Generic and Automated Drive-by GPU Cache Attacks
from the Browser

Lukas Giner
Graz University of Technology

Fabian Rauscher
Graz University of Technology

Roland Czerny
Graz University of Technology

Andreas Kogler
Graz University of Technology

Christoph Gruber
Graz University of Technology

Daniel De Almeida Braga
University of Rennes, CNRS, IRISA

Daniel Gruss
Graz University of Technology

ABSTRACT

In recent years, the use of GPUs for general-purpose computations
has steadily increased. As security-critical computations like AES
are becoming more common on GPUs, the scrutiny must also in-
crease. At the same time, new technologies like WebGPU put easy
access to compute shaders in every web browser. Prior work has
shown that GPU caches are vulnerable to the same eviction-based
attacks as CPUs, e.g., Prime+Probe, from native code.

In this paper, we present the first GPU cache side-channel attack
from within the browser, more specifically from the restricted We-
bGPU environment. The foundation for our generic and automated
attacks are self-configuring primitives applicable to a wide variety
of devices, which we demonstrate on a set of 11 desktop GPUs
from 5 different generations and 2 vendors. We leverage features
of the new WebGPU standard to create shaders that implement all
building blocks needed for cache side-channel attacks, such as tech-
niques to distinguish L2 cache hits from misses. Beyond the state
of the art, we leverage the massive parallelism of modern GPUs
to design the first parallelized eviction set construction algorithm.
Based on our attack primitives, we present three case studies: First,
we present an inter-keystroke timing attack with high Fy-scores,
i.e., 82% to 98 % on NVIDIA. Second, we demonstrate a generic,
set-agnostic, end-to-end attack on a GPU-based AES encryption
service, leaking a full AES key in 6 minutes. Third, we evaluate a
native-to-browser data-exfiltration scenario with a Prime+Probe
covert channel that achieves transmission rates of up to 10.9kB/s.
Our attacks require no user interaction and work in a time frame
that easily enables drive-by attacks while browsing the Internet.
Our work emphasizes that browser vendors need to treat access to
the GPU similar to other security- and privacy-related resources.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; Browser security; Information flow control.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS 2024, July 1-5, 2024, Singapore

© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Side Channels, Cache Attacks, GPU computing

ACM Reference Format:

Lukas Giner, Roland Czerny, Christoph Gruber, Fabian Rauscher, Andreas
Kogler, Daniel De Almeida Braga, and Daniel Gruss. 2024. Generic and
Automated Drive-by GPU Cache Attacks from the Browser. In ACM ASIA
Conference on Computer and Communications Security (ASIA CCS 2024), July
1-5, 2024, Singapore. ACM, New York, NY, USA, 13 pages. https://doi.org/
KXXXXXXXXXXXXX

1 INTRODUCTION

In the last decades, Graphics Processing Units (GPUs) have seen an
important evolution. While they were initially designed for the spe-
cific purpose of graphic rendering, most modern discrete GPUs offer
the possibility of general-purpose computing. With the introduc-
tion of NVIDIA’s CUDA [1] in 2007 and OpenCL [2] in 2009, GPUs
have become commonplace for workloads that benefit from the
massive parallelism they can offer. While the individual execution
speed is still slow compared to recent CPUs, current-generation
cards offer thousands of cores, enabling a huge performance boost
for parallelizable operations.

The increasing number of use cases of general-purpose GPU
computing includes computations on potentially secret informa-
tion, e.g., neural networks [3] or cryptographic applications [4, 5].
Thus, general-purpose GPU computing also becomes a more in-
teresting attack target. Recent research confirms these security
concerns, as GPUs have become a recurrent target of side-channel
attacks, exploiting various shared components [3, 6-12]. Further-
more, attackers may also leverage the GPU to attack other system
components [13, 14]. As on CPUs, the GPU cache is a particularly
interesting resource for side channels. Consequently, prior work
also replicated well-known CPU cache side-channel attacks on
GPUs [6, 10, 12, 15, 16], albeit only in native code so far.

While native code has direct access to a large variety of GPU
APIs, e.g., CUDA, Vulkan, Metal, and Direct3D, acquiring native
code execution is a significant hurdle for any attacker. Instead,
the browser has become a more interesting attack vector, as users
routinely run untrusted third-party code on their devices within
the browser. Since GPU computing can also offer advantages for
computations within websites, browser vendors decided to expose
the GPU to JavaScript through APIs like WebGL and the upcom-
ing WebGPU standard. WebGPU is not only available on desk-
top browsers but is also already partially supported on mobile

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ASIA CCS 2024, July 1-5, 2024, Singapore

devices in Chrome Canary version 117. As the future standard
for web-based general-purpose interaction with GPUs, WebGPU
aims to lay solid foundations for performance and security. The
standard already has explicit mitigations against timing side chan-
nels [17], e.g., disabling timer access (making it a trusted feature),
and mimicking the JavaScript mitigation against malicious use
of the SharedArrayBuffer [18-21]. Previous work demonstrated
native code side-channel attacks on GPUs, where the browser trig-
gered L1 and L2 cache activity, e.g., through WebGL [12]. How-
ever, the feasibility of a browser-based GPU cache side-channel
attack, targeting a victim running in native code or another browser
window, nor the possibility of an attack with the upcoming We-
bGPU standard [22] have been demonstrated yet. Considering the
ubiquitous attack surface browsers offer to attackers, we need to
investigate the following questions:

Can GPU cache side-channel attacks also be mounted from within
a restrictive browser environment using APIs like WebGPU? Can
these attacks be made generic enough to work on the wide spectrum
of GPU hardware? To what extent can an attacker leverage GPU
parallelization to enhance attacks?

In this work, we answer these questions by presenting the first
end-to-end cache side-channel attacks from within browsers, lever-
aging the new WebGPU standard. Despite the inherent restrictions
of the JavaScript and WebGPU environment, we construct new
attack primitives enabling cache side-channel attacks with an effec-
tiveness comparable to traditional CPU-based attacks. Our attacks
are generic and automated, in the sense that our 2 attack primitives
automatically determine GPU-specific configuration parameters re-
quired for an attack, i.e., the cache hit-miss threshold, the cache size,
and the number of cache sets. Consequently, our attacks work on a
wide variety of devices, which we demonstrate in our evaluation:
We show that our 2 basic attack primitives work on 11 desktop
GPUs from 5 different generations and 2 vendors, NVIDIA and
AMD. We demonstrate that based on these, we can also identify
cache sets and monitor cache set collisions directly from a browser
on a variety of NVIDIA GPUs.

We introduce 3 techniques to exploit cache contention on the
L2 cache of discrete GPUs from JavaScript via WebGPU compute
shaders. First, we highlight that significant cache eviction, often
induced by graphical rendering, can enable attackers to discern in-
stances of re-rendering. Second, we implement a templating attack
within the browser, designed to monitor memory access patterns.
Lastly, we present the first Prime+Probe attack on discrete GPUs
executed from a browser. For all 3 attacks, we evaluate whether
using the GPU’s parallelism improves the basic attacks. For the
eviction set construction in particular, we extend the state of the
art by leveraging the massive parallelism of modern GPUs with the
first parallelized eviction set construction algorithm.

We evaluate our attacks in 3 distinct scenarios covering both
low-frequency non-repeatable events, as well as repeatable and
high-frequency events: an inter-keystroke timing attack, AES key
extraction, and the establishment of a covert channel, all initiated
from a browser, i.e., through an attacker-controlled website. Our
keystroke monitoring attack detects inter-keystroke timings with
F;-scores in the range of 82 % to 98 %, and a sampling time below
15ms, fast enough to distinguish even very fast typing. We suc-
cessfully extract AES keys in 6 min with a precision of 100 %. Our

Giner et al.

templating approach enables us to profile the T-tables in 13 s on
average, with the remaining time (5.7 min) dedicated to the last
round attack. We perform the attack on 2 recent GPUs, a NVIDIA
RTX 3060 Mobile and a NVIDIA RTX 3060 Ti, with similar results.
Lastly, we demonstrate a covert channel with true channel capaci-
ties between 7.3 kB/s and 10.9 kB/s on the NVIDIA RTX 2070 Super,
NVIDIA RTX 3080 and NVIDIA RTX 3060 Ti.

Our attacks require no user interaction and work within a realis-
tic time frame a user might spend on a website, e.g., in the range
of multiple minutes. Therefore, they can easily be implemented as
drive-by attacks, targeting arbitrary users while browsing the Inter-
net. Furthermore, since our attacks are based on WebGPU, they are
applicable to all operating systems and browsers implementing the
WebGPU standard and, as we demonstrate, to a broad range of GPU
devices. Consequently, it becomes clear that browser vendors need
to reassess their approach to offer GPU access to untrusted websites
without user consent. Instead, we recommend a security-centric in-
teractive approach that is already applied to all other security- and
privacy-related resources, such as the microphone and the camera.

In summary, our paper makes the following main contributions:

(1) We present the first end-to-end cache attacks on GPU caches
from the browser, using the restrictive WebGPU APIL.

(2) We evaluate our attack primitives and attacks on a wide
range of GPU architectures and explore where the massive
parallelism of GPUs can improve attacks.

(3) Based on our insights, we develop the first parallel eviction
set construction algorithm and the first Prime+Probe attack
on the L2 cache of a single, dedicated GPU.

(4) We describe a novel templating approach that we use in an
attack on an AES T-table GPU implementation. Using pre-
dictable LRU cache set eviction cascades on GPUs, our attack
can skip the lengthy set-construction phase by exploiting
only contention in sets that are actually used by the victim.

Outline. Section 2 provides the background and Section 3 our
threat model. Section 4 presents the primitives for Prime+Probe on
the GPU from the browser. Section 5 explores an inter-keystroke
timing attack. Section 6 evaluates our attack for an AES key recov-
ery and Section 7 in a covert channel scenario. Section 8 discusses
limitations and mitigations. Section 9 concludes.

2 BACKGROUND

2.1 GPU architecture

The architecture of discrete GPUs may vary by brand. Hereafter, we
focus on giving an insight into discrete GPUs architecture, tackling
both computation and memory management. We default to the
concepts and notations adopted by NVIDIA, but similar concepts
are used by other manufacturers, such as AMD.

A GPU consists of multiple Streaming Multiprocessors (SMs),
called Compute Units (CUs) on AMD cards. Each SM has its ded-
icated memory subsystem, including shared memory (SM-local
memory), caches, and functional units, to execute multiple threads
in parallel, operating under the SIMD paradigm. On GPUs, threads
are organized into thread blocks (also called workgroups on We-
bGPU) that are assigned their own SM when executed. SMs consist
of multiple processing blocks (4 on recent NVIDIA and AMD GPUs).
Each processing block is a separate SIMD execution unit with its

Generic and Automated Drive-by GPU Cache Attacks from the Browser

| |

- —
‘ DRAM H

System Memory ‘

Figure 1: Modern GPUs (here NVIDIA) have an L0 cache per
processing block, an L1 cache per SM, and a shared L2 cache.

own load and store units capable of running 32 threads in parallel.
Thread blocks are divided into warps, groups of 32 threads that
are scheduled on processing blocks. Processing blocks have warp
schedulers, hardware schedulers that schedule warps in and out
of the processing block. When a warp has to wait for a memory
access or register dependencies, the warp scheduler schedules a
different warp that is ready to execute to keep the SIMD units busy.
The constant rescheduling of warps allows for latency hiding and,
therefore, more efficient use of processing blocks [1].

Prior to the Volta architecture, all threads in a warp share the
same instruction unit with a single program counter, i.e., instruc-
tions execute in lockstep [23]. If threads in the same warp diverge,
they are masked until they converge again. If some threads execute
the if-branch and some execute the else-branch, the entire warp
executes the if-branch and the else-branch with threads masked ac-
cordingly. Volta introduced independent thread scheduling, with a
per-thread program counter and call stack, allowing the processing
block to interleave execution of diverging branches [23].

Similar to CPUs, GPUs use caches to reduce the latency for
memory accesses. Namely, each SM has a dedicated L1 cache that is
shared between processing blocks, and each processing block has
access to a smaller private L0 cache. Finally, GPUs share one global
L2 cache (LLC) between the SMs. Figure 1 illustrates the cache
hierarchy of Nvidia Turing GPUs. However, we note a few relevant
peculiarities of GPU caches. First, there is no coherency protocol
between caches, and maintaining coherency is the responsibility of
developers. Second, unlike the classical 64-byte cache line in CPUs,
GPUs’ LLC commonly has 128-byte cache lines [24, 25].

2.2 GPU APIs

GPUs can be called through different APIs depending on the context.
We distinguish two main API families: native APIs (e.g., OpenGL,
Vulkan and CUDA), and web APIs (e.g., WebGL and WebGPU).

Native APIs. The most straightforward and efficient way to in-
teract with a GPU is through dedicated native APIs. They enable
the use of GPUs for either graphic rendering or generic computing.
OpenGL was introduced in 1992 to support GPU-assisted rendering
on Linux and Apple platforms, while Windows uses the Direct3D
framework. For general-purpose computing, OpenCL, released in
2008, provides support for all major GPU vendors and is widely
used. In 2007, NVIDIA released CUDA [1], a compute language
specifically designed for NVIDIA GPUs. CUDA is supported by

ASIA CCS 2024, July 1-5, 2024, Singapore

both consumer- and business-oriented NVIDIA GPUs. The high
market share of NVIDIA GPUs and the ease of use of CUDA makes
it the currently most widely used framework for general-purpose
computation on GPUs. Apple recently dropped support for OpenGL
in favor of Metal. Similarly, Vulkan was released in 2016 as a mod-
ern alternative to OpenGL. While these APIs have their differences,
typical calls include operations on texture mappings, rasterization,
and memory management on the GPU.

Web APIs. WebGL is the current baseline JavaScript API giving
access to the GPUs rendering. As its name suggests, it was origi-
nally designed with a specific goal: graphic rendering in browsers.
Hence, its API is limited and does not provide support for generic
computations on the GPU [26]. This was the motivation behind
the WebGL 2.0 Compute initiative [27]: “to bring compute shader
support to the web via the WebGL rendering context”. Due to the
emergence of new native rendering APIs, the diminishing promi-
nence of OpenGL, and the perceived constraints of WebGL, the
project contributors decided to deprecate it [27] in favor of a more
contemporary alternative, namely WebGPU.

Like WebGL, WebGPU provides access to the GPU graphics ca-
pabilities in the browser. It is, however, not a mere wrapper around
OpenGL. More than that, it aims at being cross-platform and sup-
porting modern graphic APIs, such as Vulkan, Metal, and DirectX,
through JavaScript. Compared to WebGL, it offers a cleaner API,
significantly better performance, and a more generic application
range. At the time of writing, the standard is still under active
deployment. However, the involvement of major browsers in this
process, and the promising performance, foreshadow a widespread
deployment in the next years. Chrome, Chromium, and Microsoft
Edge already support WebGPU in their official release, and Firefox
has it in its Nightly version [28]. Support of mobile GPUs is also in
progress, with recent deployment on Android [29].

Developers can create rendering pipelines and manage GPU
resources with WebGPU. WebGPU has its own shader language
called WebGPU Shading Language (WGSL) to write custom shaders
that are compiled at runtime. While WebGPU provides access to
GPUs through native APIs, implementations of the standard may
restrict the available GPU resources, e.g., memory and runtime,
for security reasons. Without restrictions, big WebGPU workloads
could significantly impact the useability of the host system [30], as
most GPUs only allow for one active shader at a time.

2.3 Prime+Probe

In the last decades, microarchitectural attacks have been studied ex-
tensively. Prime+Probe [31, 32] is a cache-based attack that exposes
the memory access patterns of a process by exploiting cache con-
tention to leak the cache set accesses. This technique is particularly
useful for attackers with limited control over the victim’s machine,
since it has low requirements and does not need shared memory or
direct control over the cache with a flush instruction. Because of
these weak assumptions, it is well-suited for browser-based attacks,
where an attacker controls JavaScript on a web page [33, 34].
Assuming the attacker can execute code on the same processor
as the victim, the attack works as follows. First, the attacker primes
the cache by filling well-chosen cache sets with its own data. Then,
they wait for the victim to make memory accesses. Finally, the

ASIA CCS 2024, July 1-5, 2024, Singapore

attacker probes their data to access the same cache sets as before.
If the victim accessed one of the sets monitored by the attacker,
they will have evicted some of the attacker’s data, causing a longer
latency in the probing phase. In the context of a covert channel, the
attacker would run both sender and receiver, and use the contention
on the cache sets to build the channel.

2.4 Related Work

Covert and side channels on GPUs. Naghibijouybari et al. [11]
describe multiple covert and side-channel attacks on GPUs. Many
works consider a spy outside of the targeted GPU. Jiang et al. [7-9]
present a cache-based attack, a shared memory attack, and a bank-
conflict attack, all leading to a key recovery attack on AES. Similarly,
Ahn et al. [6] exploit cache conflicts to recover an AES key from
a GPU implementation. While they rely on cycle-accurate timers,
our attack works from the browser without a timer. In addition,
their spy uses the native API, while we perform our attack from the
browser. More similar to our approach, Dutta et al. [35] perform
Prime+Probe on Intel’s integrated GPU through contention on the
LLC shared between the CPU and GPU with native OpenCL. They
also demonstrate ring-bus interconnect covert channel reaching
the LLC. Dutta et al. [16] present a cross-multi-GPU Prime+Probe
covert channel based on L2 contention. Our threat model is different,
assuming a spy co-located on the same GPU in a drive-by attack
from the web.

Naghibijouybari et al. [10, 12] present the first attacks in the
co-located setting. Their first work [10] presents an in-depth study
of General Purpose GPUs and highlights various ways to build
covert channels on GPUs using caches and functional units. In their
following work [12], they demonstrate the ability of an attacker to
implement website fingerprinting based on GPU memory usage and
performance counters. They also demonstrate the practical impact
of their attack by tracking keystrokes from users and recovering
some internal parameters of a neural network running on the GPU.
Wei et al. [3] present a similar approach, using the GPU context-
switching impact on performance counters to enhance the leakage
and recover the complete structure of a neural network.

Despite the groundbreaking nature of these works, our contribu-
tions differ in key aspects. All aforementioned contributions rely on
the attacker having access to the native APIs of the GPU through
CUDA or OpenGL. This enables them to monitor high-precision
performance counters. Our attack works entirely from the browser
using JavaScript, with the corresponding API limitations (e.g., we
do not have an accurate timer). This results in better portability but
also a weaker attacker in our threat model.

Browser-based cache attacks on GPUs. The growth of web-
based API usage to offer GPU-enhanced rendering inadvertently
enables attackers to run GPU-based attacks through JavaScript, by-
passing its existing limitations. To our knowledge, all existing works
exploit the GPU through the WebGL API. Frigo et al. [13] leverage
the integrated GPU to mount Rowhammer attacks from browsers
on mobile devices, using the WebGL timing APIs. In response, major
browsers disabled this timer. Cronin et al. [15] presented a browser-
based attack with assumptions similar to ours. They target SoC
platforms and leverage system-level cache occupancy to build a
covert channel and fingerprint websites. They differ from our work

Giner et al.

1 if global_id.x != 0@ {

2 var time: u32 = 9;

3 atomicStore(&timer, 0);

4 while (atomicLoad(&stop) != stop_value) {

5 for (var a: u32 = 0; a < 100000; at++) {
6 timet++;

7 atomicStore(&timer, time);
8 313}

9 else {

10 start = atomiclLoad(&timer);

11 var ¢ : u32 = atomicLoad(&buffer); //access
12 if ¢ != @ { //prevent optimization

13 return;

14 }

15 end = atomicLoad(&timer);
16 atomicStore(&stop, stop_value);

17}

Listing 1: Counting thread implementation in WGSL based
on the global thread id and atomic operations.

in multiple aspects. First, they focus on a SoC system and use con-
tention on the system-level cache, which is shared between the
CPU cores and its peripherals (namely the GPU) in ARM systems.
This enables them to create contention from the CPU, whereas we
consider spy and attacker to be co-located on the GPU. Second, the
cache occupancy of the system-level cache is significantly different,
resulting in different challenges to overcome. Finally, they exploit
it using WebGL code, while we focus on its successor, WebGPU,
which claims to consider and address the side-channels threat. Re-
cently, Taneja et al. [36] demonstrated hybrid side channels on the
CPU and GPU, based on how they adjust their frequency, power,
and temperature depending on the workload. They demonstrate
that GPUs exhibit instruction and data-dependent throttling. Their
JavaScript attack assumes a victim in the browser but still relies
on the ability of the attacker to access native APIs to monitor the
power consumption and frequency of the GPU.

3 THREAT MODEL

As we target WebGPU, our primary requirement is a browser with
WebGPU support. As of writing, this includes Chrome releases since
version 112, Chromium, Edge, and Firefox Nightly. By targeting
web browsers, our threat model includes any scenario where a
browser might run while sensitive information is being processed.
Because the entire system usually shares the GPU, this can include
anything rendered (such as websites or applications) and general-
purpose computing operations. We show that our attack can be
done in a drive-by manner, simply by visiting a website for a while.
We assume that the victim will visit an attacker’s page for several
minutes, e.g., reading a blog with malicious WebGPU code. We
do not assume that WebGPU provides any interface for hardware
timers. To further constrain our attacker, we assume that WebGPU
provides no workgroup memory in reaction to prior work [35]. In
this paper, we attack dedicated NVIDIA and AMD GPUs, whereas
some other works [13] have focused on integrated mobile GPUs.

4 WEBGPU PRIMITIVES

To build advanced cache attacks in WebGPU, we need several key
primitives. The first is a timer accurate enough to reliably distin-
guish a cache hit from a miss. Using this timer, we can then detect

Generic and Automated Drive-by GPU Cache Attacks from the Browser

Table 1: Timing thread counter value for the 98th and 5th per-
centile for L2 cache hits and misses, respectively, for a variety
of GPUs and the methods add and store. A good threshold
can be found when the distributions are clearly separable.
n = 1000000 hits and misses were recorded each.

Add Store
GPU hit>98% miss<5% hit>98% II‘liSS<5~7/n
% RX 6800 XT 6 7 9 11
< RX 6900 XT 5 7 9 11
GTX 1070 5 8 62 95
GTX 1650 7 13 75 94
GTX 1660 Ti 7 11 74 94
GTX 1660 Ti Lin 4 7 10 18
< RTX 2070 SUPER 6 8 80 106
A RTX 2070 SUPER Lin 4 8 11 18
E RTX 3060 Mobile Lin 5 8 11 18
RTX 3060 Ti 8 13 90 124
RTX 3060 Ti Lin 5 7 11 20
RTX 3080 8 12 95 119
RTX 4090 7 10 99 145
Quadro P620 5 7 61 88

cache size, cache activity, and build Prime+Probe eviction sets.
While these primitives have been extensively studied on CPUs [31-
33, 37], building them on GPUs involves some difficulties, especially
from a browser. In this section, we detail these challenges and how
to overcome them using WebGPU and minimal requirements.

4.1 Timing without clocks

Most previous works on GPUs are run natively and rely on high-
precision timers or related performance counters for their measure-
ments. However, WebGPU took explicit measures to preclude tim-
ing attacks, such as making timestamp-query optional and limiting
interactions via shared buffers, similar to SharedArrayBuffer mit-
igations in browsers. To our knowledge, the shader language WGSL
does not include any timers at this point. To present a generic prim-
itive, we will construct our attacks without API-provided timers.
JavaScript encounters the challenge of imprecise timers, so prior
works on the CPU had to consider similar constraints and employed
counting threads [18, 19, 35, 38]. The idea is to set up a shared mem-
ory buffer and use a dedicated thread to constantly increment a
shared variable. Another thread can then read this variable and in-
terpret its value as a timer. When applying this concept to WebGPU,
we face three challenges.
C1. Threads serialization. Different compute shaders cannot run
at the same time. Therefore, the same shader needs to count on
one thread and execute the attack code on another, as shown in
Listing 1. While this would be straightforward on the CPU, GPU
threads scheduled on the same processing block may run in lockstep
on some architectures [39]. This means that if threads in the same
warp need to execute different instructions (warp divergence), they
would run sequentially, hindering the use of our counter as a timer.
C2. Memory coherency. Unlike for CPUs, GPUs have no auto-
matic coherency guarantee in the memory hierarchy. Each SM man-
ages a dedicated memory subsystem, so SMs may contain different

ASIA CCS 2024, July 1-5, 2024, Singapore

copies of the same data in their L1 caches. Maintaining a coherent
state by synchronizing the data is left to the developers. Therefore,
without coherency, our counting thread would increment the timer
in its private L1 cache, unobservable from the outside.

C3. Optimization. The WGSL compiler aggressively optimizes
the code, such that a counting while loop may be replaced with
the final result, and memory accesses may be replaced by registers.
Solutions. In their OpenCL implementation, Dutta et al. [35] solve
the first challenge by executing enough counting threads to fill one
or more warps. Then, they conduct the attack in a separate warp
within the same SM, so each warp only executes the same branches,
avoiding warp divergence. To address the other challenges, they
simply store the counter in a shared memory region available to all
threads in the same workgroup.

In line with our goal to get a portable and low-assumption attack,
we suggest a more generic approach. To address C1, we set the
workgroup size of the shader to 1, which prevents scheduling on
the same processing block. Our solution demonstrates that even a
strong security measure, like disabling shared memory, would not
prevent timers in WGSL. We can solve C2 and C3 using atomic
instructions (see Listing 1). First, they guarantee that memory ac-
cesses will not be turned into register accesses for optimization.
Second, loads and stores performed by atomic instructions bypass
the L1 cache to directly access the L2 cache, which enforces co-
herency. However, C3 presents an additional challenge not solved
by atomic operations. Sometimes the compiler will reorder or drop
the measured load. We can prevent this by using the loaded value
in a condition whose outcome the compiler does not know.

A minimal example of this approach is illustrated in Listing 1.
One thread is chosen to be the timing thread via the global invo-
cation id global_id, while the other can perform the attack. To
spend as little time as possible reading the stop variable, the timing
thread spends most of its time in a tight inner loop. All memory
operations interacting with other threads are done with atomic in-
structions. The condition in Line 12 prevents compiler optimization
of the load order or elimination of the target load.

Table 1 shows the hit-miss separation for both techniques on
11 different GPUs. We also find that on most cards, incrementing
a local variable and updating it with atomicStore is significantly
faster than using atomicAdd, since the latter is a blocking opera-
tion that requires waiting until the data is brought to the execution
unit. However, this technique seems to be much less effective on
AMD in general, but also on some Linux configurations (noted as
Lin, as opposed to Windows default). Our testing revealed that this
optimization may depend on multiple factors, such as the operat-
ing system and driver version (see section 8). This optimization
is of course only applicable to data accesses in L2 cache that are
not meant to be timed. Figure 2 also highlights this difference but
confirms that L2 cache hits and misses are clearly distinguishable
in either case. In the end, our timer primitive cannot be prevented
without removing the atomic operations, and its accuracy is only
limited by the time it takes to load from and store to the L2 cache.

4.2 Cache-Size Detection

As our goal is to show that virtually all WebGPU-enabled devices
are affected by these generic attacks, we try to hardcode as few

ASIA CCS 2024, July 1-5, 2024, Singapore

I hit (add) [hit (store)

0.8 777 miss (add) EEEE miss (store) :

0.6
0.4
0.2

samples

4 6 8 10 12 14 16 18 20
timer count

(a) AMD RX 6800 XT

Giner et al.
g 10’ B
I hit (add) [hit (store)

g 0 7277 miss (add) EEER miss (store) ||
B

2 .

0 A FVV=SSUY e

0 22 60 95 119 160
timer count
(b) NVIDIA RTX 3080

Figure 2: WebGPU cache hit and cache miss histograms for different GPUs with counting thread for 1 million samples. Adding
to a memory location provides less resolution than storing a register value. Higher counts show higher timer resolution.

parameters as possible. An important parameter for all further
sections is the cache size. It determines how many sets we can
expect (Section 4.3) and lets us derive suitable buffer sizes for cache
eviction detections (Section 4.4).

We assume standard LRU, as suggested in previous work [40],
and fill the cache with a large array of 10 MB. The buffer size choice
is motivated by our observation that most GPUs have below 8 MB
of L2 cache. In the same shader execution, we now iterate over the
array forward and then backward, counting hits. Going backward
avoids self-eviction of an entire set after a single miss and allows
us to accurately measure the number of cache lines that remain in
the cache. If the hit rate is very high (> 95 %), we increase the test
size in steps to 40 MB, 80 MB, and 100 MB. This keeps measurement
times low for most cards, while allowing accurate detection even
for larger caches. Finally, we match this approximate size to the
closest larger size within a list of known sizes.

Table 2 shows that for most cards, we can reliably determine
the cache size in less than 400 ms. Of interest among the outliers
is the NVIDIA RTX 3060 Ti. It reliably returns a size of 3 MB, and
indeed, we never see any hits more than exactly 3 MB, though the
official L2 cache size is 4 MB. A simple explanation is that both our
NVIDIA RTX 3060 Ti models, only have 3 MB of L2 cache. Another
possibility is that these cards have a different mapping function,
and some part of their cache is only reachable for much larger total
VRAM allocations. We will encounter this again in Section 4.3.

4.3 L2 Cache Eviction Set Construction

The next step in building a Prime+Probe attack is to find a set of
addresses that map to the same cache set. To make sure this set
of addresses replaces all the current entries in the cache set, the
cardinality of the set should at least match the cache associativity
W. We call this an eviction set. On CPUs, much work has been done
to reverse engineer the mapping from virtual-to-physical addresses
to cache sets [41-43]. Comparable work on GPUs [16, 40, 44-46]
however has shown that their cache set mapping can be much
more complex. Jain et al. [40] used a modified driver to reverse-
engineer the hash functions for mapping addresses to both cache
and VRAM on an NVIDIA GTX 1070 and 1080. However, our tests
suggest these functions differ in newer generations of NVIDIA
GPUs. In particular, many GPUs need to employ different non-
linear (or linear, but different by address range) mapping functions
due to their non-power-of-two cache and VRAM sizes. Additionally,

Table 2: Our WebGPU cache-size finding algorithm on a vari-
ety of GPUs, n = 10. With one exception, the correct size is
almost always found on all cards.

Size Runtime

Actual Detected Correct p x o

GPU MB MB % ms ms

% RX 6800 XT 4.0 4.0 100 179.3 19.21
< RX 6900 XT 4.0 4.0 100 185.6 26.20
GTX 1070 2.0 2.0 100 192.6 26.15
GTX 1650 1.0 1.0 100 422.2 31.56
GTX 1660 Ti 1.5 1.5 100 283.6 11.02
0 RTX 2070 SUPER 4.0 4.0 100 189.9 6.15
E RTX 3060 Mobile 3.0 2.975 90 285.3 15.03
Z. RTX 3060 Ti 4.0 2.975 0 276.8 9.50
RTX 3080 5.0 5.0 100 257.4 9.81
RTX 4090 72.0 72.0 100 1729.6 60.23
Quadro P620 1.0 1.0 100 251.7 23.25

AMD or even mobile GPUs may follow an entirely different scheme
altogether. Like the work by Dutta et al. [16], we also do not have
the advantage of relying on physically contiguous memory, or any
specific page size.

In keeping with our generic approach, we do not attempt to rely
on any known mapping functions or page sizes. Instead, we employ
a generic set-finding algorithm based on prior work for CPU caches.
Given a timer accurate enough to distinguish cache hits and misses,
an attacker should be able to create eviction sets efficiently, similar
to the methods presented by Qureshi and Purnal et al. [47, 48].

While this approach works well for CPUs, we encountered vari-
ous challenges to efficiently port it to GPUs. Hereafter, we describe
anovel approach to compute fast and reliable eviction sets on GPUs.
In particular, we describe how to leverage the powerful parallelism
that GPUs offer to speed up this process.

The basis of our implementation is the Group-Elimination Method
(GEM) [47]. The goal of GEM is to find an eviction set for a target
address. To this end, a large set of addresses S >> W that evicts the
target address is partitioned into W + 1 groups. As a full eviction
set of W addresses must be contained in some combination of < W
out of the W groups, (at least) one group can be eliminated without
affecting the eviction. GEM tries to remove each of the W +1 groups
from the set S until one is found that does not influence the eviction

Generic and Automated Drive-by GPU Cache Attacks from the Browser

1 8 « {1.5x cacheSize, 128B steps}
2 Buckets « {{}}
3 while S != {}
. B « S, P « Blo] @ //initialize B, select a pivot P
while |B| > targetSize
6 G <« {}
7 do
shuffle(B)
9 B« BuUgG, G« Blo:law|B|], B « B{P U G}
10 access(P), parallelAccess(B) //access pivot, then B
11 while isCached(P) @
12 if optCondition() €®
13 hits < accessAndMeasure({B U P3})
14 B < B\hits //remove addresses not part of eviction sets
5 BeBUP,S <« S\B
16 Buckets « Buckets U {B}

Listing 2: Parallel Set Construction. This simplified pseudo-
code algorithm partitions an initial set of addresses S into
several buckets B whose addresses do not share cache sets.

Buckets = ParallelSetConstruction()

2 originalBuckets « Buckets, EvictionSets « {}

; Pivots « {B[0] | B € Buckets)} @

4+ Buckets « {{B\P3} | (B,P) € (Buckets,Pivots)}
s while 3B : B # {}

6 Gs < {{}}

7 foreach B € Buckets : B # {}
3 if |B| > 1000

9 G « Ble:1/w|B|1 @

10 else

1 G « Blel @

12 Gs « Gs U {G}, B « B\g

13 AllHits = parallelMeasure(Pivots, Buckets) @

14 foreach (P,Hits,B,G) € (Pivots,AllHits,Buckets,Gs)
15 if isCached(P)

16 B« BUGgG

17 shuffle(B)

18 el'se

19 B < B\Hits o

20 if |B| == W //bucket has reduced down to one set
21 EvictionSets « EvictionSets U {B U P}

22 B = originalBucket\{B U P} //refill Bucket

23 shuffle(B)
24 P « Blel, B « B\P
25 else if |G| == 1 && |Hits| ==

26 EvictionSets « EvictionSets U {G U B} //free set!

Listing 3: Parallel Bucket Sifting. This algorithm sifts sets in
parallel from the previously separated buckets.

of the target. This is repeated until only W addresses remain in S,
forming an eviction set for the target address.

Our implementation differs from GEM in two significant ways.

First, we aim to find all sets, and we, therefore, try to find more
than one eviction set at a time. Similar to Prime+Prune+Probe [48],
we make use of the predictable behavior of LRU for this. Second,
we parallelize parts of the algorithm to multiple threads. Many
constants in the following are empirically determined values that
work on a variety of GPUs, not optimal values.
Parallel Set Construction. See Listing 2. When we access many
addresses in parallel on the GPU (or the CPU), ordering between
them is not guaranteed. This means that when a set is split between
different threads, we can no longer expect to observe effects stem-
ming from LRU. In effect, eviction measurements that rely on access
order become meaningless. We, therefore, add a preprocessing step
to the eviction-set construction algorithm.

ASIA CCS 2024, July 1-5, 2024, Singapore

The goal of preprocessing is to separate an initially large set
S of addresses s; = |S| (1.5x the cache size in 128 B steps) into
buckets with no overlapping sets. This partitioning facilitates the
independent examination of each bucket for sets, circumventing
inter-thread interference. The process follows a similar approach
as GEM and is delineated in two main steps.

Starting with B= S, the first (€)) step involves selecting a random
element from the set as our pivot. This pivot address guarantees the
presence of at least one complete set within the bucket, although
it probably contains several more. The second (@) step consists
in removing a portion of the set, i.e., a group, and verifying if the
pivot element is still evicted by the residual B. If eviction is not
observed, we reiterate with another group. Contrary to GEM, we
find that eliminating 1/2w|B| rather than 1/w + 1 better mitigates
the excessive removal of elements in later steps (€).

We also incorporate several optimizations not found in GEM.
Until B diminishes to 3/4s;, we exploit parallelism by accessing all set
elements concurrently using 30 threads, measuring only the pivot
at the end. When |B | < 1/6s; or on every fourth iteration when
|B| < 3/4s; (optCondition is met, Line 12), we measure not just
the pivot but all other elements . We only do this sparingly because
measuring elements in addition to accessing them has a significant
overhead, and, as mentioned, LRU-related observations can’t be
parallelized while sets are still unknown. However, this enables a
crucial optimization: the removal of all set elements that register
a cache hit (€])). Given a consistent access sequence and a cache
replacement policy approximating LRU, all persisting elements in
B are now part of full eviction sets.

This procedure can be iterated until B is below a predetermined
threshold. Empirical evaluations suggest a bucket size of 3500
(equivalent to 145 — 206 sets) works for the majority of GPUs.
Upon completion, B is subtracted from S. We are left with a bucket
of the desired size, exclusively containing eviction sets. The residual
segment of S does not include overlapping sets with the bucket.
Repeating the previous steps ensures that the final buckets consist
only of non-overlapping eviction sets, collectively representing
nearly all cache sets.

Parallel Bucket Sifting. With full eviction sets sorted into roughly
equal buckets, we can now begin to extract single sets from them.
Since there is no more overlap between the cache sets in the buckets,
we can now run measurements on them in parallel. For the NVIDIA
RTX 3080 and its 5 MB cache for example, the previously mentioned
target bucket size produces around 16 buckets of 160 sets each, with
up to 24 addresses per set. This means we can start a loop on our 16
input buckets with the following broad steps running in parallel for
each bucket. First, we once again shuffle the elements in each bucket
B and pick a pivot element to find an eviction set for (€)). Second,
like before, we remove groups of 1/2w|B| elements until we find
one that doesn’t affect the pivot’s eviction (@)). Third, to determine
eviction, we measure the access latency for all addresses remaining
in all buckets in parallel. (@) Fourth, addresses in buckets that
show cache hits are also removed, such that all remaining addresses
still form eviction sets within B (@)). Buckets are shrunk in parallel
this way until a bucket’s size goes below 1000 elements. At this
point, instead of 1/2w|B|, we remove only a single element per loop
(@). This allows us to make use of the cascading eviction effect of

ASIA CCS 2024, July 1-5, 2024, Singapore

the LRU replacement policy: when we remove only one address,
that together with W other addresses in B forms an eviction set,
those W addresses will now show up as cache hits (@)). In effect, we
have found an entire eviction set in a large bucket B by removing a
single element. This allows us to sift out many sets for “free” while
trimming the bucket to find the pivot element’s eviction set. We
continue decreasing the bucket size until either a complete eviction
set for the pivot remains, or some false measurement has left us
with an incomplete set. At this point, we refill the bucket with all
discarded addresses that could not be attributed to a complete set
and start again at step one. The algorithm terminates when either
all buckets are empty, or no new sets have been found for too long.

This sifting method is so effective, in fact, that it finds signifi-
cantly more sets than the number of pivots chosen. On our NVIDIA
RTX 3080, for example, we might search 17 buckets for eviction sets
with 90 chosen pivots (an average of 5.2 bucket “refills”), but sift
out 2465 sets on the way. The change at 1000 elements represents
an empirically found trade-off between fast bucket-shrinking and a
high amount of sets found through sifting. When the number is too
high, the time to find sets will needlessly increase, as most sets start
with an average of 24 addresses, but can only be detected when just
16 are left in the bucket. When it is too low, many sets are lost to
the sifting method through the removal of many elements.

Combining these optimizations, we can map most sets in the L2
cache of all NVIDIA GPUs in WebGPU in a reasonable time frame,
as shown in Table 3. The notable exception is the NVIDIA RTX
4090, as the enormous cache size presented problems not found in
other cards. Likewise, both AMD cards fail this important step to
further attacks and are therefore not included in the more advanced
attacks. One possible explanation is that the timing difference to
other cards, which can already be seen in Table 1, causes more
noise, as the hit and miss distributions are closer together. While
we believe that from the basic timing difference, it is clear that all
our attacks could run on these cards, we only had temporary and
time-restricted remote access to these GPUs, which did not allow
for analyzing the underlying problem. The NVIDIA RTX 3060 Ti
also sticks out, as it consistently finds close to 1536 sets even when
looking for 2048. This is consistent with 3 MB of L2 cache found in
our experiments (see Section 4.2).

We see that the percentage of sets we find varies along with the
time, though a majority of sets can almost always be found within
5 minutes. With this additional primitive, attackers can implement
Prime+Probe to build a covert channel, as we show in Section 7, or
execute some other cache attack, e.g., Rowhammer [13].

4.4 Full Cache Evictions

One of the first observations while measuring cache hit rates on
GPUs is that some events evict a sizeable portion of the cache.
Whenever an element on the screen is redrawn or the frame buffer
is refreshed for some other reason, this occupies a large part of
the cache. Depending on the total size of the L2 cache and what is
being drawn, this may even evict the entire cache. On the one hand,
this presents as noise during some attacks; each measurement that
happens after a draw event is tainted. On the other hand, these
evictions are indicators of activity on screen and can therefore

Giner et al.

Table 3: Our WebGPU set-construction algorithm on a variety
of GPUs, n = 10. All but one card reliably find > 80% of sets.

Sets Runtime

Overall Found x Found o x o

GPU % % min min
GTX 1070 1024 96.0 2.1 11.8 4.8
GTX 1650 512 82.9 2.2 4.2 3.9

< GTX 1660 Ti 768 96.4 2.1 12.1 3.8
E RTX 2070 SUPER 2048 98.7 1.0 7.0 2.1
; RTX 3060 Mobile 1536 99.9 0.1 2.3 0.4
RTX 3060 Ti 1536 94.5 5.3 2.6 1.5
RTX 3080 2560 99.3 1.9 2.8 1.2
Quadro P620 512 50.8 24.5 13.7 9.0

be used as a side channel to user activity. We describe an inter-
keystroke timing attack based on this primitive in Section 5.

5 KEYSTROKE MONITORING WITH FULL
EVICTION

Starting from the observation that drawing elements on screen
evicts a significant part of the cache, we build an attack that can
record inter-keystroke timings by observing cache contention. As
prior work has shown [49-52], inter-keystroke timings carry a sig-
nificant amount of information and can lead to password recovery.
While subsequent sections of this paper present conventional
benchmarks for high-frequency side channels, this section focuses
on low-frequency benchmarking. Despite the infrequent occurrence
of events, achieving a high detection rate is crucial for accurately
measuring inter-keystroke timings. In addition, keystroke profiling
represents a practical application of our attack, as our setup mirrors
the most prevalent end-user scenario: a computer equipped with
a single discrete GPU engaged in internet browsing. As the full
WebGPU standard becomes increasingly integrated into mobile
devices, this scenario will gain further relevance in the future. Our
approach for this attack is similar to Naghibijouybari et al. [12].

5.1 Construction

The attack is based on the following observation: for each character
typed, the text box is re-rendered. We can measure this as the
eviction of a certain amount of the cache, up to the entire cache,
correlated with the size of the rendered area. To see this effect,
we use a buffer that covers a part of the cache size and repeatedly
measure its hit rate. Whenever we see a hit rate below a well-chosen
threshold, e.g., 50 %, we record the timestamp as an event. The time
resolution of this attack is determined by how fast our attacking
shader can complete its measurement, which is determined by
the total buffer size. Though on some GPUs we see that a small
percentage of the cache is already enough to observe keystrokes,
we find that for most, 35 % is a good tradeoff between detection and
speed. The screen resolution, size of the text box and zoom level all
contribute to the amount of evicted cache lines.

After recording raw traces, we filter based on two observations.
First, very close measurements (<25 ms difference) are unlikely to
be separate keystroke events. Second, after a short break in typing,
the cursor starts blinking at a 530 ms interval on Windows. Filtering

Generic and Automated Drive-by GPU Cache Attacks from the Browser

these sources of noise removes most false positives. Figure 3 shows
the trace of an attacker typing at varying speeds compared to the
ground truth on our NVIDIA RTX 3080. We can see that while we
measure some spurious events, most timings are accurate.

5.2 Evaluation

We tested this attack with a small text box and generated input
directly injected from javascript, randomly drawing inter-keystroke
timings from distributions similar to the patterns observed by
Song et al. [49]. Table 4 shows the tested GPUs and their F; scores
and inter-keystroke timing errors. During this test, no other visual
noise was present, similar to the static login pages of many websites.
The consistently high recall shows that virtually no keystrokes are
missed on most cards. However, even after filtering, the recall shows
that there is a low average of false positives for most cards. AMD
once again behaves differently. Despite the high recall, with the
low precision, we can consider this attack mostly failed or severely
degraded. The results suggest either a high level of noise or, more
likely, frequent misclassification of hits as misses due to the close
timing differences visible in Table 1.

An interesting example for the timing resolution is the NVIDIA
RTX 4090. Because of its large L2 cache of 72 MB, simply measuring
cache contention requires a disproportionately large measurement
set. This is because the cache footprint of a text box does not in-
crease with the cache size. While all other cards easily reach a
sampling rate below 15 ms, the huge buffer means that each mea-
surement takes more than 200 ms, making an inter-keystroke timing
attack with this method impractical.

We also observe that on Windows, the blinking of the cursor
causes slightly less eviction than a typed character. One possible
explanation is that instead of re-rendering the entire text box, the
cursor is drawn on top.

6 AES KEY RECOVERY WITH
BROWSER-BASED TEMPLATING

Recovering AES keys from vulnerable T-table implementations has
become a benchmark for assessing how fine-grained side-channel
attacks and microarchitectural attacks are. This case study has also
been adopted in GPUs [6-9]. Additionally, AES has been proposed
as a use case for general-purpose GPU computing since 2007 [4, 5].

Unlike previous research, our method adopts a set-agnostic ap-
proach, eliminating the need to understand cache set sizes or map-
pings. Traditional set-based strategies would require extensive pro-
filing of cache sets and mapping of T-table accesses. Our method-
ology bypasses this initial step, focusing on locating addresses
congruent with T-table lines.

6.1 Threat Model

Like earlier, we assume our attacker embeds some malicious JavaScript
in a webpage the victim is browsing for several minutes. The vic-
tim runs a GPU-based AES implementation that can be queried
for encryption with a chosen plaintext and key. The attacker aims
to recover the AES key used by a victim. This scenario could be
found in the case of an SFTP server, where the chosen plaintext and
key represent downloading our own file. In order to implement a

ASIA CCS 2024, July 1-5, 2024, Singapore

last-round attack, we assume the attacker has access to the victim’s
ciphertexts, but not the plaintext or the key.

6.2 AES Implementation Details

The native encryption service is an AES CUDA implementation,
which uses combined T-tables for all rounds. This increases the dif-
ficulty of the attack compared to implementations that use separate
tables for the last round, as all other rounds influence cache hits on
table entries. As GPU cache line width is usually 128B, and each
table is composed of 256 4-byte entries, each table fits in exactly 8
cache lines, for a total of 32 cache lines filled with table entries.

6.3 Attack Methodology

Our strategy, akin to the keystroke attack (Section 5), involves allo-
cating a large buffer to occupy a significant cache portion, executing
an AES encryption, and then identifying evicted buffer offsets using
Prime+Probe. In an ideal scenario with a minimalistic AES kernel,
evicted offsets would correlate with the table or the encryption’s
inputs and outputs. This is because, from our observation, GPUs
implement a deterministic LRU-like eviction policy. This means that
when one address from a full set is evicted, measuring all others in
the same order used to place them in the set will cause a cascade of
cache misses, as each new access will result in a miss, overwriting
the next address. In practice, we find that kernel loading introduces
substantial cache occupancy, leading to measurement noise. Our
primary challenge is discerning the tables amidst this noise, and
profiling each table’s cache lines to track their access. We employ
chosen keys and specially crafted plaintexts to deduce the relation-
ship between our offsets and table entries. With this mapping, we
can execute the traditional last-round attack [53, 54]. Hereafter, we
delve into each step and the optimizations we employed to achieve
a reliable key recovery in a drive-by manner.

Profiling T-Tables. The initial profiling phase involves allocating a
sizable array in the browser, ensuring kernel loading and encryption
evict specific offsets. This step templates the AES encryption’s
memory accesses. Optimal array size varies across models, even
with similar cache sizes.

Using random plaintexts, we would expect a random distribu-
tion of the access to each entry of the tables, thereby causing a
predictable eviction frequency of the set-congruent offsets (at a fre-
quency of 0.995). On the contrary, the offsets that are set-congruent
to the memory required for kernel loading would be evicted every
time, and other noise artifacts should be sparse. Our differential ac-
cess templating, using a fixed key and chosen plaintexts, enhances
profiling reliability and efficiency.

The strategy involves pre-generating 32 plaintexts p; with a fixed
key, ensuring the encryption of each plaintext access all but one
cache line within the tables, and a reference plaintext p,, which
encryption accesses all cache lines. Comparing memory accesses
during the encryption of p; and p, reveals offsets congruent to
cache line i. This process identifies offsets that are set congruent to
each cache line, though some cache lines may remain undetected
due to kernel loading noise. This refined offset list streamlines the
attack, focusing on a reduced subset of offsets.

Last Round Attack. As we are performing a last-round attack,
the only requirement is that we can make measurements during

ASIA CCS 2024, July 1-5, 2024, Singapore

Giner et al.

Table 4: Efficacy of WebGPU inter-keystroke timing detection on a variety of GPUs for 100 keystrokes.

Performance Metrics False True Interval Error

Fj score precision recall Positive Negative Positive x o median

GPU ms ms ms

% RX 6800 XT 0.27 0.16 0.99 533 1 99 133.58 101.18 121.50
< RX 6900 XT 0.29 0.17 0.99 490 1 99 126.05 119.22 86.00
GTX 1070 0.97 0.99 0.96 1 4 9% —0.28 4.25 0.00
GTX 1650 0.82 0.70 0.99 42 1 99 12.13 20.43 1.00

S GTX 1660 Ti 0.87 0.78 0.98 27 2 98 5.73 26.52 0.00
A RTX 2070 SUPER 0.86 0.78 0.97 28 3 97 19.81 57.81 0.00
; RTX 3060 Mobile 0.98 0.99 0.98 1 2 98 0.01 1.49 0.00
RTX 3060 Ti 0.97 0.98 0.97 2 3 97 1.76 21.12 0.00
RTX 3080 0.94 0.92 0.96 8 4 96 1.27 14.44 0.00
Quadro P620 0.98 0.99 0.97 1 3 97 =5.57 54.90 0.00

Table 5: Evaluation of the AES Last Round Attack (LRA) on
two NVIDIA cards. All values are average across n = 50 runs.

GPU Measurements Time (min)

(x1000) Profiling LRA Total
RTX 3060 Mobile 9.3£1.6 0.23+0.1 5.7£0.9 6.0£1.0
RTX 3060 Ti 9.81+3.4 0.23+0.1 5.9+1.9 6.1£2.0

encryptions by the victim, and observe the ciphertext. The attack
aligns with the non-elimination method presented by Neve and
Seifert [55]. The idea is, given a collection of ciphertexts and the
access to T-tables entries that happened during the encryptions,
to remove possible values on the key bytes by looking for cache
lines that were not accessed in the process. For each cache line not
accessed during the encryption, we can remove all last-round key
bytes that would have resulted in a memory access during the last
round, based on the ciphertext value. Given the cache line size of
GPUs, we get up to 2* bit of information on the last-round key
every time a cache line is not accessed.

The more cache lines we can monitor, the more likely we are to
reduce the search space for the last-round key. Once we get below

2% candidates, we switch to an exhaustive search of the key.

6.4 Evaluation

For our evaluations, we focus on a CUDA-based target implemen-
tation, rendering evaluations on AMD cards infeasible. Somewhat
breaking with the theme of this work, the nature of this attack
necessitates some parameter adjustments, which adds complexity
and extends the evaluation duration compared to other attacks.
Therefore, we settle on evaluating our attack on two recent cards:
NVIDIA RTX 3060 Ti and NVIDIA RTX 3060 Mobile. All our exper-
iments are conducted on Ubuntu 22.04, using Chromium 117. We
also observe consistent and similar results across multiple Chrome
versions, ranging from 112 to 115.

Table 5 showcases our findings. It highlights the average duration
of the attack’s primary steps and the mean number of encryptions
required for successful key recovery. Notably, both cards yield
similar results, recovering the key in 6 min. The average encryptions

needed are 9300 and 9800, respectively. The uniformity of results
across GPUs, coupled with the low standard deviation, underscores
the stability and reproducibility of our attack.

The profiling of the T-table with the templating attack takes on
average 13 s. The variability in this phase predominantly stems from
the inconsistent repetition of profiling until an optimal buffer size
is identified, enabling sufficient eviction observation. Typically, a
single profiling session lasts 6 s. Once profiling is complete, the same
session can be repurposed to divulge multiple AES keys, thereby
reducing the attack duration to the sample collection time needed
in the concluding step.

Profiling often does not provide a complete mapping for every
cache line. The disparities in measurements and time allocated for
the last-round attacks correlate directly with the number of cache
lines we can monitor. On average, we can spy on 20/32 cache lines.
The NVIDIA RTX 3060 Ti exhibits marginally less consistent results,
occasionally mapping fewer cache lines, leading to an elongated
attack duration and increased standard deviation. Our evaluation
on both cards consistently had a 100 % success rate.

7 A PRIME+PROBE COVERT CHANNEL

A covert channel is a channel that is constructed on top of some
shared resource that is not meant for data transmission. This allows
an attacker to transmit data between two domains that should be
isolated or strictly monitored. Because both sender and receiver
work together to transmit data, covert channels are a valuable
benchmark for any side channel’s bandwidth. In a traditional Prime+
Probe cache covert channel, the sender transmits bits by priming
(evicting) cache sets to transmit a binary 1, which the receiver can
later detect by probing (measuring) its own lines in the same set.
With our reliable timer and a method to find the required eviction
sets (see Section 4), we can now construct a Prime+Probe cache
covert channel for the L2 cache.

The sender is a C++ application that uses CUDA. In this scenario,
it is a malicious application without network privileges but with
access to the GPU. The sender’s goal is to exfiltrate sensitive data via
a GPU covert channel. The receiver runs in a website the user visits
at the same time. This may be a legitimate website with injected
malicious JavaScript, or a website the user is led to in some way.

Generic and Automated Drive-by GPU Cache Attacks from the Browser

ASIA CCS 2024, July 1-5, 2024, Singapore

2,000 [~ ‘ ® ‘]
® ®
iy raw detections () inferred keystrokes -}~ true keystrokes
% 1,000 |- ® 5 @ .
< £
EB%@
0 k= 6\ \ \ \ \ e8P \ % L ¥ -
5,630 6,310 7,080 7,950 8,920 10,000 11,200 12,600 14,100
time [ms]

Figure 3: Inter-keystroke timing recovery on a NVIDIA RTX 3080. The raw activity detections (green) show prominent cursor
blinking that can be filtered out very well, which leaves an accurate trace of inter-keystroke timings (red).

7.1 Construction

We write the Sender S in C++ and CUDA, making full use of
the native high-resolution timer. The browser-based Receiver R
uses a combination of JavaScript and WGSL. Using our eviction set
construction (see Section 4.3), R starts by mapping all cache sets.
Setup - CJAG. As neither R nor S have absolute labels for their
respective eviction sets, the first step is to communicate the shared
sets from S to R. For this, we implement a GPU-friendly version
of the cache jamming agreement (CJAG) proposed by Maurice et al.
[56]. In CJAG, S alternates between jamming a set, i.e., evicting
it continuously for some time, and probing the set for a slightly
longer period. Meanwhile, R probes all sets continuously until the
jammed set is detected. Then, R switches to a longer period of
Jjamming, so that S knows the set has been received and moves on.

Unlike the CJAG approach on the CPU, distinct shaders do not
execute concurrently on the GPU, making simultaneous detection
and jamming infeasible. Rather than employing shaders that con-
tinuously loop through jamming or detection, we need to segment
them into single invocations. Depending on the frequency of driver
interruptions, we might otherwise see long shader executions that
rarely interface with each other.

Additionally, we want to use a large number of sets (e.g., 1024).
Serial transmission, as implemented in CJAG, is, therefore, imprac-
tical. Instead, we enhance the CJAG framework by leveraging the
inherent parallelism of our GPU, enabling both S and R to jam and
detect all sets concurrently. Here, copying to and from shaders is the
main bottleneck, with 3 ms on average. Thus, the time difference
between measuring a single set versus 64 sets per shader invocation
is marginal. So, we combine both as a trade-off and measure sets in
parallel on 16 threads. At this stage, S also swaps out any sets that
are not detected from R’s jamming, thus ensuring that all sets are
fully functioning for both parties. After a selection of 1024 sets has
been communicated, S switches to jamming on only half of all sets.
The specific half is dictated by the current bit in the index number
of its cache sets. In this way, S can transmit the order of all 1024
sets in log, (1024) = 10 steps by jamming different 512 sets for each
bit. After all sets have been communicated, data transmission can
begin. Table 6 shows that it takes 14 s to 28 s to transmit 1024 sets.
Transmission. After the set jamming agreement has been com-
pleted, the transmission is entirely one-way. We opt for a channel
design where sender and receiver are synchronized with the wall
clock. In native C++, this provides at least ps accuracy, while in
browsers, this is limited to 100 ps. We choose a default transmission

window length of 5 ms for our packets. This length is limited not
only by the accuracy of the timer but also by the time it takes for a
shader to run. To compensate for the long packet duration, we use
the GPU’s parallelism to transmit on 1024 sets concurrently.

While eviction for S is as simple as accessing many addresses in
parallel in a loop, R still needs to measure time. Challenge C1 (see
Section 4.1) means that we need to separate each parallel thread into
different workgroups to prevent lockstep execution. Additionally,
individual sets always need to be measured by the same thread, as
ordering between these accesses is crucial for the eviction policy.

As observed in Section 4.4, GUI-related events can introduce
undesirable noise. Similarly, the operating system can deschedule
S for periods of time. To reduce such noise, we adopt the following
strategies. First, we employ a majority vote measurement approach
where each set is measured as often as possible within a transmis-
sion window. By counting evictions and non-evictions, we obtain
the result through a majority vote. Second, we access the addresses
within each set in an alternating order. This ensures a consistent
read from the most to the least-recently-used cache line, precluding
the cascade of self-evictions that would arise if the oldest cache
line were evicted. This lets us determine how much of a set was
evicted and easily identify low-level noise. Lastly, we use a dif-
ferential measurement scheme. Here, a pair of sets transmit 1 bit,
and measurements wherein neither or both sets are evicted are
discarded. In a valid transmission, precisely one set is evicted for
every pair, effectively halving our transmission rate and resulting
in a total packet length of 64 B. Consequently, the raw transmission
speed is fixed by the parameters to a default of 12.8 kB/s.

7.2 Evaluation

We evaluate the covert channel on 3 NVIDIA GPUs; the RTX 2070
SUPER, 3060 Ti and 3080. The GTX 1070 and Quadro P620’s Pascal
architecture does not support all the instructions used by the CUDA
sender. AMD cards do not support CUDA, though as set-finding fails
on AMD (see Section 4.3) the attack would not work either way. The
GTX 1650 and GTX 1660 Ti both support the instructions as well
as set-finding, but we could not reliably establish communication
because of malfunctioning jamming detection in CUDA.

Table 6 shows the configuration and transmission details for
all tested devices. We can see that as we shrink the transmission
window, average reads in the window go down, and the error rate
increases. At 4ms, the NVIDIA RTX 3080 shows a decrease in
true channel capacity compared to 5 ms for this reason. Because

ASIA CCS 2024, July 1-5, 2024, Singapore

Giner et al.

Table 6: Transmission results of our Prime+Probe covert channel from a native CUDA sender to a WebGPU receiver in the
browser, n = 10. True channel capacity can vary widely either due to general noise, incorrect set transmission during CJAG or
too few correct reads per window, i.e., the number of correctly received pairs within the transmission window.

Configuration CJAG Bandwidth Bit Error Ratio

Sets;, ~Window Reads/window X Set Tx Raw Truex Trueo x o

GPU ms s Byte/s Byte/s Byte/s % %
RTX 2070 SUPER 1024 6.0 3.3 14.6 10666.7 8963.0 360.8 2.4 0.7
1024 5.0 2.2 14.0 12800.0 8962.0 286.5 5.3 0.6

g RTX 3060 Ti 1024 6.0 2.9 16.4 10666.7 9004.9 2714 23 0.5
; 1024 5.0 1.9 15.7 12800.0 7272.0 1252.5 9.1 3.1
RTX 3080 1024 5.0 2.7 27.8 12800.0 10897.5 698.3 2.2 1.0
1024 4.0 1.9 28.2 16 000.0 5964.5 1048.6 15.9 2.7

of it’s higher clock speed, the 3080 supports faster transmission
than the two other cards. Its average true bandwidth in its fastest
configuration is, therefore, 10.9kB/s, at a BER of 2.2 %. Though
our channel is non-optimal and slower than prior work, it clearly
demonstrates the viability of using WGSL code embedded in a
website as a covert channel receiver.

8 DISCUSSION

Supported Devices. Our research primarily targets recent NVIDIA
GPUs, leading to worse results on AMD cards, as we only had very
limited access. Despite these architectural differences, WebGPU
clearly enables generic cache attacks from browsers. At the time
of writing, WebGPU is already integrated into Android’s Chrome
Canary, though some features are not yet available. Once parity
is achieved, the potential for browser-based GPU attacks could
significantly increase.
Limitations. We evaluated our proof-of-concept on various op-
erating systems using Chrome and Chromium versions 112-117.
Despite identifying functional combinations for all devices, the We-
bGPU implementation remains inconsistent, as evidenced by our
experiments. The same code might succeed in one version and unex-
pectedly fail in another, potentially due to variations in WebGPU’s
code compilation beyond user control. We observed notable differ-
ences between Linux and Windows (see Table 1). While the exact
cause—whether driver, browser, or WebGPU’s underlying frame-
work (e.g., Vulkan vs. DirectX)—remains unclear, the fundamental
time discrepancy supports the viability of these attacks.
Countermeasures. The attacks shown in this paper are generic
and rely on only a few assumptions. Nevertheless, steps can be
taken to limit the attack surface. As already suggested in the current
WebGPU draft, timers can be made optional, very coarse, or ideally
removed altogether [17]. However, as we have shown, as long
as coherent memory is available between concurrent threads, it is
possible to construct a timer. If, however, the coherency mechanism
(in our case, atomic operations) were to be changed, such a timer
would quickly fail. Of course, this could cause normal workloads
to malfunction unless specifically redesigned.

The simplest and most effective solution against a drive-by attack
scenario is, in our opinion, to treat GPU access in the browser
as a sensitive resource, like microphone or camera access, that

requires permission before use. For WebGL and WebGPU, this is
not currently the case (Firefox 114, Chrome 115, Chromium 117).
This would also prevent malicious parties from stealthily using
local computing resources for, e.g., cryptomining.

Disclosure. We have disclosed our results to Mozilla, AMD, NVIDIA
and the Chromium team.

9 CONCLUSION

GPUs have become a ubiquitous computation resource and as such
require increased security scrutiny. We showed that it is possible
to mount powerful GPU cache side-channel attacks directly from
within the browser. We demonstrated that our basic attack prim-
itives are generic and automated to the extent that we can run
them without manual intervention on a set of 11 desktop GPUs
from 5 different generations and 2 vendors, running in the browser
through WebGPU. We showed that the massive parallelism of mod-
ern GPUs can be leveraged in parallelized eviction set construction
algorithms. Our three case studies emphasized the relevance of our
work: Our inter-keystroke timing attack, with F;-scores between
82 % and 98 %, exposes sensitive user input to an attacker. Our set-
agnostic end-to-end attack on GPU-based AES encryption leaks
full AES keys in 6 min, showing that also cryptographic secrets are
exposed to browser-based attackers. Our native-to-browser Prime+
Probe covert channel shows that the bandwidth of this channel
can reach average transmission rates of up to 10.9 kB/s. Since our
attacks require no user interaction, they can be implemented as
dangerous drive-by attacks. Thus, we conclude that GPU access
should be treated as a similar security and privacy risk as other
devices and resources that require explicit user consent.

ACKNOWLEDGMENTS

This research is supported in part by the European Research Council
(ERC project FSSec 101076409), and the Austrian Science Fund (FWF
project NeRAM I-6054-N). Additional funding was provided by a
generous gift from Red Hat. Any opinions or recommendations
expressed are those of the authors and do not necessarily reflect
the views of the funding parties. We also thank Gregor Heindl for
his generous donation of time and hardware.

Generic and Automated Drive-by GPU Cache Attacks from the Browser

REFERENCES

(1]
(2]
(3]

[4

(5]

[11]

[12

[13]

=
it

(15

[16]

[17]
(18]

[19]

[20]

[21

[22]

[23]

[24]
[25

[26

[27]

[34]

[35]

NVIDIA, “CUDA C++ Programming Guide,” 2023.

Khronos, “OpenCL,” 2023. [Online]. Available: https://www.khronos.org/opencl/
J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. A. Faruque, “Leaky DNN: Stealing
Deep-Learning Model Secret with GPU Context-Switching Side-Channel,” in
DSN, 2020.

C. Tezcan, “Optimization of advanced encryption standard on graphics processing
units,” IEEE Access, vol. 9, pp. 67 315-67 326, 2021.

T. Yamanouchi, “GPU Gems 3 - AES Encryption and Decryption on the GPU,
2007. [Online]. Available: https://developer.nvidia.com/gpugems/gpugems3/part-
vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu

J. Ahn, C. Jin, J. Kim, M. Rhu, Y. Fei, D. Kaeli, and J. Kim, “Trident: A hybrid
correlation-collision GPU cache timing attack for AES key recovery,” in HPCA,
2021.

Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing attack on a
GPU, in HPCA, 2016.

——, “A novel side-channel timing attack on GPUs,” in Proceedings of the on Great
Lakes Symposium on VLSI, 2017, pp. 167-172.

——, “Exploiting bank conflict-based side-channel timing leakage of gpus,” ACM
TACO, 2019.

H. Naghibijouybari, K. N. Khasawneh, and N. B. Abu-Ghazaleh, “Constructing
and characterizing covert channels on GPGPUs,” in MICRO, 2017.

H. Naghibijouybari, E. M. Koruyeh, and N. B. Abu-Ghazaleh, “Microarchitectural
Attacks in Heterogeneous Systems: A Survey,” ACM Comput. Surv., vol. 55, no. 7,
pp. 142:1-142:40, 2023.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh, “Rendered
Insecure: GPU Side Channel Attacks are Practical,” in CCS, 2018.

P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,” in S&P, 2018.

S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How SGX fails in
practice,” 2020.

P. Cronin, X. Gao, H. Wang, and C. Cotton, “An Exploration of ARM System-Level
Cache and GPU Side Channels,” in ACSAC, 2021.

S. B. Dutta, H. Naghibijouybari, A. Gupta, N. B. Abu-Ghazaleh, A. Marquez, and
K.]J. Barker, “Spy in the GPU-box: Covert and Side Channel Attacks on Multi-GPU
Systems,” in ISCA, 2022.

W3C, “WebGPU - W3C Working Draft - Timing attacks,” 2023. [Online].
Available: https://www.w3.org/TR/webgpu/#security-timing

B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on the Line:
Practical Cache Attacks on the MMU.” in NDSS, 2017.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers and Where
to Find Them: High-Resolution Microarchitectural Attacks in JavaScript,” in FC,
2017.

A. van Kesteren, “Safely reviving shared memory,” 2020. [Online]. Available:
https://hacks.mozilla.org/2020/07/safely-reviving- shared-memory/

Mozilla, “SharedArrayBuffer,” 2012. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
W3C, “WebGPU Security Considerations,” 2023. [Online]. Available: https:
/[www.w3.0rg/TR/webgpu/#security-considerations

NVIDIA, “NVIDIA Tesla v100 GPU architecture,” 2017. [Online]. Available:
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf

——, “Kernel Profiling Guide,” 2023.

AMD, “AMD RDNA Whitepaper,” 2023. [Online]. Available: https://www.amd.co
m/system/files/documents/rdna-whitepaper.pdf

K. Group, “WebGL Specification,” https://registry khronos.org/webgl/specs/1.0.3/,
2023.

K. W. W. Group, “WebGL 2.0 Compute,” https://registry.khronos.org/webgl/spe
cs/latest/2.0-compute/, 2021.

Mozilla, “WebGPU API” 2023. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/API/WebGPU_API

Google, “Chrome ships WebGPU,” 2023. [Online]. Available: https://developer.ch
rome.com/blog/webgpu-release/

W3C, “WebGPU,” 2023. [Online]. Available: https://www.w3.org/TR/webgpu

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache Side-Channel
Attacks are Practical in S&P, 2015.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures:
the Case of AES,” in CT-RSA, 2006.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and their Implications,” in CCS,
2015.

A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and Y. Yarom,
“Prime+Probe 1, JavaScript 0: Overcoming browser-based side-channel defenses,”
in USENIX Security, 2021.

S. B. Dutta, H. Naghibijouybari, N. Abu-Ghazaleh, A. Marquez, and K. Barker,
“Leaky buddies: Cross-component covert channels on integrated cpu-gpu systems,”
in ISCA, 2021.

[36

[37

[38

(39]

[40

ASIA CCS 2024, July 1-5, 2024, Singapore

H. Taneja, J. Kim, J. J. Xu, S. van Schaik, D. Genkin, and Y. Yarom, “Hot Pixels:
Frequency, Power, and Temperature Attacks on GPUs and ARM SoCs,” in USENIX
Security, 2023.

P. Vila, B. Kopf, and J. Morales, “Theory and Practice of Finding Eviction Sets,” in
S&P, 2019.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “ARMageddon: Cache
Attacks on Mobile Devices,” in USENIX Security, 2016.

W3C, “WebGPU Shading Language - Terminology and Concepts,” 2023. [Online].
Available: https://www.w3.org/TR/WGSL/#unif ormity-concepts

S. Jain, L. Baek, S. Wang, and R. Rajkumar, “Fractional GPUs: Software-based
compute and memory bandwidth reservation for GPUs,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019.

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon, “Reverse
Engineering Intel Complex Addressing Using Performance Counters,” in RAID,
2015.

G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse engineering of cache
slice selection in Intel processors,” in Euromicro Conference on Digital System
Design, 2015.

Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the Intel Last-Level
Cache,” Cryptology ePrint Archive, Report 2015/905, 2015.

X. Mei and X. Chu, “Dissecting GPU memory hierarchy through microbench-
marking,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1,
2016.

Z.Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting the NVidia Turing
T4 GPU via microbenchmarking,” arXiv:1903.07486, 2019.

Z.Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the NVIDIA volta
GPU architecture via microbenchmarking,” arXiv:1804.06826, 2018.

M. K. Qureshi, “New attacks and defense for encrypted-address cache,” in ISCA,
2019.

A. Purnal, L. Giner, D. Gruss, and 1. Verbauwhede, “Systematic Analysis of
Randomization-based Protected Cache Architectures,” in S&P, 2021.

D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes and Timing
Attacks on SSH,” in USENIX Security, 2001.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Automating
Attacks on Inclusive Last-Level Caches,” in USENIX Security, 2015.

M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C.-m.-t.-n. Maurice, and S. Mangard,
“Practical Keystroke Timing Attacks in Sandboxed JavaScript,” in ESORICS, 2017.
J. Monaco, “SoK: Keylogging Side Channels,” in S&P, 2018.

J. Bonneau and L. Mironov, “Cache-collision timing attacks against AES,” in CHES,
2006.

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A fast, Cross-
VM attack on AES,” in RAID, 2014.

M. Neve and J.-P. Seifert, “Advances on access-driven cache attacks on AES,” in
SAC. Springer, 2007.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. Alberto Boano, S. Man-
gard, and K. Rémer, “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud,” in NDSS, 2017.

https://www.khronos.org/opencl/
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://www.w3.org/TR/webgpu/#security-timing
https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://www.w3.org/TR/webgpu/#security-considerations
https://www.w3.org/TR/webgpu/#security-considerations
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://registry.khronos.org/webgl/specs/1.0.3/
https://registry.khronos.org/webgl/specs/latest/2.0-compute/
https://registry.khronos.org/webgl/specs/latest/2.0-compute/
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://developer.chrome.com/blog/webgpu-release/
https://developer.chrome.com/blog/webgpu-release/
https://www.w3.org/TR/webgpu
https://www.w3.org/TR/WGSL/#uniformity-concepts

	Abstract
	1 Introduction
	2 Background
	2.1 GPU architecture
	2.2 GPU APIs
	2.3 Prime+Probe
	2.4 Related Work

	3 Threat Model
	4 WebGPU primitives
	4.1 Timing without clocks
	4.2 Cache-Size Detection
	4.3 L2 Cache Eviction Set Construction
	4.4 Full Cache Evictions

	5 Keystroke Monitoring with Full Eviction
	5.1 Construction
	5.2 Evaluation

	6 AES Key Recovery with Browser-based Templating
	6.1 Threat Model
	6.2 AES Implementation Details
	6.3 Attack Methodology
	6.4 Evaluation

	7 A Prime+Probe Covert Channel
	7.1 Construction
	7.2 Evaluation

	8 Discussion
	9 Conclusion
	References

