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ABSTRACT
The number of Linux kernel vulnerabilities discovered has increased
drastically over the past years. In the kernel, even simple memory
safety vulnerabilities can have devastating consequences, e.g., com-
promising the entire system. Efforts to mitigate these vulnerabilities
have so far focused mainly on control-flow hijacking attacks in the
kernel. Yet, data-oriented attacks remain largely unmitigated in
practice as existing mitigations are limited in providing robust se-
curity guarantees at reasonable performance overhead for multiple
sensitive data objects.

In this paper, we present DOmain Protection Enforcement (DOPE),
a novel kernel mitigation to protect against data-oriented attacks
leveraging Intel’s new hardware feature PKS. DOPE enforces do-
main protection, restricting memory access to sensitive data during
kernel space execution based on the principle of least privilege.
Hence, in case of an exploitable kernel bug, an attacker is prevented
from using sensitive data for privilege escalation. We demonstrate
DOPE’s effectiveness and usefulness by implementing a proof-of-
concept, protecting eight selected sensitive data objects. The proof-
of-concept is realized as compiler-assisted and hardware-enforced
kernel mitigation. It consists of less than 5000 lines of code on
the Linux kernel 5.19 and LLVM clang 15.0.1. Our evaluation on
real hardware shows an average runtime overhead of 2.3 % for
real-world user applications. Lastly, we systematically analyze 11
state-of-the-art kernel mitigations against data-oriented attacks
and illustrate that DOPE is a significant improvement in terms of
security with respect to performance.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

1 INTRODUCTION
While memory safety is a well-researched topic, the challenge of
finding complete, high-performance mitigations remains unsolved.
Memory safety is especially relevant to the kernel since it is a
valuable target for memory-corruption attacks. Memory-safety
vulnerabilities in the kernel enable privilege escalation, rootkits,
and confidential data leakage. Historically, Linux kernel exploits
injected instruction sequences into kernel memory and hijacked
the control flow to these sequences [31]. In 2009, Linux introduced
an in-kernel WˆX policy enforcing that kernel memory is never
writable and executable, preventing code injection attacks [29].

However, attackers could still hijack the kernel control flow to
escalate privileges [7, 9, 11, 38, 41]. In an attempt to mitigate control-
flow hijacking attacks in the kernel, processor vendors introduced
hardware-enforced restrictions for both user-space code execution
(Intel SMEP [18] and ARM PXN [59]) and user-space data access
(Intel SMAP [18] and ARM PAN [59]) in kernel mode. Subsequently,
Linux added support for these features, making exploitation sub-
stantially more difficult. To further complicate control-flow hijack-
ing attacks, Control-Flow Integrity (CFI) [1, 2, 21, 31, 57, 58] has
been established as the state-of-the-art mitigation. CFI restricts
the control flow to a set of transfers to ensure correct program
execution, reducing the exploitation surface.

Besides hijacking the control flow, data-oriented attacks are a
common attack class [15, 37]. Xiao et al. [81] showed that data-
oriented attacks are not only a security concern for user appli-
cations but also the kernel. In the kernel, data-oriented attacks
corrupt kernel data to indirectly change the control flow and es-
calate the attacker’s privileges. Several mitigations [13, 14, 28, 45,
46, 54, 62, 63, 70, 80, 82] have been proposed to protect against
data-oriented attacks. However, their practical deployment is hin-
dered as they are limited in providing robust security guarantees
at reasonable performance overhead for multiple sensitive data ob-
jects. For example, xMP [62] provides strong security benefits but
has a performance overhead of up to 20 % for macro-benchmarks,
potentially prohibited for commodity use cases. On the other hand,
KDPM [45] has a low performance overhead but offers inadequate
security guarantees as it does not mitigate forgery attacks.

In this paper, we present DOmain Protection Enforcement (DOPE),
a novel kernel mitigation protecting against data-oriented attacks.
By following the principle of least privileges [65], DOPE restricts
the memory accesses of threads during kernel space execution. To
achieve this restriction, we move sensitive data objects into distinct
security domains based on whether access to them could be used in
privilege escalation exploits. Access to sensitive data objects is only
granted if the thread has the associated domain’s access permission,
which DOPE enforces with Intel PKS [22]. DOPE only grants tem-
porary access permission to domains in predefined, trusted code
locations. In addition to protecting sensitive data objects, DOPE
ensures the integrity of data pointers pointing to these sensitive
data objects through ownership at runtime.

To demonstrate DOPE’s effectiveness and usefulness, we im-
plement a proof-of-concept and perform a case study. In our case
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study, we select eight sensitive data objects (i.e., credentials, vir-
tual memory, virtual memory areas, inodes, page tables, filesys-
tem mount, user-accessible pages, and stored registers) susceptible
to being used for privilege escalation exploits and protect them
with DOPE. The proof-of-concept implementation consists of less
than 5000 lines of code on a Linux kernel 5.19 and LLVM clang
15.0.1 [53]. Our implemented LLVM pass analyzes code and inserts
domain switches and validation checks into the kernel’s binary to
ensure DOPE’s functionality. We run our DOPE proof-of-concept
on Ubuntu 22.04.1 LTS with a recent Intel Alder Lake processor.
We evaluate the performance overhead of our proof-of-concept
with micro-benchmarks from LMbench [56], showing an overhead
of 32 %. In macro-benchmarks from Phoronix Test Suite [61] and
SPEC CPU 2017 [25], we observed 2.3 % and 0.4 % overheads.

Lastly, we systematically analyze 11 state-of-the-art kernel mit-
igations against data-oriented attacks and point out blank spots
in the mitigation landscape. We classify all analyzed mitigations
against data-oriented attacks based on four techniques: Object
monitoring [14, 63, 82], randomization [13, 28], compartmental-
ization [54, 80], and isolation [45, 46, 62, 70]. We further classify
these mitigations according to their overheads and security guaran-
tees. In this systematic analysis, we show that DOPE is a significant
improvement in terms of security with respect to performance.

Contributions. The main contributions of this work are:
(1) DOPE:We present DOPE, a novel principled kernel mitiga-

tion for data-oriented attacks using Intel’s new hardware
feature PKS to enforce domain protection.

(2) Proof-of-concept:Wedevelop a proof-of-concept of DOPE1

consisting of a Linux kernel extension and an LLVM pass
illustrating the feasibility of our approach.

(3) Case study:We perform a case study to demonstrate the
effectiveness of DOPE in providing robust protection for
eight selected sensitive data objects.

(4) Evaluation:We evaluate DOPE’s security and performance
overhead, showing strong security guarantees with an over-
head of 2.3 % for macro-benchmarks.

(5) Systematic analysis:We examine 11 existing kernel mit-
igations for data-oriented attacks, identifying gaps in the
mitigation landscape. We then show that DOPE provides
superior security with respect to performance.

Outline. In Section 2, we provide background and state-of-the-
art countermeasures. In Section 3, we present our threat model.
Section 4 presents our mitigation DOPE. While in Section 5, we de-
scribe our DOPE proof-of-concept, Section 6 performs a case study.
In Section 7, we discuss DOPE’s security and evaluate the proof-of-
concept’s performance overhead. Section 8 presents a systematic
analysis. Lastly, we conclude our work in Section 9.

2 BACKGROUND AND STATE-OF-THE-ART
In this section, we provide background on Memory Protection
Keys (MPK), as MPK plays an essential role in the design and im-
plementation process. We then discuss existing user and kernel
countermeasures against data-oriented attacks.

1Available https://extgit.iaik.tugraz.at/sesys/dope
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Figure 1: Working prinicple of MPK, where AD and WD stands
for access and write disable, respectively. Pages tagged with
key 0 are write- and access-permitted, while pages tagged
with key 1 are write- and access-prohibited, and pages tagged
with key 2 are only write-prohibited.

2.1 Memory Protection Keys
MPK are a hardware feature to enforce page-level permissions with-
out modifying page-table entries [77]. The page permissions are
enforced by tagging pages with a key and changing the permis-
sions of these keys, stored in a dedicated hardware register. Intel
features two variants of MPK, one for user- and one for kernel-space
pages [39], namely Protection Keys for Userspace (PKU) [77] and
Protection Keys for Supervisor (PKS) [22]. Both variants support
16 distinct keys, where a tagged page stores its applied key in its as-
sociated page-table entry. Each key comprises two permission bits:
Access and write disable. Figure 1 shows MPK’s working principle.

The dedicated register used by PKS is MSR 0x6E1 [39], called Pro-
tection Key Register for Supervisor (PKRS). Changing a key’s per-
mission is done by writing to PKRS. Since for permission changes
no page-table walk or TLB flush is required [23], PKS is faster than
changing permission bits directly in the page-table entry.

2.2 User Space Mitigations
Previous works [15, 37, 81] showed that data-oriented attacks can
actively change the program’s control flow by modifying sensitive
data objects. Castro et al. [12] proposed Data-Flow Integrity (DFI),
which tracks both read and write instructions. DFI enforces that
data was not tampered with at runtime. Instead of validating a sen-
sitive data object on every access, Akritidis et al. [3] proposedWrite
Integrity Test (WIT) that only performs checks on write instruc-
tions. WIT employs static analysis to assign a color to each write
instruction and their associated sensitive data. Only write instruc-
tions with the correct color are permitted, practically preventing
illegal write operations. Another approach to protecting sensitive
data is data randomization [5, 6, 10], which encrypts sensitive data
in memory with context-specific encryption keys.

To limit the exploitation surface of data-oriented attacks, previ-
ous works [36, 60, 68, 78] proposed various isolation mitigations.
These mitigations use the Intel user-space implementation of MPK,
PKU, to enforce isolation between different entities. Moreover, In-
tel’s PKU is also commonly used in proposals to enforce isolation
in unikernels [49, 71] and libOSes [48, 66].

https://extgit.iaik.tugraz.at/sesys/dope
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2.3 Linux Kernel Mitigations
The explained user space techniques were adopted into the Linux
kernel. Previousworks provideDFI for sensitive data objects through
object monitoring [14, 63, 82] or compartmentalization [54, 80].
Moreover, randomization-based approaches to the data location
and layout were applied to the kernel [13, 28]. Other proposals [45,
46, 62, 70] isolate sensitive data objects from untrusted code.

As we later show in Section 8, existing mitigations have limita-
tions in providing robust security guarantees, reasonable perfor-
mance overhead, or protection formultiple sensitive data objects. To
address these limitations, we propose our mitigation approach DO-
main Enforcement Protection (DOPE). Our case study demonstrates
that DOPE’s proof-of-concept protects eight selected sensitive data
objects with a reasonable runtime overhead. Compared to exist-
ing countermeasures, DOPE offers protection for multiple objects
with strong security guarantees and lower performance overhead.
This significant enhancement in security relative to performance
underscores the superiority of our approach.

3 THREAT MODEL
We assume an attacker can execute code in user space and has an
arbitrary read-and-write primitive in the kernel accessible through
the syscall interface without violating control-flow integrity. This
aligns with the threat model of existing kernel defenses [13, 14, 28,
45, 46, 54, 62, 63, 70, 80, 82]. We do not specify the underlying flaw
that leads to this primitive. We also assume modern kernel defense
mechanisms such as Secure Boot, the WˆX policy, KASLR [30], SMEP,
and SMAP [18] are enabled, along with a CFI scheme [26, 32, 33, 57].

Attack vector. Since we assume that the enabled CFI scheme
prevents control-flow hijacking attacks [7, 9, 11, 38], attackers focus
on manipulating non-control data to elevate privileges. Such non-
control data may include objects that contain information about
privilege levels, like credential or inode objects, or information
obtained from page permissions, such as page tables.

Out of scope. Although we acknowledge the presence of var-
ious types of attacks, such as side-channel [34, 51], microarchi-
tectural [35, 44], and software fault injection [19, 69], as well as
malicious hypervisors and operating systems, these are out of scope.

4 DOMAIN PROTECTION ENFORCEMENT
DOmain Protection Enforcement (DOPE) is a principled mitigation
for data-oriented attacks by protecting sensitive data objects from
being exploited for privilege escalations. DOPE achieves this pro-
tection by adhering to the principle of least privilege [65]. During
kernel space execution, DOPE restricts access to sensitive data for
each thread based on their access permissions (cf. Section 4.1). To
achieve this restriction, it places each sensitive data object into dis-
tinct security domains. Access to these objects is only granted if the
thread has the associated domain permission (cf. Section 4.2), which
DOPE enforces using Intel PKS (cf. Section 4.3). DOPE only grants
temporary domain access permission in predefined, trusted code
locations. We define code as trusted (cf. Section 4.5) if all accessed
pointers are integrity ensured and, hence, trusted (cf. Section 4.4).
Thus, DOPE effectively thwarts attackers from utilizing sensitive
data for privilege escalation exploits in case of an exploitable bug.

Thread

enter_request()
...
handle_request()
...
exit_request()

read_domain_a()
...
write_domain_b()
...
do_stuff()

do_stuff() write_domain_b() read_domain_a()

①

② ③

④⑤

⑥

⑦

read access

A

access-protected

read access write access

B

write-protected

DPM

Figure 2: Access restriction of DOPE, where a thread invokes
kernel space execution (①, ⑥), handles the request (②) and
accesses sensitive data objects (③, ④, ⑤).

4.1 Restricted Access Permissions
DOPE provides a fine-grained permission setting for the security
domains by prohibiting access or writing to the domain’s data. On
each kernel execution request entry, the thread’s access permissions
are set to restricted. The restricted access permissions list what
domain is prohibited from being accessed or written to. They are
defined before compile time by the system developers and enforced
at runtime by DOPE. For example, the restricted access permissions
in Figure 2 are: Prohibit access to domain A and prohibit write to
domain B.

4.2 Sensitive Data Access
When a thread handles an execution request in kernel space, it
is restricted from accessing sensitive data objects in accordance
with its access permissions. A thread is only permitted to access
such objects if it has the corresponding domain’s permission, which
DOPE temporarily grants by performing domain switches.

For instance, Figure 2 shows DOPE’s access restriction. After a
thread invokes kernel space execution ①, enter_request is called,
which sets the thread’s access permissions to restricted. While
having restricted access, the thread handles the invoked request ②.
In read_domain_a ③, the thread switches to domain A for every
read access and, hence, acquires temporary read permission. The
write_domain_b function ④ performs domain switches to gain
domain B temporarily write permission. Since we define domain B
as readable, the function do_stuff ⑤ is legally permitted to do so.
Finally, exit_request ⑥/⑦ finishes the kernel execution request.

DOPE interprets any access from a thread that does not have
domain permission as an exploit and terminates its execution, e.g.,
when the thread accesses domain A or writes to B within do_stuff.

DOPE supports two kernel execution requests: The first origi-
nates on thread creation and ends on termination. In between, the
thread executes code in the kernel and user space, where switching
between kernel and user space does not alter its permissions. The
second originates on an asynchronous interrupt when the disrupted
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thread is in kernel space. Considering this execution request is cru-
cial, otherwise, an attacker could perform the elevated permission
interrupt attack, as we later describe in Section 7.1.

4.3 Enforcing Domain Protection with PKS
DOPE utilizes one PKS key per security domain and tags the pages
of each security domain with their respective key. This tagging
enables Intel PKS to enforce domain access restrictions. Any attempt
to violate the access permissions of the tagged pages results in a
fault, which DOPE interprets as an exploit attempt. Consequently,
DOPE thwarts the exploit attempt, effectively mitigating the attack.

DOPE configures each AD and WD bit in the per-thread PKRS ac-
cording to the access permission restrictions of the security domain,
where AD and WD stand for access and write disable. In the example
of Figure 2, DOPE sets AD and WD in the PKRS for domain key A
to prohibit access to domain A. For domain key B, DOPE sets WD
and resets AD to prevent writing to domain B. In order to enforce
these restricted access permissions, the thread acquires this PKRS
on each kernel execution request entry.

To perform a domain switch, DOPE alters the permission bit
of the target domain key for the current thread. As a result, the
current thread gains read or write access to the desired domain.
The function read_domain_a in Figure 2 switches domains each
time it reads data from domain A. It does so by modifying the AD bit
in the PKRS of domain key A, where resetting the bit grants access
permission and setting the bit removes the permission. Similarly,
in write_domain_b, DOPE grants write permissions temporarily
by resetting and setting the WD bit in the PKRS for domain key B.

Maintaining high performance is essential since the kernel is the
lowest software abstraction layer. Previous research [60, 68] has
demonstrated a direct correlation between the number of domain
switches and the performance overhead. Therefore, DOPE aims to
minimize domain switches by providing three variants of domain
protection enforcement using Intel PKS. These variants differ in
their level of spatial granularity, offering flexibility for system devel-
opers for their specific use cases. By minimizing domain switches,
DOPE helps optimize system performance while providing strong
security guarantees against data-oriented attacks.

4.3.1 Entire data object protection. The first protection variant
of DOPE involves protecting an entire data object. In this approach,
the page containing the data object is protected with PKS by tagging
it with the associated domain key. Any data access that violates the
domain’s permissions is prohibited. This applies to both sensitive
and non-sensitive members of the object. Consequently, to access a
protected data object, the current thread must have the appropriate
domain permissions and switch domains as needed, regardless of
whether the accessed member is sensitive or non-sensitive. This
approach is best suited when the data object consists mainly or
entirely of sensitive data members. Since switching domains incurs
a performance overhead, it may not be optimal if the object contains
a mix of sensitive and non-sensitive members.

4.3.2 Shadow memory protection. DOPE introduces shadow
memory protection for data objects containing a mix of sensitive
and non-sensitive data members. In such cases, the sensitive data
members are duplicated on allocation, and the duplicated data are

sensitive data
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non-sensitive data before
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Figure 3: Data layout of
sensitive data protection.

task_struct

cred
cred

owner

Figure 4: Ownership-based pro-
tection is employed to protect
the sensitive pointer to cred
within task_struct.

protected by tagging its page with the associated domain key. Con-
sequently, the data object stores a pointer to the duplicated data.
DOPE synchronizes sensitive and duplicated data every time sensi-
tive data is written. With shadowmemory protection, DOPE checks
for each sensitive data read to see if the sensitive data matches the
duplicated data. If sensitive and duplicated data differ, DOPE de-
tects this as an exploitation attempt and terminates the thread’s
execution. To prevent an attacker from overwriting the pointer to
the duplicated object, DOPE ensures the pointer’s integrity, as we
later show in Section 4.4.

This approach is particularly suitable for data objects with a mix
of sensitive and non-sensitive data members. However, the runtime
overhead associated with ensuring pointer integrity during read
access to sensitive data members may make it less suitable for
scenarios involving frequent access to such data members.

4.3.3 Sensitive data protection. Our proposed third variant pro-
vides a more efficient way to protect data objects containing both
many non-sensitive data members and frequent access to sensitive
data members. This variant enforces a specific data object layout,
where all sensitive data members are placed on a PKS-protected
page. On the other hand, non-sensitive data members are placed
on an adjacent, non-protected page. As a result, accessing sensitive
data members is protected by DOPE, while non-sensitive data mem-
bers can be accessed without restrictions. This approach ensures
that sensitive data is protected while minimizing the performance
overhead. The only downside is that adapting the Linux kernel to
accommodate this specific data layout requires effort.

The object layout of this variant is depicted in Figure 3, where
the data object spans three contiguous pages. The sensitive data
is safeguarded by Intel PKS and is only present on the middle
page (grey). To prevent sensitive and non-sensitive data from ever
coexisting on the same page, a dummy page is inserted between
the end of non-sensitive data and the beginning of sensitive data,
as well as between the end of sensitive data and the beginning of
non-sensitive data. As a result, this approach entails a memory
overhead of two pages per protected data object.

It is feasible to reduce the memory overhead by grouping sensi-
tive data members from distinct data objects on the PKS-protected
page while storing non-sensitive members on the adjacent page.
Although implementing this memory layout necessitates even more
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1 /* get ext4 inode */

2 struct inode *ext4_iget(){

3 struct ext4_inode *ei;

4 struct inode *inode;

5 ...

6 inode = dentry->inode;

7 inode->i_uid = i_uid;

8 inode->i_gid = i_gid;

9 ei->i_data[blk] = data;

10 ...

11 return inode;

12 }

Listing 1: ext4_iget reads
inode from its owner
dentry, and modifies its
sensitive members i_*id.

1 /* get ext4 inode */

2 struct inode *ext4_iget(){

3 struct ext4_inode *ei;

4 struct inode *inode;

5 ...

6 inode = dentry->inode;

7 + owner_check(dentry, inode);

8 + enter_inode_wr();

9 inode->i_uid = i_uid;

10 inode->i_gid = i_gid;

11 + exit_inode_wr();

12 ei->i_data[blk] = data;

13 ...

14 return inode;

15 }

Listing 2: Modified and
trusted ext4_iget.

engineering efforts to modify the Linux kernel, it presents a possible
direction for future work.

4.4 Pointer Integrity through Ownership
DOPE ensures the integrity of data pointers to sensitive data objects
by enforcing ownership, where access to the sensitive data object
is restricted to its owner. The sensitive data object comprises the
address of its owner object, and DOPE modifies the kernel to per-
form an owner validation before accessing a sensitive pointer. This
validation checks whether the correct owner object is accessing the
sensitive data object, thereby preserving the pointer’s integrity.

DOPE utilizes two checks for owner validation: The first verifies
if the sensitive object is tagged with the correct domain key. In
contrast, the second compares if the owner address stored in the
sensitive data object matches the owner object address. DOPE inter-
prets a failure of either check as an exploitation attempt. Figure 4
exemplifies the credential struct cred with its owner task_struct.
The validation procedure confirms that cred is tagged with the ap-
propriate domain key and verifies whether owner and task_struct
are identical. If the credential is suitably tagged, it is impossible to
manipulate the owner member, thereby ensuring ownership.

In our ownership approach, we devise a reliable solution to
handle aliasing, where a sensitive object is shared among multiple
owners. To achieve this, we store the address of both the sensitive
object and its owner object in a hashtable. On validation, DOPE
checks whether the sensitive object with its owner is stored in the
hashtable. This ensures that each owner is verified and eliminates
any chances of ownership forgery of sensitive objects with multiple
owners. Additionally, we tag the hashtable with a write-protected
domain key, preventing any potential tampering attempts.

4.5 Trusted Code
DOPE imposes three constraints on trusted code. Firstly, only point-
ers whose integrity is ensured (cf. Section 4.4) are dereferenced in
the trusted code area. Secondly, the memory pointed to by these
pointers must be tagged with the domain to which the trusted code
is temporarily granted access permission. Thirdly, objects are only
permitted to be dereferenced with a fixed offset.

For instance, Listing 1 shows a code snippet where the inode is
read from its owner dentry, and its sensitive data members i_*id
are written. DOPE performs an owner validation to ensure the
first constraint, as seen in Line 7 of the modified code snippet in
Listing 2. With the trusted pointer, the trusted code part is between
Lines 9 and 10, fulfilling all three constraints previously described.
DOPE enters the write domain for inodes in Line 8 and exits in
Line 11 to legally write to these sensitive data members.

Consider granularity. The granularity with which DOPE han-
dles domain switches can be adjusted, influencing the performance
overhead directly. However, this adjustment represents a trade-
off: Finer granularity increases security at the expense of perfor-
mance, while coarser settings can improve performance with poten-
tial security degradation. Determining the appropriate granularity,
therefore, requires a thorough assessment of the balance between
security and performance.

5 IMPLEMENTATION
In this section, we highlight our DOPE proof-of-concept implemen-
tation in the Linux kernel and LLVM pass [53]. We employed Linux
version 5.19, the latest stable version when we started this work.
At the time of writing, the Linux kernel did not have support for
Intel PKS. Therefore, we implement secure PKS for the Linux kernel
regarding data-oriented attacks. We then implement an LLVM pass
to perform code analysis and automate function insertion. Finally,
we implement our DOPE proof-of-concept.

Direct physical mapping and SLUB. Since DOPE requires
permission setting at the page level granularity, we first break
down the Direct Physical Mapping (DPM) from huge pages into
4 kB pages [24]. We then extend the buddy allocator to allocate
pages tagged with a desired PKS key that defines the domain of the
associated page. Moreover, we extend the functionality of the SLUB
allocator to obtain an allocator that returns only data objects tagged
with the desired domain. Our implementation extends the func-
tionality of kmem_cache to provide the kmem_dope_cache object.
Hence, each domain allocates tagged objects via kmem_dope_cache.

Sensitive state data. Since each thread can be in a different
domain at a time, the PKRS has to be stored and restored on every
context switch. The PKRS value of a currently not scheduled thread
is stored in memory. Storing the PKRS in an unprotected area poses
the risk of an attack. With an arbitrary write primitive, an attacker
could overwrite the stored PKRS and gain control over the hardware
PKRS. To prevent this illegal control gain, we implement a secure
way to store the PKRS. DOPE protects the stored PKRS with a
write-prohibited security domain, where only limited and trusted
locations are permitted to write to. We explain the sensitive state
protection against attack scenarios in more detail in Section 7.1.

Thread creation. On thread creation, we allocate a sensitive
state object and store a pointer to it in thread_struct. We then set
its stored PKRS to restricted. Hence, the thread starts after it is first
scheduled with restricted access permissions. DOPE protects the
sensitive state objects with our ownership protection to prevent
potential corruption attacks of pointers to sensitive state objects.

Domain switch. In DOPE, whenever a domain switch happens,
it changes the permission bit of the target domain key for the
current thread. This allows the current thread to gain read or write



Lukas Maar, Martin Schwarzl, Fabian Rauscher, Daniel Gruss, and Stefan Mangard

access to the desired domain temporarily. The permission bit is
changed by writing to the MSR 0x6E1 with the wrmsr instruction.

Asynchronous interrupt. On asynchronous interrupt entry,
DOPE stores the current PKRS in a stack-like structure within the
write-protected sensitive state object, where the PKRS is read with
instruction rdmsr from MSR 0x6E1. Subsequently, the access per-
missions of the thread are set to restricted. On interrupt exit, DOPE
restores the stored PKRS to obtain the interrupted permissions.

Instrumentation. We implement an LLVM pass that performs
two crucial tasks: Code analysis and function insertion.

To protect sensitive data objects with either the entire data (cf.
Section 4.3.1) or sensitive data (cf. Section 4.3.3) variant, our LLVM
pass analyzes the code and identifies all read and write locations of
the sensitive data. We then manually verify the analysis output to
ensure domain switches are inserted at the appropriate locations.
This combined approach of automatic analysis and manual veri-
fication provides the benefits of both methods. While automatic
analysis helps identify difficult-to-find domain switch locations,
manual verification ensures efficient domain switch placements
and upholds constraints of trusted code. Additionally, the LLVM
pass automatically inserts owner validations on each sensitive data
object’s read access from its owner object.

To estimate the manual effort required by our proof-of-concept,
Listing 1 shows the function __ext4_iget, where inode is write-
protected and dentry is its owner. The code analyzer outputs that
between Lines 7 and 8 all sensitive data members (i.e., i_*id) are
written. Hence, we manually insert an enter_inode_wr before
Line 7 and exit_inode_wr after Line 8, where *_inode_wr enters
and exits the inode write domain. Additionally, our LLVM pass
automatically inserts an owner validation of the inode from its
owner object dentry. Listing 2 shows the total instrumented code.

For sensitive data objects protectedwith shadowmemory (cf. Sec-
tion 4.3.2), our LLVM pass inserts synchronizations automatically
for every write and validations for every read. The synchroniza-
tion functions synchronize the sensitive and duplicated data. For
validation, DOPE first performs an owner validation. DOPE then
checks if the sensitive data has been modified illegally. If at least
one of the two is true, DOPE detects the corruption attempt and
terminates the thread’s execution.

Trusted code. In Appendix 10, we provide measures to address
any implementation issues while ensuring our code adheres to the
trusted code constraints.

6 CASE STUDY
We demonstrate the effectiveness and usefulness of DOPE by pro-
tecting eight sensitive data objects (cf. Section 6.1) from malicious
accesses that violate restricted access permissions (cf. Section 6.2).
For each sensitive data object, DOPE enforces domain protection
with one of its three protection variants (cf. Section 6.3). Addi-
tionally, DOPE ensures the integrity of pointers to sensitive data
objects by enforcing ownership (cf. Section 6.4) at runtime. Lastly,
we discuss the manual efforts of our case study (cf. Section 6.5).

6.1 Sensitive Data Objects
All restriction-based mitigations against data-oriented attacks face
a fundamental question of which data objects to protect. The more

Table 1: Applied protection variant for our sensitive data
objects.

Variant Sensitive data objects
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4.3.1 Entire
4.3.2 Shadow
4.3.3 Sensitive

Applied Not applied

sensitive data objects a mitigation adequately protects, the higher
the security and performance overhead. As the number of pro-
tected objects increases, the security benefit of additional objects
decreases as exploiting the system becomes substantially more dif-
ficult. How to set a trade-off between security and performance
depends on the use case. For our case study, we demonstrate that
DOPE can be deployed to protect eight sensitive data objects with a
reasonable performance overhead. More precisely, we protect user-
accessible pages, stored registers, credentials, inodes, page tables,
virtual memory areas, virtual memory, and filesystem mount, with
the former two discussed in detail and the remaining six in Appen-
dix 11. Crucially, our approach protects more objects with strong
security guarantees while imposing a lower runtime overhead than
existing countermeasures [13, 14, 28, 45, 46, 54, 62, 63, 82].

User-accessible pages. To our knowledge, we are the first to
consider user-accessible pages via the DPM in their threat model
for data-oriented attacks. User-accessible pages are either mapped
in any user space or read from the disk and remain in kernel space.
These pages may either be from the current or another process’s
user space, including high-privilege processes. If left unprotected,
attackers can perform DPM-FPATCH (cf. Appendix 12).

Stored registers. An attacker can convert an arbitrary read-
and-write to a register manipulation primitive. To achieve this, the
attacker enforces a victim thread to preempt, causing the registers
to be stored in memory [72]. Consequently, the attacker corrupts
this memory location. When the thread resumes, the registers are
restored from the corrupted memory, granting the attacker control
over them. Suppose the preemption happenswhen the victim thread
has access permission to a domain, the attacker can manipulate
the victim’s registers to perform an access, bypassing the applied
mitigation if not protected. However, unlike existing schemes [13,
14, 28, 45, 46, 54, 62, 63, 82], DOPE provides protection for stored
registers during preemption, effectively preventing such attacks.

6.2 Restricted access permissions
DOPE provides a fine-grained permission setting that applies to
our sensitive data objects, which comprise nine objects, including
sensitive state. Our case study works with three security domains:

• Default: Permits read and write to data2.

2Crucially to note, the tagged PKS key does not override permission bits, such as
writable bit.
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Table 2: Owner of each sensitive data objects.

Owner Sensitive data objects
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task_struct - -
dentry - -
vfsmount - -
vma_struct - -
mm_struct - -

Owner Not owner

• Write-protected: Permits read and prohibits write to data.
• Access-protected: Prohibits read and write to data.

We place the stored register to the access-protected domain because
an attacker could otherwise access confidential data, potentially
bypassing DOPE. Moreover, we set the user-accessible page to be
access-protected because an attacker could otherwise leak confiden-
tial data from a high-privilege user process. The other sensitive
data objects are set to write-protected because: First, the data can
be legally read via syscalls, i.e., credentials, inodes, and filesystem
mount. Second, read access to these objects cannot be exploited
for privilege escalation, i.e., page tables, vm_page_prot (virtual
memory areas), pgd (virtual memory), and sensitive state.

While it may seem that assigning each sensitive data object to an
individual security domain would increase security, our goal is not
to isolate domains from each other but to isolate them from attack-
ers with strong capabilities. Hence, we group sensitive data objects
with the same access permissions to one security domain. This
approach ensures that highly capable attackers cannot gain access
to sensitive data that violates our restricted access permissions.

6.3 Enforcement variant
In this section, we demonstrate the feasibility and usefulness of
the protection variants provided by DOPE, each of which is well-
suited for specific sensitive data objects. Table 1 presents the applied
variant for each object. In our case study, we protect credentials,
user-accessible pages, page tables, stored registers, and sensitive
states with entire data object protection (cf. Section 4.3.1) as they
comprise mostly or entirely of sensitive data members. For virtual
memory areas, virtual memory, and filesystem mount, we utilize
shadow memory protection (cf. Section 4.3.2) as these objects con-
tain a combination of sensitive and non-sensitive data. In contrast,
since inodes contain many non-sensitive data members, such as
locks and modification time, and their sensitive data is accessed fre-
quently, sensitive data protection (cf. Section 4.3.3) is more suitable.

6.4 Ownership
DOPE ensures ownership of sensitive data objects to prevent forgery
attacks. When accessing a data pointer to a sensitive data object,
DOPE performs an owner validation to determine if the correct
owner is accessing the data object. DOPE stores the address of its
owner object in the sensitive data object, as shown in Table 2.

We identify seven sensitive data objects susceptible to forgery
attacks. For the shadow data (virtual memory areas, virtual memory,
and filesystem mount), sensitive state objects, and stored registers,
DOPE stores the owner’s address to bind the object to the owner
uniquely. Neither page tables nor user-accessible pages can be
forged as the higher-level page table is protected with the write-
protected domain. In case an attacker tries to manipulate page-table
entries, DOPE detects and prevents the tampering attempt. The
highest page-table level, pgd (i.e., virtual memory), can also not be
forged, as it is also protected with the write-protected domain.

Both credentials and inodes may have multiple owners. In the
case of credentials, they are shared among threads within a process.
To ensure ownership, DOPE stores the task_struct address of the
initial thread within the credential. For additional task_structs,
DOPE stores their address combined with the credentials in a dedi-
cated hashtable. In the case of inodes, the dentry is designated as
the owner since it links the user accessibility file to its inode [73].
Although inodes are not typically shared between different dentries,
hardlinks result in multiple dentries sharing the same inode. Hence,
the inode stores the dentry’s address as its owner, and in case of a
hardlink, both the dentry and inode are stored in a hashtable. Both
hashtables, for credentials and inodes, are write-protected.

6.5 Instrumentation of our Case Study
Manual effort. To address the manual efforts, we followed three
steps. Firstly, we modified the sensitive data objects by adjusting
their layout to match the protection variant and adding a member
variable to store the owner object’s address. We also separated the
rcu_head member from the credential by dynamically allocating
the rcu_head and storing a pointer within the credential. Secondly,
we replaced allocation and freeing of sensitive data objects with
kmem_dope_cache. Thirdly, as explained in Section 5, we inserted
domain switches based on the LLVM pass’s code analyzer output.
To ensure optimal performance without undermining security, pre-
cisely during multiple sensitive data accesses, we grouped these
accesses. We then inserted a single domain switch both at the start
and end of these grouped accesses.

False negatives. With proper domain switches in place, access
to sensitive data is granted in trusted code locations. In cases where
we would have missed inserting a domain switch (false-negative),
DOPE would mistakenly identify the access as an exploitation at-
tempt, as the current thread does not have access permissions.
However, we did not encounter any such occurrences during our
evaluation (cf. Section 7.2) and testing with LTP [27].

7 EVALUATION
We assess DOPE’s security before evaluating our proof-of-concept
on real hardware with various benchmarks [25, 56, 61].

7.1 Security Discussion of DOPE
This section demonstrates the robustness of DOPE even in the
presence of a powerful attacker, as described in Section 3.

Sensitive data objects. If access to sensitive data objects vio-
lates the restricted access permissions, Intel PKS triggers a fault,
which DOPE interprets as an exploitation attempt and terminates
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the thread’s execution. Hence, it is not possible to access sensitive
data without proper access permissions, i.e., in trusted code.

Ownership. An attacker may aim to manipulate pointers to
sensitive data objects protected with ownership. If the attacker
tampers with the sensitive data pointer and points it to memory
tagged with the wrong or no domain, DOPE detects it on owner
validation. If the memory is tagged with the correct domain, the
attacker cannot manipulate the owner member because they do not
have write permissions to the domain-protected data. Additionally,
if the attacker overwrites the pointer with an existing high- or low-
privilege object correctly tagged, DOPE detects the manipulation
on owner comparison during validation. Therefore, it is not possible
to forge a sensitive data object that passes owner validation.

Asynchronous domain-protected data access. Compared to
previous works that protect memory by mapping it as read-only [14,
70], PKS sets permissions on a logical core granularity. Even if a
thread currently has access permission to a domain, another thread
from another logical core does not. Therefore, asynchronous access
to sensitive data is not possible with Intel PKS by design.

Elevated permission interrupt. Due to the preemptive na-
ture of the Linux kernel, an asynchronous interrupt may occur
while a thread has access permission to a domain. During the in-
terrupt, the disrupted thread accesses data via untrusted pointers.
An attacker could carefully craft the untrusted pointers to force
the thread to perform domain data access. However, DOPE pro-
tects against this attack scenario by storing the access permissions
(PKRS) and setting it to restricted on interrupt entry. On interrupt
exit, DOPE restores the access permissions and continues execution.

Sensitive state protection. DOPE protects all sensitive state
data, comprising the stored PKRS values, by placing it in the write-
protected domain. Pointers to the objects are integrity-ensured using
our ownership approach. Only four routines are permitted to write
to this data: Thread creation, context switch, and asynchronous in-
terrupt entry and exit. During these operations, the thread validates
ownership of the sensitive state object and temporarily grants write
access for storing the PKRS to the object. This robust protection
ensures that attackers cannot tamper with the stored PKRS.

kmem_dope_cachemanipulation. An attacker may manipu-
late the state of the kmem_dope_cache object in order to return
an attacker-controlled address. Therefore, the attacker can force
the kmem_dope_cache object to return an object that is not tagged.
DOPE protects against this attack by checking whether the returned
address is tagged with the correct domain key after the allocation.
DOPE interprets a domain key mismatch as an exploit attempt.

Arbitrary use-after-free. An arbitrary write primitive can be
converted to an arbitrary use-after-free primitive by tamperingwith
unprotected memory to obtain kfree(sens_obj_in_use). On the
next allocation, sens_obj_in_use may be returned, allowing it to
be overwritten with either low- or high-privileged data. One attack
scenario is overwriting credentials owned by a low-privilege thread
with high-privilege credentials. Another scenario is to overwrite an
inode owned by a high-privilege file with low-privilege metadata. If
left unprotected, both scenarios would lead to privilege escalation.
Notably, this attack closely resembles DirtyCred [50].

However, during allocation, our kmem_dope_cache overwrites
the owner member of the sensitive data object with the new owner.
When the actual owner first accesses the object, DOPE performs

an owner validation, which fails since the owner was overwrit-
ten during allocation. DOPE interprets this attack scenario as an
exploitation attempt and terminates the thread’s execution.

Multi-ownership. DOPE employs a two-step validation before
adding the sensitive data object and new owner to the hashtable.
Firstly, it validates the old owner and sensitive data object; sec-
ondly, it validates that the new owner is not already present in
the hashtable. If either of these validations fails, DOPE terminates
execution. As a result, an attacker can neither forge ownership nor
perform arbitrary use-after-free with the new owner.

Physical memory. Attackers may tamper with the DPM to po-
tentially bypass DOPE’s protection of sensitive data objects. How-
ever, since all sensitive data objects and their permissions are di-
rectly accessed and set on the DPM, it is not possible to use the
DPM for bypassing. Additionally, it is not possible to corrupt the
permissions of sensitive data objects as the page tables containing
the tagged domain key are protected by the write-protected domain.

Pointer-to-pointer attack. DOPE provides a robust mecha-
nism for ensuring the integrity of pointers to sensitive data objects
through ownership. Specifically, DOPE restricts pointer access to
sensitive data objects (e.g., cred) only to their respective owner
objects (e.g., task_struct). Although an attacker can manipulate
a pointer to the owner object in an attempt to bypass DOPE, it
is important to note that the sensitive pointer, such as the cred
pointer, must still pass owner validation from its forged owner
pointer, such as task_struct. Additionally, the attacker must find
a valid execution path that does not cause a kernel panic due to the
corrupted owner pointer. In summary, while a pointer-to-pointer
attack is technically feasible, executing it may not be practical.

Confused deputy attack. A confused deputy attack [47] aims
to trick a high-privilege function into performing access, violating
the restricted access permissions. DOPE’s trusted code design dras-
tically reduces the exploitation surface of confused deputy attacks.
Other isolation-based schemes [14, 45, 46, 63, 82] are vulnerable if
an attacker corrupts a non-protected pointer that is dereferenced
within trusted code. This allows the attacker to convert a low-
privilege arbitrary read-and-write primitive to a high-privilege one.
However, this conversion is not possible with DOPE’s trusted code
constraints, significantly improving protection against confused
deputy attacks compared to existing countermeasures.

Even though there are some scenarios where DOPE is vulnerable
to a confused deputy attack, the system’s trusted code constraints
make it challenging for attackers to exploit any vulnerabilities. Two
possible attack scenarios are identified, where an integrity-ensured
pointer temporarily stored on the stack could be corrupted or where
the kernel stores the argument that will be written to the sensitive
data object on the stack, which a TOCTTOU attack could exploit.

Although DOPE may have limitations regarding stack tamper-
ing, we view it as an opportunity for future research to enhance
the protection of isolation-based schemes against confused deputy
attacks.

Scalability. In our case study, we demonstrate the effectiveness
of DOPE, as it protects eight sensitive data objects from exploitation.
We firmly believe that these eight objects form an appropriate set for
protection. Moreover, the flexibility of DOPE allows for expansion
to safeguard additional objects. While this presents a standalone
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Figure 5: Overhead of macro-benchmarks.

research question [64, 70] that requires further investigation, we
see it as a promising avenue for future work.

Manual effort. Any kind of manual effort by developers may
unintentionally introduce implementation bugs or instabilities,
making it susceptible to Denial-of-Service (DoS). However, this
is a fundamental issue in software development, particularly ker-
nel development, which is one of the primary motivations behind
DOPE. DOPE cannot eliminate the possibility of a developer in-
troducing a security bug, but DOPE alleviates the security risk
posed by the bug. To address the concern of introducing bugs while
implementing the DOPE policies, we follow the state-of-the-art
kernel software testing with the Linux Test Project (LTP) (cf. Sec-
tion 6.5), which helped us attain a high code coverage and ensure
the robustness of our system against potential DoS.

Comparison to PKU-based approaches. In comparison to
approaches [36, 60, 67, 68, 78] based on Intel’s PKU, DOPE addresses
and resolves several kernel challenges inherent in PKS: Firstly, the
kernel handles system events (i.e., exceptions, interrupts, and con-
text switches), which attackers with memory can exploit write
primitives to tamper with the PKS state. Our solution, detailed in
Sections 5 and 6.1, introduces protections, preventing potential tam-
pering attempts during these events. Secondly, the kernel manages
low-level page permission handling (e.g., manipulating access per-
missions of pages, including MPK keys), posing a potential DOPE
bypass. To counter this, Section 6 describes how we fortified page
tables using DOPE, effectively eliminating the risk of page table
tampering and subsequent DOPE bypasses. Thirdly, the kernel’s
memory allocator, the buddy allocator, recycles physical memory
pages, requiring special handling. In Appendix 10, we describe how
we adapted the allocator. Lastly, the Linux kernel combines sen-
sitive and non-sensitive data within the same data structures. In
Section 4.3, we propose three enforcement techniques, i.e., entire
data object protection, shadow memory protection, and sensitive
data protection, to securely and efficiently protect sensitive data.

Call gates. A primary security concern with PKU-based sys-
tems arises from the wrpkru instruction responsible for altering
access rights. A malicious thread could execute this instruction,
thereby changing its access rights [17, 79], e.g., using the kernel
as a confused deputy. In response, researchers have introduced
various countermeasures [60, 67, 68, 78]. These include advanced
techniques for code/binary analysis and the integration of a call
gate. Similarly, the PKS system uses the wrmsr instruction for mod-
ifying access rights. Kernel threads, by default, have unrestricted

access to execute wrmsr. To fortify against this potential threat,
DOPE has been designed to leverage call gates.

7.2 Performance Evaluation
We evaluate our DOPE proof-of-concept implementation’s binary
size, compile time, and performance overhead, where Appendix 13
shows the detailed results. We performmicro-benchmarks with LM-
bench [56], and macro-benchmarks with Phoronix Test Suite [61]
and SPEC CPU 2017 [25]. Our benchmark CPU is Intel i7-1260P.
We run Ubuntu 22.04.1 (kernel 5.19) as the Linux distribution.

Micro-benchmarks. We use LMbench to evaluate the latency
and bandwidth overhead of our proof-of-concept. We consider the
baseline kernel version 5.19, DOPE-light, and DOPE, where DOPE-
light protects the same data objects as our case study DOPE, except
for user-accessible pages. We include DOPE-light to highlight the
overhead caused by protecting user-accessible pages. To achieve
stable results, we run each benchmark 80 times and compute the
mean and standard deviation, with the results shown in Table 4.
We compute the total overhead by averaging over all overheads,
resulting in an overhead of 32 % for DOPE and 17 % for DOPE-light.

Phoronix Test Suite macro-benchmarks. Our benchmarks
from Phoronix Test Suite split up into stress tests and real-world
applications, as shown in Figure 5. Among the stress tests are one
inter-process communication, one kernel scheduler, two filesystem,
and one threaded I/O benchmarks, while among the real-world
applications are two web-server, two database, and four user ap-
plication benchmarks. The average performance overhead of the
Phoronix Test Suite macro-benchmarks is 2.3 %.

SPEC CPU 2017. We perform speed benchmarks of SPEC CPU
2017, as shown in Figure 5. The measured overheads of the macro-
benchmarks are all below 1.8 %, consistent with the user application
benchmarks from the Phoronix Test Suite. The overall overhead is
calculated to be 0.4 % when averaging all the results.

8 SYSTEMATIC ANALYSIS
In this section, we systematically analyze existingmitigations against
data-oriented attacks with a threat model aligned with ours. Table 3
illustrates the analysis results.

We categorize these mitigations into four techniques: Object
monitoring, randomization, compartmentalization, and isolation.
Moreover, we classify them based on the performance overhead
they introduce. However, directly comparing DOPE’s overhead
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Table 3: Systematic overview of state-of-the-art mitigations against data-oriented attacks in the Linux kernel.

Mitigations Technique Protection Targets Overhead
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PrivGuard [63] Monitoring - - - - - - -
AKO [82] Monitoring - - - - - - - -
PrivWatcher [14] Monitoring - - - - - - -

1

SALADS [13] Randomization - - - - 2 - -
PT-Rand [28] Randomization - - - - - - - -
Mondrix [80] Compartmentalization - - - - - - -

1

HAKC [54] Compartmentalization
KDPM [45] Isolation - - - - - - - -

1

KPRM [46] Isolation - - - - - - -
KENALI [70] Isolation -

xMP [62] Isolation - - - 3 - -
DOPE Isolation -

Strong protection Partial protection Insufficient protection - Not protected
 Low overhead  Reasonable overhead  High overhead

1 Not tested on hardware 2 Non-sensitive data 3 User space data

with existing countermeasures is not possible as we have no ac-
cess to the source code, kernel versions, kernel configurations, and
hardware setup from these countermeasures. All of these factors
influence the benchmark outcomes. As a result, any performance
data reported in works should be treated as an estimate when com-
paring the performance across mitigations. We strive to perform a
fair comparison with the following classification scheme.

We first consider macro-benchmark results as the primary cri-
terion. If no macro-benchmarks are available, we rely on micro-
benchmark results. For low overhead , macro-benchmarks are
below 1% or the micro-benchmarks are below 5%. For reason-
able overhead , we set the boundaries between 1% to 3 % for
macro-benchmarks and 5% to 25 % for micro-benchmarks. For high
overhead  mitigations have an overhead above 3 % for macro-
benchmarks or 25 % for micro-benchmarks.

Monitoring. PrivGuard [63] protects credentials and the pgd
by monitoring their changes and only permits its modification for
high-privilege syscalls, e.g., sys_set*id. This monitoring involves
duplicating these objects at the beginning of the syscall and check-
ing them at both the beginning and end. However, an attacker may
perform two attack scenarios. Firstly, the attacker modifies the sen-
sitive data between the duplication and changes it back before the
check. Secondly, during high-privilege syscalls, the kernel derefer-
ences numerous untrusted pointers. The attacker may overwrite
these pointers, enforcing these syscalls to perform a high-privilege
write operation. Consequently, a low-privilege arbitrary write is
converted into a high-privilege one. AKO [82] is similar PrivGuard,
but it only protects credentials. Moreover, the duplicated data is
not on the stack but on a reserved unprotected area.

PrivWatcher [14] protects credentials and the pgd. Compared to
PrivGuard, PrivWatcher stores sensitive data in read-only domains
and monitors its access. Furthermore, it assumes these domains are

only writable by PrivWatcher. With this assumption, an attacker
cannot tamper with sensitive data, preventing their exploitation.
As Quan et al. [14] discussed, this assumption was not supported by
hardware. Hence, the actual performance overhead of PrivWatcher
may be higher than the evaluated overhead.

Randomization. SALADS [13] protects sensitive (i.e., cred
and inode) and non-sensitive (e.g., list_head) members of data
objects by randomizing their layout at runtime. An attacker may
manipulate the wrong data members since the data layout may
change between the leak and attack phases. Hence, SALADS mit-
igates its exploitation. However, the protection level of SALADS
strongly depends on how often the data objects are re-randomized.
Moreover, the re-randomization rate determines the performance
overhead.

PT-Rand [28] randomizes the location of all page tables by map-
ping them with an offset to a random base instead of the DPM.
This random base is stored in a dedicated inaccessible register. Fur-
thermore, PT-Rand ensures no leakage of the random location by
substituting page table references with an offset to this random base.
Therefore, the location of page tables cannot be leaked, preventing
the manipulation of page tables. Davi et al. [28] achieve this strong
security claim with a low runtime overhead.

Compartmentalization. Mondrix [80] provides memory pro-
tection by proposing significant hardware changes to add multiple
protection features, a concept of ownership, and protection domains.
A separate permission table stored in the main memory provides
more fine-grained control over the memory access rights. Stacks are
only writable within a thread’s current stack frame. Witchel et al.
[80] introduce a dedicated stack permission table for access outside
the current stack frame. Access to functions that run in a higher
privilege domain uses a new form of lightweight call gates that push
the return address to a shadow call stack. Furthermore, Mondrix
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adds new caches for the added protection checks and call gates to
increase performance. However, these significant hardware changes
prevent the use of Mondrix today.

HAKC [54] performs compartmentalization of Loadable Kernel
Modules (LKMs). It moves all data objects accessible by the LKM
into partitions, where each data object belongs to exactly one par-
tition. Each partition and hence data object can only be accessed
by its owner, defined on compile time. Since HAKC does not ac-
count for simultaneous ownership, data objects with simultaneous
readers cannot be compartmentalized. In the Linux kernel, simulta-
neous readers are very common, e.g., RCU-locked credentials and
inodes [55]. Hence, we mark all data objects with simultaneous
readers as insufficiently protected. Credentials and virtual memory
are shared between threads within one process. Inodes, filesystem
mounts, and user-accessible pages can also be accessed simultane-
ously via the DPM [8, 75], e.g., during a pathname lookup. Further-
more, HAKC protects the stack only on compartment granularity
and does not account for concurrent threads in these compartments.
Therefore, in case of an exploitable bug, a thread can overwrite
the stack (including stored registers on preemption) from another
thread if they are in the same compartment. Although the HAKC
proof-of-concept implementation only has two compartments, we
classify the runtime overhead as high.

Isolation. KDPM [45] protects sensitive kernel data by only
permitting certain syscalls (sys_execve and sys_set*id) to grant
write permissions. However, since write permissions are granted
to the entire syscalls, an attacker can tamper unprotected point-
ers which are dereferenced within these syscalls to obtain a high-
privilege arbitrary write primitive. Moreover, KDPM is susceptible
to forgery attacks. Lastly, they evaluated KDPM on an MPK emula-
tor instead of real hardware.

KPRM [46] protects sensitive kernel data during syscalls by un-
mapping them from the threads’ address space. To manage sensitive
data access, KPRM hooks the page-fault handler. KPRM maps a re-
stricted page if the access is allowed within the executed code or
kills the process if the access is invalid. However, KPRM does not
account for multiple threads with a shared kernel address space. A
thread executing kernel code can access sensitive data currently
mapped for a different thread within the same thread group. Fur-
thermore, the high reliance on frequent page faults and unmapping
restricted pages leads to high performance overhead.

Song et al. [70] proposed an automated tool for identifying sen-
sitive kernel data objects. Moreover, they proposed mitigation KE-
NALI protects these objects and the stack with shadow memory.
KENALI also prevents various mitigation-bypass attacks. Unfor-
tunately, they lack a hardware primitive to protect sensitive data
efficiently, leading to high performance overhead. KENALI does
not mitigate against the discussed arbitrary use-after-free attack
from Section 7.1. Therefore, an attacker can convert an arbitrary
write primitive to an arbitrary use-after-free primitive and perform
DirtyCred [50], resulting in a privilege escalation KENALI cannot
protect against. Since the principle of DirtyCred can be applied
to cred, vm_area, vfsmount, and all other objects allocated with a
kmem_cache, these data objects are only partially protected.

xMP [62] employs Extended Page Table (EPT) switching to en-
force domain protection similarly to DOPE. It protects page tables,

credentials, the pgd, and sensitive data mapped in user space. Un-
fortunately, xMP does not mitigate against the discussed arbitrary
use-after-free attack because it only ensures pointer integrity
instead of ownership like DOPE. Therefore, the credentials are only
partially protected. Besides credentials, xMP protects the pgd and
page tables sufficiently. Even though xMP only protects three kernel
data objects, their performance overhead is high.

We deploy DOPE to protect credentials, virtual memory, virtual
memory areas, inodes, page tables, filesystem mount, stored reg-
isters, and user-accessible pages with strong security guarantees
while maintaining a reasonable performance overhead.

9 CONCLUSION
In this paper, we presented our principled mitigation DOPE to
protect against data-oriented attacks. DOPE enforces domain pro-
tection by restricting memory accesses during kernel execution
based on the principle of least privilege. We implemented a DOPE
proof-of-concept and conducted a case study that protects eight sen-
sitive data objects from being used for privilege escalation exploits.
For our proof-of-concept, we observed a reasonable performance
overhead of 2.3 % for real-world user applications, significantly
improving in terms of security with respect to performance over
existing mitigations.
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APPENDIX
10 IMPLEMENTATION DETAILS OF TRUSTED

CODE
In this section, we provide measures to address any implementation
issues while ensuring that our code adheres to the trusted code
constraints we defined in Section 4.5.

Memory management. The buddy allocator in the Linux ker-
nel allocates contiguous physical memory in page order chunks,
i.e., 2𝑛 ⋅ 𝑃𝐴𝐺𝐸_𝑆𝐼𝑍𝐸. On top of the buddy allocator sits the slab
allocator, and stores caches of available objects with a desired pre-
defined size [76]. The kernel supports three slab allocators: SLAB,
SLOB, and SLUB, all of which store metadata on the allocated page.
Allocations via kmem_cache and our modified kmem_dope_cache
deploy one of these slab allocators, i.e., SLUB. If a domain protects
a page allocated by the buddy allocator, then allocating or freeing
an object via kmem_dope_cache would require write permission
to the domain, as metadata may be written to the protected page.
However, since during allocation and freeing, untrusted pointers
are accessed, granting write permission would violate trusted code
constraints.

To address this issue, we propose to extend the slab allocator
by adopting a PartitionAlloc-based design similar to Chrome [16],
which separates data and metadata into two distinct locations. This
approach would eliminate the need for write permission to the do-
mainwhen allocating or freeing an object via our kmem_dope_cache.
While implementing this extension requires significant effort, we
acknowledge that it is outside the scope of this work.

Outsourcing the metadata of the slab allocator to an unprotected
object does not pose a security risk because DOPE does not rely on
the allocator’s trustworthiness. In Section 7.1, we illustrate various
attacks on the allocator and show how DOPE mitigates them.

Read-Copy Update. The Linux kernel supports the efficient
synchronization mechanism Read-Copy Update (RCU) that enables
concurrent updates by readers [55]. Besides blocking the current
thread for synchronization, RCU also supports non-blocking up-
dates by invoking a callback function either during a software
interrupt (i.e., softirq) or by a dedicated RCU thread [62]. During
the callback, data (stored as generic data type, i.e., rcu_head) is
accessed that may or may not be protected by a domain. This is
illustrated in Lines 23 and 24 from Listing 3, where the function
call_rcu access the head pointer. If head is stored in a sensitive
and protected data objects, e.g., struct cred, than this function
would require write permission to the corresponding domain, e.g.,
credential domain. Otherwise, the hardware raises an fault, and
DOPE would interpret this as an exploitation attempt. However,
granting temporary access permission would violate trusted code

1 /**

2 * struct callback_head - callback structure for use with

3 * RCU and task_work

4 * @next: next update requests in a list

5 * @func: actual update function to call after the grace

6 * period.

7 */

8 struct callback_head {

9 struct callback_head *next;

10 void (*func)(struct callback_head *head);

11 } __attribute__((aligned(sizeof(void * ))));

12

13 /* Types */

14 #define rcu_head callback_head

15 typedef void (*rcu_callback_t)(struct rcu_head *head);

16

17 /**

18 * call_rcu() - Queue an RCU callback for invocation

19 * after a grace period.

20 */

21 void call_rcu(struct rcu_head *head, rcu_callback_t func){

22 ...

23 head->func = func;

24 head->next = NULL;

25 ...

26 }

Listing 3: Callback function provided by Linux’s RCU locking
mechanism.

constraints. To address this issue, we separated the rcu_headmem-
ber from sensitive data objects and instead stored a pointer to a
dynamically allocated rcu_head.

11 DETAILED SENSITIVE DATA OBJECTS
Credentials. The credential struct contains information on its
thread’s privilege level and is stored as a pointer in the task_struct.
It is a popular attack target [13, 14, 62, 63, 70], cf. CVE-2021-26708,
CVE-2017-16995, or CVE-2017-2636. Overwriting credentials im-
mediately leads to privilege escalation as the kernel interprets the
thread as high-privilege. In addition to traditional UNIX per-process
credentials (i.e., *id), Linux supports per-thread capabilities [43].
These capabilities partition the privileges associated with the supe-
ruser into a finer granularity. Hence, we also protect capabilities.

Inodes. The inode in a UNIX filesystem, e.g., ext4, stores all
metadata associated with its file [74]. Among this metadata is non-
sensitive data, e.g., last modified or last access time, and sensitive
data, e.g., access rights and owner and group identifier. By mod-
ifying the sensitive data of an inode, an attacker can change the
permission or owner of the associated file. Moreover, we define
the flag variable as sensitive because it contains information on
whether the file is private or immutable. Another way to use inodes
for privilege escalation is to forge their identifiers, uniquely identi-
fying the inodes within the mounted file system [73]. In summary,
we protect i_ino, i_mode, i_uid, i_gid, and i_flags.

Page tables. Page tables are valuable targets for attackers be-
cause they contain lower-level page permissions [28, 62, 70]. By
overwriting those permission bits, an attacker controls the access
permissions of the lower page levels, e.g., an attacker can modify
permission bits in the page-table entry to change a kernel code page
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read("/etc/passwd");
paddr = scan_dpm();
arb_write(paddr, modified_data);
system("/bin/su");

arb_write()

arb_read()

Kernel
code

DPM
/etc/passwd

load page to DPM
①

②

③

④

read write

Figure 6: DPM-FPATCH attack on /etc/passwd file. Step ①

loads the read-only file to the DPM, while step ② performs
an arbitrary read call for each page read of the DPM to obtain
the address where the file content is located. Next, step ③

carefully overwrites sensitive content of the file via the DPM
to grant the attacker root privileges without authentication
④.

to writable. As a result, the attacker has a writable and executable
kernel memory area.

Virtual memory areas. In Linux, there is another possibility
to manipulate the permission bits of page tables by tampering
with the vm_page_prot stored in vm_area_struct. Liu et al. [52]
demonstrated a data-oriented attack called User Space Mapping
Attack, in which an attacker overwrites vm_page_prot to modify
the permissions of page-table entries. This attack results in a kernel
page being mapped into the user space, which is then overwritten.

Virtual memory. In the Linux kernel, the thread’s pgd is the
top level of a page table [42] and is stored in the mm_struct. By over-
writing the stored pgd, an attacker has control over the hardware
pgd andmay forge a virtual to physical pagemapping [14, 62, 63, 70].
The attacker then may add virtual addresses that map to arbitrary
physical addresses with arbitrary permissions.

Filesystem mount. Song et al. [70] showed a data-oriented
attack in which an attacker tampers with mount flags. The attacker
manipulates the flag to mark a mounted file system as no longer
read-only. Hence, the attacker can write to files within the read-only
file system. The target is the system partition, which is read-only
mounted on most Android devices.

12 DPM-FPATCH ATTACK
Operating systems have the important task of managing privilege
levels and ensuring the isolation of processes. It is crucial to prevent
low-privilege processes from tampering with the data of other
processes. However, since the entire physical memory is mapped via
the Direct Physical Mapping (DPM), an attacker can use an arbitrary
write primitive in the kernel to manipulate data on the DPM, in
particluar with including user-accessible data. This introduces a
new variant of data-oriented attacks called DPM-FPATCH, which
current state-of-the-art mitigations are unable to protect against.

12.1 Attack
The DPM-FPATCH data-oriented attack variant overwrites data of
any user-accessible file. With DPM-FPATCH, we demonstrate an
attack on the /etc/passwd file, as illustrated in Figure 6.

In step ①, an attacker opens and reads the entire content of the
high-privilege but user-accessible file. Hence, the kernel loads the
content from the disk into the DPM. In step ②, the attacker scans
the entire DPM with the arbitrary read and obtains the address
where the file content is stored. In step ③, the attacker can use the
arbitrary write to overwrite the content via the DPM. One possi-
ble modification of a high-privilege file is to change the first line
of /etc/passwd from root:x:0:0:root:/root:/usr/bin/zsh to
root::00:0:root:/root:/usr/bin/zsh. This change indicates
that a root login does not require authentication ④.

In summary, an attacker can perform DPM-FPATCH to modify
the data of any user-accessible file. For our demonstration, the
attacker modifies /etc/passwd to illegally indicate to the system
that root does not require authentication on login, elevating the
attacker’s privileges.

12.2 Potential mitigation
Kemerlis et al. [40] showed the devastating outcome of user data
accessibility via the DPM for control-flow hijacking attacks. To
prevent this accessibility, their proposed mitigation, XPFO, prevents
all accesses to user data via the DPM by either mapping a page
in user space or the DPM, but never both. Since DPM-FPATCH
does not rely on this mapping, XPFO does not prevent this attack
variant. Moreover, according to Linux kernel developers [4, 20],
who have extensively tested XPFO, the runtime overhead is above
30 %. Therefore, the XPFO patch was never merged into the Linux
kernel.

13 DETAILED EVALUATION RESULTS
Binary size and compile time overhead. To enforce domain pro-
tection, our LLVM pass inserts functions for domain switching and
validation. These inserted functions increase the binary size and
the compile time. To illustrate both overheads, we compile an un-
modified Linux kernel version 5.19 with clang version 15.0.1 as
a baseline. We then compile our modified Linux kernel with our
LLVM pass enabled for our proof-of-concept implementation. The
results are that the binary size and compile time increase by 0.27 %
and 1.5 ± 0.3%, respectively.

Micro-benchmarks. We use LMbench to evaluate the latency
and bandwidth overhead for various benchmarks of our proof-of-
concept implementation. We consider the baseline kernel version
5.19, DOPE-light, and DOPE, where DOPE-light protects the same
data objects as our case study DOPE, except for user-accessible
pages. We include DOPE-light to highlight the overhead caused
by protecting user-accessible pages. To achieve stable results, we
run each benchmark 80 times and compute the mean and standard
deviation.

Table 4 illustrates the evaluation results. The null syscall bench-
mark indicates that DOPE does not add any syscall entry or exit
latency. All syscalls interacting with user-accessible pages have
an increased runtime overhead because DOPE switches domains
on every user-accessible data access. The micro-benchmarks open,
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Table 4: Micro-benchmark results.

Benchmarks Baseline Overhead in %
DOPE-light DOPE

La
te
nc

y
in

µs

syscall null 0.08 −0.1 ± 0.4 0.0 ± 0.4
syscall open+close 1.03 107.7 ± 2.9 127.8 ± 2.9
syscall read 0.15 0.6 ± 2.3 98.0 ± 2.6
syscall write 0.11 0.0 ± 0.7 128.0 ± 0.7
syscall fstat 0.16 16.0 ± 1.6 15.0 ± 0.4
syscall pipe 3.65 1.1 ± 0.4 21.0 ± 0.1
proc procedure 0.002 −1.6 ± 4.4 0.5 ± 1.4
proc fork 62.5 27.0 ± 1.6 34.0 ± 1.8
proc fork+exec 211 29.9 ± 1.0 37.0 ± 0.8
proc shell 458 24.0 ± 0.5 29.0 ± 0.5
sem 0.46 −7.7 ± 6.3 −5.0 ± 4.3
pagefault 0.15 12.0 ± 0.5 11.0 ± 0.5
dram page 1.63 1.0 ± 3.3 2.1 ± 2.5
signal fault 0.42 37.0 ± 1.4 38.0 ± 0.7
signal install 0.14 0.4 ± 1.0 0.5 ± 1.1
signal catch 0.88 0.4 ± 0.4 0.6 ± 0.6

B
an

dw
id
th

in
M
B/
s

mem rd 4 k 160 0.0 ± 0.2 0.0 ± 0.2
mem wr 4 k 110 −0.1 ± 0.1 0.0 ± 0.1
mmap rd 4 k 51.4 0.3 ± 0.5 0.2 ± 0.4
mmap rd 1M 48.0 −0.7 ± 1.6 −3.0 ± 1.2
file_rd o2c 4 k 2.71 43.0 ± 3.7 72.0 ± 1.1
file_rd o2c 1M 17.6 1.5 ± 1.1 4.7 ± 0.7
file_rd io 4 k 6.70 6.5 ± 0.4 87.0 ± 0.5
file_rd io 1M 18.1 0.3 ± 0.9 4.1 ± 0.7

read, and write, show the increased overhead with between 98 % to
128 %. Except for open, DOPE-light reduces the syscall’s overhead
to about 0 % compared to DOPE. The open syscall has a perfor-
mance overhead of 110 ± 3% because of the inserted validation
checks and domain switches for the credential domain. Similar
to open, fstat also performs validation checks as illustrated with
about 15 % runtime increase for DOPE and DOPE-light. Since the
pipe syscall interacts with user-accessible data, it has an elevated
overhead of 21± 0.1% for DOPE. The overhead for all three process
operations, fork, fork+exec, and shell, are 29 % to 37 % for DOPE
and 24% to 30 % for DOPE-light. The synchronization syscall, sem,
has negligible runtime overhead. Since, during the pagefault bench-
mark, a thread accesses page tables, DOPE and DOPE-light increase
the performance overhead by about 11 % due to page table domain
switches. We show that the overhead caused by a pagefault is neg-
ligible when considering the access time to a page from DRAM, as
the overhead of the dram page benchmark is between 1% to 2.1 %.
A signal fault has an overhead of about 37 % for both DOPE and
DOPE-light. The overhead of signal install and catch is negligible.
We compute the total overhead by averaging over all overheads,
resulting in an overhead of 32 % for DOPE and 17 % for DOPE-light.

With all four memory andmmap bandwidth benchmarks, Table 4
shows that DOPE does not add any runtime overhead on normal
memory accesses, independent of how the memory is allocated. We
run the file read benchmark with two parameters: open2close and
io_only, and observe an overhead of 72 % to 87 % for a filesize of 4 kB.
The overhead decreases to about 4 % by running the benchmark
with a size of 1MB. For DOPE-light, file read with the open2close
parameter has an overhead of 43 % caused by the open syscall.

Phoronix Test Suite macro-benchmarks. Our benchmarks
from Phoronix Test Suite split up into stress tests and real-world
applications, as shown in Figure 5. Among the stress tests are one
inter-process communication, one kernel scheduler, two filesystem,
and one threaded I/O benchmarks. For the inter-process communi-
cation benchmark (IPC-benchmark), we observe that DOPE elevates
the overhead by about 2 % independent of the used pipe (unnamed
or named FIFO) and message size (1024 Byte or 4096 Byte). We run
Schbench, which evaluates our scheduler, with two worker threads,
each creating two, four, or six messenger threads. DOPE has an
overhead between 2% to 3.7 % for the scheduler benchmark, de-
creasing with more messenger threads. With Dbench, we perform
two benchmark tests resulting in an overhead of 3 ± 0.1% for one
and 1 ± 0.1% for six client threads. DOPE has an elevated perfor-
mance overhead for LevelDB fill of 9.3±1.5% due to extensive write
syscall usage and, thus, extensive user-accessible domain switches.
Since the LevelDB read benchmark caches read data in software,
there are fewer syscalls and domain switches. The threaded I/O
stress test (TIObench) has an overhead of 4.3 ± 3.1% for the read
and 5.5 ± 1.8% the write benchmark.

Among the real-world applications are two web-server, two data-
base, and four user application benchmarks (cf. Figure 5). The two
web-server benchmarks, Apache and NGINX, has an runtime over-
head of about 2 %, with the number of Apache requests having little
effect on the overhead. DOPE affects the SQLite benchmark with
an overhead of 3.4 ± 1.2%, while the in-memory Redis benchmark
is affected with a low overhead of 0.4 ± 0.2%. Lastly, all four user
applications, PHPBench, compress-lzma, and OpenSSL sha and rsa,
results in a low overhead between 0.5 % to 1.3 %.

We observe an elevated standard deviation for various bench-
marks, especially for those with multiple threads and high kernel
execution time. However, the baseline and DOPE-enhanced kernel
binary show similar levels of high standard deviation. Therefore,
the noise properties of the kernel, such as hardware interrupts or
context switches, contribute to the high standard deviation.

The average performance overhead of the Phoronix Test Suite
macro-benchmarks is 2.3 %.

SPEC CPU 2017. Weperformmultiple speedmacro-benchmarks
of SPEC CPU 2017, as illustrated in Figure 5. All measured over-
heads of the speed macro benchmarks are below 1.8 %, which is in
line with the user application macro-benchmarks from Phoronix
Test Suite. We compute the overall overhead by averaging all results,
leading in an overhead of 0.4 %.
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