR @IS, S0T K o0 O
ARM. - — - — _ _ outofplacex — * @] O
cross-process in-place * ®[6,50] * O
> " out-of-place % ¥ * O
intra-process in-place @ [50] * * @ [29]
AMD- — — — — _ _ outofplacex ¥ kO
Cross-process in-place * o501 * O
out-of-place % * * O

Symbols indicate whether an attack is possible and known (@), not possible
and known (QO), possible and previously unknown or not shown (%), or
tested and did not work and previously unknown or not shown (3%). All tests

performed with no defenses enabled.

instructions load another memory page belonging to array?2
into the cache.

Writing Out-of-Bounds. Kiriansky and Waldspurger [48]
showed that transient writes are also possible by following
the same principle. Consider the following code line:

if (x < len(array)) { array[x] = value; }

After mistraining the PHT component, attackers controlling
the untrusted index x can transiently write to arbitrary out-
of-bounds addresses. This creates a transient buffer overflow,
allowing the attacker to bypass both type and memory safety.
Ultimately, when repurposing traditional techniques from
return-oriented programming [75] attacks, adversaries may
even gain arbitrary code execution in the transient domain by
overwriting return addresses or code pointers.

Overlooked Mistraining Strategies. Spectre-PHT attacks
so far [48, 50, 63] rely on a same-address-space in-place
branch poisoning strategy. However, our results (cf. Table 2)
reveal that the Intel, ARM, and AMD CPUs we tested are
vulnerable to all four PHT mistraining strategies. In this, we
are the first to successfully demonstrate Spectre-PHT-style
branch misprediction attacks without prior execution of the
victim branch. This is an important contribution as it may
open up previously unknown attack avenues for restricted
adversaries.

Cross-address-space PHT poisoning may, for instance, en-
able advanced attacks against a privileged daemon process
that does not directly accept user input. Likewise, for Intel
SGX technology, remote attestation schemes have been de-
veloped [76] to enforce that a victim enclave can only be run
exactly once. This effectively rules out current state-of-the-art
SGXSpectre [63] attacks that repeatedly execute the victim
enclave to mistrain the PHT branch predictor. Our novel out-
of-place PHT poisoning strategy, on the other hand, allows us
to perform the training phase entirely outside the enclave on



the same physical core by repeatedly executing a congruent
branch in the untrusted enclave host process (cf. Figure 3).

3.2 Spectre-BTB (Branch Target Injection)

Microarchitectural Element. In Spectre Variant 2 [50], the
attacker poisons the Branch Target Buffer (BTB) to steer the
transient execution to a mispredicted branch target. For di-
rect branches, the CPU indexes the BTB using a subset of
the virtual address bits of the branch instruction to yield the
predicted jump target. For indirect branches, CPUs use dif-
ferent mechanisms [28], which may take into account global
branching history accumulated in the BHB when indexing
the BTB. We refer to both types as Spectre-BTB.

Hijacking Control Flow. Contrary to Spectre-PHT, where
transient instructions execute along a restricted mispredicted
path, Spectre-BTB allows redirecting transient control flow
to an arbitrary destination. Adopting established techniques
from return-oriented programming (ROP) attacks [75], but
abusing BTB poisoning instead of application-level vulnera-
bilities, selected code “gadgets” found in the victim address
space may be chained together to construct arbitrary transient
instruction sequences. Hence, where the success of Spectre-
PHT critically relies on unintended leakage along the mis-
predicted code path, ROP-style gadget abuse in Spectre-BTB
allows to more directly construct covert channels that expose
secrets from the transient domain (cf. Figure 2). We discuss
gadget types in more detail in Section

Overlooked Mistraining Strategies. Spectre-BTB was ini-
tially demonstrated on Intel, AMD, and ARM CPUs using a
cross-address-space in-place mistraining strategy [50]. With
SGXPectre [13], Chen et al. extracted secrets from Intel SGX
enclaves using either a cross-address-space in-place or same-
address-space out-of-place BTB poisoning strategy. We ex-
perimentally reproduced these mistraining strategies through
a systematic evaluation presented in Table 2. On AMD and
ARM, we could not demonstrate out-of-place BTB poison-
ing. Possibly, these CPUs use an unknown (sub)set of virtual
address bits or a function of bits which we were not able to
reverse engineer. We encourage others to investigate whether
a different (sub)set of virtual address bits is required to enable
the attack.

To the best of our knowledge, we are the first to recognize
that Spectre-BTB mistraining can also proceed by repeatedly
executing the vulnerable indirect branch with valid inputs.
Much like Spectre-PHT, such same-address-space in-place
BTB (Spectre-BTB-SA-IP) poisoning abuses the victim’s
own execution to mistrain the underlying branch target pre-
dictor. Hence, as an important contribution to understanding
attack surface and defenses, in-place mistraining within the
victim domain may allow bypassing widely deployed mit-
igations [4, 40] that flush and/or partition the BTB before
entering the victim. Since the branch destination address is
now determined by the victim code and not under the direct

control of the attacker, however, Spectre-BTB-SA-IP cannot
offer the full power of arbitrary transient control flow redirec-
tion. Yet, in higher-level languages like C++ that commonly
rely on indirect branches to implement polymorph abstrac-
tions, Spectre-BTB-SA-IP may lead to subtle “speculative
type confusion” vulnerabilities. For example, a victim that
repeatedly executes a virtual function call with an object of
TypelA may inadvertently mistrain the branch target predictor
to cause misspeculation when finally executing the virtual
function call with an object of another TypeB.

3.3 Spectre-RSB (Return Address Injection)

Microarchitectural Element. Maisuradze and Rossow [59]
and Koruyeh et al. [52] introduced a Spectre variant that ex-
ploits the Return Stack Buffer (RSB). The RSB is a small
per-core microarchitectural buffer that stores the virtual ad-
dresses following the N most recent call instructions. When
encountering a ret instruction, the CPU pops the topmost
element from the RSB to predict the return flow.

Hijacking Return Flow. Misspeculation arises whenever the
RSB layout diverges from the actual return addresses on the
software stack. Such disparity for instance naturally occurs
when restoring kernel/enclave/user stack pointers upon pro-
tection domain switches. Furthermore, same-address-space
adversaries may explicitly overwrite return addresses on the
software stack, or transiently execute call instructions which
update the RSB without committing architectural effects [52].
This may allow untrusted code executing in a sandbox to tran-
siently divert return control flow to interesting code gadgets
outside of the sandboxed environment.

Due to the fixed-size nature of the RSB, a special case of
misspeculation occurs for deeply nested function calls [52,59].
Since the RSB can only store return addresses for the N most
recent calls, an underfill occurs when the software stack is
unrolled. In this case, the RSB can no longer provide accurate
predictions. Starting from Skylake, Intel CPUs use the BTB
as a fallback [19,52], thus allowing Spectre-BTB-style attacks
triggered by ret instructions.

Overlooked Mistraining Strategies. Spectre-RSB has been
demonstrated with all four mistraining strategies, but only on
Intel [52,59]. Our experimental results presented in Table
generalize these strategies to AMD CPUs. Furthermore, in
line with ARM’s own analysis [6], we successfully poisoned
RSB entries within the same-address-space but did not ob-
serve any cross-address-space leakage on ARM CPUs. We
expect this may be a limitation of our current proof-of-concept
code and encourage others to investigate this further.

3.4 Spectre-STL (Speculative Store Bypass)

Microarchitectural Element. Speculation in modern CPUs
is not restricted to control flow but also includes predicting
dependencies in the data flow. A common type of Store To



Table 3: Demonstrated Meltdown-type (MD) attacks.

| 40
Attack SEFE o SEP ¢
MD-GP (Variant 3a) [8] ® O O O |
MD-NM (Lazy FP) [78] O @ O O,
MD-BR OO @O !
MD-US (Meltdown) [56] OO0 e } ® OO OO0O0
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MD-RW (Variant 1.2)[48] O O O @ 1 O O @ O O O
MD-PK OOl IINCHONCHONCN |

Symbols (@ or O) indicate whether an exception type (left) or permission
bit (right) is exploited. Systematic names are derived from what is exploited.

Load (STL) dependencies require that a memory load shall
not be executed before all preceding stores that write to the
same location have completed. However, even before the
addresses of all prior stores in the pipeline are known, the
CPUs’ memory disambiguator [3,33,44] may predict which
loads can already be executed speculatively.

When the disambiguator predicts that a load does not have
a dependency on a prior store, the load reads data from the L1
data cache. When the addresses of all prior stores are known,
the prediction is verified. If any overlap is found, the load and
all following instructions are re-executed.
Reading Stale Values. Horn [29] showed how mispredic-
tions by the memory disambiguator could be abused to spec-
ulatively bypass store instructions. Like previous attacks,
Spectre-STL adversaries rely on an appropriate transient in-
struction sequence to leak unsanitized stale values via a mi-
croarchitectural covert channel. Furthermore, operating on
stale pointer values may speculatively break type and memory
safety guarantees in the transient execution domain [29].

4 Meltdown-type Attacks

This section overviews Meltdown-type attacks, and presents
a classification scheme that led to the discovery of two pre-
viously overlooked Meltdown variants (cf. Figure 1). Impor-
tantly, where Spectre-type attacks exploit (branch) mispre-
diction events to trigger transient execution, Meltdown-type
attacks rely on transient instructions following a CPU ex-
ception. Essentially, Meltdown exploits that exceptions are
only raised (i.e., become architecturally visible) upon the
retirement of the faulting instruction. In some microarchitec-
tures, this property allows transient instructions ahead in the
pipeline to compute on unauthorized results of the instruction
that is about to suffer a fault. The CPU’s in-order instruction
retirement mechanism takes care to discard any architectural
effects of such computations, but as with the Spectre-type
attacks above, secrets may leak through microarchitectural
covert channels.

Systematization of Meltdown Variants. We introduce a
classification for Meltdown-type attacks in two dimensions.
In the first level, we categorize attacks based on the exception

Table 4: Secrets recoverable via Meltdown-type attacks and
whether they cross the current privilege level (CPL).
Leaks
Attack

Meltdown-US (Meltdown) [56]
Meltdown-P (Foreshadow-NG) [90]
Meltdown-P (Foreshadow-SGX) [85]
Meltdown-GP (Variant 3a) [8]
Meltdown-NM (Lazy FP) [78]
Meltdown-RW (Variant 1.2) [48]
Meltdown-PK

Meltdown-BR

Symbols indicate whether an attack crosses a processor privilege level (v') or
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not (X), whether it can leak secrets from a buffer (@), only with additional
steps (@), or not at all (O). Respectively (¥ vs. ¥) if first shown in this work.

that causes transient execution. Following Intel’s [31] classifi-
cation of exceptions as faults, traps, or aborts, we observed
that Meltdown-type attacks so far have exploited faults, but
not traps or aborts. The CPU generates faults if a correctable
error has occurred, i.e., they allow the program to continue
after it has been resolved. Traps are reported immediately
after the execution of the instruction, i.e., when the instruc-
tion retires and becomes architecturally visible. Aborts report
some unrecoverable error and do not allow a restart of the
task that caused the abort.

In the second level, for page faults (#PF), we further cate-
gorize based on page-table entry protection bits (cf. Table 3).
We also categorize attacks based on which storage locations
can be reached, and whether it crosses a privilege boundary
(cf. Table 4). Through this systematization, we discovered
several previously unknown Meltdown variants that exploit
different exception types as well as page-table protection bits,
including two exploitable ones. Our systematic analysis fur-
thermore resulted in the first demonstration of exploitable
Meltdown-type delayed exception handling effects on AMD
CPUs.

4.1 Meltdown-US (Supervisor-only Bypass)

Modern CPUs commonly feature a “user/supervisor” page-
table attribute to denote a virtual memory page as belonging
to the OS kernel. The original Meltdown attack [56] reads
kernel memory from user space on CPUs that do not tran-
siently enforce the user/supervisor flag. In the trigger phase
(cf. Figure 2) an unauthorized kernel address is dereferenced,
which eventually causes a page fault. Before the fault be-
comes architecturally visible, however, the attacker executes
a transient instruction sequence that for instance accesses a
cache line based on the privileged data read by the trigger
instruction. In the final phase, after the exception has been
raised, the privileged data is reconstructed at the receiving
end of the covert channel (e.g., Flush+Reload).

The attacks bandwidth can be improved by suppressing
exceptions through transaction memory CPU features such as



Intel TSX [31], exception handling [56], or hiding it in another
transient execution [28, 56]. By iterating byte-by-byte over
the kernel space and suppressing or handling exceptions, an
attacker can dump the entire kernel. This includes the entire
physical memory if the operating system has a direct physical
map in the kernel. While extraction rates are significantly
higher when the kernel data resides in the CPU cache, Melt-
down has even been shown to successfully extract uncached
data from memory [56].

4.2 Meltdown-P (Virtual Translation Bypass)

Foreshadow. Van Bulck et al. [85] presented Foreshadow, a
Meltdown-type attack targeting Intel SGX technology [30].
Unauthorized accesses to enclave memory usually do not
raise a #PF exception but are instead silently replaced with
abort page dummy values (cf. Section 6.2). In the absence
of a fault, plain Meltdown cannot be mounted against SGX
enclaves. To overcome this limitation, a Foreshadow attacker
clears the “present” bit in the page-table entry mapping the
enclave secret, ensuring that a #PF will be raised for subse-
quent accesses. Analogous to Meltdown-US, the adversary
now proceeds with a transient instruction sequence to leak
the secret (e.g., through a Flush+Reload covert channel).

Intel [34] named LI Terminal Fault (L1TF) as the root
cause behind Foreshadow. A terminal fault occurs when ac-
cessing a page-table entry with either the present bit cleared
or a “reserved” bit set. In such cases, the CPU immediately
aborts address translation. However, since the L1 data cache
is indexed in parallel to address translation, the page table
entry’s physical address field (i.e., frame number) may still
be passed to the L1 cache. Any data present in L1 and tagged
with that physical address will now be forwarded to the tran-
sient execution, regardless of access permissions.

Although Meltdown-P-type leakage is restricted to the
L1 data cache, the original Foreshadow [85] attack showed
how SGX’s secure page swapping mechanism might first be
abused to prefetch arbitrary enclave pages into the L1 cache,
including even CPU registers stored on interrupt. This high-
lights that SGX’s privileged adversary model considerably
amplifies the transient execution attack surface.
Foreshadow-NG. Foreshadow-NG [90] generalizes Fore-
shadow from the attack on SGX enclaves to bypass operating
system or hypervisor isolation. The generalization builds on
the observation that the physical frame number in a page-table
entry is sometimes under direct or indirect control of an adver-
sary. For instance, when swapping pages to disk, the kernel is
free to use all but the present bit to store metadata (e.g., the
offset on the swap partition). However, if this offset is a valid
physical address, any cached memory at that location leaks to
an unprivileged Foreshadow-OS attacker.

Even worse is the Foreshadow-VMM variant, which allows
an untrusted virtual machine, controlling guest-physical ad-
dresses, to extract the host machine’s entire L1 data cache

(including data belonging to the hypervisor or other virtual
machines). The underlying problem is that a terminal fault
in the guest page-tables early-outs the address translation
process, such that guest-physical addresses are erroneously
passed to the L1 data cache, without first being translated into
a proper host physical address [34].

4.3 Meltdown-GP (System Register Bypass)

Meltdown-GP (named initially Variant 3a) [37] allows an
attacker to read privileged system registers. It was first discov-
ered and published by ARM [8] and subsequently Intel [35]
determined that their CPUs are also susceptible to the attack.
Unauthorized access to privileged system registers (e.g., via
rdmsr) raises a general protection fault (#GP). Similar to pre-
vious Meltdown-type attacks, however, the attack exploits that
the transient execution following the faulting instruction can
still compute on the unauthorized data, and leak the system
register contents through a microarchitectural covert channel
(e.g., Flush+Reload).

4.4 Meltdown-NM (FPU Register Bypass)

During a context switch, the OS has to save all the registers,
including the floating point unit (FPU) and SIMD registers.
These latter registers are large and saving them would slow
down context switches. Therefore, CPUs allow for a lazy state
switch, meaning that instead of saving the registers, the FPU
is simply marked as “not available”. The first FPU instruction
issued after the FPU was marked as “not available” causes a
device-not-available (#NM) exception, allowing the OS to save
the FPU state of previous execution context before marking
the FPU as available again.

Stecklina and Prescher [78] propose an attack on the above
lazy state switch mechanism. The attack consists of three
steps. In the first step, a victim performs operations loading
data into the FPU registers. Then, in the second step, the CPU
switches to the attacker and marks the FPU as “not available”.
The attacker now issues an instruction that uses the FPU,
which generates an #NM fault. Before the faulting instruction
retires, however, the CPU has already transiently executed the
following instructions using data from the previous context.
As such, analogous to previous Meltdown-type attacks, a ma-
licious transient instruction sequence following the faulting
instruction can encode the unauthorized FPU register con-
tents through a microarchitectural covert channel (e.g., Flush+
Reload).

4.5 Meltdown-RW (Read-only Bypass)

Where the above attacks [8, 56, 78, 85] focussed on steal-
ing information across privilege levels, Kiriansky and Wald-
spurger [48] presented the first Meltdown-type attack that
bypasses page-table based access rights within the current



privilege level. Specifically, they showed that transient exe-
cution does not respect the “read/write” page-table attribute.
The ability to transiently overwrite read-only data within the
current privilege level can bypass software-based sandboxes
which rely on hardware enforcement of read-only memory.

Confusingly, the above Meltdown-RW attack was origi-
nally named “Spectre Variant 1.2” [48] as the authors fol-
lowed a Spectre-centric naming scheme. Our systematization
revealed, however, that the transient cause exploited above is
a #PF exception. Hence, this attack is of Meltdown-type, but
not a variant of Spectre.

4.6 Meltdown-PK (Protection Key Bypass)

Intel Skylake-SP server CPUs support memory-protection
keys for user space (PKU) [32]. This feature allows processes
to change the access permissions of a page directly from
user space, i.e., without requiring a syscall/hypercall. Thus,
with PKU, user-space applications can implement efficient
hardware-enforced isolation of trusted parts [27, 84].

We present a novel Meltdown-PK attack to bypass both
read and write isolation provided by PKU. Meltdown-PK
works if an attacker has code execution in the containing
process, even if the attacker cannot execute the wrpkru in-
struction (e.g., blacklisting). Moreover, in contrast to cross-
privilege level Meltdown attack variants, there is no software
workaround. According to Intel [36], Meltdown-PK can be
mitigated using address space isolation. Recent Meltdown-
resistant Intel processors enumerating RDCL_NO plus PKU
support furthermore mitigate Meltdown-PK in silicon. With
those mitigations, the memory addresses that might be re-
vealed by transient execution attacks can be limited.
Experimental Results. We tested Meltdown-PK on an Ama-
zon EC2 C5 instance running Ubuntu 18.04 with PKU sup-
port. We created a memory mapping and used PKU to remove
both read and write access. As expected, protected memory
accesses produce a #PF. However, our proof-of-concept man-
ages to leak the data via an adversarial transient instruction
sequence with a Flush+Reload covert channel.

4.7 Meltdown-BR (Bounds Check Bypass)

To facilitate efficient software instrumentation, x86 CPUs
come with dedicated hardware instructions that raise a bound-
range-exceeded exception (#BR) when encountering out-of-
bound array indices. The IA-32 ISA, for instance, defines
a bound opcode for this purpose. While the bound instruc-
tion was omitted in the subsequent x86-64 ISA, modern Intel
CPUs ship with Memory Protection eXtensions (MPX) for
efficient array bounds checking.

Our systematic evaluation revealed that Meltdown-type
effects of the #BR exception had not been thoroughly investi-
gated yet. Specifically, Intel’s analysis [40] only briefly men-
tions MPX-based bounds check bypass as a possibility, and

Table 5: CPU vendors vulnerable to Meltdown (MD).
NN
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Intel @ @ @ @ @ * * % & & % & &
ARM @ O @ _ ® _ _ & % % _ % %
AMD O O O O O _ % % % % ¥ % %
Symbols indicate whether at least one CPU model is vulnerable (filled) vs.
no CPU is known to be vulnerable (empty). Glossary: reproduced (@ vs. O),

first shown in this paper (% vs. %), not applicable (). All tests performed
without defenses enabled.

Vendor

recent defensive work by Dong et al. [16] highlights the need
to introduce a memory 1fence after MPX bounds check in-
structions. They classify this as a Spectre-type attack, imply-
ing that the 1fence is needed to prevent the branch predictor
from speculating on the outcome of the bounds check. Ac-
cording to Oleksenko et al. [64], neither bndcl nor bndcu
exert pressure on the branch predictor, indicating that there
is no prediction happening. Based on that, we argue that the
classification as a Spectre-type attack is misleading as no
prediction is involved. The observation by Dong et al. [16]
indeed does not shed light on the #BR exception as the root
cause for the MPX bounds check bypass, and they do not con-
sider IA32 bound protection at all. Similar to Spectre-PHT,
Meltdown-BR is a bounds check bypass, but instead of mis-
training a predictor it exploits the lazy handling of the raised
#BR exception.

Experimental Results. We introduce the Meltdown-BR at-
tack which exploits transient execution following a #BR excep-
tion to encode out-of-bounds secrets that are never architec-
turally visible. As such, Meltdown-BR is an exception-driven
alternative for Spectre-PHT. Our proofs-of-concept demon-
strate out-of-bounds leakage through a Flush+Reload covert
channel for an array index safeguarded by either IA32 bound
(Intel, AMD), or state-of-the-art MPX protection (Intel-only).
For Intel, we ran the attacks on a Skylake i5-6200U CPU with
MPX support, and for AMD we evaluated both an E2-2000
and a Ryzen Threadripper 1920X. This is the first experiment
demonstrating a Meltdown-type transient execution attack
exploiting delayed exception handling on AMD CPUs [4, 56].

4.8 Residual Meltdown (Negative Results)

We systematically studied transient execution leakage for
other, not yet tested exceptions. In our experiments, we con-
sistently found no traces of transient execution beyond traps
or aborts, which leads us to the hypothesis that Meltdown is
only possible with faults (as they can occur at any moment
during instruction execution). Still, the possibility remains
that our experiments failed and that they are possible. Table
and Figure | summarize experimental results for fault types
tested on Intel, ARM, and AMD.

Division Errors. For the divide-by-zero experiment, we
leveraged the signed division instruction (idiv on x86 and



Table 6: Gadget classification according to the attack flow and whether executed by the attacker (@), victim (O), or either (©).

Attack 1. Preface 2. Trigger example 3. Transient 5. Reconstruction
Covert channel [1,74,92] © Flush/Prime/Evict - © Load/AVX/Port/... @ Reload/Probe/Time
Meltdown-US/RW/GP/NM/PK [8,48,56,78] @ (Exception suppression) @ mov/rdmsr/FPU @ Controlled encode @ Exception handling
Meltdown-P [85,90] O (L1 prefetch) @ nov @ Controlled encode & controlled decode
Meltdown-BR - O bound/bndclu O Inadvertent leak same as above
Spectre-PHT [50] © PHT poisoning O jz O Inadvertent leak @ Controlled decode
Spectre-BTB/RSB [13,50,52,59] © BTB/RSB poisoning Ocall/jmp/ret O ROP-style encode @ Controlled decode
Spectre-STL [29] - O mov O Inadvertent leak @ Controlled decode
NetSpectre [74] O Thrash/reset O jz O Inadvertent leak O Inadvertent transmit

sdiv on ARM). On the ARMs we tested, there is no excep-
tion, but the division yields merely zero. On x86, the division
raises a divide-by-zero exception (#DE). Both on the AMD
and Intel we tested, the CPU continues with the transient exe-
cution after the exception. In both cases, the result register is
set to ‘0’, which is the same result as on the tested ARM. Thus,
according to our experiments Meltdown-DE is not possible,
as no real values are leaked.

Supervisor Access. Although supervisor mode access pre-
vention (SMAP) raises a page fault (#PF) when accessing
user-space memory from the kernel, it seems to be free of any
Meltdown effect in our experiments. Thus, we were not able
to leak any data using Meltdown-SM in our experiments.

Alignment Faults. Upon detecting an unaligned memory
operand, the CPU may generate an alignment check exception
(#AC). In our tests, the results of unaligned memory accesses
never reach the transient execution. We suspect that this is
because #AC is generated early-on, even before the operand’s
virtual address is translated to a physical one. Hence, our ex-
periments with Meltdown-AC were unsuccessful in showing
any leakage.

Segmentation Faults. We consistently found that out-of-
limit segment accesses never reach transient execution in our
experiments. We suspect that, due to the simplistic IA32 seg-
mentation design, segment limits are validated early-on, and
immediately raise a #GP or #SS (stack-segment fault) excep-
tion, without sending the offending instruction to the ROB.
Therefore, we observed no leakage in our experiments with
Meltdown-SS.

Instruction Fetch. To yield a complete picture, we investi-
gated Meltdown-type effects during the instruction fetch and
decode phases. On our test systems, we did not succeed in
transiently executing instructions residing in non-executable
memory (i.e., Meltdown-XD), or following an invalid opcode
(#UD) exception (i.e., Meltdown-UD). We suspect that ex-
ceptions during instruction fetch or decode are immediately
handled by the CPU, without first buffering the offending
instruction in the ROB. Moreover, as invalid opcodes have
an undefined length, the CPU does not even know where the
next instruction starts. Hence, we suspect that invalid opcodes
only leak if the microarchitectural effect is already an effect
caused by the invalid opcode itself, not by subsequent tran-
sient instructions.

Table 7: Spectre-PHT gadget classification and the number of
occurrences per gadget type in Linux kernel v5.0.

Gadget Example (Spectre-PHT) #Occurrences
Prefetch ~ if (i<LEN_A){a[i];} 172

Compare  if (i<LEN_A){if(a[i]l==k){};} 127

Index if (i<LEN_A) {y = blal[il*x];} O

Execute if (i<LEN_A) {a[i] (void);} 16

5 Gadget Analysis and Classification

We deliberately oriented our attack tree (cf. Figure 1) on the
microarchitectural root causes of the transient computation,
abstracting away from the underlying covert channel and/or
code gadgets required to carry out the attack successfully. In
this section, we further dissect transient execution attacks by
categorizing gadget types in two tiers and overviewing current
results on their exploitability in real-world software.

5.1 Gadget Classification

First-Tier: Execution Phase. We define a “gadget” as a
series of instructions executed by either the attacker or the
victim. Table 6 shows how gadget types discussed in literature
can be unambiguously assigned to one of the abstract attack
phases from Figure 2. New gadgets can be added straightfor-
wardly after determining their execution phase and objective.
Importantly, our classification table highlights that gadget
choice largely depends on the attacker’s capabilities. By plug-
ging in different gadget types to compose the required attack
phases, an almost boundless spectrum of adversary models
can be covered that is only limited by the attacker’s capabili-
ties. For local adversaries with arbitrary code execution (e.g.,
Meltdown-US [56]), the gadget functionality can be explicitly
implemented by the attacker. For sandboxed adversaries (e.g.,
Spectre-PHT [50]), on the other hand, much of the gadget
functionality has to be provided by “confused deputy” code
executing in the victim domain. Ultimately, as claimed by
Schwarz et al. [74], even fully remote attackers may be able
to launch Spectre attacks given that sufficient gadgets would
be available inside the victim code.
Second-Tier: Transient Leakage. During our analysis of
the Linux kernel (see Section 5.2), we discovered that gadgets
required for Spectre-PHT can be further classified in a second



tier. A second tier is required in this case as those gadgets
enable different types of attacks. The first type of gadget we
found is called Prefetch. A Prefetch gadget consists of a single
array access. As such it is not able to leak data, but can be
used to load data that can then be leaked by another gadget
as was demonstrated by Meltdown-P [85]. The second type
of gadget, called Compare, loads a value like in the Prefetch
gadget and then branches on it. Using a contention channel
like execution unit contention [2, 9] or an AVX channel as
claimed by Schwarz et al. [74], an attacker might be able to
leak data. We refer to the third gadget as Index gadget and it is
the double array access shown by Kocher et al. [50]. The final
gadget type, called Execute, allows arbitrary code execution,
similar to Spectre-BTB. In such a gadget, an array is indexed
based on an attacker-controlled input and the resulting value is
used as a function pointer, allowing an attacker to transiently
execute code by accessing the array out-of-bounds. Table
gives examples for all four types.

5.2 Real-World Software Gadget Prevalence

While for Meltdown-type attacks, convincing real-world ex-
ploits have been developed to dump arbitrary process [56]
and enclave [85] memory, most Spectre-type attacks have
so far only been demonstrated in controlled environments.
The most significant barrier to mounting a successful Spectre
attack is to find exploitable gadgets in real-world software,
which at present remains an important open research question
in itself [59, 74].

Automated Gadget Analysis. Since the discovery of tran-
sient execution attacks, researchers have tried to develop
methods for the automatic analysis of gadgets. One proposed
method is called 007 [89] and uses taint tracking to detect
Spectre-PHT Prefetch and Index gadgets. 0o7 first marks all
variables that come from an untrusted source as tainted. If a
tainted variable is later on used in a branch, the branch is also
tainted. The tool then reports a possible gadget if a tainted
branch is followed by a memory access depending on the
tainted variable. Guarnieri et al. [25] mention that 007 would
still flag code locations that were patched with Speculative
Load Hardening [12] as it would still match the vulnerable
pattern.

Another approach, called Spectector [25], uses symbolic
execution to detect Spectre-PHT gadgets. It tries to formally
prove that a program does not contain any gadgets by track-
ing all memory accesses and jump targets during execution
along all different program paths. Additionally, it simulates
the path of mispredicted branches for a number of steps. The
program is run twice to determine whether it is free of gadgets
or not. First, it records a trace of memory accesses when no
misspeculation occurs (i.e., runs the program in its intended
way). Second, it records a trace of memory accesses with
misspeculation of a certain number of instructions. Spectector
then reports a gadget if it detects a mismatch between the two

traces. One problem with the Spectector approach is scalabil-
ity as it is currently not feasible to symbolically execute large
programs.

The Linux kernel developers use a different approach. They
extended the Smatch static analysis tool to automatically
discover potential Spectre-PHT out-of-bounds access gad-
gets [10]. Specifically, Smatch finds all instances of user-
supplied array indices that have not been explicitly hard-
ened. Unfortunately, Smatch’s false positive rate is quite
high. According to Carpenter [10], the tool reported 736
gadget candidates in April 2018, whereas the kernel only
featured about 15 Spectre-PHT-resistant array indices at that
time. We further investigated this by analyzing the number of
occurrences of the newly introduced array_index_nospec
and array_index_mask_nospec macros in the Linux kernel
per month. Figure 4 shows that the number of Spectre-PHT
patches has been continuously increasing over the past year.
This provides further evidence that patching Spectre-PHT
gadgets in real-world software is an ongoing effort and that
automated detection methods and gadget classification pose
an important research challenge.

Academic Review. To date, only 5 academic papers have
demonstrated Spectre-type gadget exploitation in real-world
software [9, 13,29, 50, 59]. Table 8 reveals that they either
abuse ROP-style gadgets in larger code bases or more com-
monly rely on Just-In-Time (JIT) compilation to indirectly
provide the vulnerable gadget code. JIT compilers as com-
monly used in e.g., JavaScript, WebAssembly, or the eBPF
Linux kernel interface, create a software-defined sandbox by
extending the untrusted attacker-provided code with runtime
checks. However, the attacks in Table 8 demonstrate that such
JIT checks can be transiently circumvented to leak memory
contents outside of the sandbox. Furthermore, in the case of
Spectre-BTB/RSB, even non-JIT compiled real-world code
has been shown to be exploitable when the attacker controls
sufficient inputs to the victim application. Kocher et al. [50]
constructed a minimalist proof-of-concept that reads attacker-
controlled inputs into registers before calling a function. Next,
they rely on BTB poisoning to redirect transient control flow
to a gadget they identified in the Windows ntd11 library that
allows leaking arbitrary memory from the victim process.
Likewise, Chen et al. [13] analyzed various trusted enclave
runtimes for Intel SGX and found several instances of vul-
nerable branches with attacker-controlled input registers, plus
numerous exploitable gadgets to which transient control flow
may be directed to leak unauthorized enclave memory. Bhat-
tacharyya et al. [9] analyzed common software libraries that
are likely to be linked against a victim program for gadgets.
They were able to find numerous gadgets and were able to
exploit one in OpenSSL to leak information.

Case Study: Linux Kernel. To further assess the prevalence
of Spectre gadgets in real-world software, we selected the
Linux kernel (Version 5.0) as a relevant case study of a major
open-source project that underwent numerous Spectre-related



Table 8: Spectre-type attacks on real-world software.

Attack Gadgets JIT

Spectre-PHT [50] 2 v
Spectre-BTB [50] 2 v
Spectre-BTB [13] 336 X
Spectre-BTB [9] 690 X
v
v

Description

Chrome Javascript, Linux eBPF
/X Linux eBPF, Windows ntdl1

SGX SDK Intel/Graphene/Rust

OpenSSL, glibe, pthread, ...

Firefox WebAssembly

Partial PoC on Linux eBPF

Spectre-RSB [59] 1
Spectre-STL [29] 1

7| — array_index_nospec
_| == array_index_mask_nospec

Occurrences
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Figure 4: Evolution of Spectre-PHT patches in the Linux
kernel over time (2018-2019).

security patches over the last year. We opted for an in-depth
analysis of one specific piece of software instead of a breadth-
first approach where we do a shallow analysis of multiple
pieces of software. This allowed us to analyse historical data
(i.e., code locations the kernel developers deemed necessary
to protect) that led to the second tier classification discussed
in Section

There are a couple of reasons that make analysis diffi-
cult. The first is that Linux supports many different platforms.
Therefore, particular gadgets are only available in a specific
configuration. The second point is that the number of instruc-
tions that can be transiently executed depends on the size of
the ROB [89]. As we analyze high-level code, we can only
estimate how far ahead the processor can transiently execute.

Table 7 shows the number of occurrences of each gadget
type from our second tier classification. While Figure 4 shows
around 120 occurrences of array_index_nospec, the num-
ber of gadgets in our analysis is higher. The reason behind
that is that multiple arrays are indexed with the same masked
index and that there are multiple branches on a value that was
loaded with a potential malicious index. Our analysis also
shows that more dangerous gadgets that either allow more
than 1-bit leakage or even arbitrary code execution are not
frequently occurring. Even if one is found, it might still be
hard to exploit. During our analysis, we also discovered that
the patch had been reverted in 13 locations, indicating that
there is also some confusion among the kernel developers
what needs to be fixed.

6 Defenses

In this section, we discuss proposed defenses in software and
hardware for Spectre and Meltdown variants. We propose a
classification scheme for defenses based on their attempt to
stop leakage, similar to Miller [62]. Our work differs from
Miller in three points. First, ours extends to newer transient
execution attacks. Second, we consider Meltdown and Spec-
tre as two problems with different root causes, leading to a

Table 9: Categorization of Spectre defenses and systematic
overview of their microarchitectural target.
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A defense considers the microarchitectural element (@), partially considers
it or same technique possible for it (@) or does not consider it at all (O).

different classification. Third, it helped uncover problems that
were not clear with the previous classification.
We categorize Spectre-type defenses into three categories:
C1: Mitigating or reducing the accuracy of covert channels
used to extract the secret data.
C2: Mitigating or aborting speculation if data is potentially
accessible during transient execution.
C3: Ensuring that secret data cannot be reached.
Table 9 lists proposed defenses against Spectre-type attacks
and assigns them to the category they belong.
We categorize Meltdown-type defenses into two categories:
D1: Ensuring that architecturally inaccessible data remains
inaccessible on the microarchitectural level.
D2: Preventing the occurrence of faults.

6.1 Defenses for Spectre

C1: Mitigating or reducing accuracy of covert channels.
Transient execution attacks use a covert channel to transfer
a microarchitectural state change induced by the transient
instruction sequence to the architectural level. One approach
in mitigating Spectre-type attacks is reducing the accuracy of
covert channels or preventing them.

Hardware. One enabler of transient execution attacks is that
the transient execution sequence introduces a microarchitec-
tural state change the receiving end of the covert channel
observes. To secure CPUs, SafeSpec [45] introduces shadow
hardware structures used during transient execution. Thereby,
any microarchitectural state change can be squashed if the
prediction of the CPU was incorrect. While their prototype
implementation protects only caches (and the TLB), other
channels, e.g., DRAM buffers [69], or execution unit conges-
tion [1,9,56], remain open.

Yan et al. [91] proposed InvisiSpec, a method to make
transient loads invisible in the cache hierarchy. By using a
speculative buffer, all transiently executed loads are stored in
this buffer instead of the cache. Similar to SafeSpec, the buffer
is invalidated if the prediction was incorrect. However, if the



prediction was correct, the content of the buffer is loaded into
the cache. For data coherency, InvisiSpec compares the loaded
value during this process with the most recent, up-to-date
value from the cache. If a mismatch occurs, the transient load
and all successive instructions are reverted. Since InvisSpec
only protects the caching hierarchy of the CPU, an attacker
can still exploit other covert channels.

Kiriansky et al. [47] securely partition the cache across its
ways. With protection domains that isolate on a cache hit,
cache miss and metadata level, cache-based covert channels
are mitigated. This does not only require changes to the cache
and adaptions to the coherence protocol but also enforces the
correct management of these domains in software.

Kocher et al. [50] proposed to limit data from entering

covert channels through a variation of taint tracking. The idea
is that the CPU tracks data loaded during transient execution
and prevents their use in subsequent operations.
Software. Many covert channels require an accurate timer
to distinguish microarchitectural states, e.g., measuring the
memory access latency to distinguish between a cache hit and
cache miss. With reduced timer accuracy an attacker cannot
distinguish between microarchitectural states any longer, the
receiver of the covert channel cannot deduce the sent informa-
tion. To mitigate browser-based attacks, many web browsers
reduced the accuracy of timers in JavaScript by adding jit-
ter [61,70,80,88]. However, Schwarz et al. [73] demonstrated
that timers can be constructed in many different ways and,
thus, further mitigations are required [71]. While Chrome
initially disabled SharedArrayBuffers in response to Melt-
down and Spectre [80], this timer source has been re-enabled
with the introduction of site-isolation [77].

NetSpectre requires different strategies due to its remote
nature. Schwarz et al. [74] propose to detect the attack using
DDoS detection mechanisms or adding noise to the network
latency. By adding noise, an attacker needs to record more
traces. Adding enough noise makes the attack infeasible in
practice as the amount of traces as well as the time required
for averaging it out becomes too large [87].

C2: Mitigating or aborting speculation if data is poten-
tially accessible during transient execution.

Since Spectre-type attacks exploit different prediction
mechanisms used for speculative execution, an effective
approach would be to disable speculative execution en-
tirely [50, 79]. As the loss of performance for commodity
computers and servers would be too drastic, another proposal
is to disable speculation only while processing secret data.
Hardware. A building blocks for some variants of Spectre
is branch poisoning (an attacker mistrains a prediction mech-
anism, cf. Section 3). To deal with mistraining, both Intel
and AMD extended the instruction set architecture (ISA) with
a mechanism for controlling indirect branches [4,40]. The
proposed addition to the ISA consists of three controls:

* Indirect Branch Restricted Speculation (IBRS) prevents
indirect branches executed in privileged code from being

influenced by those in less privileged code. To enforce
this, the CPU enters the IBRS mode which cannot be
influenced by any operations outside of it.

* Single Thread Indirect Branch Prediction (STIBP) re-
stricts sharing of branch prediction mechanisms among
code executing across hyperthreads.

e The Indirect Branch Predictor Barrier (IBPB) prevents
code that executes before it from affecting the prediction
of code following it by flushing the BTB.

For existing ARM implementations, there are no generic
mitigation techniques available. However, some CPUs im-
plement specific controls that allow invalidating the branch
predictor which should be used during context switches [6].
On Linux, those mechanisms are enabled by default [46].
With the ARMvS8.5-A instruction set [7], ARM introduces
a new barrier (sb) to limit speculative execution on follow-
ing instructions. Furthermore, new system registers allow to
restrict speculative execution and new prediction control in-
structions prevent control flow predictions (cfp), data value
prediction (dvp) or cache prefetch prediction (cpp) [7].

To mitigate Spectre-STL, ARM introduced a new barrier
called SSBB that prevents a load following the barrier from by-
passing a store using the same virtual address before it [6]. For
upcoming CPUs, ARM introduced Speculative Store Bypass
Safe (SSBS); a configuration control register to prevent the
re-ordering of loads and stores [6]. Likewise, Intel [40] and
AMD [3] provide Speculative Store Bypass Disable (SSBD)
microcode updates that mitigate Spectre-STL.

As an academic contribution, plausible hardware mitiga-
tions have furthermore been proposed [48] to prevent transient
computations on out-of-bounds writes (Spectre-PHT).

Software. Intel and AMD proposed to use serializing instruc-
tions like 1fence on both outcomes of a branch [4,35]. ARM
introduced a full data synchronization barrier (DSB SY) and
an instruction synchronization barrier (ISB) that can be used
to prevent speculation [6]. Unfortunately, serializing every
branch would amount to completely disabling branch predic-
tion, severely reducing performance [35]. Hence, Intel further
proposed to use static analysis [35] to minimize the number of
serializing instructions introduced. Microsoft uses the static
analyzer of their C Compiler MSVC [68] to detect known-bad
code patterns and insert 1fence instructions automatically.
Open Source Security Inc. [66] use a similar approach using
static analysis. Kocher [49] showed that this approach misses
many gadgets that can be exploited.

Serializing instructions can also reduce the effect of in-
direct branch poisoning. By inserting it before the branch,
the pipeline prior to it is cleared, and the branch is resolved
quickly [4]. This, in turn, reduces the size of the speculation
window in case that misspeculation occurs.

While 1fence instructions stop speculative execution,

Schwarz et al. [74] showed they do not stop microarchitec-
tural behaviors happening before execution. This, for instance,



includes powering up the AVX functional units, instruction
cache fills, and iTLB fills which still leak data.

Evtyushkin et al. [18] propose a similar method to seri-
alizing instructions, where a developer annotates potentially
leaking branches. When indicated, the CPU should not predict
the outcome of these branches and thus stop speculation.

Additionally to the serializing instructions, ARM also in-
troduced a new barrier (CSDB) that in combination with con-
ditional selects or moves controls speculative execution [6].

Speculative Load Hardening (SLH) is an approach used by
LLVM and was proposed by Carruth [12]. Using this idea,
loads are checked using branchless code to ensure that they
are executing along a valid control flow path. To do this,
they transform the code at the compiler level and introduce
a data dependency on the condition. In the case of misspec-
ulation, the pointer is zeroed out, preventing it from leaking
data through speculative execution. One prerequisite for this
approach is hardware that allows the implementation of a
branchless and unpredicted conditional update of a register’s
value. As of now, the feature is only available in LLVM for
x86 as the patch for ARM is still under review. GCC adopted
the idea of SLH for their implementation, supporting both
x86 and ARM. They provide a builtin function to either emit
a speculation barrier or return a safe value if it determines
that the instruction is transient [17].

Oleksenko et al. [65] propose an approach similar to Car-
ruth [12]. They exploit that CPUs have a mechanism to detect
data dependencies between instructions and introduce such a
dependency on the comparison arguments. This ensures that
the load only starts when the comparison is either in regis-
ters or the L1 cache, reducing the speculation window to a
non-exploitable size. They already note that their approach is
highly dependent on the ordering of instructions as the CPU
might perform the load before the comparison. In that case,
the attack would still be possible.

Google proposes a method called retpoline [83], a code se-
quence that replaces indirect branches with return instructions,
to prevent branch poisoning. This method ensures that return
instructions always speculate into an endless loop through the
RSB. The actual target destination is pushed on the stack and
returned to using the ret instruction. For retpoline, Intel [39]
notes that in future CPUs that have Control-flow Enforcement
Technology (CET) capabilities to defend against ROP attacks,
retpoline might trigger false positives in the CET defenses.
To mitigate this possibility, future CPUs also implement hard-
ware defenses for Spectre-BTB called enhanced IBRS [39].

On Skylake and newer architectures, Intel [39] proposes
RSB stuffing to prevent an RSB underfill and the ensuing
fallback to the BTB. Hence, on every context switch into the
kernel, the RSB is filled with the address of a benign gadget.
This behavior is similar to retpoline. For Broadwell and older
architectures, Intel [39] provided a microcode update to make
the ret instruction predictable, enabling retpoline to be a ro-

bust defense against Spectre-BTB. Windows has also enabled
retpoline on their systems [14].

C3: Ensuring that secret data cannot be reached. Differ-
ent projects use different techniques to mitigate the problem
of Spectre. WebKit employs two such techniques to limit the
access to secret data [70]. WebKit first replaces array bound
checks with index masking. By applying a bit mask, WebKit
cannot ensure that the access is always in bounds, but intro-
duces a maximum range for the out-of-bounds violation. In
the second strategy, WebKit uses a pseudo-random poison
value to protect pointers from misuse. Using this approach,
an attacker would first have to learn the poison value before
he can use it. The more significant impact of this approach
is that mispredictions on the branch instruction used for type
checks results in the wrong type being used for the pointer.

Google proposes another defense called site isolation [81],
which is now enabled in Chrome by default. Site isolation
executes each site in its own process and therefore limits the
amount of data that is exposed to side-channel attacks. Even
in the case where the attacker has arbitrary memory reads, he
can only read data from its own process.

Kiriansky and Waldspurger [48] propose to restrict access
to sensitive data by using protection keys like Intel Memory
Protection Key (MPK) technology [31]. They note that by
using Spectre-PHT an attacker can first disable the protection
before reading the data. To prevent this, they propose to in-
clude an 1fence instruction in wrpkru, an instruction used
to modify protection keys.

6.2 Defenses for Meltdown

D1: Ensuring that architecturally inaccessible data re-
mains inaccessible on the microarchitectural level.

The fundamental problem of Meltdown-type attacks is that
the CPU allows the transient instruction stream to compute on
architecturally inaccessible values, and hence, leak them. By
assuring that execution does not continue with unauthorized
data after a fault, such attacks can be mitigated directly in
silicon. This design is enforced in AMD processors [4], and
more recently also in Intel processors from Whiskey Lake
onwards that enumerate RDCL_NO support [40]. However,
mitigations for existing microarchitectures are necessary, ei-
ther through microcode updates, or operating-system-level
software workarounds. These approaches aim to keep archi-
tecturally inaccessible data also inaccessible at the microar-
chitectural level.

Gruss et al. originally proposed KAISER [22,23] to miti-
gate side-channel attacks defeating KASLR. However, it also
defends against Meltdown-US attacks by preventing kernel
secrets from being mapped in user space. Besides its perfor-
mance impact, KAISER has one practical limitation [22, 56].
For x86, some privileged memory locations must always be
mapped in user space. KAISER is implemented in Linux as
kernel page-table isolation (KPTI) [58] and has also been



backported to older versions. Microsoft provides a similar
patch as of Windows 10 Build 17035 [42] and Mac OS X and
10S have similar patches [41].

For Meltdown-GP, where the attacker leaks the contents of
system registers that are architecturally not accessible in its
current privilege level, Intel released microcode updates [35].
While AMD is not susceptible [5], ARM incorporated miti-
gations in future CPU designs and suggests to substitute the
register values with dummy values on context switches for
CPUs where mitigations are not available [6].

Preventing the access-control race condition exploited by
Foreshadow and Meltdown may not be feasible with mi-
crocode updates [85]. Thus, Intel proposes a multi-stage ap-
proach to mitigate Foreshadow (L1TF) attacks on current
CPUs [34,90]. First, to maintain process isolation, the op-
erating system has to sanitize the physical address field of
unmapped page-table entries. The kernel either clears the
physical address field, or sets it to non-existent physical mem-
ory. In the case of the former, Intel suggests placing 4 KB of
dummy data at the start of the physical address space, and
clearing the PS bit in page tables to prevent attackers from
exploiting huge pages.

For SGX enclaves or hypervisors, which cannot trust the
address translation performed by an untrusted OS, Intel pro-
poses to either store secrets in uncacheable memory (as spec-
ified in the PAT or the MTRRSs), or flush the L1 data cache
when switching protection domains. With recent microcode
updates, L1 is automatically flushed upon enclave exit, and
hypervisors can additionally flush L1 before handing over
control to an untrusted virtual machine. Flushing the cache is
also done upon exiting System Management Mode (SMM) to
mitigate Foreshadow-NG attacks on SMM.

To mitigate attacks across logical cores, Intel supplied a

microcode update to ensure that different SGX attestation
keys are derived when hyperthreading is enabled or disabled.
To ensure that no non-SMM software runs while data belong-
ing to SMM are in the L1 data cache, SMM software must
rendezvous all logical cores upon entry and exit. According
to Intel, this is expected to be the default behavior for most
SMM software [34]. To protect against Foreshadow-NG at-
tacks when hyperthreading is enabled, the hypervisor must
ensure that no hypervisor thread runs on a sibling core with
an untrusted VM.
D2: Preventing the occurrence of faults. Since Meltdown-
type attacks exploit delayed exception handling in the CPU,
another mitigation approach is to prevent the occurrence of a
fault in the first place. Thus, accesses which would normally
fault, become (both architecturally and microarchitecturally)
valid accesses but do not leak secret data.

One example of such behavior are SGX’s abort page se-
mantics, where accessing enclave memory from the outside
returns -1 instead of faulting. Thus, SGX has inadvertent pro-
tection against Meltdown-US. However, the Foreshadow [85]
attack showed that it is possible to actively provoke another

fault by unmapping the enclave page, making SGX enclaves
susceptible to the Meltdown-P variant.

Preventing the fault is also the countermeasure for
Meltdown-NM [78] that is deployed since Linux 4.6 [57].
By replacing lazy switching with eager switching, the FPU is
always available, and access to the FPU can never fault. Here,
the countermeasure is effective, as there is no other way to
provoke a fault when accessing the FPU.

6.3 Evaluation of Defenses

Spectre Defenses. We evaluate defenses based on their ca-
pabilities of mitigating Spectre attacks. Defenses that require
hardware modifications are only evaluated theoretically. In
addition, we discuss which vendors have CPUs vulnerable to
what type of Spectre- and Meltdown-type attack. The results
of our evaluation are shown in Table

Several defenses only consider a specific covert channel
(see Table 9), i.e., they only try to prevent an attacker from
recovering the data using a specific covert channel instead of
targeting the root cause of the vulnerability. Therefore, they
can be subverted by using a different one. As such, they can
not be considered a reliable defense. Other defenses only limit
the amount of data that can be leaked [70,81] or simply require
more repetitions on the attacker side [74, 87]. Therefore, they
are only partial solutions. RSB stuffing only protects a cross-
process attack but does not mitigate a same-process attack.
Many of the defenses are not enabled by default or depend
on the underlying hardware and operating system [3, 4, 6,40].
With serializing instructions [4, 6,35] after a bounds check,
we were still able to leak data on Intel and ARM (only with
DSB SY+ISH instruction) through a single memory access and
the TLB. On ARM, we observed no leakage following a CSDB
barrier in combination with conditional selects or moves. We
also observed no leakage with SLH, although the possibility
remains that our experiment failed to bypass the mitigation.
Taint tracking theoretically mitigates all forms of Spectre-
type attacks as data that has been tainted cannot be used in a
transient execution. Therefore, the data does not enter a covert
channel and can subsequently not be leaked.
Meltdown Defenses. We verified whether we can still exe-
cute Meltdown-type attacks on a fully-patched system. On
a Ryzen Threadripper 1920X, we were still able to execute
Meltdown-BND. On an i5-6200U (Skylake), an i7-8700K
(Coftee Lake), and an i7-8565U (Whiskey Lake), we were
able to successfully run a Meltdown-MPX, Meltdown-BND,
and Meltdown-RW attack. Additionally to those, we were
also able to run a Meltdown-PK attack on an Amazon EC2
CS instance (Skylake-SP). Our results indicate that current
mitigations only prevent Meltdown-type attacks that cross the
current privilege level. We also tested whether we can still
successfully execute a Meltdown-US attack on a recent Intel
Whiskey Lake CPU without KPTT enabled, as Intel claims
these processors are no longer vulnerable. In our experiments,



Table 10: Spectre defenses and which attacks they mitigate.
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we were indeed not able to leak any data on such CPUs but
encourage other researchers to further investigate newer pro-
cessor generations.

6.4 Performance Impact of Countermeasures

There have been several reports on performance impacts of
selected countermeasures. Some report the performance im-
pact based on real-world scenarios (top of Table | 1) while
others use a specific benchmark that might not resemble real-
world usage (lower part of Table | 1). Based on the different
testing scenarios, the results are hard to compare. To further
complicate matters, some countermeasures require hardware
modifications that are not available, and it is therefore hard to
verify the performance loss.

One countermeasure that stands out with a huge decrease in
performance is serialization and highlights the importance of
speculative execution to improve CPU performance. Another
interesting countermeasure is KPTI. While it was initially
reported to have a huge impact on performance, recent work
shows that the decrease is almost negligible on systems that
support PCID [20]. To mitigate Spectre and Meltdown, cur-
rent systems rely on a combination of countermeasures. To
show the overall decrease on a Linux 4.19 kernel with the
default mitigations enabled, Larabel [54] performed multiple
benchmarks to determine the impact. On Intel, the slowdown
was 7-16% compared to a non-mitigated kernel, on AMD it
was 3-4%.

Naturally, the question arises which countermeasures to
enable. For most users, the risk of exploitation is low, and
default software mitigations as provided by Linux, Microsoft,
or Apple likely are sufficient. This is likely the optimum
between potential attacks and reasonable performance. For

Table 11: Reported performance impacts of countermeasures.
Top shows performance impact in real-world scenarios while
the bottom shows it on a specific benchmark.

Defense Evaluation  Penalty  Benchmark

KAISER/KPTI [21] 0-2.6 % System call rates

Retpoline [11] 5-10% Real-world workload servers
Site Isolation [81] 10-13%  Memory overhead
InvisiSpec [91] 22 % SPEC

SafeSpec [45] -3% SPEC on MARSSx86
DAWG [47] 1-15 % PARSEC , GAPBS

SLH [12] 29-36.4 % Google microbenchmark suite
YSNB [65] 60 % Phoenix

IBRS [82] 20-30%  Sysbench 1.0.11

STIBP [53] 30-50%  Rodinia OpenMP, DaCapo

Serialization [12] 62-74.8 % Google microbenchmark suite
SSBD/SSBB [15] 2-8 % SYSmark 2018, SPEC integer
L1TF Mitigations [38] -3-31%  SPEC

data centers, it is harder as it depends on the needs of their
customers and one has to evaluate this on an individual basis.

7 Future Work and Conclusion

Future Work. For Meltdown-type attacks, it is important to
determine where data is actually leaked from. For instance,
Lipp et al. [56] demonstrated that Meltdown-US can not only
leak data from the L1 data cache and main memory but even
from memory locations that are explicitly marked as “un-
cacheable” and are hence served from the Line Fill Buffer
(LFB). " In future work, other Meltdown-type attacks should
be tested to determine whether they can also leak data from
different microarchitectural buffers. In this paper, we pre-
sented a small evaluation of the prevalence of gadgets in
real-world software. Future work should develop methods
for automating the detection of gadgets and extend the analy-
sis on a larger amount of real-world software. We have also
discussed mitigations and shown that some of them can be
bypassed or do not target the root cause of the problem. We
encourage both offensive and defensive research that may use
our taxonomy as a guiding principle to discover new attack
variants and develop mitigations that target the root cause of
transient information leakage.

Conclusion. Transient instructions reflect unauthorized com-
putations out of the program’s intended code and/or data paths.
We presented a systematization of transient execution attacks.
Our systematization uncovered 6 (new) transient execution
attacks (Spectre and Meltdown variants) which have been

3The initial Meltdown-US disclosure (December 2017) and subsequent
paper [56] already made clear that Meltdown-type leakage is not limited to
the L1 data cache. We sent Intel a PoC leaking uncacheable-typed memory
locations from a concurrent hyperthread on March 28, 2018. We clarified to
Intel on May 30, 2018, that we attribute the source of this leakage to the LFB.
In our experiments, this works identically for Meltdown-P (Foreshadow).
This issue was acknowledged by Intel, tracked under CVE-2019-11091, and
remained under embargo until May 14, 2019.



overlooked and have not been investigated so far. We demon-
strated these variants in practical proof-of-concept attacks
and evaluated their applicability to Intel, AMD, and ARM
CPUs. We also presented a short analysis and classification of
gadgets as well as their prevalence in real-world software. We
also systematically evaluated defenses, discovering that some
transient execution attacks are not successfully mitigated by
the rolled out patches and others are not mitigated because
they have been overlooked. Hence, we need to think about
future defenses carefully and plan to mitigate attacks and
variants that are yet unknown.
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