Repurposing Segmentation as a Practical LVI-NULL Mitigation in SGX

Lukas Giner
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center
for Information Security

Abstract

Load Value Injection (LVI) uses Meltdown-type data flows in
Spectre-like confused-deputy attacks. LVI has been demon-
strated in practical attacks on Intel SGX enclaves, and con-
sequently, mitigations were deployed that incur tremendous
overheads of factor 2 to 19. However, as we discover, on fixed
hardware LVI-NULL leakage is still present. Hence, to mit-
igate LVI-NULL in SGX enclaves on LVI-fixed CPUs, the
expensive mitigations would still be necessary.

In this paper, we propose a lightweight mitigation focused
on LVI-NULL in SGX, LVI-NULLIify. We systematically ana-
lyze and categorize LVI-NULL variants. Our analysis reveals
that previously proposed mitigations targeting LVI-NULL are
not effective. Our novel mitigation addresses this problem
by repurposing segmentation, a fast legacy hardware mecha-
nism that x86 already uses for every memory operation. LVI-
NULLify consists of a modified SGX-SDK and a compiler
extension which put the enclave in control of LVI-NULL-
exploitable memory locations. We evaluate LVI-NULLIify on
the LVI-fixed Comet Lake CPU and observe a performance
overhead below 10% for the worst case, which is substantially
lower than previous defenses with a prohibitive overhead of
1220% in the worst case. We conclude that LVI-NULLIify is a
practical solution to protect SGX enclaves against LVI-NULL
today.

1 Introduction

Transient-execution attacks, i.e., Meltdown [41], Spectre [34],
or ZombieLoad [52], are powerful microarchitectural attacks
for leaking sensitive data. These attacks are commonly classi-
fied into Spectre-type and Meltdown-type attacks [8]. Spectre-
type attacks [18,33,34,36,42] exploit that the transient instruc-
tions following a wrongly predicted branch are not committed
but still leave traces in the microarchitectural state.

With Load Value Injection (LVI), Van Bulck et al. [60]
presented a new type of transient-execution attacks related
to Meltdown-type attacks. Meltdown-type attacks trigger a

Andreas Kogler
Graz University of Technology

Claudio Canella
Graz University of Technology

Daniel Gruss
Graz University of Technology

faulting load in the attacker domain to transiently consume its
value, circumventing permission checks. LVI causes the fault
in the victim domain, making the victim transiently consume
a value from the attacker, i.e., LVI transiently injects data into
a victim.

Recent processors mitigate Meltdown-type attacks in sil-
icon [27], e.g., Comet Lake processors have no known
Meltdown-type vulnerability. As hardware defenses for
Meltdown-type attacks in general also mitigate the corre-
sponding LVI attacks, attackers cannot inject arbitrary data
into the victim domain. However, on several microarchitec-
tures, the hardware defense, instead of returning a value from
the victim domain, only zeroes out the value [7,60]. While
this prevents data leakage, it can be used as a side channel to
detect whether an address is valid, e.g., to break KASLR [7].
Even worse, this remains exploitable in an LVI attack variant,
namely LVI-NULL [60]. With LVI-NULL, the attacker can
still inject ‘0’ values into the victim domain.

The LVI paper showed the dangers of LVI-NULL in an
AES-NI attack, but the proposed defenses for LVI-NULL
have not been thoroughly evaluated [60]. While the software
workarounds for LVI also prevent LVI-NULL, they are costly,
and Intel suggests that developers “should determine the level
of software hardening that their environment requires, based
on risk analysis and an evaluation of the performance impacts
of mitigation” [29]. Potentially, every load instruction can
suffer from a fault, requiring memory fences for such instruc-
tions [60]. This also includes replacing certain instructions,
e.g., the return instruction, with sequences of other instruc-
tions [29, 60]. The worst-case overhead for these mitigations
on real-world workloads is between factor 2 and 19 [38, 60].
This raises the question whether these prohibitively expen-
sive defenses are still required on processors with hardware
mitigations against LVI just to defend against LVI-NULL.

In this paper, we propose a lightweight mitigation tailored
to LVI-NULL in SGX. Our mitigation, LVI-NULLifYy, is built
on a systematic analysis of LVI-NULL variants, yielding new
insights on the attack building blocks of each variant. In par-
ticular, we identify that four out of six variants rely on pointer

redirection to the null page. Based on our analysis and exper-
imental validation, we discover that LVI-NULL mitigations
proposed by Van Bulck et al. [60] are not effective.

The idea of LVI-NULLIfYy is to offset all memory accesses
performed within the SGX enclave relative to the start of the
enclave’s memory region. To implement this property, LVI-
NULLIify repurposes segmentation. Segmentation is a fast
legacy hardware mechanism on x86 that is used during ad-
dress translation for every memory operation. The first part of
LVI-NULLify is a compiler extension, which generates only
segment-relative data loads. Consequently, any ‘0’ injection
only loads data from the start of the enclave’s memory region,
which is under full control of the SGX enclave. The second
part of LVI-NULLIfy is a modified SGX-SDK that maintains
interoperability with the untrusted userspace program.

The security of LVI-NULLIfy relies on special preparation
of the enclave’s memory region, mitigating transient injection
of arbitrary values. LVI-NULLify marks the first pages in
the enclave’s memory region as non-executable. Transiently
executing non-executable memory leads to an immediate stall,
preventing any attack. LVI-NULLIify also marks these pages
as non-readable. We empirically validated that this immedi-
ately stalls the load and dependent instructions.

In our evaluation, we show that LVI-NULLIfy is extremely
lightweight, with runtime overheads below 10% in the worst
case. This is substantially faster than previous defenses
against LVI with a prohibitive overhead of 1220% in the worst
case in our tests. The memory overhead of LVI-NULLify
is around 21.5% on the code size due to the generation of
instruction sequences that explicitly use segmentation. We
illustrate that our mitigation is a practical solution to protect
SGX enclaves on hardware vulnerable to LVI-NULL but not
LVIL

To summarize, we make the following contributions:

1. We systematically analyze and categorize LVI-NULL vari-
ants, revealing common attack requirements, and insuffi-
ciencies of previously proposed defenses.

2. We propose, LVI-NULLIfy, a novel lightweight defense
against LVI-NULL in SGX, repurposing segmentation in
a peculiar fashion.

3. We evaluate the security and performance of LVI-
NULLify. We demonstrate that SGX enclaves on the LVI-
fixed Comet Lake CPU are only secure with our defense.
We observe a performance overhead below 10%.

Outline. Section 2 provides background. Section 3 de-
tails our threat model. Section 4 systematically analyzes LVI-
NULL variants. Section 5 presents the design and implemen-
tation of LVI-NULLIfy. Section 6 evaluates its security and
performance. Section 7 discusses limitations. Section & con-
cludes.

'We open source LVI-NULLIfy and provide an anonymized code reposi-
tory to the reviewers: https://github.com/lvi-nullify/LVI-NULLify.

2 Background

2.1 Transient-Execution Attacks

Transient-execution attacks [8] are a new class of attacks
that exploit so-called transient instructions, i.e., instructions
that are executed but never retired, to leak sensitive data.
Kocher et al. [34] introduced the first sub-class with Spec-
tre, while Lipp et al. [41] introduced the second with Melt-
down. While Spectre attacks exploit control- or data-flow
predictions made by the hardware, Meltdown exploits the
deferred permission check when accessing memory from a
different security domain. This deferred permission check
allows the out-of-order execution to encode the normally in-
accessible data in the cache from where the attacker then
extracts it. Subsequent work showed additional variants in
both sub-classes [4, 8, 18,33,42,44,52,53,57,69]. Additional
work has summarized the state-of-the-art of both transient-
execution attacks [5,8,70] and defenses [0, 8].

2.2 Load Value Injection

Load Value Injection (LVI) turns Meltdown around by exploit-
ing faults in the victim [60]. Thus, instead of leaking values,
LVI injects values into the transient execution of the faulting
victim. For LVI, the attacker prepares a microarchitectural
buffer, e.g., the store buffer or L1, by filling it with the val-
ues that should be injected into the victim. Then, the victim
has to suffer a fault or a microcode assist when fetching data
from memory to transiently use the values injected by the
attacker. The execution of subsequent instructions with the
injected value is then exploited to either encode secrets in the
microarchitecture or hijack the control or data flow. Similar
to Spectre, LVI requires the gadget to be in the victim and has
to additionally induce a fault or assist in the victim.

For unmitigated processors, the state-of-the-art solution for
LVl is to insert 1fence instructions after memory loads [29].
These fences ensure that faulting loads retire before the next
instruction, effectively stopping all variants of LVI. However,
this type of software mitigation comes with a performance
penalty between factor 2 and 19 [38, 60].

2.2.1 LVI-NULL

Starting with the Cascade Lake microarchitecture, Intel pro-
cessors include in-silicon mitigations against Meltdown, Fore-
shadow, and MDS attacks, including LVI [27]. These mitiga-
tions prevent non-zero value injections through all currently
known buffers. However, this mitigation only prevents the
attacker from injecting attacker-controlled data. Instead of
stalling, faulting loads still transiently forward ‘0’ to depen-
dent instructions [7, 60]. Hence, by inducing a fault in the
victim domain, an attacker injects the constant value ‘0’ into
the transient execution of the victim. This variant of LVI is
called LVI-NULL. Even injecting ‘0’ can be exploited to great

https://github.com/lvi-nullify/LVI-NULLify

effect, e.g., to transiently inject round keys consisting entirely
of ‘0’ into AES-NI computations [60].

The Comet Lake series represents Intel’s latest SGX-
enabled generation available for both mobile and desktop
workstation models that is affected by LVI-NULL [27]. Ice
Lake processors based on the Sunny Cove architecture appear
to be unaffected by LVI-NULL [27].

2.3 Intel SGX

To provide processor-level isolation and attestation for se-
cure enclaves, Intel developed Software Guard Extensions
(SGX) [12]. By design, SGX assumes that only the processor
is trustworthy. Hence, an attacker can have full control of the
operating system while still being within the threat model.
When a secure enclave is run, it is placed in the virtual
address space of an untrusted user-space process. While the
operating system is untrusted, it is still responsible for main-
taining the virtual-to-physical address mappings. Naturally,
this would make the enclave vulnerable to address remapping
attacks [12]. To prevent these, SGX maintains its own shadow
entry in the Enclave Page Cache Map (EPCM) containing the
expected virtual address and the permission bits (R-W-X) for
each valid enclave page. In case an illegal virtual-to-physical
mapping is encountered, an EPCM page fault is raised.
Although side-channel attacks are not in scope of the
SGX threat model, previous work showed that powerful side-
channel attacks can be mounted against SGX. A root attacker
can still mount low-noise side-channel attacks through the
cache [2,43,50], page-table accesses [62,64,71], interrupt tim-
ing [63], or branch predictors [14,19,40]. SGX is also vulner-
able to transient-execution attacks [9,52,59, 65] and Intel has
released microcode updates to protect against them [23,25].

2.4 Virtual Memory and Segmentation

In modern systems, virtual address spaces are used as an ab-
straction and to isolate processes. Hence, they are natively
supported by the hardware. Each process works in its own,
largely non-overlapping, virtual address space and cannot
unintentionally interfere with the memory of another pro-
cess. The used virtual addresses need to be translated to the
corresponding physical addresses using a multi-level page
translation table. The location of the table for the current pro-
cess is indicated by a dedicated register and is switched by
the operating system upon a context switch.

Another concept besides paging is segmentation. The idea
is to have a set of segments for different uses, e.g., code, data,
stack. While older processors used segmentation to enable
the use of more physical memory, newer ones mainly use it
as a protection mechanism.

Segments are configured via segment descriptors that are
located in memory and are then used in conjunction with
paging. Each segment descriptor has a base address and a limit.

During the address translation, the CPU adds the base address
to the segmented virtual address, yielding a non-segmented
virtual address. Some instructions use segments implicitly
(e.g., push and pop with the stack segment), and code fetches
are implicitly performed via the code segment. Data segments
can be used explicitly with memory referencing instructions.

On modern systems, paging has completely replaced seg-
mentation for virtual address translation. Consequently, pro-
cessor manufacturers removed this feature in the 64-bit long
mode (IA-32e) for all segments but £s and gs. All but these
two segments are now required to have a base of 0 and the
maximum possible size. The segments fs and gs still support
base and limit as they are broadly used to implement thread
local storage for user threads and core local storage in op-
erating systems. Hence, to use the base and limit feature of
segmentation on 64-bit systems, user-level software has to
use instructions that use fs or gs, and the operating system
has to set up fs or gs with a base and a limit.

2.5 Object Relocations

Relocations are an essential part of the ELF file format [1,
13]. If a symbol is referenced inside an object file, the linker
or the dynamic loader has to resolve the symbol’s address
and replace all the occurrences of this reference with the
real symbol address. The relocation type specifies how this
address should be calculated and which symbol is referenced.
SGX enclaves behave similarly to dynamic libraries and
can be loaded on arbitrary addresses inside the main pro-
gram’s virtual address space. Therefore, enclaves and dy-
namic libraries need a mechanism to adjust addresses inside
the image to point to the desired position in the address space.
The most common way to achieve this is by using relative
addressing, where all the absolute addresses inside the library
are calculated over the instruction pointer. This type of relo-
cation can be resolved during linking of the dynamic library.
In contrast to relative addressing, dynamic libraries also
support absolute addressing where the dynamic loader re-
solves the addresses after the base address where the image
is loaded is known. Here, the loader replaces placeholders
inside the dynamic library with the real symbol address.

3 Threat Model

Hardware. For our mitigation, we assume a current or fu-
ture Intel processor with SGX that mitigates LVI in hard-
ware but does not prevent LVI-NULL, such as, e.g., the
Comet Lake microarchitecture. We assume that there are
no Meltdown-type transient-execution attacks [41,52,59,65]
that directly leak data from enclaves. Moreover, hardware
vulnerabilities such as Rowhammer [16, 30, 32] or under-
volting [31,45,47] are out of scope. We also assume that
Spectre-type attacks [8,9, 34] are either mitigated in hard-
ware, firmware, or software. Additionally, we assume hyper-

threading to be disabled. The Intel SGX Attestation Service
indicates whether hyperthreading is enabled, so the verifying
party can enforce its status.

Software. We assume a privileged attacker that is explic-
itly within the scope of the Intel SGX threat model. For the
enclave, we assume that it is not vulnerable to traditional side-
channel attacks, such as cache attacks [2,43,50] or controlled-
channel attacks [71]. We assume that an attacker can start the
enclave as often as required and thus rely on precise execu-
tion control, such as single- or zero-stepping [62]. Bugs in the
enclave, e.g., synchronization problems [49, 66], or missing
validations on the ABI or API level [61], are out of scope.
We consider only 64-bit enclaves, since enclaves can be (cf.
Section 2.4) attacked via 32-bit segmentation [17], but not via
64-bit segmentation due to differences in the behavior.

Takeaway: Our mitigation targets 64-bit SGX enclaves
on CPUs vulnerable to LVI-NULL, but not vulnerable
to LVIL.

4 Detailed Investigation of LVI-NULL

In this section, we first investigate the prevalence and impact
of different LVI-NULL scenarios, and their applicability to
SGX. We then examine the overhead and efficacy of current
and proposed mitigations.

4.1 LVI-NULL Categorization

We distinguish control-flow and data-flow attacks (cf. Fig-
ure 1).

Control-flow Attacks. In control-flow attacks, the instruc-
tion pointer is transiently redirected in a way that serves the
attacker. Again, we distinguish two cases: direct code redirec-
tion (@) fo the null page, or indirect redirection to arbitrary
locations (@ and @) via the null page. Direct redirection
(@) is achieved by faulting the load that reads the call target,
thus injecting ‘0’ and redirecting code execution to the null
page. In contrast, arbitrary redirection allows code execution
anywhere in memory if the null page is attacker-controlled,
e.g., for Intel SGX enclaves (cf. Section 2.3). It applies to
indirect jumps (@), which load their targets from memory via
at least one indirection. Faulting the second to last load causes
the jump target to be loaded from an offset in the null page,
which allows arbitrary redirection. A special case of indirect
redirection are sequences like pop rsp; ret, which load the
stack pointer from memory and then return. This allows an
attacker to set up a transient stack (€)) on the null page by
faulting the stack pointer load, and perform a well understood
ROP [46,55] attack from there.

Data-flow Attacks. Data-flow attacks inject data into the
victim’s execution. We distinguish between direct (@) and
indirect (@) loads, which allow the injection of either ‘0’ or

arbitrary values. Van Bulck et al. [60] showed that injecting
‘0’ into the hardware AES-NI key schedule leaks the full key.
A special case are binary branches and switch statements (@),
which can be compiled as jump tables. Here, data-flow ma-
nipulation changes the control flow, but only to the available
branches.

Limitations. While LVI-NULL attacks are possible to ex-
ecute from user space, several significant limitations apply.
First, user-space attackers cannot manipulate page tables di-
rectly. This prevents these attackers from arbitrarily causing
assists or faults on targeted loads. Secondly, most operating
systems do not allow mapping of the null page by default.
Both Linux and Windows require privileged access to map
it, limiting the user-space attack surface to two cases (@ and
@). The exploitability of direct load ‘0’ injection (@) de-
pends on the targeted algorithm, and is thus best mitigated by
developers themselves. Manipulating regular branches with
‘0’ injections (@) is similar to Spectre variants and can be
mitigated the same way.

4.2 Control-flow Injection

C/C++ compilers, such as GCC and Clang, commonly emit
code patterns containing jump instructions whose target de-
pends on an address or value loaded from memory. In our
analysis, we found 3 categories of such jumps that are poten-
tially susceptible to LVI-NULL.

Case 1: Virtual Function Calls in C++ (@ and @) When
objects in C++ call a virtual function, it is not known at com-
pile time which function is being called. To solve this, each
object has its own table (vtable), which contains the location
of its virtual functions. Because the location of a dynamically
allocated object itself (and thus its vtable) is also not known
at compile time, calling a virtual function requires at least 2
loads. This creates 2 possible points of injection. First, the
attacker may inject ‘0’ when the target is read from the vtable.
This load may be generated by an indirect call instruction or a
mov before a direct call, and can transiently redirect execution
to the null page (@). Secondly, the attacker can inject ‘0’ one
load earlier, i.e., when the address of the vtable is read. This
causes the null page to act as the vtable, allowing transient
redirection of execution to any location (@). As the offset
in the vtable is known at compile time, it is compiled to an
immediate value that cannot be manipulated by LVI-NULL.

Exploitable in SGX enclaves? Very likely.

Indirect function calls (@) occur frequently and are almost
always immediately exploitable, as they allow redirection to
any suitable gadget.

Case 2: Global Offset Table (@) Another potentially inter-
esting case is the global offset table (GOT), which enables
programs to use functions in dynamically linked libraries. Un-
like vtables, the GOT is always at a known location, and so

control flow

arbitrary, indirect

req. r(w) page 0

/\

data injection

© direct jump @ indirect jump | |@ transient stack @ branches @ direct load @ indirect load
example asm mov (mem),%reg |mov (mem),%reg| | pop esp cmp $reg, (mem) mov (mem),%regl |mov (mem),%reg
sequence call *%reg call *(%req) ret je *offs mov (%reg),%reg
attack execute page 0 run address ROP via change branch injects null injects arbitrary
scenario e.g. via vtable at%, e.g. vtable stack on page 0 target, special e.g. faulting aes values
requi - r(w)x page 0 - r(w) page 0 - rw page 0 case: switch - gadget - r(w) page 0
equirements ~oad

- if nop-writeable] | - if n%n—wrlteable gadget

— gadget — gadget

Figure 1: Categorization of LVI-NULL into control-flow and data-flow attacks. Subcategories list the different attack vectors and
example assembly sequences for each (in AT&T syntax), the attack scenario, and their requirements.

only the call target is loaded. After the initial dynamic reloca-
tion of the symbols in the GOT, this only creates the potential
to transiently redirect execution to address 0xO0.

Exploitable in SGX enclaves? No.

While direct function calls (@) are frequent, they are not
exploitable in SGX.

Case 3: Switch Statements (@) For certain switch cases,
compilers generate a jump table, first loading the variable in
question, and then looking up the corresponding jump target.
This only applies to switch variables loaded from a single
memory location, and not derived calculations. In position-
independent code (PIC), this creates 2 attack points: injecting
‘0’ into the variable itself, or injecting ‘0’ when the jump target
is calculated. The former transiently leads the switch into the
‘0’ case, executing code there as if the variable were ‘0’. The
latter causes the program to jump into the data section instead,
as both GCC and Clang load offsets relative to the jump table.
These offsets are likely not valid code, and furthermore, as
Canella et al. [8] showed, the executable bit is respected in
transient execution, so this injection is not exploitable here.
When compiled as non-relocatable (no-pic), execution can
again be redirected to the first case. Additionally, it can now be
redirected to address 0x0, as the jump table contains absolute
addresses, which can be zeroed on load (@).

Exploitable in SGX enclaves? Unlikely.

Similiar to Spectre-PHT [8], exploitability is highly depen-
dent on the specific case, but case-0-injections can be pre-
vented reliably (see Section 5).

These are the three cases of commonly used code we found
to enable control-flow injection. We expect there are more
cases in other code patterns, compilers, or languages. How-
ever, for SGX, LVI-NULLify copes with all types of control-
flow injection, as all control-flow injections rely on the null

page. Table | explores the prevalence of such gadgets in stan-
dard SGX code.

4.3 Data Injection

Data injection gadgets are simply direct or indirect loads from
memory, and as such, they are ubiquitous in all programs.
Van Bulck et al. [60] have shown that in some cases, even ‘0’
injections can be exploited to great effect. However, in cases
where data injection does not lead to changes in control flow,
it depends entirely on the algorithm at hand whether it can be
exploited. As a direct ‘0’ injection (@) cannot be mitigated by
software changes short of adding a load-serializing instruction
after all potentially problematic loads, we do not consider this
case. Instead, we leave it to the authors of software to guard
their critical computations, such as cryptography, with this
possibility in mind. However, in Section 5, we propose a way
to prevent arbitrary data injection via indirect loads (@).

Exploitable in SGX enclaves? Likely.

The danger of transient data injection depends on the tar-
geted algorithm, but arbitrary value injection provides high
flexibility for exploitation.

4.4 Applying LVI-NULL Variants in SGX

Of the attack vectors presented in Section 4.1 (cf. Figure 1), 4
out of 6 require at least read access to the null page. Variants
@ and @ have no particular requirements and apply in any
case. Most modern operating systems do not map the null
page by default and typically require root privileges to do
so [11]. Since the purpose of SGX enclaves is to protect
against malicious or compromised operating systems, their
threat model currently allows attackers to use the null page as
they see fit.

Gadget/File QE LE PCE PVE trts tsde texx temalloe
mov (mem), %reg

mov (%reg), reg 216 0 123 216 0 0 0 4
call *reg

mov (mem), %$reg

call *(3req) 0 45 0 0 0 0 19 3
mov (mem), %$rsp 0 2 0 0 1 0 1 0
mov (mem), %reg

mov $reg, $rsp 1 1 1 1 1 0 0 0
ret

mov (mem), %$regl

mov :ﬁreql, :’freqz 0 0 0 0 0 0 0 0
mov %reg2, %rsp

ret

pop %reg

mov %$reg, %rsp 0 0 0 0 0 0 0 0

ret

Table 1: Number of control-flow gadgets found in Intel’s
prebuilt (quoting, launch, provisioning) enclaves and SDK
libraries. Search was limited to instruction sequences with
fewer than 10 separating instructions.

From within an enclave, all memory of the user-space pro-
cess is available for reading and writing according to its page-
table entries, as it would be to the process itself. This implies
that variants @, @, and @ apply fully if the null page is
writable or with limitations, if it is not. Variant), however,
requires the null page to be executable. Van Bulck et al. [60]
experimentally found that code outside of enclave memory is
not executable from within an enclave, even during transient
execution. This was later confirmed by Intel [29], and we have
reproduced this result as well. It follows that the only way
to execute instructions at address 0x0 is to load the enclave
itself starting at the null page. Since the Intel SDK does not
build enclaves with execute permissions on this page [29], we
consider variant @ not exploitable in SGX enclaves.

To evaluate the prevalence of assembly sequences that al-
low LVI-NULL types @ and @), we search several prebuilt-
and SDK-generated binaries for a limited selection of ex-
ploitable assembly patterns. As Table | shows, indirect calls
(@) are plentiful in these binaries, though they are currently
mitigated by 1fence instructions. We find that there are even
some gadgets for variant €. An especially interesting obser-
vation is that the original transient stack gadget, as described
by Van Bulck et al. [60], is still present in unmitigated form
in the prebuilt launch enclave for Linux provided by Intel as
of SDK release 2.11.

An analysis of how some code patterns generate vulnerable
instruction sequences is shown in Section

Takeaway: @, ©, @, ©, and @ are all feasible in SGX.
@ is feasible, but mitigated by default.

4.5 Current and Proposed Mitigations

In this section, we discuss the two main types of mitigations
against LVI and LVI-NULL for SGX.

4.5.1 Memory Fences

The officially suggested mitigation against LVI is to stop
transient execution before it can be exploited. Similar to the
mitigations for Spectre [24], Intel also suggests to use memory
fences for aborting transient execution [29]. As it is infeasible
to add memory fences manually, these memory fences are
supposed to be emitted by the compiler. With the publication
of LVI [60], Intel has provided 2 levels of mitigation [28,29],
and Google engineer Zola Bridges another [3,37]:
Control-Flow Mitigation. This mitigation replaces ret,
call, and jmp instructions by fenced alternatives. It protects
transient control-flow redirection at the cost of effectively
disabling all control-flow predictors. However, it does not
generally protect against value injection and only prevents
these special cases. Compilation options: -mlvi-cfi
SESES. “Speculative Execution Side Effect Suppression”
aims to prevent more than just LVI by adding an 1fence
instruction before every instruction that operates on mem-
ory. This approach fully mitigates LVI, LVI-NULL, and other
transient execution attacks. Compilation options: -mseses
Optimized Cut. In addition to CFI, this mitigation for
LVI (which we call “optimized cut”) tries to separate
loads from potential transmit gadgets by analyzing the
control-flow graph of applications. Hence, the com-
piler can insert far fewer lfence instructions than
SESES while still providing the same security guaran-
tees w.r.t. LVI. Compilation options: -mlvi-hardening
-mllvm -x86-1vi-load-opt-plugin=OptimizeCut.so
-x86-experimental-lvi-inline-asm-hardening

While these three levels of mitigation differ in the amount
of 1fence instructions (cf. Table 2), they all incur heavy per-
formance penalties in the range of factor 2 to 19 [38,60].

4.5.2 Page Table Protections

Van Bulck et al. [60] also proposed specific mitigations for
LVI-NULL. To prevent execution of the null page (@), they
suggest marking the first page in an enclave as non-executable
or placing an infinite loop at the base of the enclave image.

As described in Section 4.4, marking a page non-executable
indeed prevents execution in the transient domain. Experi-
ments on our i5-10210U show that this holds even if the OS
marks a page as executable after loading the enclave. Read,
write, and execute permissions are also stored with the ex-
pected virtual address in the protected Enclave Page Cache
Map (EPCM) entries. Our experiments suggest that in tran-
sient execution, the CPU considers the permission bits of both
the page table and the EPCM and applies whichever is less
permissive. As this prevents @), an infinite loop or similar is
not necessary.

To stop transient null pointer dereferences (@, €, and @),
Van Bulck et al. [60] suggest marking the null page as un-
cacheable. This has also been proposed as a possible mitiga-
tion for Spectre attacks [51], as uncachable memory cannot

unreadable pages
——

non-enclave memory enclave image

0 enclave start GS-base enclave end

Figure 2: Memory layout of enclaves protected with LVI-
NULLify.

be read during transient execution. Any transient access to un-
cachable memory simply stalls [51]. While this would indeed
prevent loads from this page, the OS can simply change these
flags at any time, as they are not protected by SGX. We veri-
fied that in contrast to the read, write, and execute permissions,
the memory type is not enforced by SGX and can be manipu-
lated to mount an attack. Additionally, injection via the shared
line-fill buffer is possible on some architectures [44,51,52,65]
if hyperthreading is enabled.

Takeaway: Current mitigations are too costly or are
insufficient.

All LVI-NULL variants are preventable by LVI mitiga-
tions, but incur substantial performance degradation. Other
proposed mitigations are only partially effective.

5 LVI-NULLify

Previous mitigations have been designed primarily for LVI,
not LVI-NULL. Hence, they mitigate attacks that are already
mitigated more efficiently in current and future Intel proces-
sors, e.g., the recent Comet Lake microarchitecture. Following
the analysis of Section , we can see that these previous
mitigations either have a substantial performance overhead
or are limited to only certain variants of LVI-NULL. This
motivates the need for a defense that is more tailored to LVI-
NULL. In this section, we present LVI-NULLIify, our mitiga-
tion for LVI-NULL affected hardware that achieves a better
balance between performance cost and remaining attack sur-
face than previous LVI mitigations. The worst-case overhead
on our LVI mitigated Comet Lake is only = 9%, our older
LVI-vulnerable Coffee Lake-R reaches a maximum of 36%
overhead.

5.1 LVI-NULLiIfy Design

LVI-NULLify aims to prevent all LVI-NULL variants in our
threat model (see Section 3). This includes variants), @,
©. and @. Though we categorize switch expressions as a
subclass of branches (@) in Section 4.1, we briefly describe a
mitigation in Section that is also applicable outside of
SGX. Since all other variants involve the null page, the central
feature of LVI-NULLIify must be to control either its contents
or accessibility. Therefore, we devise a way to effectively

move the LVI-NULL target page into the enclave, even if
address 0x0 is not in the enclave’s linear address space.

SGX does not currently offer any control over pages out-
side of the enclave memory range. Hence, loading an enclave
anywhere but page null means giving up control of the null
page. As multiple enclaves can and often need to be loaded
simultaneously, only loading an enclave if it is mapped at
address 0x0 is not a practical option. Our solution is to off-
set every memory load in the enclave such that any pointers
that are loaded from memory are added to an immutable con-
stant. For this constant, we use the virtual base address of
the enclave image. The resulting memory layout is shown in
Figure 2. Even if an address load faults and transiently returns
‘0, the resulting load address is still within the enclave. This
puts the control over the pages targeted by LVI-NULL into
the hands of the enclave, regardless of where an attacker maps
1t.

5.1.1 Using Segmentation

To offset loads on commodity Intel CPUs, we rely on seg-
mentation. In 64-bit mode, segments typically have to start at
address 0x0. However, the GS and FS segment registers are
an exception and can have non-zero base addresses. Conve-
niently, the EENTER and ERESUME instructions automatically
set these base addresses to the enclave base address plus a
developer-controlled, positive offset. As the GS and FS regis-
ters are set on each entry, and the offsets are stored in enclave
memory in the thread control structures (TCS), these values
are inaccessible to the OS. They are also part of the enclave’s
attestation, preventing manipulation at load time. The Intel
SGX-SDK sets both registers to the same value, creating an
unnecessary redundancy. We can thus repurpose one of the
two segment registers, in our case GS, for LVI-NULLify.

Since address calculation with segment bases is an integral
part of x86 hardware, there is no noticeable slowdown for
GS-relative loads, as we experimentally verify in Section
We set the GS base to the beginning of the enclave, such
that data loads in our enclave are now relative to the begin-
ning of the enclave. This means that we essentially build a
non-relocatable object (no-pic) that gains its position inde-
pendence by adding GS base to all addresses.

Applying this mitigation to generic SGX enclaves requires
the modification of 3 components: the compiler, the Intel
SGX-SDK, and the Intel Platform Software (PSW). The com-
piler has to emit GS-relative loads for all memory-load in-
structions. We discuss how this is implemented in LLVM in
Section 5.2. Section 5.3 then details the custom relocations
that are necessary after compilation. Changing all load in-
structions also implies that all addresses inside the enclave
are invalid outside and vice versa. Hence, this necessitates an
automatic pointer conversion from the trusted runtime system
(tRTS) to the untrusted runtime system (uRTS). Additionally,
the tRTS itself needs to be built with our compiler modifi-

cation. We detail the necessary modifications to the SDK in
Section . As the GS offset is in part calculated by the
PSW, we need to enable it to distinguish between enclaves
mitigated by LVI-NULLIify and unmitigated enclaves. The
changes to the PSW are also described in Section

5.1.2 First Enclave Pages

With GS-relative addressing, most transiently faulting indirect
loads read from the first page of the enclave. For this reason,
it is critical that reading from it does not return values that
can be used in an attack. To prevent variant @ of LVI-NULL,
which requires code execution, simply making this page non-
executable is sufficient. Additionally, marking the first page
non-readable in the EPCM entry prevents all variants that
load from this page (@, @, and @). Transient accesses to
such pages simply stall, as we have experimentally confirmed
on several CPUs, including our i5-10210U Comet Lake. This
stops all further dependent accesses. However, the first page
in an enclave may contain data that the dynamic loader inside
the enclave needs to access. We, therefore, shift the enclave
image and prepend empty pages that are neither readable
nor executable. The amount of such pages that are needed
depends on the enclave program; loads with offsets, where the
base address can be zeroed, may transiently load more than
1 page from the GS base address or even below it. Negative
offsets could, therefore, lead to loads that escape the enclave.
Fortunately, the size of all immediate offsets is known at
compile time. We can determine a safe amount of empty
pages to map before and after the GS base after compilation.
An example with 2 pages on each side of the GS base address
is shown in Figure

The residual attack surface to this approach are dynamic
arrays. When neither position nor size are known at compile
time, loads can take the form base + offset, where both base
and offset are loaded from memory. If an attacker faults the
base, the transient load target is potentially anywhere from the
enclave beginning up to the size of the dynamically allocated
structure.

5.1.3 Alternative Approaches

There are other, less peculiar mechanisms to prevent faulting
loads from reaching the null page. We want to examine two
candidates here, as their shortcomings are not immediately
apparent.

First, we could simply add the base address to all loads by
converting every load to use complex addressing. For this, we
cannot load the base address from memory, as this load could
again be zeroed. A solution would be to always keep the base
address in a CPU register, but this reduces the number of
registers available to the compiler. This can incur significant
performance impacts as less efficient code can be generated.
Alternatively, we could use memory fences for these loads,

which would again result in large performance overheads.
Additionally, any load that already uses complex-addressing
needs an additional offset computation beforehand.

The second approach would be to employ immediate ad-
dresses by using the dynamic loader to relocate all symbols.
An undesirable side effect of this method is the need to set
the text section of the enclave to writable and executable. As
enclave pages cannot currently change access permissions at
runtime, this would weaken the enclave’s protection against
traditional exploits that might otherwise not be exploitable.As
x64 does not generally support 64-bit displacement in com-
plex addressing [21], this is also not a possibility. Only AL,
AX, EAX, and RAX may be the source or target of immediate
64bit-addressed memory loads, which introduces the need for
more intermediary registers [26].

5.1.4 Mitigating Switch Statements

Regular branches (@) can be mitigated with Spectre-PHT
mitigations, e.g., speculative load hardening. Switch state-
ments present a special case of branches. On processors
with hardware mitigations for branch target injection, e.g.,
single thread indirect branch predictors (STIBP) [22], such
as the Comet Lake series, switch statements are protected
from cross-hyperthread manipulation through the branch tar-
get buffer. However, they are still vulnerable to LVI-NULL
when the compiler generates a jump table (see Section 4.2,
case 3). We can mitigate the case of single-variable conditions
(conditions that only depend on one in-memory variable) by
targeted insertion of 1fence instructions. This is described in
more detail in Section 5.2. It is the only variant we mitigate
that can also be exploited outside of SGX, and this mitigation
can also be applied alone.

5.2 Compiler Changes

We developed an open-source implementation of the compiler-
part of LVI-NULLIify that is based on the LLVM compiler
framework [39]. It handles the insertion of fences in switch
statements (cf. Section 4.2) and ensures that every load is
relative to the GS segment (cf. Section 5). Our modification
consists of two new passes, one module pass (i.e., a transfor-
mation pass) that works on the LLVM intermediate represen-
tation (IR) and one machine function pass in the x86 backend.
The mitigation for switches is purely done in the pass on the
IR, while the GS-relative addressing is implemented in the
backend pass. For our modification, we added 1024 lines of
code to the LLVM code base (24 in 10 existing files, 1000 in
3 new files).

Switches. When compiling an application with optimizations
enabled, LLVM already tries to optimize the performance of
switches [35, 68]. These optimizations are implemented as
a transformation pass that iterates over all functions in the
translation unit. If a switch is encountered, the pass tries to

push %$rbp sub $0x8,%rsp
mov %$rbp,%gs: (%rsp)
callqg 400480 <func> lea S$return_address(%rip),%rll
sub $0x8,%rsp
mov %rll,%gs: (%rsp)
jmpg 400480 <func>

pop %rbp mov %gs: (%rsp), $rbp
add $0x8, %rsp
retq mov %gs: (%$rsp),%rcx

add $0x8, %rsp
jmpg *%$rcx
call *16(%rl2,%rl3,8) lea __ImageBase(%rip),%rll
add %gs:16(%rl2,%rl3,8),%rll
sub $0x8,%rsp
mov %rll,%gs: (%rsp)
lea S$return_address(%rip),%rll
xchg %rll, %gs: (%rsp)
jmp *%rll

(a) unmodified (b) modified

Figure 3: Figure 3a shows the unmodified assembly instruc-
tions containing implicit loads while Figure shows the
instruction sequence with which they get replaced by our
modified compiler.

apply these optimizations. Unfortunately, this transformation
pass is only executed when the application is compiled with
at least optimization level 1. Hence, we cannot use it and need
to implement a new pass.

We extend LLVM with a new module pass (-flvi-null) that
iterates over all functions in the translation unit and searches
for a switch within the basic blocks that comprise the func-
tion. If such a switch is found, the mitigation is applied. If the
switch already contains a ‘0’ case, the compiler simply mod-
ifies the case such that the first instruction within the basic
block is a fence instruction. Otherwise, LVI-NULL falls back
to the default case of the switch. Either one can lead to ex-
ploitable behavior. To prevent this, the compiler inserts a new
‘0’ case that contains a fence instruction and then performs an
unconditional branch to the default case. This new ‘0’ case
is only ever executed if the default case is supposed to han-
dle zero values, or if an attack takes place. This significantly
reduces the performance impact.

By considering these two cases, the compiler part of LVI-
NULLIify can mitigate LVI-NULL targeting switches. This
mitigation is not specific to SGX and does not require segmen-
tation, hence this can also be used in non-enclave applications.
While this mitigation on its own is not sufficient to fully pre-
vent LVI-NULL, as it only mitigates a subset of variant @, it
is a necessary building block for LVI-NULLIfy.
GS-Relative Addressing of Loads. As discussed in Sec-
tion 5, every load, explicit or implicit, has to be relative to
the GS segment. Thus, in case of an LVI-NULL attack, the
control flow is re-directed to a location that is controlled by
the SGX enclave. To achieve this, we add a new machine
function pass in the x86 backend of LLVM.

In the machine function pass, we iterate over each instruc-
tion of a given machine function, and replace explicit loads,
implicit loads from pushing to and popping from the stack,
as well as calls, jumps and returns, as all of these loads are
also exploitable by LVI-NULL (@, @, @, and @). Hence,
the transformation pass replaces each such instruction with
an equivalent sequence of instructions that use GS-relative
addressing where necessary. Figure 3 shows some cases that
we consider for implicit loads and how our modified compiler
mitigates them.

As jump and call instructions cannot use the GS segment,
and the CS segment cannot be changed (see Section 2.4), we
manually convert the relative call address of, e.g., an indirect
call, to an absolute address by adding the image base. To
protect this pointer conversion from LVI-NULL, we use a rip-
relative lea instruction to calculate the image base instead
of loading the address from memory. Hence, we ensure that
all pointers inside the enclave are relative to GS regardless of
their data representation.

As our pass is run as the last pass before the actual code is
emitted, no additional load can appear that is not GS-relatively
addressed. With these compiler modifications, and in combi-
nation with the further LVI-NULLify components, we suc-
cessfully mitigate LVI-NULL, as we show in Section

5.3 Relocation and SGX-SDK Changes

In addition to the compiler changes (cf. Section 5.2), we
require additional changes in the relocations of the object
files (cf. Section 2.5) and changes in the SGX-SDK and SGX-
PSW to realize the GS-relative addressing. We discuss these
changes in this section.

5.3.1 Relocation Types

The generated instructions from our compiler pass do not use
the instruction pointer for relative addressing, and therefore,
the compiler emits absolute relocations. Since the enclave
image is signed by the author of the enclave and the sig-
nature is verified during the enclave initialization, absolute
address relocations cannot be resolved before verifying the
signature [12]. Additionally, enclave memory cannot be mod-
ified from outside, so each enclave contains an ELF loader
to resolve any relocations during the initialization phase. A
disadvantage of this is that the page flags cannot be changed
after the enclave is instantiated. Therefore, pages containing
absolute relocations must remain writable at runtime, even
if they contain text sections. Pages that are writable and exe-
cutable are a traditional security concern. While the enclave
signer issues an error message if it finds such text absolute
relocations, this error can be suppressed. Therefore, keeping
the original page flags without making pages writable is a
design goal of LVI-NULLify.

Since we do not need absolute address relocations when
using the GS segment to specify the image base, we fully
replace these absolute relocations. We build an additional
tool to change the relocation types directly in the object files
after compilation. LVI-NULLIify does not enforce additional
requirements on the build environment by reusing the existing
relocation types instead of implementing a new one for GS-
relative addressing.

The compiler extension emits R_X86_64_x absolute relo-
cations as part of the code generation. We then iterate over
the generated ELF object file and exchange these absolute re-
locations with the R_X86_64_COPY relocation type. The copy
relocation type fills in the relocation destination with the sym-
bol’s offset from the image base, exactly what is needed for
the GS-relative addressing. The copy relocation’s addend is
set to the difference between the GS-base and the real enclave
base to implement the additional pages in front of the enclave
(see Section and Figure 2), i.e., shifting the address of
the relocated symbol.

5.3.2 SGX-SDK and SGX-PSW

For LVI-NULLIify to work, some changes to the SGX-SDK
and the SGX-PSW are required. The changes detailed here
are made mostly to the enclave-loading mechanism and for
automated pointer conversion between enclave and host ap-
plication.

SGX-PSW. The SGX-PSW is used globally for loading
all enclaves. For LVI-NULLIify, the PSW has to set the GS
segment in the thread-control-structure template (see Sec-
tion). This template is used for creating threads inside
the enclave, and is used for the attestation process. Hence, the
same changes are also required in the SGX signer. We ensure
backward compatibility with enclaves that are not protected
by LVI-NULLIify by indicating the use of LVI-NULLIify in
the enclave signature structure. Hence, the PSW only modi-
fies the GS segment if LVI-NULLIify was used for building
the enclave.

SGX-SDK. Most changes in the SDK affect the ECALL and
OCALL interface. With LVI-NULLIfy, the enclave and the
host application basically operate in different virtual address
spaces. Hence, the ECALL and OCALL interface have to
apply pointer conversion. On enclave entry, the GS segment
is automatically set by the ENCLU instruction. We modify
the enclave_entry function to convert the stack pointer, the
base pointer, and the pointer to the structure used to pass ad-
ditional data into the enclave. Some minor changes also adapt
the elf loader inside the enclave for GS-relative addressing, as
some of the supported relocation types refer to the absolute
enclave base.

In the SGX-SDK, the edger8r application is responsible
for parsing the enclave interface definition file and generating
the trusted and untrusted part of the enclave interface. To
ensure the enclave can use pointers passed to an ECALL

10

implementation without manual modification of the code,
we modified the edger8r application for the code generation
of the trusted enclave API. As this parser already has all
the information about functions and their parameter types, it
can automatically generate code for converting pointers from
absolute pointer addresses to GS-relative addresses. Thus,
all the default cases of passing pointers into an ECALL or
OCALL are handled automatically.

The enclave definition language also allows the definition
of data structures for ECALLs and OCALLs. These struc-
tures can be automatically copied into the enclave memory,
but nested structures or structures containing additional data
over pointers must be copied by hand from the enclave devel-
oper [20]. Hence, we also leave pointer conversion for such
data types to the enclave developer.

6 Evaluation

6.1 Security Evaluation

For the security evaluation, we first perform a theoretical
analysis of all variants in the context of our mitigation. Addi-
tionally, we also evaluate our own proofs of concept demon-
strating LVI-NULL (see Appendix C). All experiments are
run on an Intel Core i5-10210U Comet Lake that is vulnera-
ble to LVI-NULL but not to LVI. In all of our experiments,
LVI-NULLIfy successfully prevents all targeted variants of
LVI-NULL.

Variant @), direct jumps. If the target of a jump instruction,
such as call or jmp, is loaded from memory, it can be zeroed
using LVI-NULL. As a result, transient execution continues at
address 0x0, which is either outside the enclave, and therefore
not executable in the context of SGX, or on the first page of
the enclave, which is also not executable as ensured by the
SDK. This behavior stays the same with LVI-NULLIify, and
is thus not exploitable.

Variant @, indirect jumps. When the first of the two loads
in an indirect jump is zeroed, the jump target is read from
address 0xO0, plus potentially an offset used in the indirect-
jump instruction. This is, e.g., the case for an entry in a vtable
(cf. Section 4.2). Without LVI-NULLIfy, this address points
to the virtual address 0x0+offset. This address can be outside
of the enclave and thus under attacker control.

With LVI-NULLify, the load is performed with GS base,
which ensures that the address is inside the enclave. As a
number of pages (that depend on the largest such offset in
the enclave) directly after GS base are non-readable, the ad-
dress load stalls, and no jump occurs. Since function offsets
can generally be determined at compile time, the required
number of buffer pages can be reported by the compiler. An
example would be finding the maximum number of entries
in a vtable. This does not consider programs that use ‘manu-
ally’ constructed jump tables. While in rare cases, a dynamic
offset could be large enough to reach beyond the allocated

4,000 [- =
He LVI-NULLify E Bclang-1lvi-cfi clang-lvi-opt 0o clang-seses =+
® 3,000 |- — - - S -
3 . 7 g \
§ 2,000 | - % . o a
£ g 1 3 g < Z = =
e Sen N — SN oo <3 iR
& 1,000 |- 2T 8Lk T e T :
S 27 =2 3B a1 w
-100 - T = T T T =T T
NUMERIC BITFIELD FP EMU- FOURIER ASSIGNMENT IDEA HUFFMAN NEURAL LU STRING
SORT LATION NET DECOM- SORT
POSITION

Figure 4: Mean runtime overhead in sgx-nbench [58] on our i5-10210U@ 1.6GHz of LVI-NULLIfy vs. Intel’s control-flow and
optimized-cut mitigations as well as SESES. N=50, standard deviations vs unmitigated mean plotted, but too small to be visible.

buffer pages, e.g., when manually constructing dynamic jump
tables, most cases are prevented, and the remaining rely on
very specific circumstances. Hence, we consider this variant
mitigated.

Variant @), transient stack. As shown by Van Bulck et al.
[60], function epilogues that load the value of the stack pointer
from memory and return can be exploited to transiently use
the null page as the stack by zeroing the load. This attack
allows for arbitrary code redirection using transient return-
oriented programming. LVI-NULLIify replaces the return in-
struction (ret) with a GS-relative load and jump (cf. Figure 3).
As a result, mounting an LVI-NULL attack moves the tran-
sient stack to a non-readable page within the enclave. This
prevents the transient stack attack, as long as the enclave
developer does not actively try to circumvent that, e.g., by
loading the stack pointer with an indirect load instruction
using a very large offset.

Variant @, branches. For regular branches, LVI-NULL be-
haves very similar to Spectre-PHT and are thus out of scope
for LVI-NULLIify. Developers can mitigate them with specula-
tive load hardening if they choose. As discussed in Section 4.1,
switch constructs represent a special case of branches, as they
can be implemented as a jump table. Without mitigations,
execution can be redirected to case ‘0’, which may also be the
default case. LVI-NULLIify places an 1fence instruction in
the affected case, thereby mitigating it. As the deciding vari-
able may depend on more than one memory load, we consider
this variant only partially mitigated.

Variant @, direct load. All data loads are still susceptible to
direct ‘0’ injection with our mitigation. Thus, an attacker can
use LVI-NULL for data-only attacks, e.g., as shown for AES-
NI [60]. Since exploitability highly depends on the victim
algorithm, mitigation is left to the enclave developer. Crypto-
graphic libraries need to consider different side channels in
their implementation already. Variant @ becomes one more
issue on this list. We therefore consider it out of scope for
LVI-NULLify.

Variant @, indirect load. When values are loaded indirectly,
i.e., by loading the target address from memory, arbitrary val-
ues can be injected when the first load is zeroed. Similar to
@, values are loaded from address 0x0 with a possible offset.

11

With LVI-NULLify, the now GS-relative load ensures that
this load is inside the enclave’s address space. If the offset
falls within the non-readable pages at the beginning of the
enclave, arbitrary value loading is prevented. Again, offsets
are dependent on the program, and most can be statically de-
termined at compile time, which allows adjusting the number
of buffer pages accordingly in the compiler. Dynamic arrays
of unknown size may still produce transient loads that reach
into the enclave memory itself. In these cases, non-zero data
injection may still occur. Because most cases are prevented,
and the remaining rely on very specific circumstances, we
consider this variant mostly mitigated.

All told, our analysis suggests that LVI-NULLIify prevents
the majority of LVI-NULL variants and cases at a significantly
lower performance impact than Intel’s optimized-cut solution,
not to mention SESES. Additionally to this reasoning, we also
evaluated our claims with proof-of-concept implementations
of the attack variants. Where our proofs of concept were
successful without LVI-NULLIify, enabling it prevents leakage
in all cases.

We have no indication whether the discussed remaining
vulnerabilities occur in real-world code. However, C and C++
grant developers vast freedom to implement features in non-
standard ways (e.g. manual jump tables for @ that our com-
piler extension is unaware of) which we would not catch
and, thus, not mitigate. Therefore, our mitigation bridges the
gap between the very expensive optimized-cut mitigation and
the less secure control-flow mitigation. When enclaves are
not subject to one of the described caveats, our mitigation
provides the same level of security as the optimized-cut miti-
gation at much lower performance cost.

6.2 Performance Evaluation

For the performance evaluation, we first investigate the num-
ber of emitted instructions, i.e., the number of 1fences and
GS-relative loads, of LVI-NULLIify and Intel’s control-flow
and optimized-cut mitigations as well as SESES(cf. Sec-
tion and Appendix B). Our expection is that the number
of 1fence instructions has a direct and significant impact
on the performance while GS-relative loads provide better

performance. We substantiate this by benchmarking SGX
applications with all of the above mentioned mitigations.

In line with previous work [10, 15, 54, 56, 67, 72], we
evaluate the performance of our mitigation based on SGX
benchmarks written in C/C++, the nbench adaptation for
SGX [15,58] and SGXBENCH [48]. As our mitigation is
highly specialized for the SGX environment, we can only
benchmark SGX enclaves, preventing us from measuring the
compiler-introduced overhead for regular benchmarks, such
as the SPEC benchmarking suite.

In our setup, we build enclaves with clang 11 and opti-
mization level O3. As the optimized-cut mitigation by default
does not mitigate the enclave entry assembly, it was compiled
with the experimental mitigation for assembly to provide a
better comparison with our mitigation in SGXBENCH, which
measures enclave-entry performance. We evaluate on an Intel
Core 15-10210U (1.6GHz, Comet Lake) and an Intel Core
19-9900K (3.5GHz, Coffee Lake-R). While the 19-9900K is
also affected by LVI, it serves as a reference for workstation
performance, compared to the mobile Comet Lake. Moreover,
this CPU has also been used by Phoronix [38] to benchmark
the overhead of Intel’s LVI mitigations. We provide these
results in Appendix A. All experiments were run on isolated
cores with fixed frequencies to reduce the variance of the
measured values.

6.2.1 Analysis of Emitted Instructions

Table 2 shows the result for our evaluation of emitted instruc-
tions for the two benchmarks as well as three libraries that are
essential components of SGX. The SESES mitigation issues
the largest amount of 1fences, i.e., more than 29 700 for lib-
sgx_tstdc.a, which is to be expected as it simply fences every
memory read and write that it encounters. Intel’s optimized-
cut mitigation improves upon this by removing more than
23000 1fences. The control-flow mitigation further reduces
this number, down to 1400 1fences, but at the cost of re-
duced security as it does not mitigate all loads. None of these
three mitigations issue a significant number of GS-relative
loads, i.e., 6 at most. Contrary to the other mitigations, LVI-
NULLIfy issues the lowest amount of 1fence instructions
but the highest amount of GS-relative loads. This change
in behavior significantly improves the performance, as our
subsequent performance evaluation of the benchmarks shows.

Naturally, due to LVI-NULLIfy replacing certain instruc-
tions with a longer sequence of secure instructions (cf. Fig-
ure 3), we expect the binaries that LVI-NULLIify generates to
be larger than for the Intel mitigations. As Table 2 shows, this
is indeed true: in the worst case, we see an increase of 21.5%
over the unmitigated baseline.

12

SESES
LFENCE/GS /KB
13780/ 6/ 233(+24%)
5229/6/ 109(+18%)
1872/6/ 108(+9%)
2975410/ 1454(+13%)
17818/0/ 775(+6%)

LVI-NULLify control-flow
LFENCE/GS /KB LFENCE / GS /KB
37711433/ 224(+19%) 319/6/ 192(+2%)
55/ 4323/ 113(+22%) 231/6/ 93(+0%)
libsgx_trts.a 4/ 1483/ 109(+10%) 105/6/ 102(+3%)
libsgx_tstdc.a 0/23356/1322(+3%) 1400/ 0/ 1367(+7%)
1714916/ 799(+10%) 812/0/ 722(-1%)

optimized cut
LFENCE/GS/KB
3289/6/ 200(+7%)
1274716/ 97(+4%)
59176/ 104(+5%)
618870/ 1383(+8%)
3353/0/ 730(+0%)

Software

nbench

sgxbench

libsgx_texx.a

Table 2: We show the number of 1fence and GS-relative in-
structions the different mitigation techniques insert and the
overall file size in kB (and its change to baseline) for a selec-
tion of software, including benchmarks and SGX components.

6.2.2 nbench

The relative performance overhead shown in Figure 4 clearly
demonstrates that the strong LVI-NULL mitigation provided
by LVI-NULLIfy comes in at or even below the cost of In-
tel’s control-flow-mitigation, which only covers variants @
and €. Table 3 contains the benchmark’s raw results in it-
erations per second. We also see that some of the tests, like
String Sort and Bitfield, operate almost entirely on reg-
isters, s.t. the overheads do not represent the differences of
the mitigations very well. Memory heavier benchmarks like
FP Emulation,on the other hand, clearly demonstrate the ad-
vantage of our mitigation vs. Intel’s optimized-cut mitigation.
Here we achieve an overhead reduction of 1216 percentage
points. As this overhead is more in line with the original re-
sults by Van Bulck et al. [60] and Phoronix [38], we consider
this to better represent the difference between the mitigations.
We also note some benchmarks where LVI-NULLIify per-
forms better than the unmitigated reference. We consider this
an artifact of cache alignment or similar effects specific to
this benchmark and not representative of our mitigation.

6.2.3 SGXBENCH

When compiling the SGXBENCH [48] suite, we found that
some loads in the benchmarks are not fenced by Intel’s
optimized-cut mitigation. For benchmarks that copy memory,
this makes the comparison to our mitigation rather uninterest-
ing, as tests show very similar performance. The results for a
selection of benchmarks are listed in Appendix A. Two of the
benchmarks still provide a useful comparison, einit/edestroy
and empty ocall. They show that at = 0.17% and = 3.3% lower
performance, respectively, our mitigation does not introduce
any significant slowdown for this basic enclave functionality.

7 Discussion and Limitations

Hardware and Microcode Changes. Ultimately, LVI and
LVI-NULL have to be mitigated in silicon, as we can al-
ready see from CPUs that are not affected by any LVI variant.
However, as it is infeasible to replace all affected CPUs, an
intermediate solution compatible with affected CPUs is nec-
essary. Van Bulck et al. [60] suggested the possibility of a

Test/Mitigation none (G) LVI-NULLIfy (c) control-flow (G) optimized cut () SESES (o)
NUMERIC SORT 723.69 (0.181) 718.67 (0.093) 722.15 (0.061) 317.23 (0.018) 100.73 (0.008)
STRING SORT 70.46 (0.003) 70.01 (0.005) 69.43 (0.003) 67.11 (0.002) 2.51 (0.000)
BITFIELD 316550164 (165589) 313635987 (102467) 317587729 (228 815) 316548 172 (411 084) 46990509 (1326)
FP EMULATION 30.17 (0.002) 28.77 (0.009) 23.12 (0.002) 2.28 (0.000) 2.29 (0.000)
FOURIER 23851.98 (7.853) 21896.10 (12.773) 13180.42 (3.819) 10228.70 (2.137) 3499.27 (0.086)
ASSIGNMENT 41.72 (0.013) 40.39 (0.004) 40.36 (0.003) 5.32 (0.000) 2.78 (0.000)
IDEA 7257.17 (0.529) 7088.14 (0.759) 6419.30 (20.861) 2254.47 (0.311) 704.18 (0.060)
HUFFMAN 2335.15(0.314) 2131.65 (1.249) 2329.53 (0.474) 578.78 (0.061) 288.48 (0.012)
NEURAL NET 66.20 (0.027) 63.98 (0.056) 42.01 (0.024) 38.37 (0.004) 4.26 (0.000)
LU DECOMP 1467.54 (0.780) 1406.82 (0.351) 955.22 (0.434) 631.33 (0.129) 92.75 (0.003)

Table 3: Average performance in sgx-nbench [58] on i5-10210U @ 1.6GHz of our GS mitigation vs. Intel’s control-flow and
optimized-cut mitigations as well as SESES. Clang 11 was used for all tests. Iterations/s, higher is better. N=50

microcode update that simply marks the null page uncachable.
However, we identified several problems with this approach.

First, transient loads from an uncachable page can pick up
values from the line-fill buffer [41,52]. With hyperthreading
enabled, clearing the line-fill buffer on enclave entry and exit
is then also not sufficient.

Second, we experimentally verified that the operating sys-
tem can change the memory type of enclave pages. Hence, a
malicious operating system could change the memory type
of the null page to cachable. Only if there is a method to lock
entries in the TLB, SGX could ensure that the TLB entry
for the null page stays in the TLB, preventing the operating
system from changing the memory type.

Hence, we conclude that microcode mitigations are not

as simple as assumed. The fact that there is no microcode
update for any CPU to prevent LVI-NULL also indicates that
microcode mitigations might not be possible.
Limitations. While LVI-NULLify conceptually prevents
most variants of LVI-NULL, our technical implementation is
currently limited by a few factors. Some of these limitations
can be solved using additional engineering effort, while others
can be solved directly by the enclave developer.

Most limitations are due to our proof-of-concept compiler
transformation pass. The transformation pass currently uses a
machine function pass to apply LVI-NULLIify. However, as
assembly is not handled by this machine function pass, we
currently cannot directly patch inline assembly or assembly
files automatically.

The remaining limitations are due to the pointer conversion
between enclave and host application. While all the cases
where the enclave developer adheres to best practice and
the strict interface definitions are supported, there are corner
cases that cannot be supported in an automated way, e.g., if the
pointer is hidden behind an unknown type and reinterpreted
by the developer.

8 Conclusion

In this paper, we presented a novel, lightweight defense
against LVI-NULL in SGX. Based on a systematic analysis of

13

LVI-NULL variants, we identified the attack requirements and
discovered that previous mitigations targeting LVI-NULL are
not effective. Our mitigation, LVI-NULLIify, addresses this
problem by repurposing segmentation to offset every load dur-
ing enclave execution. LVI-NULLIify consists of a modified
SGX-SDK and a compiler extension that we open source. We
evaluated LVI-NULLIify on LVI-fixed CPUs and observed a
performance overhead below 10% for the worst case, which is
substantially lower than previous defenses. We conclude that
LVI-NULLIfy is a practical solution to protect SGX enclaves
on processors that remain susceptible to LVI-NULL.

Acknowledgments

We want to thank the anonymous reviewers and especially
our shepherd, Fangfei Liu, for their comments and sugges-
tions. We also want to thank Aikata Aikata for her support
with hardware procurement. This project has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 681402). Additional funding
was provided by generous gifts from Intel, Amazon and ARM.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References

[1] Daniel Pierre Bovet. Special sections in Linux binaries,
January 2013. URL: https://lwn.net/Articles/
531148/.

[2] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko,

Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza

Sadeghi. Software Grand Exposure: SGX Cache At-

tacks Are Practical. In WOOT, 2017.

[3] Zola Bridges. LLVM SESES pass for LVI, 2020. URL:

https://reviews.llvm.org/D75939.

https://lwn.net/Articles/531148/
https://lwn.net/Articles/531148/
https://reviews.llvm.org/D75939

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking Data
on Meltdown-resistant CPUs. In CCS, 2019.

Claudio Canella, Khaled N. Khasawneh, and Daniel
Gruss. The Evolution of Transient-Execution Attacks.
In GLSVLSI, 2020.

Claudio Canella, Sai Manoj Pudukotai Dinakarrao,
Daniel Gruss, and Khaled N. Khasawneh. Evolution
of Defenses against Transient-Execution Attacks. In
GLSVLSI, 2020.

Claudio Canella, Michael Schwarz, Martin Haubenwall-
ner, Martin Schwarzl, and Daniel Gruss. KASLR: Break
It, Fix It, Repeat. In AsiaCCS, 2020.

Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A
Systematic Evaluation of Transient Execution At-
tacks and Defenses. In USENIX Security Sympo-
sium, 2019. Extended classification tree and PoCs at
https://transient.fail/.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian
Zhang, Zhiqiang Lin, and Ten H Lai. SgxPectre At-
tacks: Stealing Intel Secrets from SGX Enclaves via
Speculative Execution. In EuroS&P, 2019.

Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan
Chen, Yingian Zhang, XiaoFeng Wang, Ten-Hwang Lai,
and Dongdai Lin. Racing in hyperspace: closing hyper-
threading side channels on sgx with contrived data races.
In S&P, 2018.

Adam Chester. Exploiting Windows 10 Kernel Drivers -
NULL Pointer Dereference, 2018.

Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. Cryptology ePrint Archive, Report 2016/086,
2016.

David Drysdale. How programs get run: ELF binaries,
2015. URL: https://lwn.net/Articles/631631/.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. BranchScope:
A New Side-Channel Attack on Directional Branch Pre-
dictor. In ASPLOS, 2018.

Yangchun Fu, Erick Bauman, Raul Quinonez, and
Zhigiang Lin. Sgx-lapd: Thwarting controlled side chan-
nel attacks via enclave verifiable page faults. In Inter-
national Symposium on Research in Attacks, Intrusions,
and Defenses. Springer, 2017.

14

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P, 2018.

Jago Gyselinck, Jo Van Bulck, Frank Piessens, and
Raoul Strackx. Off-limits: Abusing legacy x86 memory
segmentation to spy on enclaved execution. In ESSoS,
2018.

Jann Horn. speculative execution, variant 4: speculative
store bypass, 2018.

Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang
Hao, Pei Zhao, Jian Zhai, and Mingshu Li. Bluethun-
der: A 2-level Directional Predictor Based Side-Channel
Attack against SGX. In CHES, 2020.

Intel. Intel Software Guard Extensions SDK for Linux
OS Developer Reference, May 2016. Rev 1.5.

Intel. Intel 64 and IA-32 Architectures Software
Developer's Manual, Volume 1: Basic Architecture,
2016.

Intel. Branch Target Injection / CVE-2017-
5715 / INTEL-SA-00088, 2018. URL:
https://software.intel.com/security-
software-guidance/advisory-guidance/branch-
target-injection.

Intel. Deep Dive: Intel Analysis of L1 Terminal Fault,
2018.

Intel. Speculative Execution Side Channel Mitigations,
2018. Reyvision 3.0.

Intel. Deep Dive: Intel Analysis of Microarchitectural
Data Sampling, 2019.

Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 2 (2A, 2B & 2C): Instruction Set
Reference, A-Z, 2019.

Intel. Affected Processors: Transient Execution At-
tacks, 2020. URL: https://software.intel.com/
security-software-guidance/processors—
affected-transient-execution-attack-
mitigation-product-cpu-model.

Intel. An Optimized Mitigation Approach
for Load Value Injection, 2020. URL:
https://software.intel.com/security-
software-guidance/best-practices/optimized-
mitigation-approach-load-value-injection.

Intel. Load Value Injection, 2020. URL:
https://software.intel.com/content/www/
us/en/develop/articles/software-security-

https://lwn.net/Articles/631631/
https://software.intel.com/security-software-guidance/advisory-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/advisory-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/advisory-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

guidance/technical-documentation/load-
value-injection.html.

Yeongjin Jang, Jachyuk Lee, Sangho Lee, and Taesoo
Kim. SGX-Bomb: Locking Down the Processor via
Rowhammer Attack. In SysTEX, 2017.

Zijo Kenjar, Tommaso Frassetto, David Gens, Michael
Franz, and Ahmad-Reza Sadeghi. VOLTpwn: Attacking
x86 Processor Integrity from Software. In USENIX
Security Symposium, 2020.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM
Disturbance Errors. In ISCA, 2014.

Vladimir Kiriansky and Carl Waldspurger. Spec-
ulative Buffer Overflows: Attacks and Defenses.
arXiv:1807.03757, 2018.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

Anton Korobeynikov. Improving switch lowering for
the llvm compiler system. In SYRCoSE, May 2007.

Esmaeil Mohammadian Koruyeh, Khaled Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre Re-
turns! Speculation Attacks using the Return Stack
Buffer. In WOOT, 2018.

Michael Larabel. Google Engineer Shows "SESES"
For Mitigating LVI + Side-Channel Attacks, 2020.
URL: https://www.phoronix.com/scan.php?
page=news_item&px=LLVM-SESES-Mitigating-
LVI-More.

Michael Larabel. The Brutal Performance Impact
From Mitigating The LVI Vulnerability, 2020. URL.:
https://www.phoronix.com/scan.php?page=
article&item=lvi-attack-perf.

Chris Lattner and Vikram S. Adve. LLVM: A compila-
tion framework for lifelong program analysis & trans-
formation. In IEEE / ACM International Symposium on
Code Generation and Optimization — CGO, 2004.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch
Shadowing. In USENIX Security Symposium, 2017.

15

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
2018.

G. Maisuradze and C. Rossow. ret2spec: Speculative
Execution Using Return Stack Buffers. In CCS, 2018.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In CHES, 2017.

Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael
Schwarz. Medusa: Microarchitectural Data Leakage
via Automated Attack Synthesis. In USENIX Security
Symposium, 2020.

Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based Fault Injection Attacks against
Intel SGX. In S&P, 2020.

Nergal. The advanced return-into-lib(c) explits: PaX
case study, 2001.

Pengfei Qiu, Dongsheng Wang, Yongqgiang Lyu, and
Gang Qu. VoltJockey: Breaking SGX by Software-
Controlled Voltage-Induced Hardware Faults. In Asian-
HOST, 2019.

Raul Quinonez. SGXBENCH framework for bench-
marking SGX enclaves, 2018. URL: https://github.
com/sgxbench/sgxbench.

Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémen-
tine Maurice, Thomas Schuster, Anders Fogh, and Ste-
fan Mangard. Automated Detection, Exploitation, and
Elimination of Double-Fetch Bugs using Modern CPU
Features. In AsiaCCS, 2018.

Michael Schwarz, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

Michael Schwarz, Moritz Lipp, Claudio Canella, Robert
Schilling, Florian Kargl, and Daniel Gruss. ConTEXT:
A Generic Approach for Mitigating Spectre. In NDSS,
2020.

Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=article&item=lvi-attack-perf
https://www.phoronix.com/scan.php?page=article&item=lvi-attack-perf
https://github.com/sgxbench/sgxbench
https://github.com/sgxbench/sgxbench

[53] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. NetSpectre: Read Arbitrary
Memory over Network. In ESORICS, 2019.

[54] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-
Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim.
Sgx-shield: Enabling address space layout randomiza-

tion for sgx programs. In NDSS, 2017.

[55] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on the

x86). In CCS, 2007.

[56] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-SGX: Eradicating controlled-channel attacks

against enclave programs. In NDSS, 2017.

[57] Julian Stecklina and Thomas Prescher. LazyFP: Leak-
ing FPU Register State using Microarchitectural Side-

Channels. arXiv:1806.07480, 2018.

[58] utds3lab. Adaptation of nbench-byte-2.2.3 for Intel
SGX, 2017. URL: https://github.com/utds3lab/

sgx-nbench.

[59] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In USENIX

Security Symposium, 2018.

[60] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking Transient Execution through Microar-

chitectural Load Value Injection. In S&P, 2020.

[61] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla
Aldoseri, Flavio Garcia, and Frank Piessens. A Tale
of Two Worlds: Assessing the Vulnerability of Enclave

Shielding Runtimes. In CCS, 2019.

[62] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A Practical Attack Framework for Precise Enclave
Execution Control. In Workshop on System Software for

Trusted Execution, 2017.

[63] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying Microarchitectural Timing Leaks in Rudi-

mentary CPU Interrupt Logic. In CCS, 2018.

[64] Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling Your Secrets With-
out Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution. In USENIX Security Symposium,

2017.

16

[65] Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
In-flight Data Load. In S&P, 2019.

[66] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and
Ridiger Kapitza. AsyncShock: Exploiting Synchro-
nisation Bugs in Intel SGX Enclaves. In ESORICS,

2016.

[67] Samuel Weiser, Luca Mayr, Michael Schwarz, and
Daniel Gruss. SGXlJail: Defeating enclave malware

via confinement. In RAID, 2019.

[68] Hans Wennborg. The recent switch lowering
improvements, October 2015. URL: http:
//1lvm.org/devmtg/2015-10/slides/Wennborg-

SwitchLowering.pdf.

[69] Yuan Xiao, Yingian Zhang, and Radu Teodorescu.
SPEECHMINER: A Framework for Investigating and
Measuring Speculative Execution Vulnerabilities. In

NDSS, 2020.

[70] Wenjie Xiong and Jakub Szefer. Survey of Transient

Execution Attacks. arXiv:2005.13435, 2020.

[71] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In S&P, 2015.

[72] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi.
MPTEE: Bringing Flexible and Efficient Memory Pro-
tection to Intel SGX. In EuroSys, 2020.

A Benchmarking results

In addition to our LVI-NULL-only affected Comet Lake CPU,
we also provide benchmark overheads for the older i19-9900K
Coffee Lake CPU in Figure 5. We can see that while their
are some differences, the relative performances between the
mitigations is roughly the same on this desktop CPU as it is
on the mobile i5-10210U.

Table 4 shows the execution times for various SGXBENCH
benchmarks on our Comet Lake i5-10210U.

B Sample Compilation Options for Mitiga-
tions

Control-flow Mitigation:

clang-lvi-cfi -mlvi-cfi
-Iclang-lvi-cfi/sgxsdk/include
-Iclang-lvi-cfi/sgxsdk/include/tlibc -fpic -03
-nostdinc -fvisibility=hidden -fstack-protector

https://github.com/utds3lab/sgx-nbench
https://github.com/utds3lab/sgx-nbench
http://llvm.org/devmtg/2015-10/slides/Wennborg-SwitchLowering.pdf
http://llvm.org/devmtg/2015-10/slides/Wennborg-SwitchLowering.pdf
http://llvm.org/devmtg/2015-10/slides/Wennborg-SwitchLowering.pdf

lm LVI-NULLify E Bclang-1lvi-cfi Aa clang-1lvi-opt { clang-seses be
3,000 - S —
O
(o)l
<
& 2,000 |- = 3 . =
k=) 2 5 ®
3 a5 % g &
<= %) — 1>
B S —) ~
g o = °€. =
@) T 3 -
1,000 2 ’k =N z |
< 1 y L8
- & S <
3 ’t ot &k
0\ Ay ooy
; =@ 22008
-100 T T T T T T T T T T
NUMERIC BITFIELD FP EMU- FOURIER ASSIGNMENT IDEA HUFFMAN NEURAL LU STRING
SORT LATION NET DECOM- SORT
POSITION

Figure 5: Mean performance overhead in sgx-nbench [58] on our i19-9900K @3.5GHz of LVI-NULLIify vs. Intel’s control-flow
and optimized-cut mitigations as well as SESES. Clang 11 was used for all tests. N=50, standard deviations w.r.t. baseline mean

are plotted, but too small to be visible.

Test/Mitigation none (o) LVI-NULLIify (o) control-flow (o) optimized cut (c) SESES (o)

empty function ~ 37072.3 (2655.0) 37660.3 (1878.0) 37349.9 (1832.2) 39015.5 (1701.7) 42612.8 (3325.2)

empty ocall 14496.6 (1151.5) 14980.8 (1096.3) 14735.5 (1146.6) 16052.1 (1080.8) 15995.6 (995.6)

ocall in/out 15651.8 (835.7) 16433.0 (809.6) 16236.2 (702.1) 17510.5 (819.4) 23309.8 (1023.8)
encrypted read 14884.4 (756.5) 15228.5 (843.2) 14984.3 (758.9) 16429.6 (799.8) 21868.8 (966.6)
encrypted write 14720.8 (799.7) 15279.9 (827.8) 14989.7 (740.8) 16507.6 (779.2) 21866.2 (967.0)
einit/edestroy 141845200.9 (793624.2) 142087389.7 (849561.9) 142354110.9 (841980.8) 142506399.6 (798824.8) 142649039.2 (827876.1)

Table 4: Runtime of the SGXBENCH benchmarks on an i5-10210U@ 1.6GHz in cycles. Lower is better. N=1000000 for all

except eint/edestroy where N=1000

-fpic -c Enclave.c -o Enclave.o

SESES Mitigation:

clang-lvi-seses -mseses
-Iclang-lvi-seses/sgxsdk/include
-Iclang-lvi-seses/sgxsdk/include/tlibc

-fpic -03 -nostdinc -fvisibility=hidden
-fstack-protector -fpic -c Enclave.c -o
Enclave.o

Optimized-Cut Mitigation:

clang-lvi-opt -mlvi-hardening -mllvm
-x86-1lvi-load-opt-plugin=OptimizeCut.so -mllvm
-x86-experimental-lvi-inline-asm-hardening
-Iclang-lvi-opt/sgxsdk/include
-Iclang-lvi-opt/sgxsdk/include/tlibc -fpic -03
-nostdinc -fvisibility=hidden -fstack-protector
-fpic -c Enclave.c -o Enclave.o

17

C LVI-NULL POC Implementation Details

In addition to LVI-NULLIfy, the relevant proofs of concept
can also be found in our repository at https://github.com/
lvi-nullify/LVI-NULLify.

For attacks on SGX, an attacker would typically use a
framework like SGX-Step [62] to interfere with a victim en-
clave at more or less precise points. For our POCs however,
we can use a more cooperative approach, which simplifies the
code and imitates a very strong attacker. Right before vulner-
able loads in our victim, we OCALL to the attacker who then
removes the accessed bit from our target page. This reliably
causes O to be injected into the next loads from this page,
triggering our LVI-NULL attacks. We can then measure rates
of leakage via a transmission gadget; in our case an access to
a page outside the enclave.

When we compile with LVI-NULLIify, we see that all leak-
age is completely prevented.

https://github.com/lvi-nullify/LVI-NULLify
https://github.com/lvi-nullify/LVI-NULLify

	Introduction
	Background
	Transient-Execution Attacks
	Load Value Injection
	LVI-NULL

	Intel SGX
	Virtual Memory and Segmentation
	Object Relocations

	Threat Model
	Detailed Investigation of LVI-NULL
	LVI-NULL Categorization
	Control-flow Injection
	Data Injection
	Applying LVI-NULL Variants in SGX
	Current and Proposed Mitigations
	Memory Fences
	Page Table Protections

	LVI-NULLify
	LVI-NULLify Design
	Using Segmentation
	First Enclave Pages
	Alternative Approaches
	Mitigating Switch Statements

	Compiler Changes
	Relocation and SGX-SDK Changes
	Relocation Types
	SGX-SDK and SGX-PSW

	Evaluation
	Security Evaluation
	Performance Evaluation
	Analysis of Emitted Instructions
	nbench
	SGXBENCH

	Discussion and Limitations
	Conclusion
	Benchmarking results
	Sample Compilation Options for Mitigations
	LVI-NULL POC Implementation Details

