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Abstract—Page tables enforce process isolation in systems.
Rowhammer attacks break process isolation by flipping bits in
DRAM to tamper page tables and achieving privilege escalation.
Moreover, new Rowhammer attacks break existing mitigations.
We seek to protect systems against such breakthrough attacks.

We present PT-Guard, an integrity protection mechanism for
page tables. PT-Guard uses unused bits in Page Table Entries
(PTE) to embed a Message Authentication Code (MAC) for the
PTE cacheline without any storage overhead. These unused bits
arise from PTEs supporting petabytes of physical memory while
systems targeted by Rowhammer use at-most terabytes of mem-
ory. By storing and verifying MACs for PTEs, PT-Guard detects
arbitrary bit-flips in PTEs. Moreover, PT-Guard also provides
best-effort correction of faulty-PTEs leveraging value locality.
PT-Guard protects page tables from breakthrough Rowhammer
attacks with negligible hardware changes, no DRAM storage,
<72 bytes of SRAM, 1.3% slowdown, and no software changes.

I. INTRODUCTION

Page tables play a critical role in modern operating
systems as they store virtual-to-physical address translations
and associated metadata, which enforce process isolation and
access control. If an adversary can flip bits in the page tables,
they can modify address translation and access arbitrary pages
in memory, or modify metadata bits like user/ supervisor
bit, to obtain kernel privileges. Protecting page tables from
adversarial tampering is crucial to ensure system security.

One of the popular methods for data tampering in DRAM
is Rowhammer [29]. Rowhammer occurs when rapid access to
a DRAM row induces bit-flips in nearby rows. Rowhammer
is a major security threat [17], [51], [56] and the most
severe Rowhammer exploits [10], [15], [22], [30] are privilege
escalation attacks that flip bits in page tables. In such exploits,
an attacker injects bit-flips in its own Page Table Entry (PTE)
as shown in Figure 1. The attacker can then modify its virtual-
to-physical translations and gain access to arbitrary physical
pages, thereby escalating to kernel privileges.

Commercial solutions for mitigating Rowhammer typically
rely on tracking row accesses and issuing a refresh to victim
rows. Unfortunately, attackers regularly develop new access
patterns that defeat existing Rowhammer mitigations, causing
bit-flips even in the presence of mitigations. For example,
the TRR mechanism in commercial designs which tracks
frequently activated rows was defeated by the TRResspass [15]
and BlackSmith [22] attacks. Moreover, the mitigative action
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Fig. 1. Privilege escalation using Rowhammer: make PTEs point to a page
containing PTEs, thereby allowing the attacker to access the entire memory.

of refreshing victims was leveraged by Google’s Half-Double
attack [30] to cause bit-flips to non-adjacent neighbours of the
aggressor row. Even ECC memories (rank-level and on-die)
are vulnerable [10], [19], [30]. Two recent whitepapers [23],
[24] from JEDEC acknowledge that commercial in-DRAM
mitigations are unable to eliminate all Rowhammer attacks.

Moreover, the problem of Rowhammer will likely worsen,
as the Rowhammer threshold (number of row activations
required to induce a bit-flip) reduced from 130K in 2014 [29]
to 4.8K in 2020 [27] with up-to 7 bit flips observed in an
8B word [19]. Recent academic mitigations [38], [47] are
designed for a certain Rowhammer threshold and become vul-
nerable with a reduced threshold. Thus, despite the presence
of mitigation, the system remains vulnerable to breakthrough
Rowhammer attacks like Half-Double. In the event of such
an attack, an adversary that tampers with page tables can
take over the system. Ideally, we want to detect and prevent
tampering of critical structures like page tables in the event of
breakthrough Rowhammer attacks.

Data tampering can be detected with integrity protec-
tion [18] using a per-line Message Authentication Code (MAC)
which is a cryptographic signature of data. When data is
read from memory, the MAC is computed and verified with a
stored MAC, and a mismatch indicates tampering. Typically,
integrity protection designs [18] store the per-line MAC in
a separate region of memory, incurring significant storage
(almost 12.5%) and performance overhead due to extra MAC
accesses. Systems with ECC-memories (servers), can place the
MAC in ECC chips to minimize slowdown [14], [25], [46].

However, client systems, such as laptops, mobiles and
desktops are typically not equipped with ECC memories mak-
ing deployment of MACs quite expensive. Moreover, client
systems often use highly vulnerable LPDDR memory [27].
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Consequently, almost all of the breakthrough Rowhammer
exploits from 2018-2022 have targeted client systems. Fur-
thermore, the cost of ECC modules will increase from 12.5%
to 25% with DDR5 (as it uses 8 ECC bits for 32 data bits),
making ECC protection cost-ineffective. Privilege escalation
with breakthrough attacks [17], [56] is a severe threat in such
systems as they regularly execute untrusted code in browsers.
Thus, our goal is to protect page tables from tampering
specifically in client systems. Practical adoption on client
systems requires our design to be transparent to the software
and incur negligible performance and storage overheads.

To this end, we propose PT-Guard, a transparent integrity
protection mechanism for page tables in hardware with neg-
ligible overheads. PT-Guard stores the MAC for the PTE
cache line within the line itself. Our design is enabled by the
observation that the Page Frame Number in modern PTEs is 40
bits and can address up to 4 petabytes of memory (assuming
each page is 4KB). However, client systems are provisioned
with much less physical memory, typically less than 1 terabyte
of DRAM, requiring just 28 bits for PFN.1 With 12 unused
bits per PFN, we pool these bits across the eight PTEs within
a cache line to obtain 96 bits where we embed the MAC for
the PTE cache line. Figure 2 shows an overview of PT-Guard.

PFN1 PFN7PFN2
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in PTE cacheline

CPU

Verify MAC on page 
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FlagsMAC 40-bit PFN
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Fig. 2. PT-Guard stores the MAC in the unused Page Frame Number (PFN)
bits, avoid DRAM access and storage overheads. 12 unused PFN bits (i.e.,
96 bits across 8 PTEs in a line) are pooled together for the MAC.

PT-Guard embeds the MAC on DRAM writes to PTE
cache lines and performs integrity checks within the memory
controller on page table walks, i.e., on DRAM reads of PTE
cache lines. PTE lines represent only a fraction of memory
accesses, so the memory controller performs a bit pattern
match on 96 specific bits on DRAM writes to identify PTE
lines, as the unused PFN bits within the PTE line are zeroed
out. The memory controller performs a bit pattern match for
such zero bits on writes to identify PTE lines. Thus, the
memory controller embeds the MAC in all PTE lines and some
regular lines that happen to match the bit pattern. We term all
such lines as protected lines. The MAC is recomputed on page
table walks to DRAM, and a mismatch on comparison with
embedded MAC indicates an integrity failure.

In absence of bit flips, the memory controller removes the
MAC on DRAM reads from all protected lines before sending
them to the caches. For PTE lines, the MAC is removed
after successful integrity check on page table walks. For other

1Large machines like servers can use several terabytes or petabytes of
memory. However, such systems have memories with ECC modules that can
have integrity protection at low cost [14], [46]. So, we focus on client-systems
with non-ECC memories, that are most vulnerable to Rowhammer.

data reads, the MAC is computed and compared against the
bits corresponding to the embedded MAC – a MAC match
indicates that the MAC was embedded. If so, the MAC is
removed from the line. The bits in a non-protected line might
accidentally match with the computed MAC, although it is
highly unlikely (may happen once in a trillion years). For
correctness, we check for such colliding lines during writes
and track them in a small buffer (20 bytes) at the memory
controller. In addition, 32 bytes are required for the secret
MAC key, leading to a total SRAM overhead of 52 bytes.

Our evaluation, using Gem5 (with SPEC-2017 and graph
analytics benchmarks), shows that PT-Guard has an average
slowdown of 1.3%. This is because the latency of MAC verifi-
cation is incurred on all DRAM reads. To reduce this overhead,
we provide an optimization that extends the bit pattern match
to include the 7 bits per PTE which are zeroed out by the
OS (56 reserved bits). These bits now store a random 56-
bit identifier whenever the MAC is inserted, i.e., when the
extended 152-bit pattern is zero on DRAM writes. On DRAM
reads, MAC checks are performed only for lines with the
identifier, eliminating MAC delay for most non-protected lines.
Moreover, we also avoid the MAC computation latency for
lines storing all-zeros by storing its pre-computed MAC on-
chip. These optimizations can reduce the slowdown to less
than 0.2%, while requiring 71 bytes of SRAM.

PT-Guard can not only guarantee detection of bit-flips in
PTEs, but also optionally performs best-effort correction in
PTEs. On a MAC mismatch during page table walks, the
hardware can try to guess the correct PTE values and perform a
MAC verification, with the assurance that the MAC check will
pass only when the guessed value of the PTE line is correct and
error-free. Furthermore, we use a fault-tolerant MAC design to
tolerate a limited number of bit-flips within the MAC itself. We
analyze real systems by profiling page tables of 600+ processes
on Ubuntu 18.04 to devise an efficient strategy for guessing
PTE values and observe significant locality in the PTE values,
e.g., contiguity in PFNs and uniformity in flags of consecutive
entries, which allow effective guesses for PTE values. Our
evaluations show that PT-Guard corrects, on average, 70% to
93% errors in PTEs without any mis-corrections, for bit-flip
probabilities of 1% to 0.2% (close to the worst case bit flip
probability with Rowhammer on LPDDR4 and DDR4 [27]).

Overall, this paper makes the following contributions:
• We propose PT-Guard, an ultra-low cost integrity-protection

for page tables by leveraging the unused PFN bits.
• We provide protection for PTE lines opportunistically in

hardware by checking if a line written to DRAM has zero
bits in particular locations and protecting such lines with a
MAC. Such a design avoids any OS or software support.

• We equip PT-Guard to perform best-effort correction of
faulty PTE by leveraging the value locality observed on real
systems. PT-Guard can correct 70% to 93% of faulty PTEs.

• We show that PT-Guard provides strong tamper-detection
while incurring 1.3% slowdown, no DRAM overheads, and
less than 72 bytes of on-chip SRAM.
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II. BACKGROUND AND MOTIVATION

We first discuss Rowhammer-based bit flips and privilege
escalation exploits on page tables and then highlight chal-
lenges with existing mitigations.

A. Worsening Rowhammer Vulnerability in DRAM

Rapid activations of a single DRAM row can leak enough
charge from a neighbor row to cause a bit flip. In 2014, these
Rowhammer bit-flips were found to occur after a minimum
of 139K activations on DDR3 modules [29]. With relentless
DRAM scaling, the Rowhammer threshold (RTH) since then
has dropped considerably to 4.8K activations for LPDDR4 and
10K activations for DDR4 in 2020 [27]. Given that DRAM’s
vulnerability to Rowhammer bit-flips has increased by 27× in
7 years, we expect it to worsen in the future. In recent years,
several Rowhammer exploits [15]–[17], [51], [56], [59] have
been demonstrated on real systems.

B. No Guaranteed Mitigation for Rowhammer

Designing effective Rowhammer mitigation is an active
area of research. However, with decreasing RTH values, both
commercially deployed and proposed Rowhammer mitigations
have repeatedly been shown to be vulnerable.

Targeted Row Refresh (TRR) was implemented as a mit-
igation in commercial DDR4 modules. But TRRespass [15]
and SMASH [13] attacks showed TRR to be vulnerable,
discovering new attack patterns that overwhelm the detection
mechanisms in TRR responsible for tracking hammered rows.
U-TRR [19] and Blacksmith [22] attacks extended this to show
virtually all DDR4 DRAM modules are vulnerable.

Recently proposed mitigations advocate for precise counting
of hammered rows and performing mitigative refreshes of
victims [26], [33], [38]. However, breakthrough attacks like
Half-Double [30] cause these refreshes to be heavily issued
on distance-1 (neighboring) rows to flip bits in distance-2
rows, defeating mitigations relying on victim refreshes. While
refreshing more neighbours [19] provides some protection, it
can fail against future attacks that exploit previously unknown
access patterns to defeat deployed mitigations.

Furthermore, aggressor-focused mitigations like Blockham-
mer [60] and RRS [47] are emerging. But these and all
prior mitigations require precise knowledge of Rowhammer
thresholds at CPU design-time. However, future modules can
have lower thresholds and this can break such mitigations.

Even in the presence of Rowhammer mitigation, the
system remains vulnerable to breakthrough attacks that
bypass the protection. Breakthrough Rowhammer attacks
are a severe security threat, especially if they occur on
critical data structures such as the page-tables.

C. Rowhammer Exploits Tampering Page Tables

Privilege escalation via bit-flips in Page Tables is the most
potent Rowhammer exploit [10], [15], [17], [22], [51], [56],
[59], [62]. Page tables control user-privileges and while Row-
hammer bit-flips in regular memory can cause data corruption,

bit-flips in page-tables can cause privilege escalation and
provide adversary with system-wide control.
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Fig. 3. Privilege Escalation Exploits with Rowhammer. Rowhammer injects
bit-flips in Page Tables to make them self-referential, so that an adversary can
access and modify page table entries to gain kernel level privileges.

Figure 3 illustrates such an exploit. The attacker induces
a bit-flip in the Page Frame Number (PFN) in its own page
table entries (PTEs) to let some PTE (P1) point to a page
table instead. Thus, the attacker gains read or write access to
PTEs (P2) in this page table, and can make them point to
arbitrary physical pages. Using the virtual address translated
by this attacker controlled PTE, P2, the attacker can access or
modify arbitrary physical memory, like the kernel.

TABLE I
X86 64 PAGE TABLE ENTRY [21]

Bit(s) Purpose Bit(s) Purpose
0 Present 7 2 MB Page
1 Writable 8 Global
2 User Accessible 11:9 Usable by OS
4 Write Through 51:12 PFN
4 Cache Disable 58:52 Ignored
5 Accessed 62:59 Memory Protection Keys
6 Dirty 63 No Execute

TABLE II
ARMV8 PAGE TABLE ENTRY [3]

Bit(s) Purpose Bit(s) Purpose
0 Valid 50 Reserved
1 Block (HP) 51 Dirty
5:2 Memory Attributes 52 Contiguous
7:6 Access Permissions 53:54 Execute-Never
9:8 PFN[39:38] 58:55 Ignored
10 Accessed 59:62 Hardware Attributes
11 Caching 63 Reserved
49:12 PFN[37:0]

In addition to PFNs, Rowhammer attacks can also inject
bit-flips in other PTE metadata. Table I shows the x86 64
PTE structure. Bits 62:59 select the Memory Protection
Key [37] domain, enabling intra-process isolation and sandbox-
ing. Faults in MPK bits could allow adversary code to escape
a software sandbox and gain uncontrolled access to runtime
software. Flipping User Accessible Bit (Bit-2) makes kernel
pages (e.g., interrupt handler tables) [11] user-accessible. Write
(Bit-1) and Execute (Bit-63) permissions can be flipped to
subvert Write Xor Execute protections [55] to make code
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injected in the stack executable [36]. Such security-critical
metadata also exist in Page Tables of other ISAs like ARM,
as shown in Table II.

Protections for page tables from Rowhammer exploits
should prevent tampering of not only the PFNs, but also
other critical metadata in PTEs.

D. Threat Model

We focus on privilege escalation exploits via bit-flips in
PTEs. Our threat model assumes an adversary with the capa-
bility to execute code in user-level privilege on a target system
with DRAM vulnerable to Rowhammer. The adversary can
target any part of a page table and cause any number of bit-
flips. We assume the kernel code is trusted and runs correctly.
We focus on client devices like mobiles, laptops, and desktops
that lack ECC and often use highly vulnerable LPDDR4 and
DDR4 DRAM [27].

Our threat model excludes other targets requiring very
precise flipping of bits, like op-codes in sensitive applications
(e.g. sudo binaries), as systems can detect and protect against
such attacks, as we discuss in Section VIII-A. We exclude
Rowhammer-based confidentiality breaches [32] as sensitive
data could be encrypted. We also exclude fault-injections with
physical attacks and on-chip tampering as they are orthogonal.

E. Limitations of Prior Page Table Protections

Prior solutions that try to make the page table resilient
to Rowhammer bit flips unfortunately do not provide full
coverage and face the following limitations:

1) Limited Protection of Specific PTE Fields: Monotonic
pointers [58] prevents Rowhammer bit-flips in PFNs from
causing a PTE to reference itself. As bit-flips are uni-
directional, i.e., cells either have 1→0 bit-flips (true cells)
or 0→1 (anti cells), it places page tables on true cells above
a watermark in memory, so that all user pages are at lower
addresses. Thus, a PFN with a bit-flip (1→0) cannot point
to a page table. However, it still allows bit flips in PTE
fields like user-accessible or memory protection key bits,
which can still be tampered to allow exploits.

2) Detection of Only Few Bit Flips: SecWalk [50] uses error-
detection codes (EDC) stored in each PTE to detect bit-
flips during virtual-to-physical translation. However, with
limited space within a PTE, SecWalk is only able to store
a 25-bit EDC, which can only detect up to 4 bit flips in
a PTE. Moreover, as the EDC is not cryptographic, it is
vulnerable to attacks which surgically inject bit-flips that
can fool the error detection, similar to ECCploit [10], which
showed Rowhammer exploits on ECC-protected memory.

3) Refreshing PTE rows via Software Tracking: Soft-
TRR [63] is a recent proposal that proposes software-based
tracking of row activations for the rows that store PTE lines
and issuing mitigations. Essentially, the difference between
hardware-based TRR and Soft-TRR is that the software
is responsible for tracking and doing the mitigation –

so, the design has the same vulnerabilities as TRR. In
particular, the mitigation would be vulnerable to Half-
Double (bit-flips at a distance of two) and the efficacy of the
scheme depends on accurate estimation of the Rowhammer
threshold (using modules with lower threshold would break
the scheme). Thus, the system continues to be vulnerable
to breakthrough attacks on PTEs, even in the presence
of SoftTRR. Moreover, this requires support from the OS
vendors which is undesirable.

F. Goal: Low Cost Detection of All PTE Bit-Flips
Our solution must detect arbitrary DRAM bit-flips in page

tables regardless of the PTE field that is targeted, i.e., PFN
or metadata. Additionally, to be suitable for client system, we
seek a solution that incurs negligible storage and slowdown.

We observe that message authentication codes (MACs)
provide guaranteed detection capability. Unfortunately, associ-
ating MACs with PTEs typically incurs high performance or
storage penalties. A 64-bit MAC for a 64-Byte PTE cacheline
incurs a 12.5% storage overhead. Furthermore, storing MACs
for PTEs in a separate memory region, like in Intel SGX [18],
doubles memory accesses for Page Table Walks (one for PTE
and one for MAC), causing slowdown. Our goal is to provide
guaranteed protection of page tables against Rowhammer at-
tacks with minimal overheads and no OS changes. We discuss
our evaluation methodology before describing our solution.

III. EVALUATION METHODOLOGY

We use the gem5-v20 [34] simulator and run full-system
simulations with Ubuntu v18.04 OS. We use an in-order core
for faster Gem5 simulations, so our reported slowdowns are
pessimistic – they will only be lesser with a more accurate
out-of-order core model. We use x86 64 cores, although
our evaluations are applicable to other architectures. For our
evaluations, we use a OS page size of 4KB, since larger page
sizes would only reduce the slowdown by reducing frequency
of page-table-walks. Table III shows our system configuration.

TABLE III
BASELINE SYSTEM CONFIGURATION.

Core In-Order, 3 GHz, x86 64 ISA.
TLB 64 entry, fully associative
MMU cache 8KB, 4-way
L1-I/D cache 32KB, 8-way
L2 / L3 cache 256KB / 2MB, 16-way
DRAM 4GB DDR4

We compare the performance of PT-Guard versus an un-
protected baseline for 20 SPEC CPU-2017 [2] (all integer and
floating point benchmarks except gcc, blender, and parest)
workloads with ref input dataset and 5 GAP [45] workloads
(graph algorithms) with the USA-road dataset. Thus, we eval-
uate on memory-intensive workloads like GAP, xalancbmk,
lbm, and fotonik with LLC-MPKI of more than 10 as well as
regular workloads. For each workload, we use KVM to fast-
forward the execution to a representative region and perform
a timing simulation for 1 billion instructions.
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IV. INTEGRITY PROTECTION WITH PT-GUARD

In this section, we describe the design and implementation
of PT-Guard’s integrity protection for PTEs.

A. Overview of PT-Guard

PT-Guard detects tampering of page tables in DRAM by
embedding a MAC, which is a cryptographic signature, within
the PTE cacheline, and verifying the MAC before using the
PTE. To do so, we must store the MAC without any storage or
access overheads and without relying on ECC memories, as
we focus on resource-constrained client systems. Moreover,
the hardware needs to know which lines to protect without
help from the software and verify the integrity of such lines
to detect tampering. Finally, the hardware must remove any
metadata like the MAC before forwarding the PTE line to the
OS or the TLB to ensure correctness and compatibility with
software. Our design solves these challenges as follows:
• We store the MAC within the PTE line by leveraging the

unused bits in the PTEs, obviating the DRAM access and
storage overheads for the MAC.

• On DRAM writes, we embed the MAC in all lines that
match the PTE line’s pattern, specifically lines that have the
unused bits corresponding to the MAC bits as zero. Thus,
the MAC is placed in all PTE lines and some data lines.

• We perform integrity checks on all hardware-assisted page
table walks to provide strong tampering detection for PTEs.

• On reads from DRAM, we ensure that the MAC is removed
before forwarding any protected line to the cache hierarchy
and TLB, ensuring no software or TLB changes are required.
Moreover, our design also handles the rare cases of MAC

collisions wherein the computed MAC matches the data bits
in the cacheline by tracking such lines in a Collision Tracking
Buffer (CTB) and consulting the CTB on data reads. Finally,
we describe our design in the presence of bit flips and how it
ensures security and correctness guarantees.

FlagsPFN
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PTE7

Embed 96-bit MAC

Flags0PFN0

PTE0

Integrity-Protected PTE CachelineDRAM

…

Memory Controller

Core and Caches
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PTE Cacheline

PTE Cacheline Flags7PFN7

…

MAC1/8MAC1/8

Fig. 4. Design overview of PT-Guard’s integrity protection mechanism: A
MAC is embedded in the PTE cacheline by pooling the unused PFN bits.
On a page table walk, tampering is detected by the memory controller as a
mismatch between stored and computed MACs.

B. Opportunistically Embedding the MAC in Cachelines

PT-Guard eliminates DRAM access and storage overheads
for the MAC by embedding it within the PTE cacheline, as
shown in Figure 4. We observe that there is considerable
unused space in the Page Frame Numbers (PFNs) in PTEs
which can be re-purposed for the MAC. Both ARMv8 and
x86 64 provision 40-bit PFNs, supporting physical memory
sizes up to 4 PB, as shown in Tables I and II. But client
systems typically only use a fraction of the PFN bits, as they
use much less memory. Even with a physical memory size of
1TB (28 PFN bits), there are 12 unused bits per PFN. With
a 64 byte cacheline, it is possible to pool the unused bits
among the 8 PTEs (8 bytes each) in a cacheline and obtain
12 ·8 = 96 bits to store a 96-bit MAC computed over all PTEs
in the cacheline. The MAC is fetched implicitly as part of the
PTE cacheline on DRAM access and incurs no extra storage
in memory and no extra accesses.

PT-Guard selects protected lines (where we embed the
MAC) by performing a bit pattern match at the time of DRAM
writes with a pattern of 96 zeroed out bits that correspond to
unused PFN bits (in PTE lines). Note that the 96 specific bits
are zeroed out by the OS when initializing the PTE. For each
protected line, the MAC is embedded in these 96 bits at the
time of DRAM writes, thereby protecting all PTE lines and
some regular data lines that happen to match the bit pattern.

C. Performing Integrity Check and Removing the MAC

PT-Guard performs integrity checks on all hardware-assisted
page table walks to provide strong tampering detection for
PTEs. When a PTE is accessed from DRAM, the MAC is
recomputed and verified with the stored MAC. Note that the
MAC is computed over all PTEs in a cacheline, including
the PFN, memory attributes like protection keys, and flags for
each PTE, providing complete protection for all PTE fields.
Any integrity failure on a page table walk is reported to the
OS as an exception, thus thwarting Rowhammer attacks on
page tables. Moreover, the line is not forwarded to the caches,
ensuring that the TLB never consumes faulty PTEs.

In the absence of bit flips, on all DRAM reads, PT-
Guard ensures that the MAC is removed before forwarding
a protected line to the caches and TLB. For page table
walks, this is straightforward, and the MAC is removed after
verifying the PTE line’s integrity. This ensures the MAC and
the modified PTE format is invisible to the OS, caches and
TLB, ensuring compatibility with commodity software. On
regular data reads, the MAC is computed and compared against
the bits corresponding to the embedded MAC, with a MAC
match indicating that the MAC was indeed embedded in the
line. In case of a MAC mismatch, on regular data reads, we
keep the cache line unchanged (no changes to the bits where
we assumed the MAC was present) when it is forwarded to
the caches, as this pertains to non-protected lines.

D. Detecting and Handling MAC Collisions on DRAM Reads

There is a chance that, on DRAM reads, the data bits
in a non-protected line (where we did not embed a MAC)
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happen to match with the computed MAC over the line,
although it is highly unlikely (probability of 2−96 with 96-bit
MAC, which would occur approximately once every trillion
years of continuous writes). We term such lines as colliding
lines. In such cases, removing the MAC due to a match
would violate correctness as data is erroneously modified
instead of removing a MAC. To identify and track such lines,
we provision a small buffer in SRAM, termed as Collision
Tracking Buffer (CTB). On every DRAM write, the memory
controller checks if the MAC computed on the line matches
with the bits already present in the data, to identify colliding
lines, and in case of a match the line address is stored in
CTB. On DRAM reads, if the line address is present in the
CTB, the data is forwarded directly to the caches, without any
modifications, ensuring correctness even for colliding lines.

E. Behavior on DRAM Reads in the Presence of Bit Flips

In the presence of bit flips, for DRAM reads of protected
lines which are regular data, the recomputed MAC would
not match the embedded MAC. As we forward the line as-
is for in such cases, the program would consume erroneous
data values. But this case is no different than in the baseline
processor design, wherein the program consumes erroneous
data values on bit flips. Therefore, in such cases, PT-Guard
does not introduce any new failure modes. We note that PT-
Guard is not designed to protect regular data from bit failures.
Finally, although OS reads of PTE lines with bit flips are not
explicitly identified by PT-Guard, the OS can simply perform
a bounds check on the PFN to detect integrity failures, as the
presence of the MAC in the PTE would likely cause PFN to
exceed the physical memory limit.

isPTE bit

MMU

TLB Page-
Table 

Walker

Miss

Cache Memory Controller

Write QRead Q

MAC Computation
Engine

Entry

DRAM

PT-Guard

PTE access source

PTECheckFailed bit

Req. Bus

Resp. Bus

CPU

Fig. 5. Implementation of PT-Guard: Memory controller inserts MAC on
DRAM writes and verifies PTE integrity on page table walks.

F. Implementation of PT-Guard

Without loss of generality, we use x86 64 page table format
for PT-Guard, but the principles apply to ARMv8 or any
other ISA. While we protect all page table levels (e.g., PML4,
PDPTE, PDE and PTE in x86 64), we use the PTE structure to
illustrate our design for simplicity. PT-Guard is implemented
at the memory controller as it serves DRAM requests to
the memory management unit (for PTE accesses on page
table walk) as well as the caches (for OS accesses to PTEs).
Our solution works with commodity DRAM as we make no
changes to the memory module or interface.

Tagging memory accesses due to page-table walks: PT-
Guard needs to identify if the memory request is due to
TLB miss, as such accesses are guaranteed to undergo a
MAC check. To identify requests emanating from TLB misses,
we add the isPTE bit (shown in yellow in Figure 5) in
the request bus of the caches and the memory controller,
as well as the memory controller’s read queue. Furthermore,
to notify the core about integrity check failures, we add a
PTECheckFailed bit to the response bus of the cache and
the memory controller (shown in red in Figure 5).

Insertion and removal of MAC: On DRAM writes, the
MAC is computed using all the bits corresponding to protected
bits in the PTE cacheline as shown in Table IV. It is embedded
if the 96-bit corresponding to higher PFN bits of the line
are zeroed out (a protected line). On every DRAM read, the
MAC is computed and checked against the stored MAC. The
isPTE bit in the read queue indicates a page table walk and
if the MAC does not match, the memory controller sets the
PTECheckFailed bit in the response bus. For all protected
lines where the MAC matches, the MAC bits are zeroed out
and the line is forwarded to the cache hierarchy.

TABLE IV
BITS PROTECTED BY THE MAC IN THE PTE. M IS THE NUMBER OF BITS

OF THE MAXIMUM PHYSICAL ADDRESS.

Bits Description Protected?
8 : 0 Flags Yes (except accessed bit)

11 : 9 Programmable Yes
(M-1) : 12 PFN Yes

39 : M Ignored (Zeros) -
51 : 40 MAC (1/8th portion) -
58 : 52 Ignored (Zeros) -
63:59 Prot. Keys/ NX Flag Yes

Handling integrity failures: If the MAC does not match
on a page table walk, the memory controller sets the
PTECheckFailed bit in the response bus. The caches do
not install the line and propagate the PTECheckFailed bit
to the core, and the CPU raises an exception to be handled by
the OS.As we do not forward the PTE line in case of a MAC
mismatch, erroneous PTE values cannot be consumed by the
CPU even under speculative execution. For other reads, the
data is sent to the caches without removing the MAC, which is
no worse than consuming erroneous values due to bit flips. For
OS accesses to faulty PTEs, presence of MAC in higher PFN
bits allows the OS to detect integrity failures by performing a
bounds check on the PFNs of the PTEs of the cache line.

Handling MAC collisions: The memory controller contains
a 4-entry (20-byte) Collision Tracking Buffer (CTB) to track
line addresses for which the computed MAC matches with the
data bits on DRAM writes. The CTB is consulted on DRAM
reads and any colliding line is forwarded to the cache hierarchy
without MAC checks. If the CTB fills up2, the system can
resort to re-keying (update the MACs in memory gradually
with a new key) to prevent further collisions [43].

2The likelihood of one colliding line is 2−96. The likelihood that a system
of 1 billion lines (64GB) has 4 colliding lines is approximately 2−350, roughly
1090 years. In the event CTB fills up, re-keying can avoid these colliding lines.
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MAC Algorithm: While PT-Guard is compatible with any
MAC algorithm, we construct the MAC using QARMA-
128 [4] (Q), a low-latency cipher with a 128-bit input and
output, and a secret key in the memory controller. We divide
the PTE cacheline into four 16 Byte chunks, {Ci : i ∈ [1, 4]},
using zeros in the cacheline for the unprotected bits. We first
compute Q for each 16 Byte chunk (Ci) combined with the 16-
byte address (Ai): {Qi : Q(Ci ⊕Ai) | i ∈ [1, 4]}. To produce
a 128-bit MAC (X), we compute X = Q1 ⊕Q2 ⊕Q3 ⊕Q4.
Finally, we drop the upper 32 bits to generate a 96-bit MAC.

MAC Computation Overheads: We use an 18 round
QARMA-128 cipher [4] that uses a 256-bit key (32 bytes of
SRAM). The latency for the MAC computation is equivalent to
1 × QARMA cipher latency and latency of 3 XORs. QARMA-
128 (18 round) has a latency of 3.4ns in 7nm technology [4].
So a MAC computation latency of 3.4ns (approximately 10
CPU cycles at 3GHz) is incurred additionally for each DRAM
access requiring MAC checks. The MAC computation circuit
requires approximately 280,000 gates (0.015mm2), dominated
by the 4 pipelined QARMA encryptors (70,000 gates each) [4].

G. Security Analysis

The security goal of PT-Guard is to detect arbitrary Row-
hammer bit-flips within page tables. PT-Guard achieves this by
enforcing the invariant that no PTE cacheline with bit flips is
ever consumed on page table walks. Thus, the attacker can
never use the tampered PTE translation and cannot mount
privilege escalation attacks. This invariant is guaranteed if the
following properties are satisfied:

1) MACs are inserted and checked for all page table walks:
We assume the kernel code is trusted and runs correctly. Thus,
all PTEs being written have their higher PFN bits zeroed out,
ensuring the bit pattern match succeeds and MAC is inserted
for all PTE lines. Moreover, all page table walks are tracked
in hardware and on-chip components are assumed to be free
from tampering. The MAC is embedded in the PTE cacheline
for the entire duration the PTE is off-chip: it is inserted when
the PTE leaves the memory controller and is written to DRAM
and verified on all page table walks.

2) The MAC provides strong tampering detection: We use
128-bit QARMA, a standard block cipher, to construct a 96-bit
MAC. Such MACs provide the property of uniformly random
hash values for different data values. An n-bit MAC has a
collision probability of 2−n. Assuming a DRAM access takes
50ns and we encounter a bit flip on every DRAM access, the
time needed for a successful attack exceeds 1014 years.

Denial-of-Service (DoS): When bit flips in PTEs are de-
tected, PT-Guard raises an exception to the OS, which may
terminate the program. An adversary might exploit this to
inject bit flips in the page table of another process and cause
it to be repeatedly killed by the OS. PT-Guard’s exception
mechanism allows the OS to take steps to alleviate potential
DoS and performance degradation attacks. The OS can remap
the row experiencing bit flips to a different physical row, run
the program in a more isolated environment, or terminate the

program resident in the aggressor row to prevent malicious
behavior. Note that the availability properties provided by
our design is similar to those from prior integrity protected
schemes, such as SGX [18] and SafeGuard [14].

Known-plaintext attack on the MAC: An attacker can
obtain the MAC corresponding to arbitrary data by writing
that data in a line while zeroing out the bits corresponding
to the MAC bit-pattern match, which results in PT-Guard
embedding a MAC in a regular data line. Then, it hammers
these lines to induce bit flips resulting in MAC mismatch, and
the line, with the MAC embedded in it, is thereby forwarded
to the attacker. Thus, the attacker obtains a MAC for any
arbitrary data value (at a particular physical address, as that is
an input to the MAC) that is written by the attacker. This is
not a security concern as MACs are resilient against known-
plaintext attacks [4]. Even with the knowledge of the MAC
corresponding to a faulty PTE (such that it would lead to a
successful privilege escalation exploit), an attacker would need
to place the PTE line at the same physical address and flip
approximately 50% of the MAC bits (48 bits) precisely for
the integrity check to succeed, which is infeasible.

H. Results: Slowdown with PT-Guard

We evaluate the performance of PT-Guard under the
common-case operation where detection of bit-flips is re-
quired. Figure 6 (top) shows slowdown for PT-Guard normal-
ized to a baseline without integrity protection, and the LLC
misses per thousand instructions (MPKI) for each workload
is shown in Figure 6 (bottom). Across 25 SPEC and GAP
workloads, PT-Guard incurs an average slowdown of 1.3%.

The slowdown for each workload is proportional to the LLC
MPKI, as each DRAM read incurs an additional delay of 10
CPU cycles (at 3 GHz) in PT-Guard for MAC computation.
Workloads with high MPKI (above 20) suffer the most slow-
down – xalancbmk incurs the highest slowdown of 3.6%
with an LLC MPKI of 29. On the other hand, lower MPKI
workloads (below 5) have negligible slowdown (less than 1%).

In the next section, we discuss optimizations to further avoid
the MAC computation overheads on most DRAM reads.

V. OPTIMIZATIONS TO MINIMIZE MAC OVERHEADS

PT-Guard requires a MAC computation on all DRAM reads,
to check for an embedded MAC within the accessed cache line.
To avoid MAC computations when the MAC is not embedded,
we propose simple optimizations using identifiers to track
protected cache lines where the MAC is embedded in the line.

A. Avoiding MAC Computations using Identifiers

Ideally, we seek to perform MAC computations only on
page table walks and avoid them on data cache line accesses
without an embedded MAC. So we extend the bit pattern
match (which checked for 96-bits of zeros in the PFNs to
indicate a PTE cache line) to include 56 reserved bits in the
PTE cacheline (bits 58:52 per PTE in Table I), which are
zeroed out by the OS. When this extended bit pattern of 152
bits (96 unused PFN bits and 56 reserved bits) matches all
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Fig. 6. PT-Guard’s IPC normalized to unprotected baseline and LLC Misses Per-Thousand Instructions (MPKI) for different workloads. IPCb refers to
baseline IPC. GMEAN and AMEAN denote geometric and arithmetic mean, respectively. PT-Guard suffers a 1.3% average slowdown, due to latency of MAC
computation (10 CPU cycles) on memory accesses. The slowdown increases with LLC MPKI and memory-intensive workloads incur higher slowdown.

zeros on DRAM writes, in addition to embedding the 96-bit
MAC in the unused PFN bits, we add a predefined 56-bit
random value, termed as the identifier, in the reserved bits.

With this, the number of DRAM reads requiring MAC
computations reduce drastically, as (1) on data writes, fewer
data lines have a MAC inserted, as fewer data lines match
with the extended bit pattern of 152 zeroed bits compared to
the original 96 bit pattern, and (2) on DRAM reads, a MAC
computation is only needed when the bits corresponding to the
reserved bits match the identifier. After a MAC check passes,
the identifier and the MAC are both removed before PTE or
data is forwarded to the caches.

The addition of the identifier does not affect the security
guarantees of PT-Guard. Page table walks always have MAC
checks to detect tampering irrespective of the identifier value.
For regular data reads, an adversary flipping bits in the
identifier to skip a MAC check is similar to bit flips in regular
data without the MAC, and thus PT-Guard provides security as
good as baseline for regular data, as discussed in Section IV-E.
Unlike lines with MAC collision, data lines with identifier
collision (once in 256 trials) are not tracked as PT-Guard does
not embed a MAC on writes and forwards their data on reads.

B. Avoiding MAC Computation for Zero-Cachelines

We observe that cache lines containing all-zeros frequently
match the extended bit pattern and therefore incur MAC
computation upon reads. Since zero cachelines are quite com-
mon, we pre-compute a common MAC for zero-cachelines,
MAC-zero (without using the address input), and store this
MAC-zere value in the memory controller. On DRAM writes
containing a zero cacheline, MAC-zero is embedded in it along
with the identifier. On DRAM reads with an identifier match,
if the MAC bits match with the pre-computed MAC-zero,
and the rest of the line is zero, this implies a MAC match
and the MAC bits are removed without incurring the MAC
computation latency. This further avoids MAC computations
for zero-cachelines.

C. Results: Slowdown for PT-Guard with Optimizations

Avoiding the unnecessary MAC computations on DRAM
data reads with these optimizations improves performance of
PT-Guard. Figure 7 shows the slowdown for the Optimized
PT-Guard normalized to a baseline without integrity, and
compared with the original PT-Guard design. Across 25 SPEC
and GAP workloads, Optimized PT-Guard incurs an average
slowdown of 0.2% (for a default MAC latency of 10 CPU
cycles at 3 GHz). Crucially, the maximum slowdown reduces
to 0.4% for the xalancbmk workload. Thus, Optimized PT-
Guard protects PTEs from tampering while eliminating the
MAC computation overhead for most non-PTE lines.
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Fig. 7. Normalized performance (average and worst-case) for PT-Guard and
Optimized PT-Guard as MAC computation latency varies from 5 to 20 cycles.

D. Sensitivity to MAC Computation Latency

Our default latency for MAC verification is 10 CPU cycles
(at 3 GHz). Figure 7 shows slowdown for PT-Guard and
Optimized PT-Guard as the MAC computation latency varies
from 5 to 20 cycles. For PT-Guard, the average slowdown
across all workloads varies from 0.7% (5 cycles) to 2.6% (20
cycles) with varying MAC latencies. So, lower latency MACs
can further improve PT-Guard performance. For Optimized
PT-Guard, the average slowdown remains below 0.3% despite
varying MAC latency, as the MAC computation latency is
incurred for < 2% of DRAM reads.
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E. Storage and Power Costs

PT-Guard incurs no DRAM storage as the MAC is embed-
ded within the PTE cacheline, and requires 52-bytes of SRAM
in the memory controller: 20-bytes for the CTB, and 32-
bytes for MAC cipher’s key. Optimized PT-Guard additionally
requires 7-bytes for the identifier and 12-bytes for MAC-zero,
requiring total SRAM storage of 71-bytes, which is negligible.

The MAC computation energy with 15nm gates is about
1.6 nJ [6], but as MAC computations are needed for a
negligible fraction of DRAM accesses (< 2%) with Optimized
PT-Guard, the overheads are negligible compared to DRAM
access energy. The bit-pattern matching involves simple XOR
operations with negligible energy consumption. Overall, PT-
Guard incurs negligible power and storage costs.

VI. BEST-EFFORT CORRECTION WITH PT-GUARD

PT-Guard provides principled detection of arbitrary DRAM
bit flips in the page table. PT-Guard can also enable best-effort
correction of PTE bit-flips unlike prior works [50], [58], that
only provide limited detection and no correction.

Our key insight enabling correction is that a strong MAC has
a vanishingly small collision probability; so if a guess for the
PTE value causes the MAC to match, it must be the correct
PTE value. On a page-table walk, when an integrity failure
is detected, the hardware-based correction mechanism in the
memory controller makes multiple guesses for PTE values
and checks for a MAC match. If MAC matches, the faults
in the PTE cacheline are transparently corrected. While prior
works [20], [25], [46] also used MAC for error correction,
we additionally leverage PTE value locality observed in real
systems for efficient correction guesses.

Bit-flips in PTE cachelines can occur in PFNs and flags
of PTEs or even the MAC and the identifier. As all PTEs
accessed in page table walks should have a known common
identifier, bit flips in the identifier can be trivially corrected
and we do not discuss it any further. We show how to construct
a fault-tolerant MAC in Section VI-C. In this section, we
discuss how we correct single bit-flips in PTEs (Section VI-A),
bit-flips in PTE PFNs and Flags, based on insights from
page table values on real systems (Section VI-B), bit-flips
in the MAC (Section VI-C), the overall correction algorithm
(Section VI-D), and its security impact (Section VI-E).

A. Tolerating Single Bit-Flips in PTE Cacheline

Experimental studies [27] note that Rowhammer has bit-
flip probabilities of 1% – 0.2% per bit in the worst-case. For
a cacheline of 512 bits, the most common case is a single bit-
flip in the PTE cacheline. To correct single bit-flips, we use
a Flip and Check algorithm similar to prior works [20], [46]:
for each protected bit in the cacheline, we flip it and check if
the MAC matches. We stop if the MAC matches; if the MAC
does not match after (protected bits per PTE)×8 guesses, we
move to the next correction step.

B. Correcting PFN & Flags: Real System Insights

Multiple bit-flips per PTE cacheline are common at higher
bit-flip probabilities like 1%. For correcting such bit-flips, we
make guesses for the correct values of the PFNs and Flags and
check if the MAC matches. To make insightful guesses, we
analyze the PFN and Flag values in page tables of processes
in real systems. We use x86 64 systems with different Linux
kernel versions (5.11 and 5.15) and DRAM sizes (16GB
and 44GB) and create a realistic usage scenario by running
applications like web browsers, email clients, and coding IDEs
along with usual OS services. We disable transparent huge
pages (the default on the system) to study the worst-case
behavior. Overall, we analyzed 623 processes with 24 million
PTEs. Higher page table levels make up less than 1% of entries
and so do not impact this analysis significantly.

Processes0%
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Fig. 8. Percentage of PTEs with Contiguous PFNs, Zero PFNs and Non-
contiguous PFNs for 623 processes (sorted by percentage of Contiguous
PFNs). Contiguous PTEs make up 23.73% (n = 623, σx̄ = 0.004) and
Zero-PTEs make up 64.13% (n = 623, σx̄ = 0.006) out of all PTEs.

Figure 8 shows the distribution of PFN values in PTEs of
623 processes. We split the PTEs into three categories: those
with Contiguous PFNs where the PFN is ±1 of neighboring
non-zero PFNs, Zero PFNs where the PTE is all zeros and
other Non-Contiguous PFNs. We now discuss our insights and
strategy for generating guesses.

Insight-1: Large majority of PTEs are Zeros. We observe
that 64.13% (n = 623, σx̄ = 0.006) of all PTEs have Zero-
PFNs, and zero flags. Even if only one PTE is valid, a whole
page table page is allocated, which is why a large number of
PTEs are zeroed out in a page table page.

Guess Strategy 1: Set Almost-Zero PTEs to Zero. If a
PTE only has a few bits set, it is likely a zero-PTE, and
we guess its value as zero.

Insight-2: PFNs values are highly contiguous. We check
for contiguity in PFNs of PTEs with their nearest non-zero
neighbors within the same cacheline. On average, we observe
23.7% of PTEs have contiguous PFNs (±1 of their non-zero
neighbors), in line with prior observations [39], [40].

Guess Strategy 2: Enforce Contiguity in PFNs. We
assume one of the PFNs is correct (base) and guess others
as ±1 of their adjacent PFNs starting with the base.

Insight-3: Flags have significant uniformity. Contiguous
virtual pages often have similar memory attributes and prop-
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erties. We analyze whether flag values are the same among all
the non-zero PTEs within a PTE cacheline. For each flag, more
than 99% of the PTE cachelines have the same flag value.

Guess Strategy 3: Majority Vote for Flags. We conduct
a majority vote among flags of non-zero PTEs and use it
as the guess for all non-zero PTEs in the PTE cacheline.

C. Tolerating Bit-flips in MAC

Our correction scheme relies on a MAC that tolerates errors.
PTE tampering typically changes approximately 50% of the
bits in the computed MAC, while faults typically modify the
MAC by only a few bits. We expect, on average, only 1 bit
flip in the MAC at pflip = 1% (comparable to LPDDR4).
To tolerate a 1-bit fault in the MAC, the integrity verification
can permit a soft match of MACs if the hamming distance
between the computed and the stored MAC is ≤ 1 bit. The
security loss is minimal as the probability that the MAC of a
tampered PTE is within 1 hamming distance of the original
MAC is negligibly small.

To tolerate up to k-bit faults in the MAC, the check passes
if the computed and stored MACs are within k Hamming
distance of each other. As long as k ≪ n, the resultant security
loss due to the soft matching MAC is small. We provide an
analytical model for the security loss in Section VI-E and
show that with a 96-bit long MAC, tolerating up to 4 bit
faults covers >99% of MAC errors for pflip = 1%, while
ensuring a security equivalent to a 66-bit MAC (probability
of attack escaping detection, pescape = 2−66). This MAC
provides security for more than 10,000 years.

D. Hardware-based Correction Algorithm

We propose our hardware-based correction algorithm. For
correcting faults in the PTE cacheline, each correction attempt
involves making a guess for the correct value of the PTE
cacheline and a check for whether the computed MAC soft
matches with the stored MAC. We perform each of the
following steps in order and do a soft-match with the MAC:

1) Check for Errors in MAC: We retry MAC match with soft
match instead of exact match. (Guess = 1)

2) Flip and Check: We flip each bit in PFN and Flags per
PTE in the cacheline. (Guesses = (28 + 16) · 8 = 352)

3) Reset Zero-PTEs: For PTEs with ≤ 4 bits set, we use them
as 0-PTEs. Subsequent guesses also use these PTEs as 0-
PTEs. (Guesses = 1)

4) Majority Vote in Flags We do a bitwise majority vote for
flags and use it for all PTEs. (Guess = 1)

5) Contiguity in PFNs: We do a majority vote for top 20
bits of the PFN, and check. Then we enforce contiguity
in bottom 8 bits, by assuming one PFN is correct and
reconstructing the other 7 PFNs. (Guesses = 9)

Since the PFN and flags bits are independent, we perform
steps (4) and (5) independently and together, taking the total
guesses to 18. Combined with steps (1), (2) and (3), the
hardware makes a maximum of 372 guesses (Gmax). Note

that the probability of miscorrection is negligible as that is
equivalent to MAC collisions. If all guesses fail, the memory
controller raises an exception for a PTE integrity failure to the
OS, as described in Section IV-F.

E. Security Impact of Hardware-based Correction

The security of the MAC with hardware-based correction is
impacted by (a) number of faults tolerated in the MAC, and (b)
maximum number of guesses performed for correction. As we
tolerate up-to k bit-faults in stored MAC due to soft matching,
MAC verification passes if the hamming distance between the
stored and computed MACs is ≤ k. A tampered PTE can
escape detection if the MAC computed on the tampered PTE
is within a hamming distance ≤ k of the stored MAC.

The MAC values which are exactly at h hamming distance
from the stored MAC have h bits different from the stored
MAC. So, the number of such MAC values (Mh) at h
hamming distance from the stored MAC is Mh = nCh. So,
the probability that the MAC for the tampered PTE lies within
k hamming distance is pk = pcollision ·

∑h=k
h=0 Mh (where

pcollision = 2−n). Moreover, the probability pk exists for
each correction guess. After the maximum number of guesses
Gmax, the probability of a PTE tampering escaping detection
(pescape) is Gmax · pk, which evaluates to,

pescape =
Gmax × (

∑h=k
h=0

nCh)

2n
(1)

The effective security of the MAC is now equivalent to
an neff bit MAC where, neff = −log2(pescape). We call
n− neff the Loss of Security in the MAC due to correction.
We pick the lowest value of k that makes the percentage of
uncorrectable errors in MACs (more than k errors in MAC)
below 1%. For a bit-flip probability of pflip, the probability
of > k bit-flips in an n-bit MAC, puncorrectable, is given by:

puncorrectable =
n∑

i=k+1

(nCi)(pflip)
i(1− pflip)

n−i (2)

For LPDDR4 with worst-case pflip ≈ 10−2(= 1%) [27],
tolerating upto k = 4 bits of errors is needed to achieve <1%
uncorrectable errors in MAC (puncorrectable). The effective
security for MAC then becomes 66 bits, for which the time
for attack success is > 104 years.

Timing side channel at the memory controller: While the
fault-tolerant MAC is sufficient for integrity protection, cor-
rection requires additional delay during DRAM reads for the
faulty PTE, potentially revealing to an adversary the successful
correction step through a timing side channel. The adversary
can then learn properties about the PTE’s contents, such as
existence of zero-PTEs and contiguity in PFNs. However, this
not secret information (since offline profiling of an application
can also reveal these properties) and the actual contents are
not leaked, so there are no security implications.
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F. Effectiveness of Best-Effort Correction

For the scenario under attack, we evaluate the detection and
correction capability of PT-Guard. We perform this analysis
by extracting execution traces of Page Table Walks accessing
memory controller from gem5 for different workloads. For
each PTE cacheline obtained from DRAM, we flip each bit
with a uniform probability of pflip to simulate fault injections.

We protect 28-bit PFNs and 16 flag bits in each PTE as
described in Table IV, tolerate up to 4-bit errors in the MAC,
and reset up to 4 bits for an almost-0 PTE. We simulate 126
million PTE accesses across SPEC and GAP workloads and
detect all the faults injected resulting in 100% coverage.

Figure 9 shows percentage of PTE cachelines corrected
by PT-Guard for different bit-flip probabilities, pflip. For
pflip = 1/512 (close to worst-case probability of 0.1% under
Rowhammer for DDR4 [27]), we correct 93% of erroneous
PTE cachelines on average. For pflip = 1/128 (close to
the worst-case probability of 1% under Rowhammer for
LPDDR4 [27]), we correct 70% of erroneous PTE cachelines.
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Fig. 9. Percentage of PTE cachelines corrected for different probability
of bit-flip, (pflip). We show 4 SPEC-2017 and 2 GAP workloads and
average correction percentage. Overall, PT-Guard corrects 93% erroneous
PTE cachelines for pflip = 1/512 and 70% for pflip = 1/128.

VII. DISCUSSION

A. Design Choices for PT-Guard

PT-Guard aims to disallow consumption of faulty PTE
values by the hardware through integrity protection. Memory
encryption is a complimentary technique that primarily pre-
vents leakage of data and can be modified to protect page
tables. Unfortunately, it does not provide an authentication
mechanism (like a MAC match in integrity protection) to
confirm data integrity, which can result in frequent crashes
if bits flip in the page tables. Moreover, decryption of faulty
encrypted data produces meaningless values, while our design
allows for error correction capability for faulty PTEs.

PT-Guard uses a 96-bit MAC as the effective MAC security
decreases as we make the MAC resilient against more bit
errors in the MAC itself, as described in Section VI-E. This
provides us with a design choice: for example, if we forego
correction capability, the effective MAC security is the size
of the MAC itself (96-bit in our design), which enables
the system designer to opt for a smaller MAC (say, 64-bit)
that provides similar security as our design (albeit without
correction) while incurring lower MAC computation delay,
reducing PT-Guard’s performance overhead.

B. Collision-Tracking Buffer (CTB) Overflow Mitigation

Through a known-plaintext attack on the MAC as described
in Section IV-G, an adversary might mount a performance
degradation attack by generating colliding lines, as the MAC
can be obtained and embedded in a data line, causing the
CTB to overflow. However, colliding lines are a very strong
indicator of an ongoing attack as they are highly unlikely to
be generated naturally (once in 296 trials, cf. Section IV-F).
The hardware can inform the OS (through an exception) along
with the colliding line’s physical address for the OS to identify
(and kill) the offending process.

Even if the adversarial process is terminated, the CTB
cannot reset the corresponding entry unless a non-colliding
data value is written to that physical address. The OS can
achieve this by writing a benign data value to the address
after terminating the process. To avoid CTB overflow, the
CTB resorts to a full-memory re-keying (reading each line,
performing integrity check, and writing it back with a new
MAC key) when the 4 entries are filled up. While this
mechanism is slow, we emphasize that collisions are virtually
improbable in benign setting and OS intervention can prevent
an overflow in adversarial scenarios.

C. Slowdown of PT-Guard on Multi-core Systems

We rely on full-system gem5 simulations to capture PTE
accesses by the OS as this information is not available in
trace-based simulations or the system-call emulation mode
(SE). As this is computationally expensive to scale to multiple
out-of-order (O3) cores, we evaluate a system with four O3
cores in the Gem5 system call emulation mode (SE mode) and
model the baseline PT-Guard incurring the MAC latency on all
DRAM reads. We configure the memory-system similar to our
single-core simulations (cf. Section III). We use 16GB DDR4
and 1MB/core shared LLC. We run 18 SPEC2017-SAME (4
instances of the same workload) and 16 SPEC2017-MIX (4
randomly selected instances from 18 choices) workloads for
250Mn instructions after fast-forwarding by 25Bn instructions
(lbm and blender have LLC-MPKI over 10).

The average slowdown is 0.5% and worst-case slowdown
is 1.6% for 4 blender instances (SAME configuration). Our
overheads reduce due to two reasons: (i) the O3 core incurs
less stalls due to memory accesses and (ii) more cores create
higher contention at the memory channel, increasing memory
access time, thereby reducing the impact of a constant delay
of 3.3ns for PT-Guard’s MAC computation (compared to
the single-core baseline). Thus, PT-Guard incurs negligible
overhead on multi-core systems.

VIII. RELATED WORK

A. Alternative Targets for Rowhammer Exploits

Gruss et al. [16] tamper specific instructions in sensitive
binaries like sudo to achieve privilege escalation. Such
attacks require a precise injection of bit-flips in specific
instructions performing authentication checks, and precise
binary placement in memory requires continuous thrashing
of the page cache for multiple days. Thus, such attacks can
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be easily detected by the operating system and terminated,
unlike exploits on page tables, where bit-flips in any PTE are
sufficient, that are much harder to prevent.

SMASH [13] targets bit-flips in pointers stored in floating-
point formats specific to the Firefox browser. Flip Feng
Shui [44] breaks cryptosystems and authentication mecha-
nisms by flipping bits in sensitive cryptographic keys. RAM-
Bleed [32] leaks such sensitive data by inferring bit flips in
attacker rows due to victims located nearby. SMASH can be
mitigated using pointer authentication codes [41], provided by
ARM v8.3, which guarantees pointer integrity in hardware.
Attacks on cryptographic keys can be avoided by encrypting
the sensitive data [1] to render reading or flipping few bits
in cryptographic keys ineffective. PT-Guard is complementary
to such defenses as it provides integrity protection for Page
Tables and prevents Rowhammer exploits.

B. Hardware and Software Rowhammer Mitigation

Hardware Mitigations: Victim-focused mitigations refresh
neighbors of aggressors as a mitigation, either probabilistically
(PRA [26], PARA [29], MRLOC [61], ProHIT [53]), Pro-
TRR [35] or by counting row accesses (CRA [26], TRR [19],
CBT [52], TWiCe [33], Graphene [38], Mithril [28], Panop-
ticon [7], Hydra [42]). Unfortunately, such mitigations are
vulnerable to breakthrough attacks like Half-Double [30] that
exploit previously unknown access patterns to defeat commer-
cial and proposed mitigations relying on victim-refresh.

Blockhammer [60] is an aggressor-focused mitigation that
prevents Rowhammer attacks by rate-throttling aggressor row
accesses. It requires precise knowledge of Rowhammer thresh-
old and potential future breakthrough attacks, that lower the
Rowhammer threshold, may flip bits even in presence of
Blockhammer. Moreover, Blockhammer rate-throttling can de-
lay DRAM accesses by up to 20 microseconds, even in benign
settings. More recent aggressor row-migration schemes [48],
[49] incur low slowdowns but still rely on a predefined thresh-
old. In contrast, PT-Guard precisely detects Rowhammer
without relying on a threshold, providing principled protection
from Rowhammer attacks on page tables at virtually no cost.

Software Mitigations: ANVIL [5] tracks aggressor row ac-
cesses using performance counters and refreshes neighboring
victims as mitigation, but it is vulnerable to Half-Double [30]
attack. GuardION [57] uses one guard row between data of
different security domains, but a single guard-row is still
vulnerable to Half-Double. CATT [9], RIP-RH [8], and Ze-
bRAM [31] isolate different security domains in different
DRAM regions, but are vulnerable to implicit attacks like
PTHammer [62]. All such solutions require knowledge of the
DRAM internal row mappings that are currently not exposed to
software, which imposes feasibility challenges. In contrast, our
solution provides guaranteed protection against Rowhammer
exploits targeting page tables in a transparent manner without
any software changes, at negligible hardware storage costs and
negligible slowdown.

C. Defenses against Exploits on Page Tables

Monotonic pointers [58] uses true cells in DRAM (with
1 → 0 bit-flips) for page tables and ensures user pages are
at lower locations than page tables in DRAM. So PFNs for
user pages never point to page tables, preventing exploitation.
However, this does not provide any protection for other PTE
fields that may be tampered. Also, the authors acknowledge
true cells could flip in the opposite direction as well: “a small
probability that an error can go the other way due to circuit
effects like voltage coupling” [58], which could break down its
security in future as these effects worsen with DRAM scaling.

SecWalk only detects up to 4 bit-flips per PTE with error-
detection codes. Moreover, it can be broken by attacks like
ECCploit [10] that fool error detection codes.

In contrast, PT-Guard prevents Rowhammer exploits on
page tables, regardless of the number or location of bit-flips
in a cryptographic manner with MACs.

PT-Rand [12] randomizes page table locations in memory to
prevent SW-based memory corruption exploits in the kernel.
PT-Guard is orthogonal and prevents DRAM errors; together
they can protect page tables from SW and HW vulnerabilities.

D. Integrity Protection for Main-Memory

Integrity protection solutions for memory (Synergy [46],
IVEC [20], VAULT [54]) use MACs and integrity trees to
protect the entire memory against physical data tampering
and replay attacks. Such schemes also detect Rowhammeer
attacks, but typically incur a storage overhead of 12.5% to
store MACs and require extra DRAM accesses. VAULT [54]
co-locates the MAC in line with data using data compression
to avoid extra accesses for MACs but needs extra metadata
accesses to fetch compressibility information. Moreover, it
still incurs 12.5% storage overhead for MACs as data may be
incompressible. CSI [25] and Safeguard [14] store the MAC
for Rowhammer detection within ECC-chips to avoid extra
DRAM accesses (similar to Synergy [46]), but require the use
of ECC-memories (with 12.5% extra space) that is not used
in most client systems. In contrast, as PT-Guard is designed
specifically for PTE integrity protection, it can store MACs
within PTEs without any extra storage, in non-ECC memories,
and fetch the MAC without any extra DRAM accesses.

IX. CONCLUSION

Page tables are a prime target of Rowhammer exploits to
achieve privilege escalation. Currently, no guaranteed mitiga-
tion exists for Rowhammer, and defenses that harden page
tables against Rowhammer are not fully secure. In this paper,
we present PT-Guard, which provides strong tampering de-
tection in page tables and prevents privilege escalation attacks
transparently in hardware. We achieve this at ultra-low cost by
storing a MAC in line with PTEs, pooling the unused space
among PTEs in a cacheline, with less than 1.3% slowdown,
no DRAM overhead, and less than 72 bytes of SRAM in the
memory controller. PT-Guard can also correct PTE bit-flips,
correcting 70% – 90% errors at bit-flip probabilities of 1% to
0.2%, while ensuring security for thousands of years.
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